Electrospun Nanofiber-Based Ceramic Aerogels: Synergistic Strategies for Design and Functionalization
Corresponding Author: Yang Si
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 23
Abstract
Ceramic aerogels (CAs) have emerged as a significant research frontier across various applications due to their lightweight, high porosity, and easily tunable structural characteristics. However, the intrinsic weak interactions among the constituent nanoparticles, coupled with the limited toughness of traditional CAs, make them susceptible to structural collapse or even catastrophic failure when exposed to complex mechanical external forces. Unlike 0D building units, 1D ceramic nanofibers (CNFs) possess a high aspect ratio and exceptional flexibility simultaneously, which are desirable building blocks for elastic CAs. This review presents the recent progress in electrospun ceramic nanofibrous aerogels (ECNFAs) that are constructed using ECNFs as building blocks, focusing on the various preparation methods and corresponding structural characteristics, strategies for optimizing mechanical performance, and a wide range of applications. The methods for preparing ECNFs and ECNFAs with diverse structures were initially explored, followed by the implementation of optimization strategies for enhancing ECNFAs, emphasizing the improvement of reinforcing the ECNFs, establishing the bonding effects between ECNFs, and designing the aggregate structures of the aerogels. Moreover, the applications of ECNFAs across various fields are also discussed. Finally, it highlights the existing challenges and potential opportunities for ECNFAs to achieve superior properties and realize promising prospects.
Highlights:
1 This review provides comprehensive fabrication methods for the manufacturing of electrospun ceramic nanofibrous aerogels and offers professional guidance for materials development in this field.
2 The optimization strategies for electrospun ceramic nanofibrous aerogels (ECNFAs)’ mechanical properties have been provided, highlighting multi-scale design from nano-building blocks to nanofiber aggregate structure design.
3 This review systematically introduces the diverse roles of ECNFAs in specific application scenarios and application-specific mechanisms and provides transformative solutions for advanced engineering applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Chang, X. Cheng, H. Zhang, W. Li, L. He et al., Superelastic carbon aerogels: an emerging material for advanced thermal protection in extreme environments. Adv. Funct. Mater. 33(26), 2215168 (2023). https://doi.org/10.1002/adfm.202215168
- S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127(3211), 741 (1931). https://doi.org/10.1038/127741a0
- X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363(6428), 723–727 (2019). https://doi.org/10.1126/science.aav7304
- X. Cheng, X. Chang, F. Wu, Y. Liao, K. Pan et al., Advanced nanofabrication for elastic inorganic aerogels. Nano Res. 17(10), 8842–8862 (2024). https://doi.org/10.1007/s12274-023-6369-4
- X. Hou, J. Chen, Z. Chen, D. Yu, S. Zhu et al., Flexible aerogel materials: a review on revolutionary flexibility strategies and the multifunctional applications. ACS Nano 18(18), 11525–11559 (2024). https://doi.org/10.1021/acsnano.4c00347
- Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
- N. Méndez-Lozano, R. Velázquez-Castillo, E.M. Rivera-Muñoz, L. Bucio-Galindo, G. Mondragón-Galicia et al., Crystal growth and structural analysis of hydroxyapatite nanofibers synthesized by the hydrothermal microwave-assisted method. Ceram. Int. 43(1), 451–457 (2017). https://doi.org/10.1016/j.ceramint.2016.09.179
- M. Boufas, O. Guellati, A. Harat, D. Momodu, J. Dangbegnon et al., Optical and electrochemical properties of iron oxide and hydroxide nanofibers synthesized using new template-free hydrothermal method. J. Nanostruct. Chem. 10(4), 275–288 (2020). https://doi.org/10.1007/s40097-020-00348-8
- M.W. Boey, S.A. Khan, X. Li, J. Sun, M.U. Farid et al., Thermally efficient hydrophobic zirconia ceramic nanofiber membrane for enhanced membrane distillation performance. Chem. Eng. J. 512, 162582 (2025). https://doi.org/10.1016/j.cej.2025.162582
- M. Dilamian, M. Joghataei, Z. Ashrafi, C. Bohr, S. Mathur et al., From 1D electrospun nanofibers to advanced multifunctional fibrous 3D aerogels. Appl. Mater. Today 22, 100964 (2021). https://doi.org/10.1016/j.apmt.2021.100964
- S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma et al., Electrospun nanofibers: solving global issues. Mater. Today 9(3), 40–50 (2006). https://doi.org/10.1016/S1369-7021(06)71389-X
- J.-H. Kim, J.-H. Kim, J.-M. Kim, Y.-G. Lee, S.-Y. Lee, Superlattice crystals–mimic, flexible/functional ceramic membranes: beyond polymeric battery separators. Adv. Energy Mater. 5(24), 1500954 (2015). https://doi.org/10.1002/aenm.201500954
- Y. Jeon, J.-H. Myung, S.-H. Hyun, Y.-G. Shul, J.T.S. Irvine, Corn-cob like nanofibres as cathode catalysts for an effective microstructure design in solid oxide fuel cells. J. Mater. Chem. A 5(8), 3966–3973 (2017). https://doi.org/10.1039/C6TA08692F
- H. Wang, X. Zhang, N. Wang, Y. Li, X. Feng et al., Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. Sci. Adv. 3(6), e1603170 (2017). https://doi.org/10.1126/sciadv.1603170
- C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11(1), 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
- H. Wang, S. Lin, S. Yang, X. Yang, J. Song et al., High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge. Small 14(19), e1800258 (2018). https://doi.org/10.1002/smll.201800258
- J.L. Daristotle, A.M. Behrens, A.D. Sandler, P. Kofinas, A review of the fundamental principles and applications of solution blow spinning. ACS Appl. Mater. Interfaces 8(51), 34951–34963 (2016). https://doi.org/10.1021/acsami.6b12994
- Y. Gao, J. Zhang, Y. Su, H. Wang, X.-X. Wang et al., Recent progress and challenges in solution blow spinning. Mater. Horiz. 8(2), 426–446 (2021). https://doi.org/10.1039/d0mh01096k
- E.S. Medeiros, G.M. Glenn, A.P. Klamczynski, W.J. Orts, L.H.C. Mattoso, Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci. 113(4), 2322–2330 (2009). https://doi.org/10.1002/app.30275
- M.F. Mota, A.M.C. Santos, R.M.C. Farias, G.A. Neves, R.R. Menezes, Synthesis and characterization of alumina fibers using solution blow spinning. Cerâmica 65(374), 190–193 (2019). https://doi.org/10.1590/0366-69132019653742618
- M.B. Ferreira Junior, D.A.D. Chaves, M.J. Van Bael, M. Motta, W.A. Ortiz et al., YBCO nanofibers produced by solution blow spinning doped with Ni and Zn at low concentrations. Supercond. Sci. Technol. 38(4), 045014 (2025). https://doi.org/10.1088/1361-6668/adc0c6
- M. Rotta, L. Zadorosny, C.L. Carvalho, J.A. Malmonge, L.F. Malmonge et al., YBCO ceramic nanofibers obtained by the new technique of solution blow spinning. Ceram. Int. 42(14), 16230–16234 (2016). https://doi.org/10.1016/j.ceramint.2016.07.152
- D.L. Costa, R. Santos Leite, G.A. Neves, L.N. de Lima Santana, E.S. Medeiros et al., Synthesis of TiO2 and ZnO nano and submicrometric fibers by solution blow spinning. Mater. Lett. 183, 109–113 (2016). https://doi.org/10.1016/j.matlet.2016.07.073
- J. Carriles, P. Nguewa, G. González-Gaitano, Advances in biomedical applications of solution blow spinning. Int. J. Mol. Sci. 24(19), 14757 (2023). https://doi.org/10.3390/ijms241914757
- T.S. Natarajan, P. Bhargava, Influence of spinning parameters on synthesis of alumina fibres by centrifugal spinning. Ceram. Int. 44(10), 11644–11649 (2018). https://doi.org/10.1016/j.ceramint.2018.03.239
- L. Ren, R. Ozisik, S.P. Kotha, Rapid and efficient fabrication of multilevel structured silica micro-/ nanofibers by centrifugal jet spinning. J. Colloid Interface Sci. 425, 136–142 (2014). https://doi.org/10.1016/j.jcis.2014.03.039
- H. Aminirastabi, Z. Weng, H. Xue, Y. Yu, G. Ji et al., Evaluation of nano grain growth of TiO2 fibers fabricated via centrifugal jet spinning. Nano Struct. Nano Objects 21, 100413 (2020). https://doi.org/10.1016/j.nanoso.2019.100413
- M. Wang, J. Chen, Z. Ahmad, X. Li, F. Chen, High-temperature resistance and thermal insulation performance of continuous SiMOC ceramic fibers fabricated by the modified Sol-gel method combined with dry spinning. J. Sol Gel Sci. Technol. 113(2), 427–437 (2025). https://doi.org/10.1007/s10971-024-06628-x
- H. Scholz, J. Vetter, R. Herborn, A. Ruedinger, Oxide ceramic fibers via dry spinning process: From lab to fab. Int. J. Appl. Ceram. Technol. 17(4), 1636–1645 (2020). https://doi.org/10.1111/ijac.13521
- C. Liu, S. Wang, N. Wang, J. Yu, Y.-T. Liu et al., From 1D nanofibers to 3D nanofibrous aerogels: a marvellous evolution of electrospun SiO2 nanofibers for emerging applications. Nano-Micro Lett. 14(1), 194 (2022). https://doi.org/10.1007/s40820-022-00937-y
- J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
- M. Zhang, Y. Wang, Y. Zhang, J. Song, Y. Si et al., Conductive and elastic TiO2 nanofibrous aerogels: a new concept toward self-supported electrocatalysts with superior activity and durability. Angew. Chem. Int. Ed. 59(51), 23252–23260 (2020). https://doi.org/10.1002/anie.202010110
- M. Liu, M. Shafiq, B. Sun, J. Wu, W. Wang et al., Composite superelastic aerogel scaffolds containing flexible SiO2 nanofibers promote bone regeneration. Adv. Healthc. Mater. 11(15), e2200499 (2022). https://doi.org/10.1002/adhm.202200499
- H. Zhang, Y. Hang, Y. Qin, J. Yang, B. Wang, Synthesis and characterization of Sol–gel derived continuous spinning alumina based fibers with silica nano-powders. J. Eur. Ceram. Soc. 34(2), 465–473 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.08.015
- J.-H. Kim, S.-J. Yoo, D.-H. Kwak, H.-J. Jung, T.-Y. Kim et al., Characterization and application of electrospun alumina nanofibers. Nanoscale Res. Lett. 9(1), 44 (2014). https://doi.org/10.1186/1556-276X-9-44
- Y. Hou, L. Cheng, Y. Zhang, Y. Yang, C. Deng et al., SiC nanofiber mat: a broad-band microwave absorber, and the alignment effect. ACS Appl. Mater. Interfaces 9(49), 43072–43080 (2017). https://doi.org/10.1021/acsami.7b13634
- Y. Sun, J.Y. Li, Y. Tan, L. Zhang, Fabrication of aluminum nitride (AlN) hollow fibers by carbothermal reduction and nitridation of electrospun precursor fibers. J. Alloys Compd. 471(1–2), 400–403 (2009). https://doi.org/10.1016/j.jallcom.2008.03.099
