Highly Permeable and Liquid-Repellent Textiles with Micro-Nano-Networks for Medical and Health Protection
Corresponding Author: Bin Ding
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 208
Abstract
Current protective clothing often lacks sufficient comfort to ensure efficient performance of healthcare workers. Developing protective textiles with high air and moisture permeability is a potential and effective solution to discomfort of medical protective clothing. However, realizing the facile production of a protective textile that combines safety and comfort remains a challenge. Herein, we report the fabrication of highly permeable protective textiles (HPPT) with micro/nano-networks, using non-solvent induced phase separation synergistically driven by CaCl2 and fluorinated polyurethane, combined with spraying technique. The HPPT demonstrates excellent liquid repellency and comfort, ensuring high safety and a dry microenvironment for the wearer. The textile exhibits not only a high hydrostatic pressure (12.86 kPa) due to its tailored small mean pore size (1.03 μm) and chemical composition, but also demonstrates excellent air permeability (14.24 mm s−1) and moisture permeability (7.92 kg m−2 d−1) owing to the rational combination of small pore size and high porosity (69%). The HPPT offers superior comfort compared to the commercially available protective materials. Additionally, we elucidated a molding mechanism synergistically inducted by diffusion–dissolution-phase separation. This research provides an innovative perspective on enhancing the comfort of medical protective clothing and offers theoretical support for regulating of pore structure during phase separations.
Highlights:
1 Highly permeable protective textiles (HPPT) with micro/nano-networks were fabricated using a non-solvent induced phase separation, synergistically driven by CaCl2 and fluorinated polyurethane, combined with spraying technique.
2 The optimized HPPT exhibited excellent liquid repellency and air-moisture permeability properties due to the integration and cooperative drive of the low surface energy and the pore structure of the connectivity network, which can be used as desirable protective materials.
3 The formation mechanism of micro/nano-network structure was analyzed by molecular dynamics and observed by dynamic phase transition behavior, which numerically combined with theory illustrate the phase transition mechanism of HPPT.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Shi, Y. Si, Y. Han, T. Wu, M.I. Iqbal et al., Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications. Adv. Mater. 34(17), e2107938 (2022). https://doi.org/10.1002/adma.202107938
- N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang et al., A novel coronavirus from patients with pneumonia in China, 2019. New Engl. J. Med. 382, 727–733 (2020). https://doi.org/10.1056/NEJMoa2001017
- N. Karim, S. Afroj, K. Lloyd, L.C. Oaten, D.V. Andreeva et al., Sustainable personal protective clothing for healthcare applications: a review. ACS Nano 14, 12313–12340 (2020). https://doi.org/10.1021/acsnano.0c05537
- N. Meng, Y. Zhang, Y. Lin, C. Zhao, Z. Li et al., Integrated high barrier and efficient moisture-wicking multilayer textile for medical and health protection. Adv. Funct. Mater. 33(51), 2305411 (2023). https://doi.org/10.1002/adfm.202305411
- X. Su, C. Jia, H. Xiang, M. Zhu, Research progress in preparation, properties, and applications of medical protective fiber materials. Appl. Mater. Today 32, 101792 (2023). https://doi.org/10.1016/j.apmt.2023.101792
