Smart Textiles for Personalized Sports and Healthcare
Corresponding Author: Bin Ding
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 232
Abstract
Advances in wearable electronics and information technology drive sports data collection and analysis toward real-time visualization and precision. The growing pursuit of athleticism and healthy life makes it appealing for individuals to track their real-time health and exercise data seamlessly. While numerous devices enable sports and health monitoring, maintaining comfort over long periods remains a considerable challenge, especially in high-intensity and sweaty sports scenarios. Textiles, with their breathability, deformability, and moisture-wicking abilities, ensure exceptional comfort during prolonged wear, making them ideal for wearable platforms. This review summarized the progress of research on textile-based sports monitoring devices. First, the design principles and fabrication methods of smart textiles were introduced systematically. Textiles undergo a distinctive fiber–yarn–fabric or fiber–fabric manufacturing process that allows for the regulation of performance and the integration of functional elements at every step. Then, the performance requirements for precise sports data collection of smart textiles, including main vital signs, joint movement, and data transmission, were discussed. Lastly, the applications of smart textiles in various sports scenarios are demonstrated. Additionally, the review provides an in-depth analysis of the emerging challenges, strategies, and opportunities for the research and development of sports-oriented smart textiles. Smart textiles not only maintain comfort and accuracy in sports, but also serve as inexpensive and efficient information-gathering terminals. Therefore, developing multifunctional, cost-effective textile-based systems for personalized sports and healthcare is a pressing need for the future of intelligent sports.
Highlights:
1 This review provides comprehensive structural design strategies for the manufacturing of smart textiles, covering fibers, yarns, and fabrics and offers professional guidance for product development in this field.
2 The fundamental performance criteria for sports-oriented smart textiles have been provided, highlighting the key attributes required for their optimal functionality in athletic applications.
3 This review systematically introduces the diverse roles of smart textiles in specific sports scenarios and the stringent requirements they must meet to perform effectively in these environments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
- T. Emig, J. Peltonen, Human running performance from real-world big data. Nat. Commun. 11(1), 4936 (2020). https://doi.org/10.1038/s41467-020-18737-6
- R.J. Olsen, S.S. Hasan, J.J. Woo, D.H. Nawabi, P.N. Ramkumar, The fundamentals and applications of wearable sensor devices in sports medicine: a scoping review. Arthroscopy 41(2), 473–492 (2025). https://doi.org/10.1016/j.arthro.2024.01.042
- J.R. Sempionatto, J.A. Lasalde-Ramírez, K. Mahato, J. Wang, W. Gao, Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6(12), 899–915 (2022). https://doi.org/10.1038/s41570-022-00439-w
- A. Libanori, G. Chen, X. Zhao, Y. Zhou, J. Chen, Smart textiles for personalized healthcare. Nat. Electron. 5(3), 142–156 (2022). https://doi.org/10.1038/s41928-022-00723-z
- A. Cheng, X. Li, D. Li, Z. Chen, T. Cui et al., An intelligent hybrid-fabric wristband system enabled by thermal encapsulation for ergonomic human-machine interaction. Nat. Commun. 16(1), 591 (2025). https://doi.org/10.1038/s41467-024-55649-1
- G. Aroganam, N. Manivannan, D. Harrison, Review on wearable technology sensors used in consumer sport applications. Sensors 19(9), 1983 (2019). https://doi.org/10.3390/s19091983
- A. Farrokhi, R. Farahbakhsh, J. Rezazadeh, R. Minerva, Application of Internet of Things and artificial intelligence for smart fitness: a survey. Comput. Netw. 189, 107859 (2021). https://doi.org/10.1016/j.comnet.2021.107859
- M. Rana, V. Mittal, Wearable sensors for real-time kinematics analysis in sports: a review. IEEE Sens. J. 21(2), 1187–1207 (2021). https://doi.org/10.1109/JSEN.2020.3019016
- D.C. Ackland, Z. Fang, D. Senanayake, A machine learning approach to real-time calculation of joint angles during walking and running using self-placed inertial measurement units. Gait Posture 118, 85–91 (2025). https://doi.org/10.1016/j.gaitpost.2025.01.028
- J. Dong, J. Hou, Y. Peng, Y. Zhang, H. Liu et al., Breathable and stretchable epidermal electronics for health management: recent advances and challenges. Adv. Mater. 36(49), e2409071 (2024). https://doi.org/10.1002/adma.202409071
- W. Li, L. Lu, A.G.P. Kottapalli, Y. Pei, Bioinspired sweat-resistant wearable triboelectric nanogenerator for movement monitoring during exercise. Nano Energy 95, 107018 (2022). https://doi.org/10.1016/j.nanoen.2022.107018
- Z. Lu, C. Jia, X. Yang, Y. Zhu, F. Sun et al., A flexible TENG based on micro-structure film for speed skating techniques monitoring and biomechanical energy harvesting. Nanomaterials 12, 1576 (2022). https://doi.org/10.3390/nano12091576
- S. Wang, W. Deng, T. Yang, G. Tian, D. Xiong et al., Body-area sensor network featuring micropyramids for sports healthcare. Nano Res. 16(1), 1330–1337 (2023). https://doi.org/10.1007/s12274-022-5014-y
- Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14(1), 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
- Q. Wang, X. Pan, C. Lin, D. Lin, Y. Ni et al., Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT: sulfonated lignin as conductive materials. Chem. Eng. J. 370, 1039–1047 (2019). https://doi.org/10.1016/j.cej.2019.03.287
- T. Zhu, Y. Ni, G.M. Biesold, Y. Cheng, M. Ge et al., Recent advances in conductive hydrogels: classifications, properties, and applications. Chem. Soc. Rev. 52(2), 473–509 (2023). https://doi.org/10.1039/D2CS00173J
- L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
- Q. Li, G. Chen, Y. Cui, S. Ji, Z. Liu et al., Highly thermal-wet comfortable and conformal silk-based electrodes for on-skin sensors with sweat tolerance. ACS Nano 15(6), 9955–9966 (2021). https://doi.org/10.1021/acsnano.1c01431
- M. Zhu, J. Li, J. Yu, Z. Li, B. Ding, Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem. Int. Ed. 61(22), e202200226 (2022). https://doi.org/10.1002/anie.202200226
- J. Cai, M. Du, Z. Li, Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 7(7), 2101182 (2022). https://doi.org/10.1002/admt.202101182
- J.-H. Lee, S.-J. Park, Recent advances in preparations and applications of carbon aerogels: a review. Carbon 163, 1–18 (2020). https://doi.org/10.1016/j.carbon.2020.02.073
- N.A. Choudhry, L. Arnold, A. Rasheed, I.A. Khan, L. Wang, Textronics: a review of textile-based wearable electronics. Adv. Eng. Mater. 23(12), 2100469 (2021). https://doi.org/10.1002/adem.202100469
- J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu et al., Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 32(5), 1901958 (2020). https://doi.org/10.1002/adma.201901958
- Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong et al., Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat. Anal. Chem. 91(10), 6569–6576 (2019). https://doi.org/10.1021/acs.analchem.9b00152
- L. Yin, K.N. Kim, J. Lv, F. Tehrani, M. Lin et al., A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun. 12(1), 1542 (2021). https://doi.org/10.1038/s41467-021-21701-7
- S. Cai, C. Xu, D. Jiang, M. Yuan, Q. Zhang et al., Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 93, 106904 (2022). https://doi.org/10.1016/j.nanoen.2021.106904
- C. Wang, Z. Song, H. Wan, X. Chen, Q. Tan et al., Ni-Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices. Chem. Eng. J. 400, 125955 (2020). https://doi.org/10.1016/j.cej.2020.125955
- X. Guan, B. Xu, M. Wu, T. Jing, Y. Yang et al., Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 80, 105549 (2021). https://doi.org/10.1016/j.nanoen.2020.105549
- Q. Qiu, M. Zhu, Z. Li, K. Qiu, X. Liu et al., Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 58, 750–758 (2019). https://doi.org/10.1016/j.nanoen.2019.02.010
- L. Ye, Y. Hong, M. Liao, B. Wang, D. Wei et al., Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater. 28, 364–374 (2020). https://doi.org/10.1016/j.ensm.2020.03.015
- N. Abay Akar, G. Gürel Peközer, G. Torun Köse, Fibrous bone tissue engineering scaffolds prepared by wet spinning of PLGA. Turk. J. Biol. 43, 235 (2019). https://doi.org/10.3906/biy-1904-63
- Y. Jiao, C. Li, L. Liu, F. Wang, X. Liu et al., Construction and application of textile-based tissue engineering scaffolds: a review. Biomater. Sci. 8(13), 3574–3600 (2020). https://doi.org/10.1039/d0bm00157k
- C. Chen, J. Feng, J. Li, Y. Guo, X. Shi et al., Functional fiber materials to smart fiber devices. Chem. Rev. 123(2), 613–662 (2023). https://doi.org/10.1021/acs.chemrev.2c00192
- S.U. Zaman, X. Tao, C. Cochrane, V. Koncar, Smart E-textile systems: a review for healthcare applications. Electronics 11(1), 99 (2022). https://doi.org/10.3390/electronics11010099
- G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick et al., Electronic textiles for wearable point-of-care systems. Chem. Rev. 122(3), 3259–3291 (2022). https://doi.org/10.1021/acs.chemrev.1c00502
- W. Wang, A. Yu, J. Zhai, Z.L. Wang, Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv. Fiber Mater. 3(6), 394–412 (2021). https://doi.org/10.1007/s42765-021-00077-9
- W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11(1), 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
- J. Wu, M. Wang, L. Dong, J. Shi, M. Ohyama et al., A trimode thermoregulatory flexible fibrous membrane designed with hierarchical core-sheath fiber structure for wearable personal thermal management. ACS Nano 16(8), 12801–12812 (2022). https://doi.org/10.1021/acsnano.2c04971
- J. Eom, R. Jaisutti, H. Lee, W. Lee, J.S. Heo et al., Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 9(11), 10190–10197 (2017). https://doi.org/10.1021/acsami.7b01771
- B. Cheng, P. Wu, Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15(5), 8676–8685 (2021). https://doi.org/10.1021/acsnano.1c00749
- L. Ma, R. Wu, A. Patil, J. Yi, D. Liu et al., Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv. Funct. Mater. 31(35), 2102963 (2021). https://doi.org/10.1002/adfm.202102963
- Y. Yang, B. Xu, Y. Gao, M. Li, Conductive composite fiber with customizable functionalities for energy harvesting and electronic textiles. ACS Appl. Mater. Interfaces 13(42), 49927–49935 (2021). https://doi.org/10.1021/acsami.1c14273
- B.C. Hannigan, T.J. Cuthbert, C. Ahmadizadeh, C. Menon, Distributed sensing along fibers for smart clothing. Sci. Adv. 10(12), 9708 (2024). https://doi.org/10.1126/sciadv.adj9708
- Y. Gao, Z. Li, B. Xu, M. Li, C. Jiang et al., Scalable core–spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturing. Nano Energy 91, 106672 (2022). https://doi.org/10.1016/j.nanoen.2021.106672
- M. Liao, C. Wang, Y. Hong, Y. Zhang, X. Cheng et al., Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17(4), 372–377 (2022). https://doi.org/10.1038/s41565-021-01062-4
- L. Niu, J. Wang, K. Wang, H. Pan, G. Jiang et al., High-speed sirospun conductive yarn for stretchable embedded knitted circuit and self-powered wearable device. Adv. Fiber Mater. 5(1), 154–167 (2023). https://doi.org/10.1007/s42765-022-00203-1
- J. Dong, D. Wang, Y. Peng, C. Zhang, F. Lai et al., Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 97, 107160 (2022). https://doi.org/10.1016/j.nanoen.2022.107160
- Q. Huang, D. Wang, H. Hu, J. Shang, J. Chang et al., Additive functionalization and embroidery for manufacturing wearable and washable textile supercapacitors. Adv. Funct. Mater. 30(27), 1910541 (2020). https://doi.org/10.1002/adfm.201910541
- F. Sun, H. Jiang, H. Wang, Y. Zhong, Y. Xu et al., Soft fiber electronics based on semiconducting polymer. Chem. Rev. 123(8), 4693–4763 (2023). https://doi.org/10.1021/acs.chemrev.2c00720