- Y. Qiu, J. Yu, J. Rafique, J. Yin, X. Bai et al., Large-scale production of aligned long boron nitride nanofibers by multijet/multicollector electrospinning. J. Phys. Chem. C 113(26), 11228–11234 (2009). https://doi.org/10.1021/jp901267k
- F. Rechberger, M. Niederberger, Synthesis of aerogels: from molecular routes to 3-dimensional nanop assembly. Nanoscale Horiz. 2(1), 6–30 (2017). https://doi.org/10.1039/c6nh00077k
- W. Su, Z. Chang, Y. E, Y. Feng, X. Yao et al., Electrospinning and electrospun polysaccharide-based nanofiber membranes: a review. Int. J. Biol. Macromol. 263(pt 2), 130335 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130335
- W. Matysiak, T. Tański, Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with Sol-gel and electrospinning methods. Appl. Surf. Sci. 489, 34–43 (2019). https://doi.org/10.1016/j.apsusc.2019.05.090
- M. Yanilmaz, Y. Lu, J. Zhu, X. Zhang, Silica/polyacrylonitrile hybrid nanofiber membrane separators via Sol-gel and electrospinning techniques for lithium-ion batteries. J. Power. Sources 313, 205–212 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.089
- S. Khalili, H.M. Chenari, Successful electrospinning fabrication of ZrO2 nanofibers: a detailed physical–chemical characterization study. J. Alloys Compd. 828, 154414 (2020). https://doi.org/10.1016/j.jallcom.2020.154414
- S. Chattopadhyay, S. Bysakh, J. Saha, G. De, Electrospun ZrO2 nanofibers: precursor controlled mesopore ordering and evolution of garland-like nanocrystal arrays. Dalton Trans. 47(16), 5789–5800 (2018). https://doi.org/10.1039/c8dt00415c
- V. Bhullar, S. Sardana, A. Mahajan, Size modeling of TiO2 nanofibers for efficient TiO2 sensitized mesoscopic solar cells. Sol. Energy 230, 177–185 (2021). https://doi.org/10.1016/j.solener.2021.10.023
- J.-H. Kim, J.-H. Lee, J.-Y. Kim, S.S. Kim, Synthesis of aligned TiO2 nanofibers using electrospinning. Appl. Sci. 8(2), 309 (2018). https://doi.org/10.3390/app8020309
- I.I. Maor, S. Heyte, O. Elishav, M. Mann-Lahav, J. Thuriot-Roukos et al., Performance of Cu/ZnO nanosheets on electrospun Al2O3 nanofibers in CO2 catalytic hydrogenation to methanol and dimethyl ether. Nanomaterials 13(4), 635 (2023). https://doi.org/10.3390/nano13040635
- M. Mohammad Ali Zadeh, M. Keyanpour-Rad, T. Ebadzadeh, Synthesis of mullite nanofibres by electrospinning of solutions containing different proportions of polyvinyl butyral. Ceram. Int. 39(8), 9079–9084 (2013). https://doi.org/10.1016/j.ceramint.2013.05.003
- Y. Peng, Y. Xie, L. Wang, L. Liu, S. Zhu et al., High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation. J. Eur. Ceram. Soc. 41(2), 1471–1480 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.09.071
- S. Li, F. Wu, X. Zhang, G. Han, Y. Si et al., Flexible Al2O3/ZrO2 nanofibrous membranes for thermal insulation. CrystEngComm 24(10), 1859–1865 (2022). https://doi.org/10.1039/d1ce01512e
- S. Yajima, K. Okamura, J. Hayashi, M. Omori, Synthesis of continuous sic fibers with high tensile strength. J. Am. Ceram. Soc. 59(7–8), 324–327 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb10975.x
- B.M. Eick, J.P. Youngblood, SiC nanofibers by pyrolysis of electrospun preceramic polymers. J. Mater. Sci. 44(1), 160–165 (2009). https://doi.org/10.1007/s10853-008-3102-3
- X. Zhang, J. Yu, C. Zhao, Y. Si, Engineering covalent heterointerface enables superelastic amorphous SiC meta-aerogels. ACS Nano 17(21), 21813–21821 (2023). https://doi.org/10.1021/acsnano.3c07780
- H. Ramlow, G.B. de Souza, M.P. Fonseca, A. Raizer, C.R. Rambo et al., Lightweight and flexible nanostructured C/SiCN nanofiber nonwoven for electromagnetic reflection shielding of 5G C-Band frequencies. J. Mater. Sci. Mater. Electron. 34(22), 1631 (2023). https://doi.org/10.1007/s10854-023-11037-x
- X. Guo, F. Xiao, J. Li, H. Zhang, Q. Hu et al., Fe-doped SiCN composite fibers for electromagnetic waves absorption. Ceram. Int. 47(1), 1184–1190 (2021). https://doi.org/10.1016/j.ceramint.2020.08.236
- Q. Chen, D. Jia, B. Liang, Z. Yang, Y. Zhou et al., Electrospinning of pure polymer-derived SiBCN nanofibers with high yield. Ceram. Int. 47(8), 10958–10964 (2021). https://doi.org/10.1016/j.ceramint.2020.12.215
- Q. Ding, J. Yang, S. Gu, C. Chen, Z. Cheng et al., Novel fire-resistant SiBCN fiber paper with efficient electromagnetic interference shielding and Joule-heating performance. Chem. Eng. J. 497, 154485 (2024). https://doi.org/10.1016/j.cej.2024.154485
- H.J. Hwang, N.A.M. Barakat, M.A. Kanjwal, F.A. Sheikh, H.Y. Kim et al., Boron nitride nanofibers by the electrospinning technique. Macromol. Res. 18(6), 551–557 (2010). https://doi.org/10.1007/s13233-010-0601-2
- Y.S. Nam, X.M. Cui, L. Jeong, J.Y. Lee, W.H. Park, Fabrication and characterization of zirconium carbide (ZrC) nanofibers with thermal storage property. Thin Solid Films 517(24), 6531–6538 (2009). https://doi.org/10.1016/j.tsf.2009.04.021
- K. Nakane, S. Matsuoka, S. Gao, S. Yonezawa, J.H. Kim et al., Formation of inorganic nanofibers by heat-treatment of poly(vinyl alcohol)-zirconium compound hybrid nanofibers. J. Min. Metall. Sect. B Metall. 49(1), 77–82 (2013). https://doi.org/10.2298/jmmb121101027n
- V. Rahmanian, T. Pirzada, E. Barbieri, S. Iftikhar, F. Li et al., Mechanically robust, thermally insulating and photo-responsive aerogels designed from Sol-gel electrospun PVP-TiO2 nanofibers. Appl. Mater. Today 32, 101784 (2023). https://doi.org/10.1016/j.apmt.2023.101784
- R. Liu, X. Dong, S. Xie, T. Jia, Y. Xue et al., Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels. Chem. Eng. J. 360, 464–472 (2019). https://doi.org/10.1016/j.cej.2018.12.018
- Y.-T. Liu, B. Ding, Ultralight and superelastic ceramic nanofibrous aerogels: a new vision of an ancient material. Sci. Bull. 68(8), 753–755 (2023). https://doi.org/10.1016/j.scib.2023.03.039
- L. Dou, X. Zhang, H. Shan, X. Cheng, Y. Si et al., Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 30(49), 2005928 (2020). https://doi.org/10.1002/adfm.202005928
- Y. Si, X. Wang, L. Dou, J. Yu, B. Ding, Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4(4), eaas8925 (2018). https://doi.org/10.1126/sciadv.aas8925
- W. Li, F. He, H. Liu, Y. Jiang, Y. Mu et al., Electric field-induced ordered-structural aerogels enable superinsulation and multifunctionality. Small 20(51), e2406188 (2024). https://doi.org/10.1002/smll.202406188
- F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
- X. Zhang, F. Wang, L. Dou, X. Cheng, Y. Si et al., Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 ℃. ACS Nano 14(11), 15616–15625 (2020). https://doi.org/10.1021/acsnano.0c06423
- X. Zhang, X. Cheng, Y. Si, J. Yu, B. Ding, All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 16(4), 5487–5495 (2022). https://doi.org/10.1021/acsnano.1c09668
- P. Zhao, M. Cao, H. Gu, Q. Gao, N. Xia et al., Research on the electrospun foaming process to fabricate three-dimensional tissue engineering scaffolds. J. Appl. Polym. Sci. 135(46), 46898 (2018). https://doi.org/10.1002/app.46898
- Q. Gao, H. Gu, P. Zhao, C. Zhang, M. Cao et al., Fabrication of electrospun nanofibrous scaffolds with 3D controllable geometric shapes. Mater. Des. 157, 159–169 (2018). https://doi.org/10.1016/j.matdes.2018.07.042
- S.W. Ko, J. Lee, J.Y. Lee, J.H. Cho, S. Lee et al., Composite demineralized bone matrix nanofiber scaffolds with hierarchical interconnected networks via eruptive inorganic catalytic decomposition for osteoporotic bone regeneration. J. Mater. Sci. Technol. 199, 246–259 (2024). https://doi.org/10.1016/j.jmst.2024.02.018
- D. Zong, W. Bai, M. Geng, X. Yin, J. Yu et al., Bubble templated flexible ceramic nanofiber aerogels with cascaded resonant cavities for high-temperature noise absorption. ACS Nano 16(9), 13740–13749 (2022). https://doi.org/10.1021/acsnano.2c06011
- Y. Wang, H. Huang, Y. Zhao, Z. Feng, H. Fan et al., Self-assembly of ultralight and compressible inorganic sponges with hierarchical porosity by electrospinning. Ceram. Int. 46(1), 768–774 (2020). https://doi.org/10.1016/j.ceramint.2019.09.031
- M.H. Tai, B.Y.L. Tan, J. Juay, D.D. Sun, J.O. Leckie, A self-assembled superhydrophobic electrospun carbon–silica nanofiber sponge for selective removal and recovery of oils and organic solvents. Chem. 21(14), 5395–5402 (2015). https://doi.org/10.1002/chem.201405670
- M. Yousefzadeh, M. Latifi, M. Amani-Tehran, W.-E. Teo, S. Ramakrishna, A note on the 3D structural design of electrospun nanofibers. J. Eng. Fibres. Fabr. 7(2), 155892501200700200 (2012). https://doi.org/10.1177/155892501200700204
- J. Guo, S. Fu, Y. Deng, X. Xu, S. Laima et al., Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606(7916), 909–916 (2022). https://doi.org/10.1038/s41586-022-04784-0
- W. Cheng, W. Jiao, Y. Fei, Z. Yang, X. Zhang et al., Direct synthesis of ultralight, elastic, high-temperature insulation N-doped TiO2 ceramic nanofibrous sponges via conjugate electrospinning. Nanoscale 16(3), 1135–1146 (2024). https://doi.org/10.1039/D3NR04987F
- X. Cheng, Y.-T. Liu, Y. Si, J. Yu, B. Ding, Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. Nat. Commun. 13(1), 2637 (2022). https://doi.org/10.1038/s41467-022-30435-z
- X. Cheng, X. Chang, X. Zhang, J. Dai, H. Fong et al., Way to a library of Ti-series oxide nanofiber sponges that are highly stretchable, compressible, and bendable. Adv. Mater. 36(14), 2307690 (2024). https://doi.org/10.1002/adma.202307690
- J. Dong, Y. Xie, L. Liu, Z. Deng, W. Liu et al., Lightweight and resilient ZrO2–TiO2 fiber sponges with layered structure for thermal insulation. Adv. Eng. Mater. 24(8), 2101603 (2022). https://doi.org/10.1002/adem.202101603
- J.T. Cahill, S. Turner, J. Ye, B. Shevitski, S. Aloni et al., Ultrahigh-temperature ceramic aerogels. Chem. Mater. 31(10), 3700–3704 (2019). https://doi.org/10.1021/acs.chemmater.9b00496
- C. Ziegler, A. Wolf, W. Liu, A.-K. Herrmann, N. Gaponik et al., Modern inorganic aerogels. Angew. Chem. Int. Ed. 56(43), 13200–13221 (2017). https://doi.org/10.1002/anie.201611552
- X. Xu, S. Fu, J. Guo, H. Li, Y. Huang et al., Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater. Today 42, 162–177 (2021). https://doi.org/10.1016/j.mattod.2020.09.034
- H. Shan, X. Wang, F. Shi, J. Yan, J. Yu et al., Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl. Mater. Interfaces 9(22), 18966–18976 (2017). https://doi.org/10.1021/acsami.7b04518