- L. Yang, H. Liu, S. Ding, J. Wu, Y. Zhang et al., Superabsorbent fibers for comfortable disposable medical protective clothing. Adv. Fiber Mater. 2(3), 140–149 (2020). https://doi.org/10.1007/s42765-020-00044-w
- H. Yu, S. Zhang, Y. Lian, M. Liu, M. Wang et al., Electronic textile with passive thermal management for outdoor health monitoring. Adv. Fiber Mater. 6(4), 1241–1252 (2024). https://doi.org/10.1007/s42765-024-00412-w
- T. Quinn, J.H. Kim, A. Strauch, T. Wu, J. Powell et al., Physiological evaluation of cooling devices in conjunction with personal protective ensembles recommended for use in West Africa. Disaster Med. Public Health Prep. 11, 573–579 (2017). https://doi.org/10.1017/dmp.2016.209
- D.S. Chertow, C. Kleine, J.K. Edwards, R. Scaini, R. Giuliani et al., Ebola virus disease in west africa-clinical manifestations and management. New Engl. J. Med. 371, 2054–2057 (2014). https://doi.org/10.1056/NEJMp1413084
- T. Quinn, J.H. Kim, Y. Seo, A. Coca, Comparison of thermal manikin modeling and human subjects’ response during use of cooling devices under personal protective ensembles in the heat. Prehosp. Disaster Med. 33, 279–287 (2018). https://doi.org/10.1017/S1049023X18000328
- L. Lou, K. Chen, J. Fan, Advanced materials for personal thermal and moisture management of health care workers wearing PPE. Sci. Eng. R Rep. 146, 100639 (2021). https://doi.org/10.1016/j.mser.2021.100639
- R.M. Mohammad, A. Ali, M. Hossain, M.A. Rahman Bhuiyan, H.M. Abd et al., Improved protection and comfort of barrier clothing via moisture-permeable poly (vinyl alcohol)–superabsorbent polymer nanofibrous membrane. J. Mater. Res. Technol. 24, 3600–3607 (2023). https://doi.org/10.1016/j.jmrt.2023.04.020
- L. Zhang, Q. Zheng, X. Ge, H. Chan, G. Zhang et al., Preparation of Nylon-6 micro-nanofiber composite membranes with 3D uniform gradient structure for high-efficiency air filtration of ultrafine ps. Sep. Purif. Technol. 308, 122921 (2023). https://doi.org/10.1016/j.seppur.2022.122921
- Y. Zhao, H. Wang, H. Zhou, T. Lin, Directional fluid transport in thin porous materials and its functional applications. Small 13(4), 1601070 (2017). https://doi.org/10.1002/smll.201601070
- S. Afroj, L. Britnell, T. Hasan, D.V. Andreeva, K.S. Novoselov et al., Graphene-based technologies for tackling COVID-19 and future pandemics. Adv. Funct. Mater. 31(52), 2107407 (2021). https://doi.org/10.1002/adfm.202107407
- K.C. Manning, P. Kotagama, T.P. Burgin, K. Rykaczewski, Breathable, stimuli-responsive, and self-sealing chemical barrier material based on selectively superabsorbing polymer. Ind. Eng. Chem. Res. 59(26), 12282–12286 (2020). https://doi.org/10.1021/acs.iecr.0c01900
- F.S. Kilinc, A review of isolation gowns in healthcare: fabric and gown properties. J. Eng. Fiber Fabr. 10, 180–190 (2015) PMID: 26989351.
- E. Vozzola, M. Overcash, E. Griffing, An environmental analysis of reusable and disposable surgical gowns. AORN J. 111(3), 315–325 (2020). https://doi.org/10.1002/aorn.12885
- J.L. Zhou, Z.X. Hu, F. Zabihi, Z.G. Chen, M.F. Zhu, Progress and perspective of antiviral protective material. Adv. Fiber Mater. 2, 123–139 (2020). https://doi.org/10.1007/s42765-020-00047-7
- G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50, 3798–3817 (2011). https://doi.org/10.1021/ie101928r
- H. Wang, S. Zhao, Y. Liu, R. Yao, X. Wang et al., Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nat. Commun. 10(1), 4204 (2019). https://doi.org/10.1038/s41467-019-12114-8