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- L. Zhan, J. Deng, Q. Ke, X. Li, Y. Ouyang et al., Grooved fibers: preparation principles through electrospinning and potential applications. Adv. Fiber Mater. 4(2), 203–213 (2022). https://doi.org/10.1007/s42765-021-00116-5
- Y. Yang, M. Zhang, Z. Ju, P.Y. Tam, T. Hua et al., Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications. Text. Res. J. 91(13–14), 1641–1669 (2021). https://doi.org/10.1177/0040517520984101
- S. Mahalingam, R. Matharu, S. Homer-Vanniasinkam, M. Edirisinghe, Current methodologies and approaches for the formation of core–sheath polymer fibers for biomedical applications. Appl. Phys. Rev. 7(4), 041302 (2020). https://doi.org/10.1063/5.0008310
- X. Tang, D. Cheng, J. Ran, D. Li, C. He et al., Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor. Nanotechnol. Rev. 10(1), 221–236 (2021). https://doi.org/10.1515/ntrev-2021-0021
- V.S. Reddy, Y. Tian, C. Zhang, Z. Ye, K. Roy et al., A review on electrospun nanofibers based advanced applications: from health care to energy devices. Polymers 13(21), 3746 (2021). https://doi.org/10.3390/polym13213746
- S.-W. Kim, S.-N. Kwon, S.-I. Na, Stretchable and electrically conductive polyurethane- silver/graphene composite fibers prepared by wet-spinning process. Compos. Part B Eng. 167, 573–581 (2019). https://doi.org/10.1016/j.compositesb.2019.03.035
- R. Hufenus, A. Gooneie, T. Sebastian, P. Simonetti, A. Geiger et al., Antistatic fibers for high-visibility workwear: challenges of melt-spinning industrial fibers. Materials 13(11), 2645 (2020). https://doi.org/10.3390/ma13112645
- F. Li, H. Xue, X. Lin, H. Zhao, T. Zhang, Wearable temperature sensor with high resolution for skin temperature monitoring. ACS Appl. Mater. Interfaces 14(38), 43844–43852 (2022). https://doi.org/10.1021/acsami.2c15687
- M. Wang, J. Wu, L. Dong, J. Shi, Q. Gao et al., A highly aligned microgrid structure for wearable nanofibrous sensors with an enhanced sensitivity and detection range. J. Mater. Chem. C 10(34), 12323–12331 (2022). https://doi.org/10.1039/D2TC02344J
- R.K. Cheedarala, A.N. Parvez, K.K. Ahn, Electric impulse spring-assisted contact separation mode triboelectric nanogenerator fabricated from polyaniline emeraldine salt and woven carbon fibers. Nano Energy 53, 362–372 (2018). https://doi.org/10.1016/j.nanoen.2018.08.066
- G. Zhang, J. Yu, C. Su, C. Di, S. Ci et al., The effect of annealing on the properties of copper-coated carbon fiber. Surf. Interfaces 37, 102630 (2023). https://doi.org/10.1016/j.surfin.2023.102630
- W.M. Daoush, T.S. Albogmy, M.A. Khamis, F. Inam, Syntheses and step-by-step morphological analysis of nano-copper-decorated carbon long fibers for aerospace structural applications. Crystals 10(12), 1090 (2020). https://doi.org/10.3390/cryst10121090
- Y. Wang, J. Ren, Z. Lv, L. Cao, S. Lin et al., Direct functionalization of natural silks through continuous force-reeling technique. Chem. Eng. J. 435, 134901 (2022). https://doi.org/10.1016/j.cej.2022.134901
- S. Choi, J. Lim, H. Park, H.S. Kim, A flexible piezoelectric device for frequency sensing from PVDF/SWCNT composite fibers. Polymers 14, 4773 (2022). https://doi.org/10.3390/polym14214773
- P. Wang, M. Wang, J. Zhu, Y. Wang, J. Gao et al., Surface engineering via self-assembly on PEDOT: PSS fibers: biomimetic fluff-like morphology and sensing application. Chem. Eng. J. 425, 131551 (2021). https://doi.org/10.1016/j.cej.2021.131551
- M. Wang, Z. Chen, L. Dong, J. Wu, C. Li et al., Conductance-stable and integrated helical fiber electrodes toward stretchy energy storage and self-powered sensing utilization. Chem. Eng. J. 457, 141164 (2023). https://doi.org/10.1016/j.cej.2022.141164
- M. Jose, E. Bezerra Alexandre, L. Neumaier, L. Rauter, M.T. Vijjapu et al., Future thread: printing electronics on fibers. ACS Appl. Mater. Interfaces 16(6), 7996–8005 (2024). https://doi.org/10.1021/acsami.3c15422
- C. Fabris, D. Perin, G. Fredi, D. Rigotti, M. Bortolotti et al., Improving the wet-spinning and drawing processes of poly(lactide)/poly(ethylene furanoate) and polylactide/poly(dodecamethylene furanoate) fiber blends. Polymers 14(14), 2910 (2022). https://doi.org/10.3390/polym14142910
- Y. Xu, X. Xie, H. Huang, Y. Wang, J. Yu et al., Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor. J. Mater. Sci. 56(3), 2296–2310 (2021). https://doi.org/10.1007/s10853-020-05394-9
- X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5(2), 235–258 (2020). https://doi.org/10.1039/c9nh00571d
- V. Orts Mercadillo, K.C. Chan, M. Caironi, A. Athanassiou, I.A. Kinloch et al., Electrically conductive 2D material coatings for flexible and stretchable electronics: a comparative review of graphenes and MXenes. Adv. Funct. Mater. 32(38), 2204772 (2022). https://doi.org/10.1002/adfm.202204772
- Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011). https://doi.org/10.1038/ncomms1583
- N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang et al., Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182–186 (2013). https://doi.org/10.1126/science.1228061
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849
- P. Li, Z. Wang, Y. Qi, G. Cai, Y. Zhao et al., Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres. Nat. Commun. 15, 409 (2024). https://doi.org/10.1038/s41467-024-44692-7
- Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun et al., Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28(30), 6449–6456 (2016). https://doi.org/10.1002/adma.201506426
- J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
- A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman et al., Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4(6), 0491 (2018). https://doi.org/10.1126/sciadv.aat0491
- D. Chang, J. Liu, B. Fang, Z. Xu, Z. Li et al., Reversible fusion and fission of graphene oxide–based fibers. Science 372(6542), 614–617 (2021). https://doi.org/10.1126/science.abb6640
- B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 32(5), e1902664 (2020). https://doi.org/10.1002/adma.201902664
- X. Zhang, X. Lei, X. Jia, T. Sun, J. Luo et al., Carbon nanotube fibers with dynamic strength up to 14 GPa. Science 384(6702), 1318–1323 (2024). https://doi.org/10.1126/science.adj1082
- P. Rathore, J.D. Schiffman, Beyond the single-nozzle: coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl. Mater. Interfaces 13(1), 48–66 (2021). https://doi.org/10.1021/acsami.0c17706
- N. Wang, Y. Zhao, Coaxial Electrospinning, in Electrospinning: Nanofabrication and Applications (Elsevier, Shanghai, 2019), pp.125–200
- Y.-F. Deng, N. Zhang, T. Huang, Y.-Z. Lei, Y. Wang, Constructing tubular/porous structures toward highly efficient oil/water separation in electrospun stereo complex polylactide fibers via coaxial electrospinning technology. Appl. Surf. Sci. 573, 151619 (2022). https://doi.org/10.1016/j.apsusc.2021.151619
- Z. Shao, X. Zhang, Z. Song, J. Liu, X. Liu et al., Simulation guided coaxial electrospinning of polyvinylidene fluoride hollow fibers with tailored piezoelectric performance. Small 19(38), e2303285 (2023). https://doi.org/10.1002/smll.202303285
- J. Zhou, Y.-L. Hsieh, Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy 68, 104305 (2020). https://doi.org/10.1016/j.nanoen.2019.104305
- M. Nie, B. Li, Y.-L. Hsieh, K.K. Fu, J. Zhou, Stretchable one-dimensional conductors for wearable applications. ACS Nano 16(12), 19810–19839 (2022). https://doi.org/10.1021/acsnano.2c08166
- J. Zhou, G. Tian, G. Jin, Y. Xin, R. Tao et al., Buckled conductive polymer ribbons in elastomer channels as stretchable fiber conductor. Adv. Funct. Mater. 30(5), 1907316 (2020). https://doi.org/10.1002/adfm.201907316
- L. Zheng, M. Zhu, B. Wu, Z. Li, S. Sun et al., Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci. Adv. 7(22), 4041 (2021). https://doi.org/10.1126/sciadv.abg4041
- R. Lin, H.J. Kim, S. Achavananthadith, Z. Xiong, J.K.W. Lee et al., Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 13(1), 2190 (2022). https://doi.org/10.1038/s41467-022-29859-4
- P. Yi, H. Zou, Y. Yu, X. Li, Z. Li et al., MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles. ACS Nano 16(9), 14490–14502 (2022). https://doi.org/10.1021/acsnano.2c04863
- N. Sheng, P. Ji, M. Zhang, Z. Wu, Q. Liang et al., High sensitivity polyurethane-based fiber strain sensor with porous structure via incorporation of bacterial cellulose nanofibers. Adv. Electron. Mater. 7(4), 2001235 (2021). https://doi.org/10.1002/aelm.202001235
- A. Gooneie, R. Hufenus, Hybrid carbon nanops in polymer matrix for efficient connected networks: self-assembly and continuous pathways. Macromolecules 51(10), 3547–3562 (2018). https://doi.org/10.1021/acs.macromol.8b00585
- E. Chang, A. Ameli, A.R. Alian, L.H. Mark, K. Yu et al., Percolation mechanism and effective conductivity of mechanically deformed 3-dimensional composite networks: computational modeling and experimental verification. Compos. Part B Eng. 207, 108552 (2021). https://doi.org/10.1016/j.compositesb.2020.108552
- Z. Zhang, L. Hu, R. Wang, S. Zhang, L. Fu et al., Advances in Monte Carlo method for simulating the electrical percolation behavior of conductive polymer composites with a carbon-based filling. Polymers 16(4), 545 (2024). https://doi.org/10.3390/polym16040545
- X. Zhou, Y. Liu, Z. Gao, P. Min, J. Liu et al., Biphasic GaIn alloy constructed stable percolation network in polymer composites over ultrabroad temperature region. Adv. Mater. 36(14), e2310849 (2024). https://doi.org/10.1002/adma.202310849
- K. Vagif Gizi Allahverdiyeva, N. Tofig Oglu Kakhramanov, R. Vagif Gizi Gurbanova, Structural, electrical, and physical-mechanical properties of composites obtained based on filled polyolefins and thermoplastic elastomers. RSC Adv. 15(9), 6541–6563 (2025). https://doi.org/10.1039/d5ra00105f
- C. Gao, S. He, L. Qiu, M. Wang, J. Gao et al., Continuous dry–wet spinning of white, stretchable, and conductive fibers of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and ATO@TiO2 nanops for wearable e-textiles. J. Mater. Chem. C 8(25), 8362–8367 (2020). https://doi.org/10.1039/D0TC01310B
- S. Choi, S.I. Han, D. Kim, T. Hyeon, D.-H. Kim, High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48(6), 1566–1595 (2019). https://doi.org/10.1039/c8cs00706c
- S. Lee, S. Shin, S. Lee, J. Seo, J. Lee et al., Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 25(21), 3114–3121 (2015). https://doi.org/10.1002/adfm.201500628
- Z. Pei, Y. Zhang, G. Chen, A core-spun yarn containing a metal wire manufactured by a modified Vortex spinning system. Text. Res. J. 89(1), 113–118 (2019). https://doi.org/10.1177/0040517517736477
- L. Wang, J. Lu, Q. Li, L. Li, E. He et al., A core–sheath sensing yarn-based electrochemical fabric system for powerful sweat capture and stable sensing. Adv. Funct. Mater. 32(23), 2200922 (2022). https://doi.org/10.1002/adfm.202200922
- Z. Zeng, B. Hao, D. Li, D. Cheng, G. Cai et al., Large-scale production of weavable, dyeable and durable Spandex/CNT/cotton core-sheath yarn for wearable strain sensors. Compos. Part A Appl. Sci. Manuf. 149, 106520 (2021). https://doi.org/10.1016/j.compositesa.2021.106520
- X. Tao, Y. Zhou, K. Qi, C. Guo, Y. Dai et al., Wearable textile triboelectric generator based on nanofiber core-spun yarn coupled with electret effect. J. Colloid Interface Sci. 608(Pt 3), 2339–2346 (2022). https://doi.org/10.1016/j.jcis.2021.10.151
- S. Wu, T. Dong, Y. Li, M. Sun, Y. Qi et al., State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl. Mater. Today 27, 101473 (2022). https://doi.org/10.1016/j.apmt.2022.101473
- C. Ye, S. Yang, J. Ren, S. Dong, L. Cao et al., Electroassisted core-spun triboelectric nanogenerator fabrics for IntelliSense and artificial intelligence perception. ACS Nano 16(3), 4415–4425 (2022). https://doi.org/10.1021/acsnano.1c10680
- X. You, J. He, N. Nan, X. Sun, K. Qi et al., Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli. J. Mater. Chem. C 6(47), 12981–12991 (2018). https://doi.org/10.1039/C8TC03631D