- F. Wu, Y. Liu, Y. Si, J. Yu, B. Ding, Multiphase ceramic nanofibers with super-elasticity from − 196–1600 ℃. Nano Today 44, 101455 (2022). https://doi.org/10.1016/j.nantod.2022.101455
- H. Liu, X. Huo, P. Zhao, R. Xu, X. Zhang et al., Confined gelation synthesis of flexible barium aluminate nanofibers as a high-performance refractory material. ACS Nano 18(42), 29273–29281 (2024). https://doi.org/10.1021/acsnano.4c11854
- Z. Li, M.K. Joshi, J. Chen, Z. Zhang, Z. Li et al., Mechanically compatible UV photodetectors based on electrospun free-standing Y3+-doped TiO2 nanofibrous membranes with enhanced flexibility. Adv. Funct. Mater. 30(52), 2005291 (2020). https://doi.org/10.1002/adfm.202005291
- X. Wang, Y. Zhang, Y. Zhao, G. Li, J. Yan et al., A general strategy to fabricate flexible oxide ceramic nanofibers with gradient bending-resilience properties. Adv. Funct. Mater. 31(36), 2103989 (2021). https://doi.org/10.1002/adfm.202103989
- N. Wu, B. Wang, Y. Wang, Enhanced mechanical properties of amorphous SiOC nanofibrous membrane through in situ embedding nanops. J. Am. Ceram. Soc. 101(10), 4763–4772 (2018). https://doi.org/10.1111/jace.15732
- Y. Zhang, S. Liu, J. Yan, X. Zhang, S. Xia et al., Superior flexibility in oxide ceramic crystal nanofibers. Adv. Mater. 33(44), 2105011 (2021). https://doi.org/10.1002/adma.202105011
- X. Mao, L. Zhao, K. Zhang, Y.-Y. Wang, B. Ding, Highly flexible ceramic nanofibrous membranes for superior thermal insulation and fire retardancy. Nano Res. 15(3), 2592–2598 (2022). https://doi.org/10.1007/s12274-021-3799-8
- C. Liu, Y. Liao, W. Jiao, X. Zhang, N. Wang et al., High toughness combined with high strength in oxide ceramic nanofibers. Adv. Mater. 35(32), 2304401 (2023). https://doi.org/10.1002/adma.202304401
- Z. Xu, H. Liu, F. Wu, L. Cheng, J. Yu et al., Inhibited grain growth through phase transition modulation enables excellent mechanical properties in oxide ceramic nanofibers up to 1700 ℃. Adv. Mater. 35(44), 2305336 (2023). https://doi.org/10.1002/adma.202305336
- Z. Xu, Y. Liu, Q. Xin, J. Dai, J. Yu et al., Ceramic meta-aerogel with thermal superinsulation up to 1700 ℃ constructed by self-crosslinked nanofibrous network via reaction electrospinning. Adv. Mater. 36(32), 2401299 (2024). https://doi.org/10.1002/adma.202401299
- G. Poologasundarampillai, D. Wang, S. Li, J. Nakamura, R. Bradley et al., Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomater. 10(8), 3733–3746 (2014). https://doi.org/10.1016/j.actbio.2014.05.020
- D. Zong, X. Yin, J. Yu, W. Jiao, S. Zhang et al., Heat-conducting elastic ultrafine fiber sponges with boron nitride networks for noise reduction. J. Colloid Interface Sci. 649, 1023–1030 (2023). https://doi.org/10.1016/j.jcis.2023.05.209
- L. Xu, L. Huang, J. Yu, Y. Si, B. Ding, Ultralight and superelastic Gd2O3/Bi2O3 nanofibrous aerogels with nacre-mimetic brick-mortar structure for superior X-ray shielding. Nano Lett. 22(21), 8711–8718 (2022). https://doi.org/10.1021/acs.nanolett.2c03484
- H. Liu, X. Zhang, Y. Liao, J. Yu, Y.-T. Liu et al., Building-envelope-inspired, thermomechanically robust all-fiber ceramic meta-aerogel for temperature-controlled dominant infrared camouflage. Adv. Mater. 36(25), e2313720 (2024). https://doi.org/10.1002/adma.202313720
- Y. Wang, W. Xu, X. Zou, W. Fu, X. Meng et al., MXene-decorated flexible Al2O3/TiO2 nanofibrous mats with self-adaptive stress dispersion towards multifunctional desalination. J. Mater. Chem. A 11(14), 7422–7431 (2023). https://doi.org/10.1039/D2TA09488F
- D. Zong, L. Cao, X. Yin, Y. Si, S. Zhang et al., Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nat. Commun. 12(1), 6599 (2021). https://doi.org/10.1038/s41467-021-26890-9
- H. Zheng, H. Shan, Y. Bai, X. Wang, L. Liu et al., Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. RSC Adv. 5(111), 91813–91820 (2015). https://doi.org/10.1039/C5RA18137B
- S. Dang, J. Guo, Y. Deng, H. Yu, H. Zhao et al., Highly-buckled nanofibrous ceramic aerogels with ultra-large stretchability and tensile-insensitive thermal insulation. Adv. Mater. 37(4), 2415159 (2025). https://doi.org/10.1002/adma.202415159
- X. Zhang, J. Yu, Y. Si, Programmable shape-morphing enables ceramic meta-aerogel highly stretchable for thermal protection. Adv. Mater. 37(3), e2412962 (2025). https://doi.org/10.1002/adma.202412962
- H. Wang, L. Cheng, J. Yu, Y. Si, B. Ding, Biomimetic Bouligand chiral fibers array enables strong and superelastic ceramic aerogels. Nat. Commun. 15(1), 336 (2024). https://doi.org/10.1038/s41467-023-44657-2
- X. Zhang, J. Yu, C. Zhao, Y. Si, Elastic SiC aerogel for thermal insulation: a systematic review. Small 20(32), e2311464 (2024). https://doi.org/10.1002/smll.202311464
- B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10(3), 277–283 (2015). https://doi.org/10.1038/nnano.2014.248
- G.H. Tang, C. Bi, Y. Zhao, W.Q. Tao, Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook. Energy 90, 701–721 (2015). https://doi.org/10.1016/j.energy.2015.07.109
- Y. Fu, J. Hansson, Y. Liu, S. Chen, A. Zehri et al., Graphene related materials for thermal management. 2D Mater. 7(1), 012001 (2020). https://doi.org/10.1088/2053-1583/ab48d9
- C.J.C. Otic, S. Yonemura, Thermally induced Knudsen forces for contactless manipulation of a micro-object. Micromachines 13(7), 1092 (2022). https://doi.org/10.3390/mi13071092
- X. Zhao, A.H. Brozena, L. Hu, Critical roles of pores and moisture in sustainable nanocellulose-based super-thermal insulators. Matter 4(3), 769–772 (2021). https://doi.org/10.1016/j.matt.2021.02.002
- L. Dou, X. Cheng, X. Zhang, Y. Si, J. Yu et al., Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. J. Mater. Chem. A 8(16), 7775–7783 (2020). https://doi.org/10.1039/d0ta01092h
- L. Dou, X. Zhang, X. Cheng, Z. Ma, X. Wang et al., Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 11(32), 29056–29064 (2019). https://doi.org/10.1021/acsami.9b10018
- J. Liu, H. Li, H. Li, W. Song, S. Xia et al., Deep-sea glass sponges-like hollow porous ceramic fiber aerogel: Fabrication, anti-shrinkage and thermal insulation. Ceram. Int. 50(20), 37714–37725 (2024). https://doi.org/10.1016/j.ceramint.2024.07.132
- Y. Dong, X. Dong, L. Li, J. Wu, L. Yan et al., Lightweight and thermally insulating aluminum borate nanofibrous porous ceramics. Ceram. Int. 47(15), 21029–21037 (2021). https://doi.org/10.1016/j.ceramint.2021.04.104
- X. Meng, C. Liu, J. Zhang, W. Guo, N. Li et al., Thermal-insulating ceramic fiber aerogels reinforced by fusing knots of overlapping fibers for superelasticity and high compression resistance. J. Mater. Chem. A 12(26), 16079–16086 (2024). https://doi.org/10.1039/D4TA02257B
- S. Dong, B. Maciejewska, R. Millar, N. Grobert, 3D Electrospinning of Al2O3/ZrO2 fibrous aerogels for multipurpose thermal insulation. Adv. Compos. Hybrid Mater. 6(5), 186 (2023). https://doi.org/10.1007/s42114-023-00760-y
- L. Li, C. Jia, Y. Liu, B. Fang, W. Zhu et al., Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Mater. Today 54, 72–82 (2022). https://doi.org/10.1016/j.mattod.2022.02.007
- L. Dou, Y. Si, J. Yu, B. Ding, Semi-template based, biomimetic-architectured, and mechanically robust ceramic nanofibrous aerogels for thermal insulation. Nano Res. 15(6), 5581–5589 (2022). https://doi.org/10.1007/s12274-022-4194-9
- Y. Cheng, B. Ma, P. Hu, J. Zhang, D. Hu et al., Flexible and transformable ceramic aerogels via a fire-reborn strategy for thermal superinsulation in extreme conditions. Adv. Funct. Mater. 33(52), 2309148 (2023). https://doi.org/10.1002/adfm.202309148
- Y. Zhong, H. Li, H. Liu, J. Wang, X. Han et al., Elytra-mimetic ceramic fiber aerogel with excellent mechanical, anti-oxidation, and thermal insulation properties. J. Eur. Ceram. Soc. 43(4), 1407–1416 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.11.061
- P.-E. Okafor, C. He, G. Tang, Finite-difference time-domain study of hollow Zirconium dioxide nanofibrous aerogel composite for thermal insulation under harsh environments. Int. J. Therm. Sci. 194, 108599 (2023). https://doi.org/10.1016/j.ijthermalsci.2023.108599
- S. Fu, D. Liu, Y. Deng, M. Li, H. Zhao et al., Medium-entropy ceramic aerogels for robust thermal sealing. J. Mater. Chem. A 11(2), 742–752 (2023). https://doi.org/10.1039/d2ta08264k
- X. Wang, H. Li, H. Li, Z. Cui, J. Wang et al., Coaxial porous SiBCN/SiCN ceramic fiber aerogels with reduced shrinkage and low thermal conductivity. Chem. Eng. J. 501, 157621 (2024). https://doi.org/10.1016/j.cej.2024.157621
- W. Wang, Q. You, Z. Wu, S. Cui, W. Shen, Fabrication of the SiC/HfC composite aerogel with ultra-low thermal conductivity and excellent compressive strength. Gels 10(5), 292 (2024). https://doi.org/10.3390/gels10050292
- Z. Xu, K. Zhao, F. Li, S. Zhang, X. Zhao et al., High temperature thermal insulation ceramic aerogels fabricated from ZrC nanofibers welded with carbon nanops. ACS Appl. Nano Mater. 7(9), 10046–10055 (2024). https://doi.org/10.1021/acsanm.4c00280
- F. Liu, Y. Jiang, F. Peng, J. Feng, L. Li et al., Fiber-reinforced alumina-carbon core-shell aerogel composite with heat-induced gradient structure for thermal protection up to 1800 ℃. Chem. Eng. J. 461, 141721 (2023). https://doi.org/10.1016/j.cej.2023.141721
- X. Chang, Y. Yang, X. Cheng, X. Yin, J. Yu et al., Multiphase symbiotic engineered elastic ceramic-carbon aerogels with advanced thermal protection in extreme oxidative environments. Adv. Mater. 36(32), 2406055 (2024). https://doi.org/10.1002/adma.202406055
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
- Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
- T.M.J. Nilsson, G.A. Niklasson, Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils. Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995). https://doi.org/10.1016/0927-0248(94)00200-2
- A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
- E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013). https://doi.org/10.1021/nl4004283
- Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- R. Zhang, X. Wang, J. Song, Y. Si, X. Zhuang et al., In situ synthesis of flexible hierarchical TiO2 nanofibrous membranes with enhanced photocatalytic activity. J. Mater. Chem. A 3(44), 22136–22144 (2015). https://doi.org/10.1039/C5TA05442G