- A.I. Osman, Z. Chen, A.M. Elgarahy, M. Farghali, I.M.A. Mohamed et al., Membrane technology for energy saving: principles, techniques, applications, challenges, and prospects. Adv. Energy Sustain. Res. 5(5), 2400011 (2024). https://doi.org/10.1002/aesr.202400011
- J.T. Jung, J.F. Kim, H.H. Wang, E. di Nicolo, E. Drioli et al., Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 514, 250–263 (2016). https://doi.org/10.1016/j.memsci.2016.04.069
- X. Shan, L. Liu, Y. Wu, D. Yuan, J. Wang et al., Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling. Adv. Sci. 9(20), e2201190 (2022). https://doi.org/10.1002/advs.202201190
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- T. Ahmad, C. Guria, S. Shekhar, Effects of inorganic salts in the casting solution on morphology of poly(vinyl chloride)/bentonite ultrafiltration membranes. Mater. Chem. Phys. 280, 125805 (2022). https://doi.org/10.1016/j.matchemphys.2022.125805
- N.M. Kreienborg, C. Merten, How to treat C-F stretching vibrations? A vibrational CD study on chiral fluorinated molecules. Phys. Chem. Chem. Phys. 21(7), 3506–3511 (2019). https://doi.org/10.1039/c8cp02395f
- X. Gong, M. Ding, P. Gao, X. Liu, J. Yu et al., High-performance liquid-repellent and thermal-wet comfortable membranes using triboelectric nanostructured nanofiber/meshes. Adv. Mater. 35(51), e2305606 (2023). https://doi.org/10.1002/adma.202305606
- X. Gong, C. Jin, X.-Y. Liu, J. Yu, S. Zhang et al., Scalable fabrication of electrospun true-nanoscale fiber membranes for effective selective separation. Nano Lett. 23(3), 1044–1051 (2023). https://doi.org/10.1021/acs.nanolett.2c04667
- Y. Wang, G. Xia, H. Yu, B. Qian, Y.H. Cheung et al., Mussel-inspired design of a self-adhesive agent for durable moisture management and bacterial inhibition on PET fabric. Adv. Mater. 33(35), e2100140 (2021). https://doi.org/10.1002/adma.202100140
- L. Lan, J. Xiong, D. Gao, Y. Li, J. Chen et al., Breathable nanogenerators for an on-plant self-powered sustainable agriculture system. ACS Nano 15(3), 5307–5315 (2021). https://doi.org/10.1021/acsnano.0c10817
- F. Wang, P. Altschuh, L. Ratke, H. Zhang, M. Selzer et al., Progress report on phase separation in polymer solutions. Adv. Mater. 31(26), e1806733 (2019). https://doi.org/10.1002/adma.201806733
- S. Alberti, A. Gladfelter, T. Mittag, Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176(3), 419–434 (2019). https://doi.org/10.1016/j.cell.2018.12.035
- M. Bercea, L.-M. Gradinaru, M. Barbalata-Mandru, S. Vlad, L.E. Nita et al., Shear flow of associative polymers in aqueous solutions. J. Mol. Struct. 1238, 130441 (2021). https://doi.org/10.1016/j.molstruc.2021.130441
- B. Wang, L. Zhang, T. Dai, Z. Qin, H. Lu et al., Liquid-liquid phase separation in human health and diseases. Signal Transduct. Target. Ther. 6, 290 (2021). https://doi.org/10.1038/s41392-021-00678-1
- S. Zhang, H. Liu, N. Tang, S. Zhou, J. Yu et al., Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks. Adv. Mater. 32(29), e2002361 (2020). https://doi.org/10.1002/adma.202002361
- S.R. Niezgoda, Y.C. Yabansu, S.R. Kalidindi, Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater. 59(16), 6387–6400 (2011). https://doi.org/10.1016/j.actamat.2011.06.051
- A. Cecen, Y.C. Yabansu, S.R. Kalidindi, A new framework for rotationally invariant two-point spatial correlations in microstructure datasets. Acta Mater. 158, 53–64 (2018). https://doi.org/10.1016/j.actamat.2018.07.056