- K. Dong, Y. Zhang, X. Fan, L.N.Y. Cao, X. Peng, Microfiber-based triboelectric acoustic sensors enable self-powered ultrasonic localization and tracking underwater. ACS Sens. 10(2), 1366–1377 (2025). https://doi.org/10.1021/acssensors.4c03283
- Y. Li, C. Wei, Y. Jiang, R. Cheng, Y. Zhang et al., Continuous preparation of chitosan-based self-powered sensing fibers recycled from wasted materials for smart home applications. Adv. Fiber Mater. 4(6), 1584–1594 (2022). https://doi.org/10.1007/s42765-022-00194-z
- J. Zhang, Y. Wang, J. Zhou, J. Wu, S. Liu et al., Multi-functional STF-based yarn for human protection and wearable systems. Chem. Eng. J. 453, 139869 (2023). https://doi.org/10.1016/j.cej.2022.139869
- X. He, J. Gu, Y. Hao, M. Zheng, L. Wang et al., Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 450, 137937 (2022). https://doi.org/10.1016/j.cej.2022.137937
- Z. Ouyang, D. Xu, H.-Y. Yu, S. Li, Y. Song et al., Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses. Chem. Eng. J. 428, 131289 (2022). https://doi.org/10.1016/j.cej.2021.131289
- J. Tang, Y. Wu, S. Ma, T. Yan, Z. Pan, Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage. Compos. Part B Eng. 232, 109605 (2022). https://doi.org/10.1016/j.compositesb.2021.109605
- K. Dong, J. Deng, W. Ding, A.C. Wang, P. Wang et al., Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy Mater. 8(23), 1801114 (2018). https://doi.org/10.1002/aenm.201801114
- J. Han, C. Xu, J. Zhang, N. Xu, Y. Xiong et al., Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization. ACS Nano 15(1), 1597–1607 (2021). https://doi.org/10.1021/acsnano.0c09146
- Y. Mao, Y. Li, J. Xie, H. Liu, C. Guo et al., Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2NW hybrid elastomer. Nano Energy 84, 105918 (2021). https://doi.org/10.1016/j.nanoen.2021.105918
- R. Cheng, C. Wei, C. Ning, T. Lv, X. Peng et al., Unveiling the contact electrification of triboelectric fibers by exploring their unique micro- and macroscale structural properties. Mater. Today 83, 295–306 (2025). https://doi.org/10.1016/j.mattod.2025.01.013
- J. Kang, T. Liu, Y. Lu, L. Lu, K. Dong et al., Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Compos. Part B Eng. 245, 110229 (2022). https://doi.org/10.1016/j.compositesb.2022.110229
- W. Wang, A. Yu, Y. Wang, M. Jia, P. Guo et al., Elastic kernmantle E-braids for high-impact sports monitoring. Adv. Sci. 9(25), e2202489 (2022). https://doi.org/10.1002/advs.202202489
- M. Chen, J. Ouyang, A. Jian, J. Liu, P. Li et al., Imperceptible, designable, and scalable braided electronic cord. Nat. Commun. 13(1), 7097 (2022). https://doi.org/10.1038/s41467-022-34918-x
- K. Zhang, X. Shi, H. Jiang, K. Zeng, Z. Zhou et al., Design and fabrication of wearable electronic textiles using twisted fiber-based threads. Nat. Protoc. 19(5), 1557–1589 (2024). https://doi.org/10.1038/s41596-024-00956-6
- W. Weng, P. Chen, S. He, X. Sun, H. Peng, Smart electronic textiles. Angew. Chem. Int. Ed. 55(21), 6140–6169 (2016). https://doi.org/10.1002/anie.201507333
- J. Chen, J. Zhang, J. Hu, N. Luo, F. Sun et al., Ultrafast-response/recovery flexible piezoresistive sensors with DNA-like double helix yarns for epidermal pulse monitoring. Adv. Mater. 34(2), e2104313 (2022). https://doi.org/10.1002/adma.202104313
- Z. Ge, H. Hu, S. Liu, A novel plied yarn structure with negative Poisson’s ratio. J. Text. Inst. 107(5), 578–588 (2016). https://doi.org/10.1080/00405000.2015.1049069
- L. Chen, C. Chen, L. Jin, H. Guo, A.C. Wang et al., Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy Environ. Sci. 14(2), 955–964 (2021). https://doi.org/10.1039/D0EE02777D
- S. Dong, H. Hu, Sensors based on auxetic materials and structures: a review. Materials 16(9), 3603 (2023). https://doi.org/10.3390/ma16093603
- T.J. Cuthbert, B.C. Hannigan, P. Roberjot, A.V. Shokurov, C. Menon, HACS: helical auxetic yarn capacitive strain sensors with sensitivity beyond the theoretical limit. Adv. Mater. 35(10), e2209321 (2023). https://doi.org/10.1002/adma.202209321
- Z. Zhang, S. Liu, M. Wu, S. Liu, Shape-adaptable and wearable strain sensor based on braided auxetic yarns for monitoring large human motions. Appl. Mater. Today 35, 101996 (2023). https://doi.org/10.1016/j.apmt.2023.101996
- M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014). https://doi.org/10.3390/s140711957
- J. Sun, B. Ren, S. Han, H. Shin, S. Cha et al., Amplified performance of charge accumulation and trapping induced by enhancing the dielectric constant via the cyano group of 3D-structured textile for a triboelectric multi-modal sensor. Small Meth. 7(10), 2300344 (2023). https://doi.org/10.1002/smtd.202300344
- Y. Yang, X. Wei, N. Zhang, J. Zheng, X. Chen et al., A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun. 12(1), 4876 (2021). https://doi.org/10.1038/s41467-021-25075-8
- M. Lou, I. Abdalla, M. Zhu, X. Wei, J. Yu et al., Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring. ACS Appl. Mater. Interfaces 12(17), 19965–19973 (2020). https://doi.org/10.1021/acsami.0c03670
- G. Shao, R. Yu, X. Zhang, X. Chen, F. He et al., Making stretchable hybrid supercapacitors by knitting non-stretchable metal fibers. Adv. Funct. Mater. 30(35), 2003153 (2020). https://doi.org/10.1002/adfm.202003153
- Q. Chen, L. Shu, B. Fu, R. Zheng, J. Fan, Electrical resistance of stainless steel/polyester blended knitted fabrics for application to measure sweat quantity. Polymers 13(7), 1015 (2021). https://doi.org/10.3390/polym13071015
- A. Salam, D.-N. Phan, S.U. Khan, S.Z. Ul Hassan, T. Hassan et al., Development of a multifunctional intelligent elbow brace (MIEB) using a knitted textile strain sensor. Fibres Text. East. Eur. 30(1(151)), 22–30 (2022). https://doi.org/10.5604/01.3001.0015.6457
- E. Ayodele, S.A.R. Zaidi, J. Scott, Z. Zhang, M. Hafeez et al., The effect of miss and tuck stitches on a weft knit strain sensor. Sensors 21(2), 358 (2021). https://doi.org/10.3390/s21020358
- Y. Li, X. Miao, J.Y. Chen, G. Jiang, Q. Liu, Sensing performance of knitted strain sensor on two-dimensional and three-dimensional surfaces. Mater. Des. 197, 109273 (2021). https://doi.org/10.1016/j.matdes.2020.109273
- L. Niu, X. Peng, L. Chen, Q. Liu, T. Wang et al., Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection. Nano Energy 97, 107168 (2022). https://doi.org/10.1016/j.nanoen.2022.107168
- J. Dong, X. Tang, Y. Peng, C. Fan, L. Li et al., Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 108, 108194 (2023). https://doi.org/10.1016/j.nanoen.2023.108194
- G. Sun, P. Wang, Y. Jiang, H. Sun, C. Meng, Intrinsically flexible and breathable supercapacitive pressure sensor based on MXene and ionic gel decorating textiles for comfortable and ultrasensitive wearable healthcare monitoring. ACS Appl. Electron. Mater. 4(4), 1958–1967 (2022). https://doi.org/10.1021/acsaelm.2c00137
- N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–347 (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004
- J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
- J. Dong, L. Li, C. Zhang, P. Ma, W. Dong et al., Ultra-highly stretchable and anisotropic SEBS/F127 fiber films equipped with an adaptive deformable carbon nanotube layer for dual-mode strain sensing. J. Mater. Chem. A 9(34), 18294–18305 (2021). https://doi.org/10.1039/D1TA04563F
- C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
- W. Fan, R. Lei, H. Dou, Z. Wu, L. Lu et al., Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor. Nat. Commun. 15(1), 3509 (2024). https://doi.org/10.1038/s41467-024-47810-7
- M.-F. Lin, J. Xiong, J. Wang, K. Parida, P.S. Lee, Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 44, 248–255 (2018). https://doi.org/10.1016/j.nanoen.2017.12.004
- Y. Jiang, K. Dong, J. An, F. Liang, J. Yi et al., UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS Appl. Mater. Interfaces 13, 11205 (2021). https://doi.org/10.1021/acsami.0c22670
- Y. Wang, M. Zhu, X. Wei, J. Yu, Z. Li et al., A dual-mode electronic skin textile for pressure and temperature sensing. Chem. Eng. J. 425, 130599 (2021). https://doi.org/10.1016/j.cej.2021.130599
- X. Chen, X. Peng, C. Wei, Z. Wang, J. He et al., A moisture-proof, anti-fouling, and low signal attenuation all-nanofiber triboelectric sensor for self-powered respiratory health monitoring. Adv. Funct. Mater. 35(7), 2415421 (2025). https://doi.org/10.1002/adfm.202415421
- S. Shi, Y. Si, Z. Li, S. Meng, S. Zhang et al., An intelligent wearable filtration system for health management. ACS Nano 17(7), 7035–7046 (2023). https://doi.org/10.1021/acsnano.3c02099
- H. He, J. Guo, B. Illés, A. Géczy, B. Istók et al., Monitoring multi-respiratory indices via a smart nanofibrous mask filter based on a triboelectric nanogenerator. Nano Energy 89, 106418 (2021). https://doi.org/10.1016/j.nanoen.2021.106418
- Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16(1), 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
- L. Chen, M. Lu, H. Yang, J.R. Salas Avila, B. Shi et al., Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 14(7), 8191–8201 (2020). https://doi.org/10.1021/acsnano.0c01643
- F. Huang, H. Yu, S. Xiang, J. Xue, H. Ming et al., Embroidering a filmsy photorechargeable energy fabric with wide weather adaptability. ACS Appl. Mater. Interfaces 12(3), 3654–3660 (2020). https://doi.org/10.1021/acsami.9b19731
- J.R. Windmiller, J. Wang, Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25(1), 29–46 (2013). https://doi.org/10.1002/elan.201200349
- I. Ibanez Labiano, D. Arslan, E. Ozden Yenigun, A. Asadi, H. Cebeci et al., Screen printing carbon nanotubes textiles antennas for smart wearables. Sensors 21(14), 4934 (2021). https://doi.org/10.3390/s21144934
- S. Khosravi, S. Soltanian, A. Servati, A. Khademhosseini, Y. Zhu et al., Screen-printed textile-based electrochemical biosensor for noninvasive monitoring of glucose in sweat. Biosensors 13(7), 684 (2023). https://doi.org/10.3390/bios13070684
- Y. Jiang, S. Cui, T. Xia, T. Sun, H. Tan et al., Real-time monitoring of heavy metals in healthcare via twistable and washable smartsensors. Anal. Chem. 92(21), 14536–14541 (2020). https://doi.org/10.1021/acs.analchem.0c02723
- J. Bujes-Garrido, M.J. Arcos-Martínez, Development of a wearable electrochemical sensor for voltammetric determination of chloride ions. Sens. Actuat. B Chem. 240, 224–228 (2017). https://doi.org/10.1016/j.snb.2016.08.119
- M. Parrilla, R. Cánovas, I. Jeerapan, F.J. Andrade, J. Wang, A textile-based stretchable multi-ion potentiometric sensor. Adv. Healthc. Mater. 5(9), 996–1001 (2016). https://doi.org/10.1002/adhm.201600092
- Y. Adesida, E. Papi, A.H. McGregor, Exploring the role of wearable technology in sport kinematics and kinetics: a systematic review. Sensors 19(7), 1597 (2019). https://doi.org/10.3390/s19071597
- D.R. Seshadri, R.T. Li, J.E. Voos, J.R. Rowbottom, C.M. Alfes et al., Wearable sensors for monitoring the physiological and biochemical profile of the athlete. npj Digit. Med. 2, 72 (2019). https://doi.org/10.1038/s41746-019-0150-9
- D. Evans, B. Hodgkinson, J. Berry, Vital signs in hospital patients: a systematic review. Int. J. Nurs. Stud. 38(6), 643–650 (2001). https://doi.org/10.1016/s0020-7489(00)00119-x
- Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373–4395 (2016). https://doi.org/10.1002/adma.201504366
- E. Vanegas, R. Igual, I. Plaza, Sensing systems for respiration monitoring: a technical systematic review. Sensors 20(18), 5446 (2020). https://doi.org/10.3390/s20185446
- R. Ghosh, K.Y. Pin, V.S. Reddy, W.A.D.M. Jayathilaka, D. Ji et al., Micro/nanofiber-based noninvasive devices for health monitoring diagnosis and rehabilitation. Appl. Phys. Rev. 7(4), 041309 (2020). https://doi.org/10.1063/5.0010766
- G. O’Donovan, A.J. Blazevich, C. Boreham, A.R. Cooper, H. Crank et al., The ABC of physical activity for health: a consensus statement from the British association of sport and exercise sciences. J. Sports Sci. 28(6), 573–591 (2010). https://doi.org/10.1080/02640411003671212