- K. Yuan, D. Han, J. Liang, W. Zhao, M. Li et al., Microwave induced in situ formation of SiC nanowires on SiCNO ceramic aerogels with excellent electromagnetic wave absorption performance. J. Adv. Ceram. 10(5), 1140–1151 (2021). https://doi.org/10.1007/s40145-021-0510-1
- D.A. Kritskaya, E.F. Abdrashitov, V.C. Bokun, A.N. Ponomarev, A study of pore formation and methanol vapor permeability in stretched polytetrafluoroethylene films used as a precursor of composite ion-exchange membranes. Pet. Chem. 58(4), 309–316 (2018). https://doi.org/10.1134/s0965544118040059
- S. Haouari, D. Rodrigue, A low-cost porous polymer membrane for gas permeation. Materials 15(10), 3537 (2022). https://doi.org/10.3390/ma15103537
- D. Kim, B.T. Duy Nguyen, S.H. Kim, J. Kim, J.F. Kim, New Sherwood correlations for hollow fiber membrane contactor modules: Comparison of porous and nonporous asymmetric membranes. J. Membr. Sci. 723, 123939 (2025). https://doi.org/10.1016/j.memsci.2025.123939
- Z. Dai, S. Pradeep, J. Zhu, W. Xie, H.F. Barton et al., Freestanding metal organic framework-based multifunctional membranes fabricated via pseudomorphic replication toward liquid- and gas-hazards abatement. Adv. Mater. Interfaces 8(22), 2101178 (2021). https://doi.org/10.1002/admi.202101178
- J. Hu, Z. Zhong, F. Zhang, W. Xing, W. Jin et al., High-efficiency, synergistic ZnO-coated SiC photocatalytic filter with antibacterial properties. Ind. Eng. Chem. Res. 55(23), 6661–6670 (2016). https://doi.org/10.1021/acs.iecr.6b00988
- F. Wang, Y. Si, J. Yu, B. Ding, Tailoring nanonets-engineered superflexible nanofibrous aerogels with hierarchical cage-like architecture enables renewable antimicrobial air filtration. Adv. Funct. Mater. 31(49), 2107223 (2021). https://doi.org/10.1002/adfm.202107223
- R. Osovsky, D. Kaplan, I. Nir, H. Rotter, S. Elisha et al., Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions. Environ. Sci. Technol. 48(18), 10912–10918 (2014). https://doi.org/10.1021/es502981y
- S.S. Kiani, A. Farooq, M. Ahmad, N. Irfan, M. Nawaz et al., Impregnation on activated carbon for removal of chemical warfare agents (CWAs) and radioactive content. Environ. Sci. Pollut. Res. Int. 28(43), 60477–60494 (2021). https://doi.org/10.1007/s11356-021-15973-1
- C. Ramakrishna, T. Gopi, S.C. Shekar, A.K. Gupta, R. Krishna, Vapor phase catalytic degradation studies of diethyl sulfide with MnO/Zeolite-13X catalysts in presence of air. Environ. Prog. Sustain. Energy 37(5), 1705–1712 (2018). https://doi.org/10.1002/ep.12858
- D. Tušek, D. Ašperger, I. Bačić, L. Ćurković, J. Macan, Environmentally acceptable sorbents of chemical warfare agent simulants. J. Mater. Sci. 52(5), 2591–2604 (2017). https://doi.org/10.1007/s10853-016-0552-x
- Y. Liao, F. Yang, Y. Si, J. Yu, B. Ding, Nanoflake-engineered zirconic fibrous aerogels with parallel-arrayed conduits for fast nerve agent degradation. Nano Lett. 21(20), 8839–8847 (2021). https://doi.org/10.1021/acs.nanolett.1c03246
- Z. Yan, X. Liu, B. Ding, J. Yu, Y. Si, Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat. Commun. 14(1), 2116 (2023). https://doi.org/10.1038/s41467-023-37693-5
- H. Liu, S. Qiang, F. Wu, X.-D. Zhu, X. Liu et al., Scalable synthesis of flexible single-atom monolithic catalysts for high-efficiency, durable CO oxidation at low temperature. ACS Nano 17(19), 19431–19440 (2023). https://doi.org/10.1021/acsnano.3c07888
- Y. Liao, J. Song, Y. Si, J. Yu, B. Ding, Superelastic and photothermal RGO/Zr-doped TiO2 nanofibrous aerogels enable the rapid decomposition of chemical warfare agents. Nano Lett. 22(11), 4368–4375 (2022). https://doi.org/10.1021/acs.nanolett.2c00776
- A. Larasati, G.D. Fowler, N.J.D. Graham, Insights into chemical regeneration of activated carbon for water treatment. J. Environ. Chem. Eng. 9(4), 105555 (2021). https://doi.org/10.1016/j.jece.2021.105555
- L.N. Shiyan, K.I. Machekhina, E.N. Gryaznova, Study the properties of activated carbon and oxyhydroxide aluminum as sorbents for removal humic substances from natural waters. IOP Conf. Ser. Mater. Sci. Eng. 110(1), 012097 (2016). https://doi.org/10.1088/1757-899X/110/1/012097
- R.K. Nekouei, F. Pahlevani, M. Assefi, S. Maroufi, V. Sahajwalla, Selective isolation of heavy metals from spent electronic waste solution by macroporous ion-exchange resins. J. Hazard. Mater. 371, 389–396 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.013
- Y.E. Ghoussoub, H.M. Fares, J.D. Delgado, L.R. Keller, J.B. Schlenoff, Antifouling ion-exchange resins. ACS Appl. Mater. Interfaces 10(48), 41747–41756 (2018). https://doi.org/10.1021/acsami.8b12865
- D. Malwal, P. Gopinath, Fabrication and applications of ceramic nanofibers in water remediation: a review. Crit. Rev. Environ. Sci. Technol. 46(5), 500–534 (2016). https://doi.org/10.1080/10643389.2015.1109913
- J. Kim, J. Lee, J.-H. Ha, I.-H. Song, Effect of silica on flexibility of yttria-stabilized zirconia nanofibers for developing water purification membranes. Ceram. Int. 45(14), 17696–17704 (2019). https://doi.org/10.1016/j.ceramint.2019.05.337
- X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269
- X. Dong, Y. Si, C. Chen, B. Ding, H. Deng, Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 15(7), 12256–12266 (2021). https://doi.org/10.1021/acsnano.1c04035
- F. Zhang, Y. Si, J. Yu, B. Ding, Sub-nanoporous engineered fibrous aerogel molecular sieves with nanogating channels for reversible molecular separation. Small 18(25), 2202173 (2022). https://doi.org/10.1002/smll.202202173
- M.-J. Chang, W.-Y. Zhu, J. Liu, G. Bai, X. Li et al., Fabrication of elastic SiO2 aerogels with prominent mechanical strength and stability reinforced by SiO2 nanofibers and polyurethane for oil adsorption. Sep. Purif. Technol. 341, 126914 (2024). https://doi.org/10.1016/j.seppur.2024.126914
- F. Wang, J. Dai, L. Huang, Y. Si, J. Yu et al., Biomimetic and superelastic silica nanofibrous aerogels with rechargeable bactericidal function for antifouling water disinfection. ACS Nano 14(7), 8975–8984 (2020). https://doi.org/10.1021/acsnano.0c03793
- B. Ren, J. Liu, Y. Rong, L. Wang, Y. Lu et al., Nanofibrous aerogel bulk assembled by cross-linked SiC/SiOx core-shell nanofibers with multifunctionality and temperature-invariant hyperelasticity. ACS Nano 13(10), 11603–11612 (2019). https://doi.org/10.1021/acsnano.9b05406
- H. Liu, F. Wu, X.-Y. Liu, J. Yu, Y.-T. Liu et al., Multiscale synergetic bandgap/structure engineering in semiconductor nanofibrous aerogels for enhanced solar evaporation. Nano Lett. 23(24), 11907–11915 (2023). https://doi.org/10.1021/acs.nanolett.3c04059
- Y. Wang, Z. Li, W. Fu, Y. Sun, Y. Dai, Core–sheath CeO2/SiO2 nanofibers as nanoreactors for stabilizing sinter-resistant Pt, enhanced catalytic oxidation and water remediation. Adv. Fiber Mater. 4(5), 1278–1289 (2022). https://doi.org/10.1007/s42765-022-00177-0
- Q. Fu, Y. Si, C. Duan, Z. Yan, L. Liu et al., Highly carboxylated, cellular structured, and underwater superelastic nanofibrous aerogels for efficient protein separation. Adv. Funct. Mater. 29(13), 1808234 (2019). https://doi.org/10.1002/adfm.201808234
- T. Pirzada, Z. Ashrafi, W. Xie, S.A. Khan, Cellulose silica hybrid nanofiber aerogels: from Sol–gel electrospun nanofibers to multifunctional aerogels. Adv. Funct. Mater. 30(5), 1907359 (2020). https://doi.org/10.1002/adfm.201907359
- Z. Yu, T. Fan, Y. Liu, B. Yang, L. Wang et al., Nanofiber aerogel with layered array with structure coupled photothermal/magnetothermal effect for continuous seawater desalination. Chem. Eng. J. 499, 155969 (2024). https://doi.org/10.1016/j.cej.2024.155969
- Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13(11), 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
- D. Yu, L. Liu, B. Ding, J. Yu, Y. Si, Spider-Web-Inspired SiO2/Ag nanofibrous aerogels with superelastic and conductive networks for electroporation water disinfection. Chem. Eng. J. 461, 141908 (2023). https://doi.org/10.1016/j.cej.2023.141908
- H. Wang, X. Mi, Y. Li, S. Zhan, 3D graphene-based macrostructures for water treatment. Adv. Mater. 32(3), e1806843 (2020). https://doi.org/10.1002/adma.201806843
- A. Gopinath, K. Kadirvelu, Strategies to design modified activated carbon fibers for the decontamination of water and air. Environ. Chem. Lett. 16(4), 1137–1168 (2018). https://doi.org/10.1007/s10311-018-0740-9
- J. Kim, M.M. Benjamin, Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res. 38(8), 2053–2062 (2004). https://doi.org/10.1016/j.watres.2004.01.012
- I.V. Vlassiouk, A scalable graphene-based membrane. Nat. Nanotechnol. 12(11), 1022–1023 (2017). https://doi.org/10.1038/nnano.2017.184
- M.R. Landsman, R. Sujanani, S.H. Brodfuehrer, C.M. Cooper, A.G. Darr et al., Water treatment: are membranes the Panacea? Annu. Rev. Chem. Biomol. Eng. 11, 559–585 (2020). https://doi.org/10.1146/annurev-chembioeng-111919-091940
- Y. Su, T. Fan, W. Cui, Y. Li, S. Ramakrishna et al., Advanced electrospun nanofibrous materials for efficient oil/water separation. Adv. Fiber Mater. 4(5), 938–958 (2022). https://doi.org/10.1007/s42765-022-00158-3
- P. Sahoo, A.A. Ramachandran, P.K. Sow, A comprehensive review of fundamentals and future trajectories in oil-water separation system designs with superwetting materials. J. Environ. Manag. 370, 122641 (2024). https://doi.org/10.1016/j.jenvman.2024.122641
- N.Y. Abu-Thabit, M.H. Abu Elella, A.K. Azad, E. Ratemi, A.S. Hakeem, Superwetting metal mesh membranes for oil/water separation: a comprehensive review. Sep. Purif. Technol. 363, 132016 (2025). https://doi.org/10.1016/j.seppur.2025.132016
- X. Liu, Z. Liu, X. Wang, Y. Gao, J. Zhang et al., Superhydrophobic nanofibrous sponge with hierarchically layered structure for efficient harsh environmental oil-water separation. J. Hazard. Mater. 440, 129790 (2022). https://doi.org/10.1016/j.jhazmat.2022.129790
- Y. Si, Q. Fu, X. Wang, J. Zhu, J. Yu et al., Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9(4), 3791–3799 (2015). https://doi.org/10.1021/nn506633b
- X. Wang, Z. Liu, X. Liu, Y. Su, J. Wang et al., Ultralight and multifunctional PVDF/SiO2@GO nanofibrous aerogel for efficient harsh environmental oil–water separation and crude oil absorption. Carbon 193, 77–87 (2022). https://doi.org/10.1016/j.carbon.2022.03.028
- Q. Fu, L. Liu, Y. Si, J. Yu, B. Ding, Shapeable, underwater superelastic, and highly phosphorylated nanofibrous aerogels for large-capacity and high-throughput protein separation. ACS Appl. Mater. Interfaces 11(47), 44874–44885 (2019). https://doi.org/10.1021/acsami.9b15760