- Y.S. Al-Hamdani, P.R. Nagy, A. Zen, D. Barton, M. Kállay et al., Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat. Commun. 12, 3927 (2021). https://doi.org/10.1038/s41467-021-24119-3
- C. Zou, S. Li, X. Huan, H. Hu, L. Dong et al., The adsorption mechanism of arsenic in flue gas over the P-doped carbonaceous adsorbent: experimental and theoretical study. Sci. Total. Environ. 895, 165066 (2023). https://doi.org/10.1016/j.scitotenv.2023.165066
- X. Dong, D. Lu, T.A.L. Harris, I.C. Escobar, Polymers and solvents used in membrane fabrication: a review focusing on sustainable membrane development. Membranes 11(5), 309 (2021). https://doi.org/10.3390/membranes11050309
- A. Kurotani, T. Kakiuchi, J. Kikuchi, Solubility prediction from molecular properties and analytical data using an in-phase deep neural network (ip-DNN). ACS Omega 6(22), 14278–14287 (2021). https://doi.org/10.1021/acsomega.1c01035
- C. Li, A. Strachan, Cohesive energy density and solubility parameter evolution during the curing of thermoset. Polymer 135, 162–170 (2018). https://doi.org/10.1016/j.polymer.2017.12.002
- J.F. Kim, J.H. Kim, Y.M. Lee, E. Drioli, Thermally induced phase separation and electrospinning methods for emerging membrane applications: a review. AlChE. J. 62(2), 461–490 (2016). https://doi.org/10.1002/aic.15076
- J.V. Alegre-Requena, C. Saldías, R. Inostroza-Rivera, D.D. Díaz, Understanding hydrogelation processes through molecular dynamics. J. Mater. Chem. B 7(10), 1652–1673 (2019). https://doi.org/10.1039/c8tb03036g
- R. Alhasan, T.A. Wilcoxson, D.S. Banks, S. Jung, D.R. Tree, Nonsolvent-induced phase separation inside liquid droplets. J. Chem. Phys. 158(21), 214903 (2023). https://doi.org/10.1063/5.0143928
- K. Higashitani, J. Oshitani, Measurements of magnetic effects on electrolyte solutions by atomic force microscope. Process. Saf. Environ. Prot. 75(2), 115–119 (1997). https://doi.org/10.1205/095758297528887
- L.A. Belyaeva, P.M.G. van Deursen, K.I. Barbetsea, G.F. Schneider, Hydrophilicity of graphene in water through transparency to polar and dispersive interactions. Adv. Mater. 30(6), 1703274 (2018). https://doi.org/10.1002/adma.201703274
- N.T. Skipper, G.W. Neilson, X-ray and neutron diffraction studies on concentrated aqueous solutions of sodium nitrate and silver nitrate. J. Phys. Condens. Matter 1, 4141 (1989). https://doi.org/10.1088/0953-8984/1/26/010
- W. Zhao, Y. Zheng, A. Huang, M. Jiang, L. Wang et al., Metal-halogen interactions inducing phase separation for self-healing and tough ionogels with tunable thermoelectric performance. Adv. Mater. 36(30), 2402386 (2024). https://doi.org/10.1002/adma.202402386
- X. Peng, K. Dong, C. Ye, Y. Jiang, S. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba9624
- H. Zhang, Y. Cao, Q. Zhen, J.-J. Hu, J.-Q. Cui, X.-M. Qian, Facile preparation of PET/PA6 bicomponent microfilament fabrics with tunable porosity for comfortable medical protective clothing. ACS Appl. Bio Mater. 5, 3509 (2022). https://doi.org/10.1021/acsabm.2c00447
- J. Zhao, W. Zhu, X. Wang, L. Liu, J. Yu et al., Fluorine-free waterborne coating for environmentally friendly, robustly water-resistant, and highly breathable fibrous textiles. ACS Nano 14(1), 1045–1054 (2020). https://doi.org/10.1021/acsnano.9b08595
- L. Cai, A.Y. Song, P. Wu, P.-C. Hsu, Y. Peng et al., Warming up human body by nanoporous metallized polyethylene textile. Nat. Commun. 8(1), 496 (2017). https://doi.org/10.1038/s41467-017-00614-4