- A. Pelliccia, R. Fagard, H.H. Bjørnstad, A. Anastassakis, E. Arbustini et al., Recommendations for competitive sports participation in athletes with cardiovascular disease: a consensus document from the study group of sports cardiology of the working group of cardiac rehabilitation and exercise physiology and the working group of myocardial and pericardial diseases of the european society of cardiology. Eur. Heart J. 26(14), 1422–1445 (2005). https://doi.org/10.1093/eurheartj/ehi325
- N. Balagué, R. Hristovski, M. Almarcha, S. Garcia-Retortillo, P.C. Ivanov, Network physiology of exercise: vision and perspectives. Front. Physiol. 11, 611550 (2020). https://doi.org/10.3389/fphys.2020.611550
- Y. Fang, Y. Zou, J. Xu, G. Chen, Y. Zhou et al., Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 33(41), e2104178 (2021). https://doi.org/10.1002/adma.202104178
- D. Xu, Z. Ouyang, Y. Dong, H.-Y. Yu, S. Zheng et al., Robust, breathable and flexible smart textiles as multifunctional sensor and heater for personal health management. Adv. Fiber Mater. 5(1), 282–295 (2023). https://doi.org/10.1007/s42765-022-00221-z
- M.F. Bergeron, R. Bahr, P. Bärtsch, L. Bourdon, J.L. Calbet et al., International Olympic Committee consensus statement on thermoregulatory and altitude challenges for high-level athletes. Br. J. Sports Med. 46(11), 770–779 (2012). https://doi.org/10.1136/bjsports-2012-091296
- C. He, M. Cao, J. Liu, Z. Ge, R. Zhou et al., Nanotechnology in the Olympic winter games and beyond. ACS Nano 16(4), 4981–4988 (2022). https://doi.org/10.1021/acsnano.2c03346
- A. Chen, J. Zhu, Q. Lin, W. Liu, A comparative study of forehead temperature and core body temperature under varying ambient temperature conditions. Int. J. Environ. Res. Public Health 19(23), 15883 (2022). https://doi.org/10.3390/ijerph192315883
- P. Fulbrook, Core temperature measurement: a comparison of rectal, axillary and pulmonary artery blood temperature. Intensive Crit. Care Nurs. 9(4), 217–225 (1993). https://doi.org/10.1016/s0964-3397(05)80002-3
- A. Falzon, V. Grech, B. Caruana, A. Magro, S. Attard-Montalto, How reliable is axillary temperature measurement? Acta Paediatr. 92(3), 309–313 (2003). https://doi.org/10.1080/08035250310009220
- G. Loke, T. Khudiyev, B. Wang, S. Fu, S. Payra et al., Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12(1), 3317 (2021). https://doi.org/10.1038/s41467-021-23628-5
- W. Jia, A.J. Bandodkar, G. Valdés-Ramírez, J.R. Windmiller, Z. Yang et al., Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85(14), 6553–6560 (2013). https://doi.org/10.1021/ac401573r
- Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38(2), 217–224 (2020). https://doi.org/10.1038/s41587-019-0321-x
- W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
- Y. Kim, J.M. Suh, J. Shin, Y. Liu, H. Yeon et al., Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377(6608), 859–864 (2022). https://doi.org/10.1126/science.abn7325
- J. Dong, Y. Peng, X. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32(48), 2209762 (2022). https://doi.org/10.1002/adfm.202209762
- J. Yin, J. Li, V.S. Reddy, D. Ji, S. Ramakrishna et al., Flexible textile-based sweat sensors for wearable applications. Biosensors 13(1), 127 (2023). https://doi.org/10.3390/bios13010127
- R. Wang, Q. Zhai, T. An, S. Gong, W. Cheng, Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta 222, 121484 (2021). https://doi.org/10.1016/j.talanta.2020.121484
- X. Tong, D. Yang, T. Hua, S. Li, B. Wang et al., Multifunctional fiber for synchronous bio-sensing and power supply in sweat environment. Adv. Funct. Mater. 33(30), 2301174 (2023). https://doi.org/10.1002/adfm.202301174
- Z. Zhao, Q. Li, L. Chen, Y. Zhao, J. Gong et al., A thread/fabric-based band as a flexible and wearable microfluidic device for sweat sensing and monitoring. Lab Chip 21(5), 916–932 (2021). https://doi.org/10.1039/D0LC01075H
- M. Caldara, C. Colleoni, E. Guido, V. Re, G. Rosace, Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sens. Actuat. B Chem. 222, 213–220 (2016). https://doi.org/10.1016/j.snb.2015.08.073
- F.N. Sunstrum, J.U. Khan, N.W. Li, A.W. Welsh, Wearable textile sensors for continuous glucose monitoring. Biosens. Bioelectron. 273, 117133 (2025). https://doi.org/10.1016/j.bios.2025.117133
- D. Luo, H. Sun, Q. Li, X. Niu, Y. He et al., Flexible sweat sensors: from films to textiles. ACS Sens. 8(2), 465–481 (2023). https://doi.org/10.1021/acssensors.2c02642
- J.J.A. Mendes Jr., M.E.M. Vieira, M.B. Pires, S.L. Stevan Jr., Sensor fusion and smart sensor in sports and biomedical applications. Sensors 16(10), 1569 (2016). https://doi.org/10.3390/s16101569
- A. Tognetti, F. Lorussi, N. Carbonaro, D. de Rossi, Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life. Sensors 15(11), 28435–28455 (2015). https://doi.org/10.3390/s151128435
- Y. Li, Y. Li, M. Su, W. Li, Y. Li et al., Electronic textile by dyeing method for multiresolution physical kineses monitoring. Adv. Electron. Mater. 3(10), 1700253 (2017). https://doi.org/10.1002/aelm.201700253
- V. Chhoeum, Y. Kim, S.-D. Min, Estimation of knee joint angle using textile capacitive sensor and artificial neural network implementing with three shoe types at two gait speeds: a preliminary investigation. Sensors 21(16), 5484 (2021). https://doi.org/10.3390/s21165484
- Y. Li, X. Miao, R.K. Raji, Flexible knitted sensing device for identifying knee joint motion patterns. Smart Mater. Struct. 28(11), 115042 (2019). https://doi.org/10.1088/1361-665x/ab4afe
- S.K. Park, S.C. Ahn, J.Z. Sun, D. Bhatia, D. Choi et al., Highly bendable and rotational textile structure with prestrained conductive sewing pattern for human joint monitoring. Adv. Funct. Mater. 29(10), 1808369 (2019). https://doi.org/10.1002/adfm.201808369
- C. Wei, R. Cheng, C. Ning, X. Wei, X. Peng et al., A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv. Funct. Mater. 33(35), 2303562 (2023). https://doi.org/10.1002/adfm.202303562
- M. Mayer, A.J. Baeumner, A megatrend challenging analytical chemistry: biosensor and chemosensor concepts ready for the Internet of Things. Chem. Rev. 119(13), 7996–8027 (2019). https://doi.org/10.1021/acs.chemrev.8b00719
- J. Kim, A.S. Campbell, B.E. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
- H. Yu, Z. Cai, W. Xie, H. Xiao, S. Zhang et al., Research on the construction of intelligent sports health management system based on Internet of Things and cloud computing technology. Wirel. Commun. Mob. Comput. 2022, 7133810 (2022). https://doi.org/10.1155/2022/7133810
- W. Yue, Y. Guo, J.C. Lee, E. Ganbold, J.K. Wu et al., Advancements in passive wireless sensing systems in monitoring harsh environment and healthcare applications. Nano-Micro Lett. 17(1), 106 (2025). https://doi.org/10.1007/s40820-024-01599-8
- A. Hajiaghajani, A.H. Afandizadeh Zargari, M. Dautta, A. Jimenez, F. Kurdahi et al., Textile-integrated metamaterials for near-field multibody area networks. Nat. Electron. 4(11), 808–817 (2021). https://doi.org/10.1038/s41928-021-00663-0
- H. Sun, N. Pan, X. Jin, K. Deng, Z. Liu et al., Active-powering pressure-sensing fabric devices. J. Mater. Chem. A 8(1), 358–368 (2020). https://doi.org/10.1039/c9ta09395h
- R. Lin, H.-J. Kim, S. Achavananthadith, S.A. Kurt, S.C.C. Tan et al., Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 11(1), 444 (2020). https://doi.org/10.1038/s41467-020-14311-2
- X. Tian, P.M. Lee, Y.J. Tan, T.L.Y. Wu, H. Yao et al., Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2(6), 243–251 (2019). https://doi.org/10.1038/s41928-019-0257-7
- Q.D. La, D. Nguyen-Nam, M.V. Ngo, H.T. Hoang, T.Q.S. Quek, Dense deployment of BLE-based body area networks: a coexistence study. IEEE Trans. Green Commun. Netw. 2(4), 972–981 (2018). https://doi.org/10.1109/TGCN.2018.2859350
- J. Kim, G. Lee, R. Heimgartner, D. Arumukhom Revi, N. Karavas et al., Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science 365(6454), 668–672 (2019). https://doi.org/10.1126/science.aav7536
- J. Li, L. Wang, X. Wang, Y. Yang, Z. Hu et al., Highly conductive PVA/Ag coating by aqueous in situ reduction and its stretchable structure for strain sensor. ACS Appl. Mater. Interfaces 12(1), 1427–1435 (2020). https://doi.org/10.1021/acsami.9b15546
- S.M. Sohel Rana, M.T. Rahman, S. Sharma, M. Salauddin, S.H. Yoon et al., Cation functionalized nylon composite nanofibrous mat as a highly positive friction layer for robust, high output triboelectric nanogenerators and self-powered sensors. Nano Energy 88, 106300 (2021). https://doi.org/10.1016/j.nanoen.2021.106300
- S. Chen, X. Liu, Y. Miao, S. Ge, S.-X. Li et al., Self-healing polyurethane/cellulose nanocrystal composite fibers with fatigue and aging resistance for smart wearable elastic yarns. Adv. Compos. Hybrid Mater. 8(1), 8 (2024). https://doi.org/10.1007/s42114-024-01089-w
- M. Wang, L. Dong, J. Wu, J. Shi, Q. Gao et al., Leaf-meridian bio-inspired nanofibrous electronics with uniform distributed microgrid and 3D multi-level structure for wearable applications. npj Flex. Electron. 6, 34 (2022). https://doi.org/10.1038/s41528-022-00171-x
- M. Sahu, S. Hajra, S. Panda, M. Rajaitha, B.K. Panigrahi et al., Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy 97, 107208 (2022). https://doi.org/10.1016/j.nanoen.2022.107208
- F. Geng, X. Huo, A self-powered sport sensor based on triboelectric nanogenerator for fosbury flop training. J. Sens. 2022(1), 3130928 (2022). https://doi.org/10.1155/2022/3130928
- X. Ye, B. Shi, M. Li, Q. Fan, X. Qi et al., All-textile sensors for Boxing punch force and velocity detection. Nano Energy 97, 107114 (2022). https://doi.org/10.1016/j.nanoen.2022.107114
- T. Raza, M.K. Tufail, A. Ali, A. Boakye, X. Qi et al., Wearable and flexible multifunctional sensor based on laser-induced graphene for the sports monitoring system. ACS Appl. Mater. Interfaces 14, 54170 (2022). https://doi.org/10.1021/acsami.2c14847
- M. Chen, Z. Wang, Q. Zhang, Z. Wang, W. Liu et al., Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nat. Commun. 12(1), 1416 (2021). https://doi.org/10.1038/s41467-021-21729-9
- Z. Zheng, X. Ma, M. Lu, H. Yin, L. Jiang et al., High-performance all-textile triboelectric nanogenerator toward intelligent sports sensing and biomechanical energy harvesting. ACS Appl. Mater. Interfaces 16(8), 10746–10755 (2024). https://doi.org/10.1021/acsami.3c18558
- Y. Ma, J. Ouyang, T. Raza, P. Li, A. Jian et al., Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo. Nano Energy 85, 105941 (2021). https://doi.org/10.1016/j.nanoen.2021.105941
- R.J.N. Helmer, A.G. Hahn, L.M. Staynes, R.J. Denning, A. Krajewski et al., Design and development of interactive textiles for impact detection and use with an automated Boxing scoring system. Procedia Eng. 2(2), 3065–3070 (2010). https://doi.org/10.1016/j.proeng.2010.04.112
- Y. Zou, P. Tan, B. Shi, H. Ouyang, D. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10, 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
- Y. Taniguchi, H. Masuda, A conversion system based on acoustic communication for using bluetooth low energy sensors underwater. In: 2022 24th International Conference on Advanced Communication Technology (ICACT). February 13–16, 2022, PyeongChang Kwangwoon_Do, Korea, Republic of. IEEE, (2022), pp. 326–329.
- X. Zhao, Y. Zhou, J. Xu, G. Chen, Y. Fang et al., Soft fibers with magnetoelasticity for wearable electronics. Nat. Commun. 12, 6755 (2021). https://doi.org/10.1038/s41467-021-27066-1
- T. Zhu, Y. Ni, K. Zhao, J. Huang, Y. Cheng et al., A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming. ACS Nano 16(11), 18018–18026 (2022). https://doi.org/10.1021/acsnano.2c08325
- I. Wicaksono, P.G. Hwang, S. Droubi, F.X. Wu, A.N. Serio et al., 3DKnITS: three-dimensional digital knitting of intelligent textile sensor for activity recognition and biomechanical monitoring. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). July 11-15, 2022, Glasgow, Scotland, United Kingdom. IEEE, (2022)., pp. 2403–2409.