- K.W. Tan, C.M. Yap, Z. Zheng, C.Y. Haw, P.S. Khiew et al., State-of-the-art advances, development, and challenges of metal oxide semiconductor nanomaterials for photothermal solar steam generation. Adv. Sustain. Syst. 6(4), 2100416 (2022). https://doi.org/10.1002/adsu.202100416
- Y. Liu, M. Zhang, Z. Shen, N. Li, X. Mo et al., Design of honeycomb-imitated composite hydrophobic aerogel and applications for multifunctional water cleaning. Sep. Purif. Technol. 359, 130341 (2025). https://doi.org/10.1016/j.seppur.2024.130341
- X. Zhao, H. Zhang, K.-Y. Chan, X. Huang, Y. Yang et al., Tree-inspired structurally graded aerogel with synergistic water, salt, and thermal transport for high-salinity solar-powered evaporation. Nano-Micro Lett. 16(1), 222 (2024). https://doi.org/10.1007/s40820-024-01448-8
- Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15(1), 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
- D.T. Lee, J. Zhao, C.J. Oldham, G.W. Peterson, G.N. Parsons, UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Appl. Mater. Interfaces 9(51), 44847–44855 (2017). https://doi.org/10.1021/acsami.7b15397
- J.E. Mondloch, M.J. Katz, W.C. Isley, P. Ghosh, P. Liao et al., Destruction of chemical warfare agents using metal–organic frameworks. Nat. Mater. 14(5), 512–516 (2015). https://doi.org/10.1038/nmat4238
- I. Del Castillo-Velilla, I. Romero-Muñiz, C. Marini, C. Montoro, A.E. Platero-Prats, Copper single-site engineering in MOF-808 membranes for improved water treatment. Nanoscale 16(13), 6627–6635 (2024). https://doi.org/10.1039/d3nr05821b
- V. Rahmanian, M.Z. Ahmad Ebrahim, S. Razavi, M. Abdelmigeed, E. Barbieri et al., Vapor phase synthesis of metal–organic frameworks on a nanofibrous aerogel creates enhanced functionality. J. Mater. Chem. A 12(1), 214–226 (2024). https://doi.org/10.1039/D3TA05299K
- L. Cao, X. Yu, X. Yin, Y. Si, J. Yu et al., Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption. J. Colloid Interface Sci. 597, 21–28 (2021). https://doi.org/10.1016/j.jcis.2021.03.172
- L. Cao, Y. Si, Y. Wu, X. Wang, J. Yu et al., Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale 11(5), 2289–2298 (2019). https://doi.org/10.1039/C8NR09288E
- Y. Feng, D. Zong, Y. Hou, X. Yin, S. Zhang et al., Gradient structured micro/nanofibrous sponges with superior compressibility and stretchability for broadband sound absorption. J. Colloid Interface Sci. 593, 59–66 (2021). https://doi.org/10.1016/j.jcis.2021.03.013
- W. Bai, D. Zong, X. Liu, F. Wang, X. Yin et al., Flame-retardant, ultralight, and superelastic electrospun fiber sponges for effective sound absorption. J. Text. Inst. 115(5), 724–732 (2024). https://doi.org/10.1080/00405000.2023.2201553
- D. Zong, L. Cao, Y. Li, X. Yin, Y. Si et al., Interlocked dual-network and superelastic electrospun fibrous sponges for efficient low-frequency noise absorption. Small Struct. 1(2), 2000004 (2020). https://doi.org/10.1002/sstr.202000004
- M. Yang, Z. Chen, L. Yang, Y. Ding, X. Chen et al., Hierarchically porous networks structure based on flexible SiO2 nanofibrous aerogel with excellent low frequency noise absorption. Ceram. Int. 49(1), 301–308 (2023). https://doi.org/10.1016/j.ceramint.2022.08.344
- L. Cao, H. Shan, D. Zong, X. Yu, X. Yin et al., Fire-resistant and hierarchically structured elastic ceramic nanofibrous aerogels for efficient low-frequency noise reduction. Nano Lett. 22(4), 1609–1617 (2022). https://doi.org/10.1021/acs.nanolett.1c04532
- D. Zong, W. Bai, X. Yin, J. Yu, S. Zhang et al., Gradient pore structured elastic ceramic nanofiber aerogels with cellulose nanonets for noise absorption. Adv. Funct. Mater. 33(31), 2301870 (2023). https://doi.org/10.1002/adfm.202301870
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- Z. Guo, D. Lan, Z. Jia, Z. Gao, X. Shi et al., Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption. Nano-Micro Lett. 17(1), 23 (2024). https://doi.org/10.1007/s40820-024-01527-w
- R. Islam, Y. Sood, H. Mudila, A. Ohlan, A. Kumar, Microwave absorbing properties of polypyrrole-based 2D nanocomposites. J. Mater. Chem. A 12(45), 31004–31027 (2024). https://doi.org/10.1039/d4ta05676k
- I. Abdalla, J. Cai, W. Lu, J. Yu, Z. Li et al., Recent progress on electromagnetic wave absorption materials enabled by electrospun carbon nanofibers. Carbon 213, 118300 (2023). https://doi.org/10.1016/j.carbon.2023.118300
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13(1), 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- J. Cheng, Y. Jin, J. Zhao, Q. Jing, B. Gu et al., From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption. Nano-Micro Lett. 16(1), 29 (2023). https://doi.org/10.1007/s40820-023-01247-7
- L. Yue, B. Zhong, L. Xia, T. Zhang, Y. Yu et al., Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption. J. Colloid Interface Sci. 582, 177–186 (2021). https://doi.org/10.1016/j.jcis.2020.08.024
- L. Xu, X. Zhang, L. Huang, J. Yu, Y. Si et al., Janus dual self-strengthening structure of Bi2O3/Gd2O3 nanofibrous membranes for superior X-ray shielding. Small 19(40), 2303012 (2023). https://doi.org/10.1002/smll.202303012
- Y. Xia, Z. Zhang, K. Li, S. Zhao, G. Chen et al., Lightweight and high-strength SiC/MWCNTs nanofibrous aerogel derived from RGO/MWCNTs aerogel for microwave absorption. Chem. Eng. J. 486, 150417 (2024). https://doi.org/10.1016/j.cej.2024.150417
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
- C. Liu, J. Lin, N. Wu, C. Weng, M. Han et al., Perspectives for electromagnetic wave absorption with graphene. Carbon 223, 119017 (2024). https://doi.org/10.1016/j.carbon.2024.119017
- S. Sharma, S.R. Parne, S.S.S. Panda, S. Gandi, Progress in microwave absorbing materials: a critical review. Adv. Colloid Interface Sci. 327, 103143 (2024). https://doi.org/10.1016/j.cis.2024.103143
- Y. Cheng, X. Sun, Y. Yuan, S. Yang, Y. Ning et al., Flexible SiO2/rGO aerogel for wide-angle broadband microwave absorption. Carbon 217, 118580 (2024). https://doi.org/10.1016/j.carbon.2023.118580
- Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32(42), 2204591 (2022). https://doi.org/10.1002/adfm.202204591
- L. Gai, Y. Wang, P. Wan, S. Yu, Y. Chen et al., Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 16(1), 167 (2024). https://doi.org/10.1007/s40820-024-01369-6
- G. Shao, C. Ding, G. Yu, R. Xu, X. Huang, Bridged polysilsesquioxane-derived SiOCN ceramic aerogels for microwave absorption. J. Am. Ceram. Soc. 106(4), 2407–2419 (2023). https://doi.org/10.1111/jace.18937
- X. Sun, Y. Pu, F. Wu, J. He, G. Deng et al., 0D–1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chem. Eng. J. 423, 130132 (2021). https://doi.org/10.1016/j.cej.2021.130132
- X. Wang, Y. Yuan, X. Sun, R. Qiang, Y. Xu et al., Lightweight, flexible, and thermal insulating carbon/SiO2@CNTs composite aerogel for high-efficiency microwave absorption. Small 20(30), e2311657 (2024). https://doi.org/10.1002/smll.202311657
- J. Wang, S. Shi, Y. Yan, G. Wan, H. Zhai et al., Manganese oxides/graphene aerogels as lightweight microwave absorbers for extreme environment application. Chem. Eng. J. 493, 152277 (2024). https://doi.org/10.1016/j.cej.2024.152277
- J. Zhao, M. Li, X. Gao, Construction of SnO2 nanop cluster@PANI core-shell microspheres for efficient X-band electromagnetic wave absorption. J. Alloys Compd. 915, 165439 (2022). https://doi.org/10.1016/j.jallcom.2022.165439
- M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 8(8), 2004640 (2021). https://doi.org/10.1002/advs.202004640
- J.-P. Chen, Y.-F. Du, Z.-F. Wang, L.-L. Liang, H. Jia et al., Anchoring of SiC whiskers on the hollow carbon microspheres inducing interfacial polarization to promote electromagnetic wave attenuation capability. Carbon 175, 11–19 (2021). https://doi.org/10.1016/j.carbon.2020.12.073
- M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge et al., Microwave magnetic properties of Co50/(SiO2)50 nanops. Appl. Phys. Lett. 80(23), 4404–4406 (2002). https://doi.org/10.1063/1.1484248
- B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. 34(22), 2314653 (2024). https://doi.org/10.1002/adfm.202314653
- Y. Feng, Z. Li, X. Chen, Y. Pan, X. Zhao et al., Three-dimensional porous, flexible and lightweight reduced graphene oxide/Li0.35Zn0.3Fe2.35O4@SiO2 nanofibers aerogel for efficient microwave absorption. J. Alloys Compd. 988, 174273 (2024). https://doi.org/10.1016/j.jallcom.2024.174273
- Y. Wang, B. Li, Hard X-ray attosecond pulse reflection from realistic W/B4C multilayer structures. Nucl. Instrum. Meth. Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1001, 165233 (2021). https://doi.org/10.1016/j.nima.2021.165233
- A.M. Grishin, A. Jalalian, M.I. Tsindlekht, Gadolinia nanofibers as a multimodal bioimaging and potential radiation therapy agent. AIP Adv. 5(5), 057104 (2015). https://doi.org/10.1063/1.4919810
- L. Xu, J. Zhao, L. Huang, J. Yu, Y. Si et al., Bi2O3/Gd2O3 meta-aerogel with leaf-inspired nanotrap array enables efficient X-ray absorption. ACS Nano 17(23), 24080–24089 (2023). https://doi.org/10.1021/acsnano.3c09063
- B. Sun, T. Wang, C. Qin, M. Amjad Majeed, Z. Wang et al., Responsive aerogels of ultra-light flexibility and Fouling-Resistant characteristics to safeguarding X-ray exposure. Chem. Eng. J. 495, 153888 (2024). https://doi.org/10.1016/j.cej.2024.153888
- H. Peng, B. Cai, Y. Zhang, L. Gao, P.-Y. Zhao et al., Radar-terahertz-infrared compatible stealth coaxial silver Nanowire@Carbon nano-cable aerogel. Angew. Chem. Int. Ed. 64(10), e202421090 (2025). https://doi.org/10.1002/anie.202421090
- X. Liu, K. Pang, H. Yang, X. Guo, Intrinsically microstructured graphene aerogel exhibiting excellent mechanical performance and super-high adsorption capacity. Carbon 161, 146–152 (2020). https://doi.org/10.1016/j.carbon.2020.01.065
- X. Wang, Y. Lu, T. Zhu, S. Chang, W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 388, 124317 (2020). https://doi.org/10.1016/j.cej.2020.124317
- Z. Hao, Z. Song, J. Huang, K. Huang, A. Panetta et al., The scaffold microenvironment for stem cell based bone tissue engineering. Biomater. Sci. 5(8), 1382–1392 (2017). https://doi.org/10.1039/c7bm00146k
- S.-J. Jiang, M.-H. Wang, Z.-Y. Wang, H.-L. Gao, S.-M. Chen et al., Radially porous nanocomposite scaffolds with enhanced capability for guiding bone regeneration in vivo. Adv. Funct. Mater. 32(18), 2110931 (2022). https://doi.org/10.1002/adfm.202110931