- W. Yang, W. Gong, C. Hou, Y. Su, Y. Guo et al., All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun. 10(1), 5541 (2019). https://doi.org/10.1038/s41467-019-13569-5
- L. Guo, K. Ntetsikas, G. Zapsas, R. Thankamony, Z. Lai et al., Highly efficient production of nanoporous block copolymers with arbitrary structural characteristics for advanced membranes. Angew. Chem. Int. Ed. 62(4), e202212400 (2023). https://doi.org/10.1002/anie.202212400
- R. Taguchi, K. Kuwahara, N. Akamatsu, A. Shishido, Quantitative analysis of bending hysteresis by real-time monitoring of curvature in flexible polymeric films. Soft Matter 17(15), 4040–4046 (2021). https://doi.org/10.1039/d0sm02233k
- S. Yu, Y. Yang, J. Zhu, L. Ma, W. Jia et al., Wear and anticorrosive properties of graphene oxide-cellulose nanofiber composite coatings. Mater. Chem. Phys. 305, 128002 (2023). https://doi.org/10.1016/j.matchemphys.2023.128002
- P. Li, M. Yang, Y. Liu, J. Zhang, S. He et al., The rise of intelligent fabric agent from mass-produced advanced fiber materials. Sci. Bull. 69(23), 3644–3647 (2024). https://doi.org/10.1016/j.scib.2024.09.034
- M. Chen, P. Li, R. Wang, Y. Xiang, Z. Huang et al., Multifunctional fiber-enabled intelligent health agents. Adv. Mater. 34(52), e2200985 (2022). https://doi.org/10.1002/adma.202200985
References
S. Shi, Y. Si, Y. Han, T. Wu, M.I. Iqbal et al., Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications. Adv. Mater. 34(17), e2107938 (2022). https://doi.org/10.1002/adma.202107938
N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang et al., A novel coronavirus from patients with pneumonia in China, 2019. New Engl. J. Med. 382, 727–733 (2020). https://doi.org/10.1056/NEJMoa2001017
N. Karim, S. Afroj, K. Lloyd, L.C. Oaten, D.V. Andreeva et al., Sustainable personal protective clothing for healthcare applications: a review. ACS Nano 14, 12313–12340 (2020). https://doi.org/10.1021/acsnano.0c05537
N. Meng, Y. Zhang, Y. Lin, C. Zhao, Z. Li et al., Integrated high barrier and efficient moisture-wicking multilayer textile for medical and health protection. Adv. Funct. Mater. 33(51), 2305411 (2023). https://doi.org/10.1002/adfm.202305411
X. Su, C. Jia, H. Xiang, M. Zhu, Research progress in preparation, properties, and applications of medical protective fiber materials. Appl. Mater. Today 32, 101792 (2023). https://doi.org/10.1016/j.apmt.2023.101792
L. Yang, H. Liu, S. Ding, J. Wu, Y. Zhang et al., Superabsorbent fibers for comfortable disposable medical protective clothing. Adv. Fiber Mater. 2(3), 140–149 (2020). https://doi.org/10.1007/s42765-020-00044-w
H. Yu, S. Zhang, Y. Lian, M. Liu, M. Wang et al., Electronic textile with passive thermal management for outdoor health monitoring. Adv. Fiber Mater. 6(4), 1241–1252 (2024). https://doi.org/10.1007/s42765-024-00412-w
T. Quinn, J.H. Kim, A. Strauch, T. Wu, J. Powell et al., Physiological evaluation of cooling devices in conjunction with personal protective ensembles recommended for use in West Africa. Disaster Med. Public Health Prep. 11, 573–579 (2017). https://doi.org/10.1017/dmp.2016.209
D.S. Chertow, C. Kleine, J.K. Edwards, R. Scaini, R. Giuliani et al., Ebola virus disease in west africa-clinical manifestations and management. New Engl. J. Med. 371, 2054–2057 (2014). https://doi.org/10.1056/NEJMp1413084
T. Quinn, J.H. Kim, Y. Seo, A. Coca, Comparison of thermal manikin modeling and human subjects’ response during use of cooling devices under personal protective ensembles in the heat. Prehosp. Disaster Med. 33, 279–287 (2018). https://doi.org/10.1017/S1049023X18000328