- D. Zhu, Z. Zhang, M. Chen, P. Li, Y. Xiang et al., A perspective on rhythmic gymnastics performance analysis powered by intelligent fabric. Adv. Fiber Mater. 5(1), 1–11 (2023). https://doi.org/10.1007/s42765-022-00197-w
- J. Li, S. Li, Y. Su, Stretchable strain sensors based on deterministic-contact-resistance braided structures with high performance and capability of continuous production. Adv. Funct. Mater. 32(49), 2208216 (2022). https://doi.org/10.1002/adfm.202208216
- J. Dong, Y. Peng, L. Pu, K. Chang, L. Li et al., Perspiration-wicking and luminescent on-skin electronics based on ultrastretchable Janus E-textiles. Nano Lett. 22(18), 7597–7605 (2022). https://doi.org/10.1021/acs.nanolett.2c02647
- J. He, Y. Xue, H. Liu, J. Li, Q. Liu et al., Humidity-resistant, conductive fabric-based triboelectric nanogenerator for efficient energy harvesting and human-machine interaction sensing. ACS Appl. Mater. Interfaces 15(37), 43963–43975 (2023). https://doi.org/10.1021/acsami.3c10328
- A.F. Yu, W. Wang, Z.B. Li, X. Liu, Y. Zhang et al., Large-scale smart carpet for self-powered fall detection. Adv. Mater. Technol. 5(2), 1900978 (2020). https://doi.org/10.1002/admt.201900978
- F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7(14), 2000261 (2020). https://doi.org/10.1002/advs.202000261
References
H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
T. Emig, J. Peltonen, Human running performance from real-world big data. Nat. Commun. 11(1), 4936 (2020). https://doi.org/10.1038/s41467-020-18737-6
R.J. Olsen, S.S. Hasan, J.J. Woo, D.H. Nawabi, P.N. Ramkumar, The fundamentals and applications of wearable sensor devices in sports medicine: a scoping review. Arthroscopy 41(2), 473–492 (2025). https://doi.org/10.1016/j.arthro.2024.01.042
J.R. Sempionatto, J.A. Lasalde-Ramírez, K. Mahato, J. Wang, W. Gao, Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6(12), 899–915 (2022). https://doi.org/10.1038/s41570-022-00439-w
A. Libanori, G. Chen, X. Zhao, Y. Zhou, J. Chen, Smart textiles for personalized healthcare. Nat. Electron. 5(3), 142–156 (2022). https://doi.org/10.1038/s41928-022-00723-z
A. Cheng, X. Li, D. Li, Z. Chen, T. Cui et al., An intelligent hybrid-fabric wristband system enabled by thermal encapsulation for ergonomic human-machine interaction. Nat. Commun. 16(1), 591 (2025). https://doi.org/10.1038/s41467-024-55649-1
G. Aroganam, N. Manivannan, D. Harrison, Review on wearable technology sensors used in consumer sport applications. Sensors 19(9), 1983 (2019). https://doi.org/10.3390/s19091983
A. Farrokhi, R. Farahbakhsh, J. Rezazadeh, R. Minerva, Application of Internet of Things and artificial intelligence for smart fitness: a survey. Comput. Netw. 189, 107859 (2021). https://doi.org/10.1016/j.comnet.2021.107859
M. Rana, V. Mittal, Wearable sensors for real-time kinematics analysis in sports: a review. IEEE Sens. J. 21(2), 1187–1207 (2021). https://doi.org/10.1109/JSEN.2020.3019016
D.C. Ackland, Z. Fang, D. Senanayake, A machine learning approach to real-time calculation of joint angles during walking and running using self-placed inertial measurement units. Gait Posture 118, 85–91 (2025). https://doi.org/10.1016/j.gaitpost.2025.01.028
J. Dong, J. Hou, Y. Peng, Y. Zhang, H. Liu et al., Breathable and stretchable epidermal electronics for health management: recent advances and challenges. Adv. Mater. 36(49), e2409071 (2024). https://doi.org/10.1002/adma.202409071
W. Li, L. Lu, A.G.P. Kottapalli, Y. Pei, Bioinspired sweat-resistant wearable triboelectric nanogenerator for movement monitoring during exercise. Nano Energy 95, 107018 (2022). https://doi.org/10.1016/j.nanoen.2022.107018
Z. Lu, C. Jia, X. Yang, Y. Zhu, F. Sun et al., A flexible TENG based on micro-structure film for speed skating techniques monitoring and biomechanical energy harvesting. Nanomaterials 12, 1576 (2022). https://doi.org/10.3390/nano12091576
S. Wang, W. Deng, T. Yang, G. Tian, D. Xiong et al., Body-area sensor network featuring micropyramids for sports healthcare. Nano Res. 16(1), 1330–1337 (2023). https://doi.org/10.1007/s12274-022-5014-y
Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14(1), 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
Q. Wang, X. Pan, C. Lin, D. Lin, Y. Ni et al., Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT: sulfonated lignin as conductive materials. Chem. Eng. J. 370, 1039–1047 (2019). https://doi.org/10.1016/j.cej.2019.03.287
T. Zhu, Y. Ni, G.M. Biesold, Y. Cheng, M. Ge et al., Recent advances in conductive hydrogels: classifications, properties, and applications. Chem. Soc. Rev. 52(2), 473–509 (2023). https://doi.org/10.1039/D2CS00173J
L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
Q. Li, G. Chen, Y. Cui, S. Ji, Z. Liu et al., Highly thermal-wet comfortable and conformal silk-based electrodes for on-skin sensors with sweat tolerance. ACS Nano 15(6), 9955–9966 (2021). https://doi.org/10.1021/acsnano.1c01431
M. Zhu, J. Li, J. Yu, Z. Li, B. Ding, Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem. Int. Ed. 61(22), e202200226 (2022). https://doi.org/10.1002/anie.202200226
J. Cai, M. Du, Z. Li, Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 7(7), 2101182 (2022). https://doi.org/10.1002/admt.202101182
J.-H. Lee, S.-J. Park, Recent advances in preparations and applications of carbon aerogels: a review. Carbon 163, 1–18 (2020). https://doi.org/10.1016/j.carbon.2020.02.073
N.A. Choudhry, L. Arnold, A. Rasheed, I.A. Khan, L. Wang, Textronics: a review of textile-based wearable electronics. Adv. Eng. Mater. 23(12), 2100469 (2021). https://doi.org/10.1002/adem.202100469
J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu et al., Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 32(5), 1901958 (2020). https://doi.org/10.1002/adma.201901958
Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong et al., Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat. Anal. Chem. 91(10), 6569–6576 (2019). https://doi.org/10.1021/acs.analchem.9b00152
L. Yin, K.N. Kim, J. Lv, F. Tehrani, M. Lin et al., A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun. 12(1), 1542 (2021). https://doi.org/10.1038/s41467-021-21701-7
S. Cai, C. Xu, D. Jiang, M. Yuan, Q. Zhang et al., Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 93, 106904 (2022). https://doi.org/10.1016/j.nanoen.2021.106904
C. Wang, Z. Song, H. Wan, X. Chen, Q. Tan et al., Ni-Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices. Chem. Eng. J. 400, 125955 (2020). https://doi.org/10.1016/j.cej.2020.125955
X. Guan, B. Xu, M. Wu, T. Jing, Y. Yang et al., Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 80, 105549 (2021). https://doi.org/10.1016/j.nanoen.2020.105549
Q. Qiu, M. Zhu, Z. Li, K. Qiu, X. Liu et al., Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 58, 750–758 (2019). https://doi.org/10.1016/j.nanoen.2019.02.010
L. Ye, Y. Hong, M. Liao, B. Wang, D. Wei et al., Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater. 28, 364–374 (2020). https://doi.org/10.1016/j.ensm.2020.03.015
N. Abay Akar, G. Gürel Peközer, G. Torun Köse, Fibrous bone tissue engineering scaffolds prepared by wet spinning of PLGA. Turk. J. Biol. 43, 235 (2019). https://doi.org/10.3906/biy-1904-63
Y. Jiao, C. Li, L. Liu, F. Wang, X. Liu et al., Construction and application of textile-based tissue engineering scaffolds: a review. Biomater. Sci. 8(13), 3574–3600 (2020). https://doi.org/10.1039/d0bm00157k
C. Chen, J. Feng, J. Li, Y. Guo, X. Shi et al., Functional fiber materials to smart fiber devices. Chem. Rev. 123(2), 613–662 (2023). https://doi.org/10.1021/acs.chemrev.2c00192
S.U. Zaman, X. Tao, C. Cochrane, V. Koncar, Smart E-textile systems: a review for healthcare applications. Electronics 11(1), 99 (2022). https://doi.org/10.3390/electronics11010099
G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick et al., Electronic textiles for wearable point-of-care systems. Chem. Rev. 122(3), 3259–3291 (2022). https://doi.org/10.1021/acs.chemrev.1c00502
W. Wang, A. Yu, J. Zhai, Z.L. Wang, Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv. Fiber Mater. 3(6), 394–412 (2021). https://doi.org/10.1007/s42765-021-00077-9
W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11(1), 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
J. Wu, M. Wang, L. Dong, J. Shi, M. Ohyama et al., A trimode thermoregulatory flexible fibrous membrane designed with hierarchical core-sheath fiber structure for wearable personal thermal management. ACS Nano 16(8), 12801–12812 (2022). https://doi.org/10.1021/acsnano.2c04971
J. Eom, R. Jaisutti, H. Lee, W. Lee, J.S. Heo et al., Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 9(11), 10190–10197 (2017). https://doi.org/10.1021/acsami.7b01771
B. Cheng, P. Wu, Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15(5), 8676–8685 (2021). https://doi.org/10.1021/acsnano.1c00749
L. Ma, R. Wu, A. Patil, J. Yi, D. Liu et al., Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv. Funct. Mater. 31(35), 2102963 (2021). https://doi.org/10.1002/adfm.202102963
Y. Yang, B. Xu, Y. Gao, M. Li, Conductive composite fiber with customizable functionalities for energy harvesting and electronic textiles. ACS Appl. Mater. Interfaces 13(42), 49927–49935 (2021). https://doi.org/10.1021/acsami.1c14273
B.C. Hannigan, T.J. Cuthbert, C. Ahmadizadeh, C. Menon, Distributed sensing along fibers for smart clothing. Sci. Adv. 10(12), 9708 (2024). https://doi.org/10.1126/sciadv.adj9708
Y. Gao, Z. Li, B. Xu, M. Li, C. Jiang et al., Scalable core–spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturing. Nano Energy 91, 106672 (2022). https://doi.org/10.1016/j.nanoen.2021.106672
M. Liao, C. Wang, Y. Hong, Y. Zhang, X. Cheng et al., Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17(4), 372–377 (2022). https://doi.org/10.1038/s41565-021-01062-4
L. Niu, J. Wang, K. Wang, H. Pan, G. Jiang et al., High-speed sirospun conductive yarn for stretchable embedded knitted circuit and self-powered wearable device. Adv. Fiber Mater. 5(1), 154–167 (2023). https://doi.org/10.1007/s42765-022-00203-1
J. Dong, D. Wang, Y. Peng, C. Zhang, F. Lai et al., Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 97, 107160 (2022). https://doi.org/10.1016/j.nanoen.2022.107160
Q. Huang, D. Wang, H. Hu, J. Shang, J. Chang et al., Additive functionalization and embroidery for manufacturing wearable and washable textile supercapacitors. Adv. Funct. Mater. 30(27), 1910541 (2020). https://doi.org/10.1002/adfm.201910541
F. Sun, H. Jiang, H. Wang, Y. Zhong, Y. Xu et al., Soft fiber electronics based on semiconducting polymer. Chem. Rev. 123(8), 4693–4763 (2023). https://doi.org/10.1021/acs.chemrev.2c00720
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
L. Zhan, J. Deng, Q. Ke, X. Li, Y. Ouyang et al., Grooved fibers: preparation principles through electrospinning and potential applications. Adv. Fiber Mater. 4(2), 203–213 (2022). https://doi.org/10.1007/s42765-021-00116-5
Y. Yang, M. Zhang, Z. Ju, P.Y. Tam, T. Hua et al., Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications. Text. Res. J. 91(13–14), 1641–1669 (2021). https://doi.org/10.1177/0040517520984101
S. Mahalingam, R. Matharu, S. Homer-Vanniasinkam, M. Edirisinghe, Current methodologies and approaches for the formation of core–sheath polymer fibers for biomedical applications. Appl. Phys. Rev. 7(4), 041302 (2020). https://doi.org/10.1063/5.0008310
X. Tang, D. Cheng, J. Ran, D. Li, C. He et al., Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor. Nanotechnol. Rev. 10(1), 221–236 (2021). https://doi.org/10.1515/ntrev-2021-0021
V.S. Reddy, Y. Tian, C. Zhang, Z. Ye, K. Roy et al., A review on electrospun nanofibers based advanced applications: from health care to energy devices. Polymers 13(21), 3746 (2021). https://doi.org/10.3390/polym13213746