- L.F.B. Nogueira, M.A.E. Cruz, M.T. de Melo, B.C. Maniglia, F. Caroleo et al., Collagen/κ-carrageenan-based scaffolds as biomimetic constructs for in vitro bone mineralization studies. Biomacromol 24(3), 1258–1266 (2023). https://doi.org/10.1021/acs.biomac.2c01313
- L. Fang, X. Lin, R. Xu, L. Liu, Y. Zhang et al., Advances in the development of gradient scaffolds made of nano-micromaterials for musculoskeletal tissue regeneration. Nano-Micro Lett. 17(1), 75 (2024). https://doi.org/10.1007/s40820-024-01581-4
- G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3(3), 278–314 (2018). https://doi.org/10.1016/j.bioactmat.2017.10.001
- N. Sezer, Z. Evis, M. Koç, Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. J. Magnes. Alloys 9(2), 392–415 (2021). https://doi.org/10.1016/j.jma.2020.09.014
- C. Zhou, S. Su, J. Fan, J. Lin, X. Wang, Engineered electrospun poly(lactic-co-glycolic acid)/Si3N4 nanofiber scaffold promotes osteogenesis of mesenchymal stem cell. Front. Mater. 9, 991018 (2022). https://doi.org/10.3389/fmats.2022.991018
- W. Zhai, H. Lu, C. Wu, L. Chen, X. Lin et al., Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater. 9(8), 8004–8014 (2013). https://doi.org/10.1016/j.actbio.2013.04.024
- L. Weng, S.K. Boda, H. Wang, M.J. Teusink, F.D. Shuler et al., Novel 3D hybrid nanofiber aerogels coupled with BMP-2 peptides for cranial bone regeneration. Adv. Healthc. Mater. 7(10), 1701415 (2018). https://doi.org/10.1002/adhm.201701415
- L. Wang, Y. Qiu, Y. Guo, Y. Si, L. Liu et al., Smart, elastic, and nanofiber-based 3D scaffolds with self-deploying capability for osteoporotic bone regeneration. Nano Lett. 19(12), 9112–9120 (2019). https://doi.org/10.1021/acs.nanolett.9b04313
- B. Guo, R. Dong, Y. Liang, M. Li, Haemostatic materials for wound healing applications. Nat. Rev. Chem. 5(11), 773–791 (2021). https://doi.org/10.1038/s41570-021-00323-z
- X. Wang, Z. Yuan, M. Shafiq, G. Cai, Z. Lei et al., Composite aerogel scaffolds containing flexible silica nanofiber and tricalcium phosphate enable skin regeneration. ACS Appl. Mater. Interfaces 16(20), 25843–25855 (2024). https://doi.org/10.1021/acsami.4c03744
- J. Huang, Y. Zheng, W. Ma, Y. Han, J. Xue et al., SiO2-based inorganic nanofiber aerogel with rapid hemostasis and liver wound healing functions. Acta Biomater. 194, 483–497 (2025). https://doi.org/10.1016/j.actbio.2025.01.027
- X. Li, B. Dai, J. Guo, L. Zheng, Q. Guo et al., Nanop-cartilage interaction: pathology-based intra-articular drug delivery for osteoarthritis therapy. Nano-Micro Lett. 13(1), 149 (2021). https://doi.org/10.1007/s40820-021-00670-y
- J. Ren, Z. Zhang, S. Geng, Y. Cheng, H. Han et al., Molecular mechanisms of intracellular delivery of nanops monitored by an enzyme-induced proximity labeling. Nano-Micro Lett. 16(1), 103 (2024). https://doi.org/10.1007/s40820-023-01313-0
- Y. Zhang, J. Li, P. Habibovic, Magnetically responsive nanofibrous ceramic scaffolds for on-demand motion and drug delivery. Bioact. Mater. 15, 372–381 (2022). https://doi.org/10.1016/j.bioactmat.2022.02.028
- V. Uskoković, P.P. Lee, L.A. Walsh, K.E. Fischer, T.A. Desai, PEGylated silicon nanowire coated silica microps for drug delivery across intestinal epithelium. Biomaterials 33(5), 1663–1672 (2012). https://doi.org/10.1016/j.biomaterials.2011.11.010
- A.I. Martínez-Banderas, A. Aires, M. Quintanilla, J.A. Holguín-Lerma, C. Lozano-Pedraza et al., Iron-based core-shell nanowires for combinatorial drug delivery and photothermal and magnetic therapy. ACS Appl. Mater. Interfaces 11(47), 43976–43988 (2019). https://doi.org/10.1021/acsami.9b17512
- Y. Zhao, C. Cheng, X. Wang, Z. Yuan, B. Sun et al., Aspirin-loaded anti-inflammatory ZnO-SiO2 aerogel scaffolds for bone regeneration. ACS Appl. Mater. Interfaces 16(14), 17092–17108 (2024). https://doi.org/10.1021/acsami.3c17152
- Y. Zhang, J. Li, M. Soleimani, F. Giacomini, H. Friedrich et al., Biodegradable elastic sponge from nanofibrous biphasic calcium phosphate ceramic as an advanced material for regenerative medicine. Adv. Funct. Mater. 31(40), 2102911 (2021). https://doi.org/10.1002/adfm.202102911
- M. Zhang, J. Dai, S. Huang, D. Fang, Y. Liu et al., Pt/TiO2–x nanofibrous aerogel for effective nitrogen reduction: a simple strategy for simultaneous Pt formation and TiO2–x vacancy engineering. Chin. Chem. Lett. 33(2), 1001–1005 (2022). https://doi.org/10.1016/j.cclet.2021.08.069
- F. Zhang, J. Yu, Y. Si, B. Ding, Meta-aerogel ion motor for nanofluid osmotic energy harvesting. Adv. Mater. 35(38), e2302511 (2023). https://doi.org/10.1002/adma.202302511
- S.L. Foster, S.I.P. Bakovic, R.D. Duda, S. Maheshwari, R.D. Milton et al., Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1(7), 490–500 (2018). https://doi.org/10.1038/s41929-018-0092-7
- V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, M. Stoukides, An electrochemical Haber-Bosch process. Joule 4(1), 142–158 (2020). https://doi.org/10.1016/j.joule.2019.10.006
- C.M. Goodwin, P. Lömker, D. Degerman, B. Davies, M. Shipilin et al., operando probing of the surface chemistry during the Haber-Bosch process. Nature 625(7994), 282–286 (2024). https://doi.org/10.1038/s41586-023-06844-5
- R.D. Cusick, Y. Kim, B.E. Logan, Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science 335(6075), 1474–1477 (2012). https://doi.org/10.1126/science.1219330
- F. Hong, C. Yan, Y. Si, J. He, J. Yu et al., Nickel ferrite nanops anchored onto silica nanofibers for designing magnetic and flexible nanofibrous membranes. ACS Appl. Mater. Interfaces 7(36), 20200–20207 (2015). https://doi.org/10.1021/acsami.5b05754
- X. Zhang, Y. Liu, Y. Si, J. Yu, B. Ding, Flexible and tough zirconia-based nanofibrous membranes for thermal insulation. Compos. Commun. 33, 101219 (2022). https://doi.org/10.1016/j.coco.2022.101219
- V.V. Rodaev, A.I. Tyurin, S.S. Razlivalova, V.V. Korenkov, Y.I. Golovin, Effect of zirconia nanofibers structure evolution on the hardness and Young’s modulus of their mats. Polymers 13(22), 3932 (2021). https://doi.org/10.3390/polym13223932
- X. Mao, Y. Bai, J. Yu, B. Ding, Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration. J. Am. Ceram. Soc. 99(8), 2760–2768 (2016). https://doi.org/10.1111/jace.14278
- L. Yao, W. Pan, J. Luo, X. Zhao, J. Cheng et al., Stabilizing nanocrystalline oxide nanofibers at elevated temperatures by coating nanoscale surface amorphous films. Nano Lett. 18(1), 130–136 (2018). https://doi.org/10.1021/acs.nanolett.7b03651
- X. Mao, J. Hong, Y.-X. Wu, Q. Zhang, J. Liu et al., An efficient strategy for reinforcing flexible ceramic membranes. Nano Lett. 21(22), 9419–9425 (2021). https://doi.org/10.1021/acs.nanolett.1c02657
- S. Li, X. Zhang, X. Cheng, G. Han, Y. Si et al., Flexible and compressive Al2O3/ZrO2/Y2O3 nanofibrous membranes for thermal insulation at 1400 ℃. Compos. Commun. 35, 101290 (2022). https://doi.org/10.1016/j.coco.2022.101290
- Y. Wang, W. Li, Y. Xia, X. Jiao, D. Chen, Electrospun flexible self-standing γ-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media. J. Mater. Chem. A 2(36), 15124–15131 (2014). https://doi.org/10.1039/C4TA01770F
- X. Song, K. Zhang, Y. Song, Z. Duan, Q. Liu et al., Morphology, microstructure and mechanical properties of electrospun alumina nanofibers prepared using different polymer templates: a comparative study. J. Alloys Compd. 829, 154502 (2020). https://doi.org/10.1016/j.jallcom.2020.154502
- J. Jiang, N. Ni, X. Zhao, F. Guo, X. Fan et al., Flexible and robust YAG-Al2O3 composite nanofibrous membranes enabled by a hybrid nanocrystalline-amorphous structure. J. Eur. Ceram. Soc. 40(6), 2463–2469 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.056
- J. Song, J. Dai, P. Zhang, Y. Liu, J. Yu et al., G-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS quantum dots: a hierarchically structured, self-supported electrocatalyst toward synergistic NH3 synthesis. Nano Res. 14(5), 1479–1487 (2021). https://doi.org/10.1007/s12274-020-3206-x
- W. Li, Y. Wang, B. Ji, X. Jiao, D. Chen, Flexible Pd/CeO2–TiO2 nanofibrous membrane with high efficiency ultrafine particulate filtration and improved CO catalytic oxidation performance. RSC Adv. 5(72), 58120–58127 (2015). https://doi.org/10.1039/C5RA09198E
- J. Song, X. Wang, J. Yan, J. Yu, G. Sun et al., Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 7(1), 1636 (2017). https://doi.org/10.1038/s41598-017-01969-w
- Y. Hou, L. Cheng, Y. Zhang, Y. Yang, C. Deng et al., Enhanced flexibility and microwave absorption properties of HfC/SiC nanofiber mats. ACS Appl. Mater. Interfaces 10(35), 29876–29883 (2018). https://doi.org/10.1021/acsami.8b07980
- J. Chen, Y. Zhang, D. Yan, Y. Gou, Flexible ultrafine nearly stoichiometric polycrystalline SiC fibers with excellent oxidation resistance and superior thermal stability up to 1900 ℃. J. Eur. Ceram. Soc. 42(5), 1938–1946 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.049
- P. Yu, Z. Lin, Y. Mu, J. Yu, Highly flexible and strong SiC fibre mats prepared by electrospinning and hot-drawing. Adv. Appl. Ceram. 120(3), 144–155 (2021). https://doi.org/10.1080/17436753.2021.1904767
- X. Zhang, B. Wang, N. Wu, C. Han, Y. Wang, Multi-phase SiZrOC nanofibers with outstanding flexibility and stability for thermal insulation up to 1400 ℃. Chem. Eng. J. 410, 128304 (2021). https://doi.org/10.1016/j.cej.2020.128304
- X. Zhang, B. Wang, N. Wu, C. Han, C. Wu et al., Flexible and thermal-stable SiZrOC nanofiber membranes with low thermal conductivity at high-temperature. J. Eur. Ceram. Soc. 40(5), 1877–1885 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.037
- Z. Xu, F. Wu, K. Pan, Y. Liao, F. Wang et al., Ceramic aerogels constructed from dense, non-porous ceramic nanofibers with robust and elastic properties up to 1300 ℃. Ceram. Int. 50(4), 6381–6387 (2024). https://doi.org/10.1016/j.ceramint.2023.11.373
- F. Wang, L. Dou, J. Dai, Y. Li, L. Huang et al., In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem. Int. Ed. 59(21), 8285–8292 (2020). https://doi.org/10.1002/anie.202001679
- X. Zhang, W. Huang, J. Yu, C. Zhao, Y. Si, Nacre-mimetic multi-mechanical synergistic ceramic aerogels with interfacial bridging and stress delocalization. Adv. Funct. Mater. 35(10), 2416857 (2025). https://doi.org/10.1002/adfm.202416857
- R. Zhang, Z.