L. Lou, K. Chen, J. Fan, Advanced materials for personal thermal and moisture management of health care workers wearing PPE. Sci. Eng. R Rep. 146, 100639 (2021). https://doi.org/10.1016/j.mser.2021.100639
R.M. Mohammad, A. Ali, M. Hossain, M.A. Rahman Bhuiyan, H.M. Abd et al., Improved protection and comfort of barrier clothing via moisture-permeable poly (vinyl alcohol)–superabsorbent polymer nanofibrous membrane. J. Mater. Res. Technol. 24, 3600–3607 (2023). https://doi.org/10.1016/j.jmrt.2023.04.020
L. Zhang, Q. Zheng, X. Ge, H. Chan, G. Zhang et al., Preparation of Nylon-6 micro-nanofiber composite membranes with 3D uniform gradient structure for high-efficiency air filtration of ultrafine ps. Sep. Purif. Technol. 308, 122921 (2023). https://doi.org/10.1016/j.seppur.2022.122921
Y. Zhao, H. Wang, H. Zhou, T. Lin, Directional fluid transport in thin porous materials and its functional applications. Small 13(4), 1601070 (2017). https://doi.org/10.1002/smll.201601070
S. Afroj, L. Britnell, T. Hasan, D.V. Andreeva, K.S. Novoselov et al., Graphene-based technologies for tackling COVID-19 and future pandemics. Adv. Funct. Mater. 31(52), 2107407 (2021). https://doi.org/10.1002/adfm.202107407
K.C. Manning, P. Kotagama, T.P. Burgin, K. Rykaczewski, Breathable, stimuli-responsive, and self-sealing chemical barrier material based on selectively superabsorbing polymer. Ind. Eng. Chem. Res. 59(26), 12282–12286 (2020). https://doi.org/10.1021/acs.iecr.0c01900
F.S. Kilinc, A review of isolation gowns in healthcare: fabric and gown properties. J. Eng. Fiber Fabr. 10, 180–190 (2015) PMID: 26989351.
E. Vozzola, M. Overcash, E. Griffing, An environmental analysis of reusable and disposable surgical gowns. AORN J. 111(3), 315–325 (2020). https://doi.org/10.1002/aorn.12885
J.L. Zhou, Z.X. Hu, F. Zabihi, Z.G. Chen, M.F. Zhu, Progress and perspective of antiviral protective material. Adv. Fiber Mater. 2, 123–139 (2020). https://doi.org/10.1007/s42765-020-00047-7
G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50, 3798–3817 (2011). https://doi.org/10.1021/ie101928r
H. Wang, S. Zhao, Y. Liu, R. Yao, X. Wang et al., Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nat. Commun. 10(1), 4204 (2019). https://doi.org/10.1038/s41467-019-12114-8
A.I. Osman, Z. Chen, A.M. Elgarahy, M. Farghali, I.M.A. Mohamed et al., Membrane technology for energy saving: principles, techniques, applications, challenges, and prospects. Adv. Energy Sustain. Res. 5(5), 2400011 (2024). https://doi.org/10.1002/aesr.202400011
J.T. Jung, J.F. Kim, H.H. Wang, E. di Nicolo, E. Drioli et al., Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 514, 250–263 (2016). https://doi.org/10.1016/j.memsci.2016.04.069
X. Shan, L. Liu, Y. Wu, D. Yuan, J. Wang et al., Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling. Adv. Sci. 9(20), e2201190 (2022). https://doi.org/10.1002/advs.202201190
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
T. Ahmad, C. Guria, S. Shekhar, Effects of inorganic salts in the casting solution on morphology of poly(vinyl chloride)/bentonite ultrafiltration membranes. Mater. Chem. Phys. 280, 125805 (2022). https://doi.org/10.1016/j.matchemphys.2022.125805
N.M. Kreienborg, C. Merten, How to treat C-F stretching vibrations? A vibrational CD study on chiral fluorinated molecules. Phys. Chem. Chem. Phys. 21(7), 3506–3511 (2019). https://doi.org/10.1039/c8cp02395f