S.-W. Kim, S.-N. Kwon, S.-I. Na, Stretchable and electrically conductive polyurethane- silver/graphene composite fibers prepared by wet-spinning process. Compos. Part B Eng. 167, 573–581 (2019). https://doi.org/10.1016/j.compositesb.2019.03.035
R. Hufenus, A. Gooneie, T. Sebastian, P. Simonetti, A. Geiger et al., Antistatic fibers for high-visibility workwear: challenges of melt-spinning industrial fibers. Materials 13(11), 2645 (2020). https://doi.org/10.3390/ma13112645
F. Li, H. Xue, X. Lin, H. Zhao, T. Zhang, Wearable temperature sensor with high resolution for skin temperature monitoring. ACS Appl. Mater. Interfaces 14(38), 43844–43852 (2022). https://doi.org/10.1021/acsami.2c15687
M. Wang, J. Wu, L. Dong, J. Shi, Q. Gao et al., A highly aligned microgrid structure for wearable nanofibrous sensors with an enhanced sensitivity and detection range. J. Mater. Chem. C 10(34), 12323–12331 (2022). https://doi.org/10.1039/D2TC02344J
R.K. Cheedarala, A.N. Parvez, K.K. Ahn, Electric impulse spring-assisted contact separation mode triboelectric nanogenerator fabricated from polyaniline emeraldine salt and woven carbon fibers. Nano Energy 53, 362–372 (2018). https://doi.org/10.1016/j.nanoen.2018.08.066
G. Zhang, J. Yu, C. Su, C. Di, S. Ci et al., The effect of annealing on the properties of copper-coated carbon fiber. Surf. Interfaces 37, 102630 (2023). https://doi.org/10.1016/j.surfin.2023.102630
W.M. Daoush, T.S. Albogmy, M.A. Khamis, F. Inam, Syntheses and step-by-step morphological analysis of nano-copper-decorated carbon long fibers for aerospace structural applications. Crystals 10(12), 1090 (2020). https://doi.org/10.3390/cryst10121090
Y. Wang, J. Ren, Z. Lv, L. Cao, S. Lin et al., Direct functionalization of natural silks through continuous force-reeling technique. Chem. Eng. J. 435, 134901 (2022). https://doi.org/10.1016/j.cej.2022.134901
S. Choi, J. Lim, H. Park, H.S. Kim, A flexible piezoelectric device for frequency sensing from PVDF/SWCNT composite fibers. Polymers 14, 4773 (2022). https://doi.org/10.3390/polym14214773
P. Wang, M. Wang, J. Zhu, Y. Wang, J. Gao et al., Surface engineering via self-assembly on PEDOT: PSS fibers: biomimetic fluff-like morphology and sensing application. Chem. Eng. J. 425, 131551 (2021). https://doi.org/10.1016/j.cej.2021.131551
M. Wang, Z. Chen, L. Dong, J. Wu, C. Li et al., Conductance-stable and integrated helical fiber electrodes toward stretchy energy storage and self-powered sensing utilization. Chem. Eng. J. 457, 141164 (2023). https://doi.org/10.1016/j.cej.2022.141164
M. Jose, E. Bezerra Alexandre, L. Neumaier, L. Rauter, M.T. Vijjapu et al., Future thread: printing electronics on fibers. ACS Appl. Mater. Interfaces 16(6), 7996–8005 (2024). https://doi.org/10.1021/acsami.3c15422
C. Fabris, D. Perin, G. Fredi, D. Rigotti, M. Bortolotti et al., Improving the wet-spinning and drawing processes of poly(lactide)/poly(ethylene furanoate) and polylactide/poly(dodecamethylene furanoate) fiber blends. Polymers 14(14), 2910 (2022). https://doi.org/10.3390/polym14142910
Y. Xu, X. Xie, H. Huang, Y. Wang, J. Yu et al., Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor. J. Mater. Sci. 56(3), 2296–2310 (2021). https://doi.org/10.1007/s10853-020-05394-9
X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5(2), 235–258 (2020). https://doi.org/10.1039/c9nh00571d
V. Orts Mercadillo, K.C. Chan, M. Caironi, A. Athanassiou, I.A. Kinloch et al., Electrically conductive 2D material coatings for flexible and stretchable electronics: a comparative review of graphenes and MXenes. Adv. Funct. Mater. 32(38), 2204772 (2022). https://doi.org/10.1002/adfm.202204772
Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011). https://doi.org/10.1038/ncomms1583
N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang et al., Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182–186 (2013). https://doi.org/10.1126/science.1228061
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849
P. Li, Z. Wang, Y. Qi, G. Cai, Y. Zhao et al., Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres. Nat. Commun. 15, 409 (2024). https://doi.org/10.1038/s41467-024-44692-7
Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun et al., Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28(30), 6449–6456 (2016). https://doi.org/10.1002/adma.201506426
J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman et al., Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4(6), 0491 (2018). https://doi.org/10.1126/sciadv.aat0491
D. Chang, J. Liu, B. Fang, Z. Xu, Z. Li et al., Reversible fusion and fission of graphene oxide–based fibers. Science 372(6542), 614–617 (2021). https://doi.org/10.1126/science.abb6640
B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 32(5), e1902664 (2020). https://doi.org/10.1002/adma.201902664
X. Zhang, X. Lei, X. Jia, T. Sun, J. Luo et al., Carbon nanotube fibers with dynamic strength up to 14 GPa. Science 384(6702), 1318–1323 (2024). https://doi.org/10.1126/science.adj1082
P. Rathore, J.D. Schiffman, Beyond the single-nozzle: coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl. Mater. Interfaces 13(1), 48–66 (2021). https://doi.org/10.1021/acsami.0c17706
N. Wang, Y. Zhao, Coaxial Electrospinning, in Electrospinning: Nanofabrication and Applications (Elsevier, Shanghai, 2019), pp.125–200
Y.-F. Deng, N. Zhang, T. Huang, Y.-Z. Lei, Y. Wang, Constructing tubular/porous structures toward highly efficient oil/water separation in electrospun stereo complex polylactide fibers via coaxial electrospinning technology. Appl. Surf. Sci. 573, 151619 (2022). https://doi.org/10.1016/j.apsusc.2021.151619
Z. Shao, X. Zhang, Z. Song, J. Liu, X. Liu et al., Simulation guided coaxial electrospinning of polyvinylidene fluoride hollow fibers with tailored piezoelectric performance. Small 19(38), e2303285 (2023). https://doi.org/10.1002/smll.202303285
J. Zhou, Y.-L. Hsieh, Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy 68, 104305 (2020). https://doi.org/10.1016/j.nanoen.2019.104305
M. Nie, B. Li, Y.-L. Hsieh, K.K. Fu, J. Zhou, Stretchable one-dimensional conductors for wearable applications. ACS Nano 16(12), 19810–19839 (2022). https://doi.org/10.1021/acsnano.2c08166
J. Zhou, G. Tian, G. Jin, Y. Xin, R. Tao et al., Buckled conductive polymer ribbons in elastomer channels as stretchable fiber conductor. Adv. Funct. Mater. 30(5), 1907316 (2020). https://doi.org/10.1002/adfm.201907316
L. Zheng, M. Zhu, B. Wu, Z. Li, S. Sun et al., Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci. Adv. 7(22), 4041 (2021). https://doi.org/10.1126/sciadv.abg4041
R. Lin, H.J. Kim, S. Achavananthadith, Z. Xiong, J.K.W. Lee et al., Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 13(1), 2190 (2022). https://doi.org/10.1038/s41467-022-29859-4
P. Yi, H. Zou, Y. Yu, X. Li, Z. Li et al., MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles. ACS Nano 16(9), 14490–14502 (2022). https://doi.org/10.1021/acsnano.2c04863
N. Sheng, P. Ji, M. Zhang, Z. Wu, Q. Liang et al., High sensitivity polyurethane-based fiber strain sensor with porous structure via incorporation of bacterial cellulose nanofibers. Adv. Electron. Mater. 7(4), 2001235 (2021). https://doi.org/10.1002/aelm.202001235
A. Gooneie, R. Hufenus, Hybrid carbon nanops in polymer matrix for efficient connected networks: self-assembly and continuous pathways. Macromolecules 51(10), 3547–3562 (2018). https://doi.org/10.1021/acs.macromol.8b00585
E. Chang, A. Ameli, A.R. Alian, L.H. Mark, K. Yu et al., Percolation mechanism and effective conductivity of mechanically deformed 3-dimensional composite networks: computational modeling and experimental verification. Compos. Part B Eng. 207, 108552 (2021). https://doi.org/10.1016/j.compositesb.2020.108552
Z. Zhang, L. Hu, R. Wang, S. Zhang, L. Fu et al., Advances in Monte Carlo method for simulating the electrical percolation behavior of conductive polymer composites with a carbon-based filling. Polymers 16(4), 545 (2024). https://doi.org/10.3390/polym16040545
X. Zhou, Y. Liu, Z. Gao, P. Min, J. Liu et al., Biphasic GaIn alloy constructed stable percolation network in polymer composites over ultrabroad temperature region. Adv. Mater. 36(14), e2310849 (2024). https://doi.org/10.1002/adma.202310849
K. Vagif Gizi Allahverdiyeva, N. Tofig Oglu Kakhramanov, R. Vagif Gizi Gurbanova, Structural, electrical, and physical-mechanical properties of composites obtained based on filled polyolefins and thermoplastic elastomers. RSC Adv. 15(9), 6541–6563 (2025). https://doi.org/10.1039/d5ra00105f
C. Gao, S. He, L. Qiu, M. Wang, J. Gao et al., Continuous dry–wet spinning of white, stretchable, and conductive fibers of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and ATO@TiO2 nanops for wearable e-textiles. J. Mater. Chem. C 8(25), 8362–8367 (2020). https://doi.org/10.1039/D0TC01310B
S. Choi, S.I. Han, D. Kim, T. Hyeon, D.-H. Kim, High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48(6), 1566–1595 (2019). https://doi.org/10.1039/c8cs00706c
S. Lee, S. Shin, S. Lee, J. Seo, J. Lee et al., Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 25(21), 3114–3121 (2015). https://doi.org/10.1002/adfm.201500628
Z. Pei, Y. Zhang, G. Chen, A core-spun yarn containing a metal wire manufactured by a modified Vortex spinning system. Text. Res. J. 89(1), 113–118 (2019). https://doi.org/10.1177/0040517517736477
L. Wang, J. Lu, Q. Li, L. Li, E. He et al., A core–sheath sensing yarn-based electrochemical fabric system for powerful sweat capture and stable sensing. Adv. Funct. Mater. 32(23), 2200922 (2022). https://doi.org/10.1002/adfm.202200922
Z. Zeng, B. Hao, D. Li, D. Cheng, G. Cai et al., Large-scale production of weavable, dyeable and durable Spandex/CNT/cotton core-sheath yarn for wearable strain sensors. Compos. Part A Appl. Sci. Manuf. 149, 106520 (2021). https://doi.org/10.1016/j.compositesa.2021.106520
X. Tao, Y. Zhou, K. Qi, C. Guo, Y. Dai et al., Wearable textile triboelectric generator based on nanofiber core-spun yarn coupled with electret effect. J. Colloid Interface Sci. 608(Pt 3), 2339–2346 (2022). https://doi.org/10.1016/j.jcis.2021.10.151
S. Wu, T. Dong, Y. Li, M. Sun, Y. Qi et al., State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl. Mater. Today 27, 101473 (2022). https://doi.org/10.1016/j.apmt.2022.101473
C. Ye, S. Yang, J. Ren, S. Dong, L. Cao et al., Electroassisted core-spun triboelectric nanogenerator fabrics for IntelliSense and artificial intelligence perception. ACS Nano 16(3), 4415–4425 (2022). https://doi.org/10.1021/acsnano.1c10680
X. You, J. He, N. Nan, X. Sun, K. Qi et al., Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli. J. Mater. Chem. C 6(47), 12981–12991 (2018). https://doi.org/10.1039/C8TC03631D
K. Dong, Y. Zhang, X. Fan, L.N.Y. Cao, X. Peng, Microfiber-based triboelectric acoustic sensors enable self-powered ultrasonic localization and tracking underwater. ACS Sens. 10(2), 1366–1377 (2025). https://doi.org/10.1021/acssensors.4c03283
Y. Li, C. Wei, Y. Jiang, R. Cheng, Y. Zhang et al., Continuous preparation of chitosan-based self-powered sensing fibers recycled from wasted materials for smart home applications. Adv. Fiber Mater. 4(6), 1584–1594 (2022). https://doi.org/10.1007/s42765-022-00194-z
J. Zhang, Y. Wang, J. Zhou, J. Wu, S. Liu et al., Multi-functional STF-based yarn for human protection and wearable systems. Chem. Eng. J. 453, 139869 (2023). https://doi.org/10.1016/j.cej.2022.139869
X. He, J. Gu, Y. Hao, M. Zheng, L. Wang et al., Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 450, 137937 (2022). https://doi.org/10.1016/j.cej.2022.137937
Z. Ouyang, D. Xu, H.-Y. Yu, S. Li, Y. Song et al., Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses. Chem. Eng. J. 428, 131289 (2022). https://doi.org/10.1016/j.cej.2021.131289
J. Tang, Y. Wu, S. Ma, T. Yan, Z. Pan, Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage. Compos. Part B Eng. 232, 109605 (2022). https://doi.org/10.1016/j.compositesb.2021.109605