References
X. Chang, X. Cheng, H. Zhang, W. Li, L. He et al., Superelastic carbon aerogels: an emerging material for advanced thermal protection in extreme environments. Adv. Funct. Mater. 33(26), 2215168 (2023). https://doi.org/10.1002/adfm.202215168
S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127(3211), 741 (1931). https://doi.org/10.1038/127741a0
X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363(6428), 723–727 (2019). https://doi.org/10.1126/science.aav7304
X. Cheng, X. Chang, F. Wu, Y. Liao, K. Pan et al., Advanced nanofabrication for elastic inorganic aerogels. Nano Res. 17(10), 8842–8862 (2024). https://doi.org/10.1007/s12274-023-6369-4
X. Hou, J. Chen, Z. Chen, D. Yu, S. Zhu et al., Flexible aerogel materials: a review on revolutionary flexibility strategies and the multifunctional applications. ACS Nano 18(18), 11525–11559 (2024). https://doi.org/10.1021/acsnano.4c00347
Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
N. Méndez-Lozano, R. Velázquez-Castillo, E.M. Rivera-Muñoz, L. Bucio-Galindo, G. Mondragón-Galicia et al., Crystal growth and structural analysis of hydroxyapatite nanofibers synthesized by the hydrothermal microwave-assisted method. Ceram. Int. 43(1), 451–457 (2017). https://doi.org/10.1016/j.ceramint.2016.09.179
M. Boufas, O. Guellati, A. Harat, D. Momodu, J. Dangbegnon et al., Optical and electrochemical properties of iron oxide and hydroxide nanofibers synthesized using new template-free hydrothermal method. J. Nanostruct. Chem. 10(4), 275–288 (2020). https://doi.org/10.1007/s40097-020-00348-8
M.W. Boey, S.A. Khan, X. Li, J. Sun, M.U. Farid et al., Thermally efficient hydrophobic zirconia ceramic nanofiber membrane for enhanced membrane distillation performance. Chem. Eng. J. 512, 162582 (2025). https://doi.org/10.1016/j.cej.2025.162582
M. Dilamian, M. Joghataei, Z. Ashrafi, C. Bohr, S. Mathur et al., From 1D electrospun nanofibers to advanced multifunctional fibrous 3D aerogels. Appl. Mater. Today 22, 100964 (2021). https://doi.org/10.1016/j.apmt.2021.100964
S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma et al., Electrospun nanofibers: solving global issues. Mater. Today 9(3), 40–50 (2006). https://doi.org/10.1016/S1369-7021(06)71389-X
J.-H. Kim, J.-H. Kim, J.-M. Kim, Y.-G. Lee, S.-Y. Lee, Superlattice crystals–mimic, flexible/functional ceramic membranes: beyond polymeric battery separators. Adv. Energy Mater. 5(24), 1500954 (2015). https://doi.org/10.1002/aenm.201500954
Y. Jeon, J.-H. Myung, S.-H. Hyun, Y.-G. Shul, J.T.S. Irvine, Corn-cob like nanofibres as cathode catalysts for an effective microstructure design in solid oxide fuel cells. J. Mater. Chem. A 5(8), 3966–3973 (2017). https://doi.org/10.1039/C6TA08692F
H. Wang, X. Zhang, N. Wang, Y. Li, X. Feng et al., Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. Sci. Adv. 3(6), e1603170 (2017). https://doi.org/10.1126/sciadv.1603170
C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11(1), 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
H. Wang, S. Lin, S. Yang, X. Yang, J. Song et al., High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge. Small 14(19), e1800258 (2018). https://doi.org/10.1002/smll.201800258
J.L. Daristotle, A.M. Behrens, A.D. Sandler, P. Kofinas, A review of the fundamental principles and applications of solution blow spinning. ACS Appl. Mater. Interfaces 8(51), 34951–34963 (2016). https://doi.org/10.1021/acsami.6b12994
Y. Gao, J. Zhang, Y. Su, H. Wang, X.-X. Wang et al., Recent progress and challenges in solution blow spinning. Mater. Horiz. 8(2), 426–446 (2021). https://doi.org/10.1039/d0mh01096k
E.S. Medeiros, G.M. Glenn, A.P. Klamczynski, W.J. Orts, L.H.C. Mattoso, Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci. 113(4), 2322–2330 (2009). https://doi.org/10.1002/app.30275
M.F. Mota, A.M.C. Santos, R.M.C. Farias, G.A. Neves, R.R. Menezes, Synthesis and characterization of alumina fibers using solution blow spinning. Cerâmica 65(374), 190–193 (2019). https://doi.org/10.1590/0366-69132019653742618
M.B. Ferreira Junior, D.A.D. Chaves, M.J. Van Bael, M. Motta, W.A. Ortiz et al., YBCO nanofibers produced by solution blow spinning doped with Ni and Zn at low concentrations. Supercond. Sci. Technol. 38(4), 045014 (2025). https://doi.org/10.1088/1361-6668/adc0c6
M. Rotta, L. Zadorosny, C.L. Carvalho, J.A. Malmonge, L.F. Malmonge et al., YBCO ceramic nanofibers obtained by the new technique of solution blow spinning. Ceram. Int. 42(14), 16230–16234 (2016). https://doi.org/10.1016/j.ceramint.2016.07.152
D.L. Costa, R. Santos Leite, G.A. Neves, L.N. de Lima Santana, E.S. Medeiros et al., Synthesis of TiO2 and ZnO nano and submicrometric fibers by solution blow spinning. Mater. Lett. 183, 109–113 (2016). https://doi.org/10.1016/j.matlet.2016.07.073
J. Carriles, P. Nguewa, G. González-Gaitano, Advances in biomedical applications of solution blow spinning. Int. J. Mol. Sci. 24(19), 14757 (2023). https://doi.org/10.3390/ijms241914757
T.S. Natarajan, P. Bhargava, Influence of spinning parameters on synthesis of alumina fibres by centrifugal spinning. Ceram. Int. 44(10), 11644–11649 (2018). https://doi.org/10.1016/j.ceramint.2018.03.239
L. Ren, R. Ozisik, S.P. Kotha, Rapid and efficient fabrication of multilevel structured silica micro-/ nanofibers by centrifugal jet spinning. J. Colloid Interface Sci. 425, 136–142 (2014). https://doi.org/10.1016/j.jcis.2014.03.039
H. Aminirastabi, Z. Weng, H. Xue, Y. Yu, G. Ji et al., Evaluation of nano grain growth of TiO2 fibers fabricated via centrifugal jet spinning. Nano Struct. Nano Objects 21, 100413 (2020). https://doi.org/10.1016/j.nanoso.2019.100413
M. Wang, J. Chen, Z. Ahmad, X. Li, F. Chen, High-temperature resistance and thermal insulation performance of continuous SiMOC ceramic fibers fabricated by the modified Sol-gel method combined with dry spinning. J. Sol Gel Sci. Technol. 113(2), 427–437 (2025). https://doi.org/10.1007/s10971-024-06628-x
H. Scholz, J. Vetter, R. Herborn, A. Ruedinger, Oxide ceramic fibers via dry spinning process: From lab to fab. Int. J. Appl. Ceram. Technol. 17(4), 1636–1645 (2020). https://doi.org/10.1111/ijac.13521
C. Liu, S. Wang, N. Wang, J. Yu, Y.-T. Liu et al., From 1D nanofibers to 3D nanofibrous aerogels: a marvellous evolution of electrospun SiO2 nanofibers for emerging applications. Nano-Micro Lett. 14(1), 194 (2022). https://doi.org/10.1007/s40820-022-00937-y
J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
M. Zhang, Y. Wang, Y. Zhang, J. Song, Y. Si et al., Conductive and elastic TiO2 nanofibrous aerogels: a new concept toward self-supported electrocatalysts with superior activity and durability. Angew. Chem. Int. Ed. 59(51), 23252–23260 (2020). https://doi.org/10.1002/anie.202010110
M. Liu, M. Shafiq, B. Sun, J. Wu, W. Wang et al., Composite superelastic aerogel scaffolds containing flexible SiO2 nanofibers promote bone regeneration. Adv. Healthc. Mater. 11(15), e2200499 (2022). https://doi.org/10.1002/adhm.202200499
H. Zhang, Y. Hang, Y. Qin, J. Yang, B. Wang, Synthesis and characterization of Sol–gel derived continuous spinning alumina based fibers with silica nano-powders. J. Eur. Ceram. Soc. 34(2), 465–473 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.08.015
J.-H. Kim, S.-J. Yoo, D.-H. Kwak, H.-J. Jung, T.-Y. Kim et al., Characterization and application of electrospun alumina nanofibers. Nanoscale Res. Lett. 9(1), 44 (2014). https://doi.org/10.1186/1556-276X-9-44
Y. Hou, L. Cheng, Y. Zhang, Y. Yang, C. Deng et al., SiC nanofiber mat: a broad-band microwave absorber, and the alignment effect. ACS Appl. Mater. Interfaces 9(49), 43072–43080 (2017). https://doi.org/10.1021/acsami.7b13634
Y. Sun, J.Y. Li, Y. Tan, L. Zhang, Fabrication of aluminum nitride (AlN) hollow fibers by carbothermal reduction and nitridation of electrospun precursor fibers. J. Alloys Compd. 471(1–2), 400–403 (2009). https://doi.org/10.1016/j.jallcom.2008.03.099
Y. Qiu, J. Yu, J. Rafique, J. Yin, X. Bai et al., Large-scale production of aligned long boron nitride nanofibers by multijet/multicollector electrospinning. J. Phys. Chem. C 113(26), 11228–11234 (2009). https://doi.org/10.1021/jp901267k
F. Rechberger, M. Niederberger, Synthesis of aerogels: from molecular routes to 3-dimensional nanop assembly. Nanoscale Horiz. 2(1), 6–30 (2017). https://doi.org/10.1039/c6nh00077k