X. Gong, M. Ding, P. Gao, X. Liu, J. Yu et al., High-performance liquid-repellent and thermal-wet comfortable membranes using triboelectric nanostructured nanofiber/meshes. Adv. Mater. 35(51), e2305606 (2023). https://doi.org/10.1002/adma.202305606
X. Gong, C. Jin, X.-Y. Liu, J. Yu, S. Zhang et al., Scalable fabrication of electrospun true-nanoscale fiber membranes for effective selective separation. Nano Lett. 23(3), 1044–1051 (2023). https://doi.org/10.1021/acs.nanolett.2c04667
Y. Wang, G. Xia, H. Yu, B. Qian, Y.H. Cheung et al., Mussel-inspired design of a self-adhesive agent for durable moisture management and bacterial inhibition on PET fabric. Adv. Mater. 33(35), e2100140 (2021). https://doi.org/10.1002/adma.202100140
L. Lan, J. Xiong, D. Gao, Y. Li, J. Chen et al., Breathable nanogenerators for an on-plant self-powered sustainable agriculture system. ACS Nano 15(3), 5307–5315 (2021). https://doi.org/10.1021/acsnano.0c10817
F. Wang, P. Altschuh, L. Ratke, H. Zhang, M. Selzer et al., Progress report on phase separation in polymer solutions. Adv. Mater. 31(26), e1806733 (2019). https://doi.org/10.1002/adma.201806733
S. Alberti, A. Gladfelter, T. Mittag, Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176(3), 419–434 (2019). https://doi.org/10.1016/j.cell.2018.12.035
M. Bercea, L.-M. Gradinaru, M. Barbalata-Mandru, S. Vlad, L.E. Nita et al., Shear flow of associative polymers in aqueous solutions. J. Mol. Struct. 1238, 130441 (2021). https://doi.org/10.1016/j.molstruc.2021.130441
B. Wang, L. Zhang, T. Dai, Z. Qin, H. Lu et al., Liquid-liquid phase separation in human health and diseases. Signal Transduct. Target. Ther. 6, 290 (2021). https://doi.org/10.1038/s41392-021-00678-1
S. Zhang, H. Liu, N. Tang, S. Zhou, J. Yu et al., Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks. Adv. Mater. 32(29), e2002361 (2020). https://doi.org/10.1002/adma.202002361
S.R. Niezgoda, Y.C. Yabansu, S.R. Kalidindi, Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater. 59(16), 6387–6400 (2011). https://doi.org/10.1016/j.actamat.2011.06.051
A. Cecen, Y.C. Yabansu, S.R. Kalidindi, A new framework for rotationally invariant two-point spatial correlations in microstructure datasets. Acta Mater. 158, 53–64 (2018). https://doi.org/10.1016/j.actamat.2018.07.056
Y.S. Al-Hamdani, P.R. Nagy, A. Zen, D. Barton, M. Kállay et al., Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat. Commun. 12, 3927 (2021). https://doi.org/10.1038/s41467-021-24119-3
C. Zou, S. Li, X. Huan, H. Hu, L. Dong et al., The adsorption mechanism of arsenic in flue gas over the P-doped carbonaceous adsorbent: experimental and theoretical study. Sci. Total. Environ. 895, 165066 (2023). https://doi.org/10.1016/j.scitotenv.2023.165066
X. Dong, D. Lu, T.A.L. Harris, I.C. Escobar, Polymers and solvents used in membrane fabrication: a review focusing on sustainable membrane development. Membranes 11(5), 309 (2021). https://doi.org/10.3390/membranes11050309
A. Kurotani, T. Kakiuchi, J. Kikuchi, Solubility prediction from molecular properties and analytical data using an in-phase deep neural network (ip-DNN). ACS Omega 6(22), 14278–14287 (2021). https://doi.org/10.1021/acsomega.1c01035
C. Li, A. Strachan, Cohesive energy density and solubility parameter evolution during the curing of thermoset. Polymer 135, 162–170 (2018). https://doi.org/10.1016/j.polymer.2017.12.002
J.F. Kim, J.H. Kim, Y.M. Lee, E. Drioli, Thermally induced phase separation and electrospinning methods for emerging membrane applications: a review. AlChE. J. 62(2), 461–490 (2016). https://doi.org/10.1002/aic.15076