K. Dong, J. Deng, W. Ding, A.C. Wang, P. Wang et al., Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy Mater. 8(23), 1801114 (2018). https://doi.org/10.1002/aenm.201801114
J. Han, C. Xu, J. Zhang, N. Xu, Y. Xiong et al., Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization. ACS Nano 15(1), 1597–1607 (2021). https://doi.org/10.1021/acsnano.0c09146
Y. Mao, Y. Li, J. Xie, H. Liu, C. Guo et al., Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2NW hybrid elastomer. Nano Energy 84, 105918 (2021). https://doi.org/10.1016/j.nanoen.2021.105918
R. Cheng, C. Wei, C. Ning, T. Lv, X. Peng et al., Unveiling the contact electrification of triboelectric fibers by exploring their unique micro- and macroscale structural properties. Mater. Today 83, 295–306 (2025). https://doi.org/10.1016/j.mattod.2025.01.013
J. Kang, T. Liu, Y. Lu, L. Lu, K. Dong et al., Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Compos. Part B Eng. 245, 110229 (2022). https://doi.org/10.1016/j.compositesb.2022.110229
W. Wang, A. Yu, Y. Wang, M. Jia, P. Guo et al., Elastic kernmantle E-braids for high-impact sports monitoring. Adv. Sci. 9(25), e2202489 (2022). https://doi.org/10.1002/advs.202202489
M. Chen, J. Ouyang, A. Jian, J. Liu, P. Li et al., Imperceptible, designable, and scalable braided electronic cord. Nat. Commun. 13(1), 7097 (2022). https://doi.org/10.1038/s41467-022-34918-x
K. Zhang, X. Shi, H. Jiang, K. Zeng, Z. Zhou et al., Design and fabrication of wearable electronic textiles using twisted fiber-based threads. Nat. Protoc. 19(5), 1557–1589 (2024). https://doi.org/10.1038/s41596-024-00956-6
W. Weng, P. Chen, S. He, X. Sun, H. Peng, Smart electronic textiles. Angew. Chem. Int. Ed. 55(21), 6140–6169 (2016). https://doi.org/10.1002/anie.201507333
J. Chen, J. Zhang, J. Hu, N. Luo, F. Sun et al., Ultrafast-response/recovery flexible piezoresistive sensors with DNA-like double helix yarns for epidermal pulse monitoring. Adv. Mater. 34(2), e2104313 (2022). https://doi.org/10.1002/adma.202104313
Z. Ge, H. Hu, S. Liu, A novel plied yarn structure with negative Poisson’s ratio. J. Text. Inst. 107(5), 578–588 (2016). https://doi.org/10.1080/00405000.2015.1049069
L. Chen, C. Chen, L. Jin, H. Guo, A.C. Wang et al., Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy Environ. Sci. 14(2), 955–964 (2021). https://doi.org/10.1039/D0EE02777D
S. Dong, H. Hu, Sensors based on auxetic materials and structures: a review. Materials 16(9), 3603 (2023). https://doi.org/10.3390/ma16093603
T.J. Cuthbert, B.C. Hannigan, P. Roberjot, A.V. Shokurov, C. Menon, HACS: helical auxetic yarn capacitive strain sensors with sensitivity beyond the theoretical limit. Adv. Mater. 35(10), e2209321 (2023). https://doi.org/10.1002/adma.202209321
Z. Zhang, S. Liu, M. Wu, S. Liu, Shape-adaptable and wearable strain sensor based on braided auxetic yarns for monitoring large human motions. Appl. Mater. Today 35, 101996 (2023). https://doi.org/10.1016/j.apmt.2023.101996
M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014). https://doi.org/10.3390/s140711957
J. Sun, B. Ren, S. Han, H. Shin, S. Cha et al., Amplified performance of charge accumulation and trapping induced by enhancing the dielectric constant via the cyano group of 3D-structured textile for a triboelectric multi-modal sensor. Small Meth. 7(10), 2300344 (2023). https://doi.org/10.1002/smtd.202300344
Y. Yang, X. Wei, N. Zhang, J. Zheng, X. Chen et al., A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun. 12(1), 4876 (2021). https://doi.org/10.1038/s41467-021-25075-8
M. Lou, I. Abdalla, M. Zhu, X. Wei, J. Yu et al., Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring. ACS Appl. Mater. Interfaces 12(17), 19965–19973 (2020). https://doi.org/10.1021/acsami.0c03670
G. Shao, R. Yu, X. Zhang, X. Chen, F. He et al., Making stretchable hybrid supercapacitors by knitting non-stretchable metal fibers. Adv. Funct. Mater. 30(35), 2003153 (2020). https://doi.org/10.1002/adfm.202003153
Q. Chen, L. Shu, B. Fu, R. Zheng, J. Fan, Electrical resistance of stainless steel/polyester blended knitted fabrics for application to measure sweat quantity. Polymers 13(7), 1015 (2021). https://doi.org/10.3390/polym13071015
A. Salam, D.-N. Phan, S.U. Khan, S.Z. Ul Hassan, T. Hassan et al., Development of a multifunctional intelligent elbow brace (MIEB) using a knitted textile strain sensor. Fibres Text. East. Eur. 30(1(151)), 22–30 (2022). https://doi.org/10.5604/01.3001.0015.6457
E. Ayodele, S.A.R. Zaidi, J. Scott, Z. Zhang, M. Hafeez et al., The effect of miss and tuck stitches on a weft knit strain sensor. Sensors 21(2), 358 (2021). https://doi.org/10.3390/s21020358
Y. Li, X. Miao, J.Y. Chen, G. Jiang, Q. Liu, Sensing performance of knitted strain sensor on two-dimensional and three-dimensional surfaces. Mater. Des. 197, 109273 (2021). https://doi.org/10.1016/j.matdes.2020.109273
L. Niu, X. Peng, L. Chen, Q. Liu, T. Wang et al., Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection. Nano Energy 97, 107168 (2022). https://doi.org/10.1016/j.nanoen.2022.107168
J. Dong, X. Tang, Y. Peng, C. Fan, L. Li et al., Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 108, 108194 (2023). https://doi.org/10.1016/j.nanoen.2023.108194
G. Sun, P. Wang, Y. Jiang, H. Sun, C. Meng, Intrinsically flexible and breathable supercapacitive pressure sensor based on MXene and ionic gel decorating textiles for comfortable and ultrasensitive wearable healthcare monitoring. ACS Appl. Electron. Mater. 4(4), 1958–1967 (2022). https://doi.org/10.1021/acsaelm.2c00137
N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–347 (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004
J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
J. Dong, L. Li, C. Zhang, P. Ma, W. Dong et al., Ultra-highly stretchable and anisotropic SEBS/F127 fiber films equipped with an adaptive deformable carbon nanotube layer for dual-mode strain sensing. J. Mater. Chem. A 9(34), 18294–18305 (2021). https://doi.org/10.1039/D1TA04563F
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
W. Fan, R. Lei, H. Dou, Z. Wu, L. Lu et al., Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor. Nat. Commun. 15(1), 3509 (2024). https://doi.org/10.1038/s41467-024-47810-7
M.-F. Lin, J. Xiong, J. Wang, K. Parida, P.S. Lee, Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 44, 248–255 (2018). https://doi.org/10.1016/j.nanoen.2017.12.004
Y. Jiang, K. Dong, J. An, F. Liang, J. Yi et al., UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS Appl. Mater. Interfaces 13, 11205 (2021). https://doi.org/10.1021/acsami.0c22670
Y. Wang, M. Zhu, X. Wei, J. Yu, Z. Li et al., A dual-mode electronic skin textile for pressure and temperature sensing. Chem. Eng. J. 425, 130599 (2021). https://doi.org/10.1016/j.cej.2021.130599
X. Chen, X. Peng, C. Wei, Z. Wang, J. He et al., A moisture-proof, anti-fouling, and low signal attenuation all-nanofiber triboelectric sensor for self-powered respiratory health monitoring. Adv. Funct. Mater. 35(7), 2415421 (2025). https://doi.org/10.1002/adfm.202415421
S. Shi, Y. Si, Z. Li, S. Meng, S. Zhang et al., An intelligent wearable filtration system for health management. ACS Nano 17(7), 7035–7046 (2023). https://doi.org/10.1021/acsnano.3c02099
H. He, J. Guo, B. Illés, A. Géczy, B. Istók et al., Monitoring multi-respiratory indices via a smart nanofibrous mask filter based on a triboelectric nanogenerator. Nano Energy 89, 106418 (2021). https://doi.org/10.1016/j.nanoen.2021.106418
Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16(1), 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
L. Chen, M. Lu, H. Yang, J.R. Salas Avila, B. Shi et al., Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 14(7), 8191–8201 (2020). https://doi.org/10.1021/acsnano.0c01643
F. Huang, H. Yu, S. Xiang, J. Xue, H. Ming et al., Embroidering a filmsy photorechargeable energy fabric with wide weather adaptability. ACS Appl. Mater. Interfaces 12(3), 3654–3660 (2020). https://doi.org/10.1021/acsami.9b19731
J.R. Windmiller, J. Wang, Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25(1), 29–46 (2013). https://doi.org/10.1002/elan.201200349
I. Ibanez Labiano, D. Arslan, E. Ozden Yenigun, A. Asadi, H. Cebeci et al., Screen printing carbon nanotubes textiles antennas for smart wearables. Sensors 21(14), 4934 (2021). https://doi.org/10.3390/s21144934
S. Khosravi, S. Soltanian, A. Servati, A. Khademhosseini, Y. Zhu et al., Screen-printed textile-based electrochemical biosensor for noninvasive monitoring of glucose in sweat. Biosensors 13(7), 684 (2023). https://doi.org/10.3390/bios13070684
Y. Jiang, S. Cui, T. Xia, T. Sun, H. Tan et al., Real-time monitoring of heavy metals in healthcare via twistable and washable smartsensors. Anal. Chem. 92(21), 14536–14541 (2020). https://doi.org/10.1021/acs.analchem.0c02723
J. Bujes-Garrido, M.J. Arcos-Martínez, Development of a wearable electrochemical sensor for voltammetric determination of chloride ions. Sens. Actuat. B Chem. 240, 224–228 (2017). https://doi.org/10.1016/j.snb.2016.08.119
M. Parrilla, R. Cánovas, I. Jeerapan, F.J. Andrade, J. Wang, A textile-based stretchable multi-ion potentiometric sensor. Adv. Healthc. Mater. 5(9), 996–1001 (2016). https://doi.org/10.1002/adhm.201600092
Y. Adesida, E. Papi, A.H. McGregor, Exploring the role of wearable technology in sport kinematics and kinetics: a systematic review. Sensors 19(7), 1597 (2019). https://doi.org/10.3390/s19071597
D.R. Seshadri, R.T. Li, J.E. Voos, J.R. Rowbottom, C.M. Alfes et al., Wearable sensors for monitoring the physiological and biochemical profile of the athlete. npj Digit. Med. 2, 72 (2019). https://doi.org/10.1038/s41746-019-0150-9
D. Evans, B. Hodgkinson, J. Berry, Vital signs in hospital patients: a systematic review. Int. J. Nurs. Stud. 38(6), 643–650 (2001). https://doi.org/10.1016/s0020-7489(00)00119-x
Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373–4395 (2016). https://doi.org/10.1002/adma.201504366
E. Vanegas, R. Igual, I. Plaza, Sensing systems for respiration monitoring: a technical systematic review. Sensors 20(18), 5446 (2020). https://doi.org/10.3390/s20185446
R. Ghosh, K.Y. Pin, V.S. Reddy, W.A.D.M. Jayathilaka, D. Ji et al., Micro/nanofiber-based noninvasive devices for health monitoring diagnosis and rehabilitation. Appl. Phys. Rev. 7(4), 041309 (2020). https://doi.org/10.1063/5.0010766
G. O’Donovan, A.J. Blazevich, C. Boreham, A.R. Cooper, H. Crank et al., The ABC of physical activity for health: a consensus statement from the British association of sport and exercise sciences. J. Sports Sci. 28(6), 573–591 (2010). https://doi.org/10.1080/02640411003671212
A. Pelliccia, R. Fagard, H.H. Bjørnstad, A. Anastassakis, E. Arbustini et al., Recommendations for competitive sports participation in athletes with cardiovascular disease: a consensus document from the study group of sports cardiology of the working group of cardiac rehabilitation and exercise physiology and the working group of myocardial and pericardial diseases of the european society of cardiology. Eur. Heart J. 26(14), 1422–1445 (2005). https://doi.org/10.1093/eurheartj/ehi325
N. Balagué, R. Hristovski, M. Almarcha, S. Garcia-Retortillo, P.C. Ivanov, Network physiology of exercise: vision and perspectives. Front. Physiol. 11, 611550 (2020). https://doi.org/10.3389/fphys.2020.611550
Y. Fang, Y. Zou, J. Xu, G. Chen, Y. Zhou et al., Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 33(41), e2104178 (2021). https://doi.org/10.1002/adma.202104178
D. Xu, Z. Ouyang, Y. Dong, H.-Y. Yu, S. Zheng et al., Robust, breathable and flexible smart textiles as multifunctional sensor and heater for personal health management. Adv. Fiber Mater. 5(1), 282–295 (2023). https://doi.org/10.1007/s42765-022-00221-z
M.F. Bergeron, R. Bahr, P. Bärtsch, L. Bourdon, J.L. Calbet et al., International Olympic Committee consensus statement on thermoregulatory and altitude challenges for high-level athletes. Br. J. Sports Med. 46(11), 770–779 (2012). https://doi.org/10.1136/bjsports-2012-091296
C. He, M. Cao, J. Liu, Z. Ge, R. Zhou et al., Nanotechnology in the Olympic winter games and beyond. ACS Nano 16(4), 4981–4988 (2022). https://doi.org/10.1021/acsnano.2c03346
A. Chen, J. Zhu, Q. Lin, W. Liu, A comparative study of forehead temperature and core body temperature under varying ambient temperature conditions. Int. J. Environ. Res. Public Health 19(23), 15883 (2022). https://doi.org/10.3390/ijerph192315883
P. Fulbrook, Core temperature measurement: a comparison of rectal, axillary and pulmonary artery blood temperature. Intensive Crit. Care Nurs. 9(4), 217–225 (1993). https://doi.org/10.1016/s0964-3397(05)80002-3
A. Falzon, V. Grech, B. Caruana, A. Magro, S. Attard-Montalto, How reliable is axillary temperature measurement? Acta Paediatr. 92(3), 309–313 (2003). https://doi.org/10.1080/08035250310009220
G. Loke, T. Khudiyev, B. Wang, S. Fu, S. Payra et al., Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12(1), 3317 (2021). https://doi.org/10.1038/s41467-021-23628-5
W. Jia, A.J. Bandodkar, G. Valdés-Ramírez, J.R. Windmiller, Z. Yang et al., Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85(14), 6553–6560 (2013). https://doi.org/10.1021/ac401573r
Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38(2), 217–224 (2020). https://doi.org/10.1038/s41587-019-0321-x
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
Y. Kim, J.M. Suh, J. Shin, Y. Liu, H. Yeon et al., Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377(6608), 859–864 (2022). https://doi.org/10.1126/science.abn7325
J. Dong, Y. Peng, X. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32(48), 2209762 (2022). https://doi.org/10.1002/adfm.202209762
J. Yin, J. Li, V.S. Reddy, D. Ji, S. Ramakrishna et al., Flexible textile-based sweat sensors for wearable applications. Biosensors 13(1), 127 (2023). https://doi.org/10.3390/bios13010127
R. Wang, Q. Zhai, T. An, S. Gong, W. Cheng, Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta 222, 121484 (2021). https://doi.org/10.1016/j.talanta.2020.121484
X. Tong, D. Yang, T. Hua, S. Li, B. Wang et al., Multifunctional fiber for synchronous bio-sensing and power supply in sweat environment. Adv. Funct. Mater. 33(30), 2301174 (2023). https://doi.org/10.1002/adfm.202301174
Z. Zhao, Q. Li, L. Chen, Y. Zhao, J. Gong et al., A thread/fabric-based band as a flexible and wearable microfluidic device for sweat sensing and monitoring. Lab Chip 21(5), 916–932 (2021). https://doi.org/10.1039/D0LC01075H
M. Caldara, C. Colleoni, E. Guido, V. Re, G. Rosace, Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sens. Actuat. B Chem. 222, 213–220 (2016). https://doi.org/10.1016/j.snb.2015.08.073
F.N. Sunstrum, J.U. Khan, N.W. Li, A.W. Welsh, Wearable textile sensors for continuous glucose monitoring. Biosens. Bioelectron. 273, 117133 (2025). https://doi.org/10.1016/j.bios.2025.117133
D. Luo, H. Sun, Q. Li, X. Niu, Y. He et al., Flexible sweat sensors: from films to textiles. ACS Sens. 8(2), 465–481 (2023). https://doi.org/10.1021/acssensors.2c02642
J.J.A. Mendes Jr., M.E.M. Vieira, M.B. Pires, S.L. Stevan Jr., Sensor fusion and smart sensor in sports and biomedical applications. Sensors 16(10), 1569 (2016). https://doi.org/10.3390/s16101569
A. Tognetti, F. Lorussi, N. Carbonaro, D. de Rossi, Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life. Sensors 15(11), 28435–28455 (2015). https://doi.org/10.3390/s151128435
Y. Li, Y. Li, M. Su, W. Li, Y. Li et al., Electronic textile by dyeing method for multiresolution physical kineses monitoring. Adv. Electron. Mater. 3(10), 1700253 (2017). https://doi.org/10.1002/aelm.201700253
V. Chhoeum, Y. Kim, S.-D. Min, Estimation of knee joint angle using textile capacitive sensor and artificial neural network implementing with three shoe types at two gait speeds: a preliminary investigation. Sensors 21(16), 5484 (2021). https://doi.org/10.3390/s21165484
Y. Li, X. Miao, R.K. Raji, Flexible knitted sensing device for identifying knee joint motion patterns. Smart Mater. Struct. 28(11), 115042 (2019). https://doi.org/10.1088/1361-665x/ab4afe
S.K. Park, S.C. Ahn, J.Z. Sun, D. Bhatia, D. Choi et al., Highly bendable and rotational textile structure with prestrained conductive sewing pattern for human joint monitoring. Adv. Funct. Mater. 29(10), 1808369 (2019). https://doi.org/10.1002/adfm.201808369
C. Wei, R. Cheng, C. Ning, X. Wei, X. Peng et al., A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv. Funct. Mater. 33(35), 2303562 (2023). https://doi.org/10.1002/adfm.202303562
M. Mayer, A.J. Baeumner, A megatrend challenging analytical chemistry: biosensor and chemosensor concepts ready for the Internet of Things. Chem. Rev. 119(13), 7996–8027 (2019). https://doi.org/10.1021/acs.chemrev.8b00719
J. Kim, A.S. Campbell, B.E. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
H. Yu, Z. Cai, W. Xie, H. Xiao, S. Zhang et al., Research on the construction of intelligent sports health management system based on Internet of Things and cloud computing technology. Wirel. Commun. Mob. Comput. 2022, 7133810 (2022). https://doi.org/10.1155/2022/7133810
W. Yue, Y. Guo, J.C. Lee, E. Ganbold, J.K. Wu et al., Advancements in passive wireless sensing systems in monitoring harsh environment and healthcare applications. Nano-Micro Lett. 17(1), 106 (2025). https://doi.org/10.1007/s40820-024-01599-8
A. Hajiaghajani, A.H. Afandizadeh Zargari, M. Dautta, A. Jimenez, F. Kurdahi et al., Textile-integrated metamaterials for near-field multibody area networks. Nat. Electron. 4(11), 808–817 (2021). https://doi.org/10.1038/s41928-021-00663-0
H. Sun, N. Pan, X. Jin, K. Deng, Z. Liu et al., Active-powering pressure-sensing fabric devices. J. Mater. Chem. A 8(1), 358–368 (2020). https://doi.org/10.1039/c9ta09395h
R. Lin, H.-J. Kim, S. Achavananthadith, S.A. Kurt, S.C.C. Tan et al., Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 11(1), 444 (2020). https://doi.org/10.1038/s41467-020-14311-2
X. Tian, P.M. Lee, Y.J. Tan, T.L.Y. Wu, H. Yao et al., Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2(6), 243–251 (2019). https://doi.org/10.1038/s41928-019-0257-7
Q.D. La, D. Nguyen-Nam, M.V. Ngo, H.T. Hoang, T.Q.S. Quek, Dense deployment of BLE-based body area networks: a coexistence study. IEEE Trans. Green Commun. Netw. 2(4), 972–981 (2018). https://doi.org/10.1109/TGCN.2018.2859350
J. Kim, G. Lee, R. Heimgartner, D. Arumukhom Revi, N. Karavas et al., Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science 365(6454), 668–672 (2019). https://doi.org/10.1126/science.aav7536
J. Li, L. Wang, X. Wang, Y. Yang, Z. Hu et al., Highly conductive PVA/Ag coating by aqueous in situ reduction and its stretchable structure for strain sensor. ACS Appl. Mater. Interfaces 12(1), 1427–1435 (2020). https://doi.org/10.1021/acsami.9b15546
S.M. Sohel Rana, M.T. Rahman, S. Sharma, M. Salauddin, S.H. Yoon et al., Cation functionalized nylon composite nanofibrous mat as a highly positive friction layer for robust, high output triboelectric nanogenerators and self-powered sensors. Nano Energy 88, 106300 (2021). https://doi.org/10.1016/j.nanoen.2021.106300
S. Chen, X. Liu, Y. Miao, S. Ge, S.-X. Li et al., Self-healing polyurethane/cellulose nanocrystal composite fibers with fatigue and aging resistance for smart wearable elastic yarns. Adv. Compos. Hybrid Mater. 8(1), 8 (2024). https://doi.org/10.1007/s42114-024-01089-w
M. Wang, L. Dong, J. Wu, J. Shi, Q. Gao et al., Leaf-meridian bio-inspired nanofibrous electronics with uniform distributed microgrid and 3D multi-level structure for wearable applications. npj Flex. Electron. 6, 34 (2022). https://doi.org/10.1038/s41528-022-00171-x
M. Sahu, S. Hajra, S. Panda, M. Rajaitha, B.K. Panigrahi et al., Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy 97, 107208 (2022). https://doi.org/10.1016/j.nanoen.2022.107208
F. Geng, X. Huo, A self-powered sport sensor based on triboelectric nanogenerator for fosbury flop training. J. Sens. 2022(1), 3130928 (2022). https://doi.org/10.1155/2022/3130928
X. Ye, B. Shi, M. Li, Q. Fan, X. Qi et al., All-textile sensors for Boxing punch force and velocity detection. Nano Energy 97, 107114 (2022). https://doi.org/10.1016/j.nanoen.2022.107114
T. Raza, M.K. Tufail, A. Ali, A. Boakye, X. Qi et al., Wearable and flexible multifunctional sensor based on laser-induced graphene for the sports monitoring system. ACS Appl. Mater. Interfaces 14, 54170 (2022). https://doi.org/10.1021/acsami.2c14847
M. Chen, Z. Wang, Q. Zhang, Z. Wang, W. Liu et al., Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nat. Commun. 12(1), 1416 (2021). https://doi.org/10.1038/s41467-021-21729-9
Z. Zheng, X. Ma, M. Lu, H. Yin, L. Jiang et al., High-performance all-textile triboelectric nanogenerator toward intelligent sports sensing and biomechanical energy harvesting. ACS Appl. Mater. Interfaces 16(8), 10746–10755 (2024). https://doi.org/10.1021/acsami.3c18558
Y. Ma, J. Ouyang, T. Raza, P. Li, A. Jian et al., Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo. Nano Energy 85, 105941 (2021). https://doi.org/10.1016/j.nanoen.2021.105941
R.J.N. Helmer, A.G. Hahn, L.M. Staynes, R.J. Denning, A. Krajewski et al., Design and development of interactive textiles for impact detection and use with an automated Boxing scoring system. Procedia Eng. 2(2), 3065–3070 (2010). https://doi.org/10.1016/j.proeng.2010.04.112
Y. Zou, P. Tan, B. Shi, H. Ouyang, D. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10, 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
Y. Taniguchi, H. Masuda, A conversion system based on acoustic communication for using bluetooth low energy sensors underwater. In: 2022 24th International Conference on Advanced Communication Technology (ICACT). February 13–16, 2022, PyeongChang Kwangwoon_Do, Korea, Republic of. IEEE, (2022), pp. 326–329.
X. Zhao, Y. Zhou, J. Xu, G. Chen, Y. Fang et al., Soft fibers with magnetoelasticity for wearable electronics. Nat. Commun. 12, 6755 (2021). https://doi.org/10.1038/s41467-021-27066-1
T. Zhu, Y. Ni, K. Zhao, J. Huang, Y. Cheng et al., A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming. ACS Nano 16(11), 18018–18026 (2022). https://doi.org/10.1021/acsnano.2c08325
I. Wicaksono, P.G. Hwang, S. Droubi, F.X. Wu, A.N. Serio et al., 3DKnITS: three-dimensional digital knitting of intelligent textile sensor for activity recognition and biomechanical monitoring. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). July 11-15, 2022, Glasgow, Scotland, United Kingdom. IEEE, (2022)., pp. 2403–2409.
D. Zhu, Z. Zhang, M. Chen, P. Li, Y. Xiang et al., A perspective on rhythmic gymnastics performance analysis powered by intelligent fabric. Adv. Fiber Mater. 5(1), 1–11 (2023). https://doi.org/10.1007/s42765-022-00197-w
J. Li, S. Li, Y. Su, Stretchable strain sensors based on deterministic-contact-resistance braided structures with high performance and capability of continuous production. Adv. Funct. Mater. 32(49), 2208216 (2022). https://doi.org/10.1002/adfm.202208216
J. Dong, Y. Peng, L. Pu, K. Chang, L. Li et al., Perspiration-wicking and luminescent on-skin electronics based on ultrastretchable Janus E-textiles. Nano Lett. 22(18), 7597–7605 (2022). https://doi.org/10.1021/acs.nanolett.2c02647
J. He, Y. Xue, H. Liu, J. Li, Q. Liu et al., Humidity-resistant, conductive fabric-based triboelectric nanogenerator for efficient energy harvesting and human-machine interaction sensing. ACS Appl. Mater. Interfaces 15(37), 43963–43975 (2023). https://doi.org/10.1021/acsami.3c10328
A.F. Yu, W. Wang, Z.B. Li, X. Liu, Y. Zhang et al., Large-scale smart carpet for self-powered fall detection. Adv. Mater. Technol. 5(2), 1900978 (2020). https://doi.org/10.1002/admt.201900978
F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7(14), 2000261 (2020). https://doi.org/10.1002/advs.202000261