J.V. Alegre-Requena, C. Saldías, R. Inostroza-Rivera, D.D. Díaz, Understanding hydrogelation processes through molecular dynamics. J. Mater. Chem. B 7(10), 1652–1673 (2019). https://doi.org/10.1039/c8tb03036g
R. Alhasan, T.A. Wilcoxson, D.S. Banks, S. Jung, D.R. Tree, Nonsolvent-induced phase separation inside liquid droplets. J. Chem. Phys. 158(21), 214903 (2023). https://doi.org/10.1063/5.0143928
K. Higashitani, J. Oshitani, Measurements of magnetic effects on electrolyte solutions by atomic force microscope. Process. Saf. Environ. Prot. 75(2), 115–119 (1997). https://doi.org/10.1205/095758297528887
L.A. Belyaeva, P.M.G. van Deursen, K.I. Barbetsea, G.F. Schneider, Hydrophilicity of graphene in water through transparency to polar and dispersive interactions. Adv. Mater. 30(6), 1703274 (2018). https://doi.org/10.1002/adma.201703274
N.T. Skipper, G.W. Neilson, X-ray and neutron diffraction studies on concentrated aqueous solutions of sodium nitrate and silver nitrate. J. Phys. Condens. Matter 1, 4141 (1989). https://doi.org/10.1088/0953-8984/1/26/010
W. Zhao, Y. Zheng, A. Huang, M. Jiang, L. Wang et al., Metal-halogen interactions inducing phase separation for self-healing and tough ionogels with tunable thermoelectric performance. Adv. Mater. 36(30), 2402386 (2024). https://doi.org/10.1002/adma.202402386
X. Peng, K. Dong, C. Ye, Y. Jiang, S. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba9624
H. Zhang, Y. Cao, Q. Zhen, J.-J. Hu, J.-Q. Cui, X.-M. Qian, Facile preparation of PET/PA6 bicomponent microfilament fabrics with tunable porosity for comfortable medical protective clothing. ACS Appl. Bio Mater. 5, 3509 (2022). https://doi.org/10.1021/acsabm.2c00447
J. Zhao, W. Zhu, X. Wang, L. Liu, J. Yu et al., Fluorine-free waterborne coating for environmentally friendly, robustly water-resistant, and highly breathable fibrous textiles. ACS Nano 14(1), 1045–1054 (2020). https://doi.org/10.1021/acsnano.9b08595
L. Cai, A.Y. Song, P. Wu, P.-C. Hsu, Y. Peng et al., Warming up human body by nanoporous metallized polyethylene textile. Nat. Commun. 8(1), 496 (2017). https://doi.org/10.1038/s41467-017-00614-4
W. Yang, W. Gong, C. Hou, Y. Su, Y. Guo et al., All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun. 10(1), 5541 (2019). https://doi.org/10.1038/s41467-019-13569-5
L. Guo, K. Ntetsikas, G. Zapsas, R. Thankamony, Z. Lai et al., Highly efficient production of nanoporous block copolymers with arbitrary structural characteristics for advanced membranes. Angew. Chem. Int. Ed. 62(4), e202212400 (2023). https://doi.org/10.1002/anie.202212400
R. Taguchi, K. Kuwahara, N. Akamatsu, A. Shishido, Quantitative analysis of bending hysteresis by real-time monitoring of curvature in flexible polymeric films. Soft Matter 17(15), 4040–4046 (2021). https://doi.org/10.1039/d0sm02233k
S. Yu, Y. Yang, J. Zhu, L. Ma, W. Jia et al., Wear and anticorrosive properties of graphene oxide-cellulose nanofiber composite coatings. Mater. Chem. Phys. 305, 128002 (2023). https://doi.org/10.1016/j.matchemphys.2023.128002
P. Li, M. Yang, Y. Liu, J. Zhang, S. He et al., The rise of intelligent fabric agent from mass-produced advanced fiber materials. Sci. Bull. 69(23), 3644–3647 (2024). https://doi.org/10.1016/j.scib.2024.09.034
M. Chen, P. Li, R. Wang, Y. Xiang, Z. Huang et al., Multifunctional fiber-enabled intelligent health agents. Adv. Mater. 34(52), e2200985 (2022). https://doi.org/10.1002/adma.202200985