W. Su, Z. Chang, Y. E, Y. Feng, X. Yao et al., Electrospinning and electrospun polysaccharide-based nanofiber membranes: a review. Int. J. Biol. Macromol. 263(pt 2), 130335 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130335
W. Matysiak, T. Tański, Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with Sol-gel and electrospinning methods. Appl. Surf. Sci. 489, 34–43 (2019). https://doi.org/10.1016/j.apsusc.2019.05.090
M. Yanilmaz, Y. Lu, J. Zhu, X. Zhang, Silica/polyacrylonitrile hybrid nanofiber membrane separators via Sol-gel and electrospinning techniques for lithium-ion batteries. J. Power. Sources 313, 205–212 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.089
S. Khalili, H.M. Chenari, Successful electrospinning fabrication of ZrO2 nanofibers: a detailed physical–chemical characterization study. J. Alloys Compd. 828, 154414 (2020). https://doi.org/10.1016/j.jallcom.2020.154414
S. Chattopadhyay, S. Bysakh, J. Saha, G. De, Electrospun ZrO2 nanofibers: precursor controlled mesopore ordering and evolution of garland-like nanocrystal arrays. Dalton Trans. 47(16), 5789–5800 (2018). https://doi.org/10.1039/c8dt00415c
V. Bhullar, S. Sardana, A. Mahajan, Size modeling of TiO2 nanofibers for efficient TiO2 sensitized mesoscopic solar cells. Sol. Energy 230, 177–185 (2021). https://doi.org/10.1016/j.solener.2021.10.023
J.-H. Kim, J.-H. Lee, J.-Y. Kim, S.S. Kim, Synthesis of aligned TiO2 nanofibers using electrospinning. Appl. Sci. 8(2), 309 (2018). https://doi.org/10.3390/app8020309
I.I. Maor, S. Heyte, O. Elishav, M. Mann-Lahav, J. Thuriot-Roukos et al., Performance of Cu/ZnO nanosheets on electrospun Al2O3 nanofibers in CO2 catalytic hydrogenation to methanol and dimethyl ether. Nanomaterials 13(4), 635 (2023). https://doi.org/10.3390/nano13040635
M. Mohammad Ali Zadeh, M. Keyanpour-Rad, T. Ebadzadeh, Synthesis of mullite nanofibres by electrospinning of solutions containing different proportions of polyvinyl butyral. Ceram. Int. 39(8), 9079–9084 (2013). https://doi.org/10.1016/j.ceramint.2013.05.003
Y. Peng, Y. Xie, L. Wang, L. Liu, S. Zhu et al., High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation. J. Eur. Ceram. Soc. 41(2), 1471–1480 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.09.071
S. Li, F. Wu, X. Zhang, G. Han, Y. Si et al., Flexible Al2O3/ZrO2 nanofibrous membranes for thermal insulation. CrystEngComm 24(10), 1859–1865 (2022). https://doi.org/10.1039/d1ce01512e
S. Yajima, K. Okamura, J. Hayashi, M. Omori, Synthesis of continuous sic fibers with high tensile strength. J. Am. Ceram. Soc. 59(7–8), 324–327 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb10975.x
B.M. Eick, J.P. Youngblood, SiC nanofibers by pyrolysis of electrospun preceramic polymers. J. Mater. Sci. 44(1), 160–165 (2009). https://doi.org/10.1007/s10853-008-3102-3
X. Zhang, J. Yu, C. Zhao, Y. Si, Engineering covalent heterointerface enables superelastic amorphous SiC meta-aerogels. ACS Nano 17(21), 21813–21821 (2023). https://doi.org/10.1021/acsnano.3c07780
H. Ramlow, G.B. de Souza, M.P. Fonseca, A. Raizer, C.R. Rambo et al., Lightweight and flexible nanostructured C/SiCN nanofiber nonwoven for electromagnetic reflection shielding of 5G C-Band frequencies. J. Mater. Sci. Mater. Electron. 34(22), 1631 (2023). https://doi.org/10.1007/s10854-023-11037-x
X. Guo, F. Xiao, J. Li, H. Zhang, Q. Hu et al., Fe-doped SiCN composite fibers for electromagnetic waves absorption. Ceram. Int. 47(1), 1184–1190 (2021). https://doi.org/10.1016/j.ceramint.2020.08.236
Q. Chen, D. Jia, B. Liang, Z. Yang, Y. Zhou et al., Electrospinning of pure polymer-derived SiBCN nanofibers with high yield. Ceram. Int. 47(8), 10958–10964 (2021). https://doi.org/10.1016/j.ceramint.2020.12.215
Q. Ding, J. Yang, S. Gu, C. Chen, Z. Cheng et al., Novel fire-resistant SiBCN fiber paper with efficient electromagnetic interference shielding and Joule-heating performance. Chem. Eng. J. 497, 154485 (2024). https://doi.org/10.1016/j.cej.2024.154485
H.J. Hwang, N.A.M. Barakat, M.A. Kanjwal, F.A. Sheikh, H.Y. Kim et al., Boron nitride nanofibers by the electrospinning technique. Macromol. Res. 18(6), 551–557 (2010). https://doi.org/10.1007/s13233-010-0601-2
Y.S. Nam, X.M. Cui, L. Jeong, J.Y. Lee, W.H. Park, Fabrication and characterization of zirconium carbide (ZrC) nanofibers with thermal storage property. Thin Solid Films 517(24), 6531–6538 (2009). https://doi.org/10.1016/j.tsf.2009.04.021
K. Nakane, S. Matsuoka, S. Gao, S. Yonezawa, J.H. Kim et al., Formation of inorganic nanofibers by heat-treatment of poly(vinyl alcohol)-zirconium compound hybrid nanofibers. J. Min. Metall. Sect. B Metall. 49(1), 77–82 (2013). https://doi.org/10.2298/jmmb121101027n
V. Rahmanian, T. Pirzada, E. Barbieri, S. Iftikhar, F. Li et al., Mechanically robust, thermally insulating and photo-responsive aerogels designed from Sol-gel electrospun PVP-TiO2 nanofibers. Appl. Mater. Today 32, 101784 (2023). https://doi.org/10.1016/j.apmt.2023.101784
R. Liu, X. Dong, S. Xie, T. Jia, Y. Xue et al., Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels. Chem. Eng. J. 360, 464–472 (2019). https://doi.org/10.1016/j.cej.2018.12.018
Y.-T. Liu, B. Ding, Ultralight and superelastic ceramic nanofibrous aerogels: a new vision of an ancient material. Sci. Bull. 68(8), 753–755 (2023). https://doi.org/10.1016/j.scib.2023.03.039
L. Dou, X. Zhang, H. Shan, X. Cheng, Y. Si et al., Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 30(49), 2005928 (2020). https://doi.org/10.1002/adfm.202005928
Y. Si, X. Wang, L. Dou, J. Yu, B. Ding, Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4(4), eaas8925 (2018). https://doi.org/10.1126/sciadv.aas8925
W. Li, F. He, H. Liu, Y. Jiang, Y. Mu et al., Electric field-induced ordered-structural aerogels enable superinsulation and multifunctionality. Small 20(51), e2406188 (2024). https://doi.org/10.1002/smll.202406188
F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
X. Zhang, F. Wang, L. Dou, X. Cheng, Y. Si et al., Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 ℃. ACS Nano 14(11), 15616–15625 (2020). https://doi.org/10.1021/acsnano.0c06423
X. Zhang, X. Cheng, Y. Si, J. Yu, B. Ding, All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 16(4), 5487–5495 (2022). https://doi.org/10.1021/acsnano.1c09668
P. Zhao, M. Cao, H. Gu, Q. Gao, N. Xia et al., Research on the electrospun foaming process to fabricate three-dimensional tissue engineering scaffolds. J. Appl. Polym. Sci. 135(46), 46898 (2018). https://doi.org/10.1002/app.46898
Q. Gao, H. Gu, P. Zhao, C. Zhang, M. Cao et al., Fabrication of electrospun nanofibrous scaffolds with 3D controllable geometric shapes. Mater. Des. 157, 159–169 (2018). https://doi.org/10.1016/j.matdes.2018.07.042
S.W. Ko, J. Lee, J.Y. Lee, J.H. Cho, S. Lee et al., Composite demineralized bone matrix nanofiber scaffolds with hierarchical interconnected networks via eruptive inorganic catalytic decomposition for osteoporotic bone regeneration. J. Mater. Sci. Technol. 199, 246–259 (2024). https://doi.org/10.1016/j.jmst.2024.02.018
D. Zong, W. Bai, M. Geng, X. Yin, J. Yu et al., Bubble templated flexible ceramic nanofiber aerogels with cascaded resonant cavities for high-temperature noise absorption. ACS Nano 16(9), 13740–13749 (2022). https://doi.org/10.1021/acsnano.2c06011
Y. Wang, H. Huang, Y. Zhao, Z. Feng, H. Fan et al., Self-assembly of ultralight and compressible inorganic sponges with hierarchical porosity by electrospinning. Ceram. Int. 46(1), 768–774 (2020). https://doi.org/10.1016/j.ceramint.2019.09.031
M.H. Tai, B.Y.L. Tan, J. Juay, D.D. Sun, J.O. Leckie, A self-assembled superhydrophobic electrospun carbon–silica nanofiber sponge for selective removal and recovery of oils and organic solvents. Chem. 21(14), 5395–5402 (2015). https://doi.org/10.1002/chem.201405670
M. Yousefzadeh, M. Latifi, M. Amani-Tehran, W.-E. Teo, S. Ramakrishna, A note on the 3D structural design of electrospun nanofibers. J. Eng. Fibres. Fabr. 7(2), 155892501200700200 (2012). https://doi.org/10.1177/155892501200700204
J. Guo, S. Fu, Y. Deng, X. Xu, S. Laima et al., Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606(7916), 909–916 (2022). https://doi.org/10.1038/s41586-022-04784-0
W. Cheng, W. Jiao, Y. Fei, Z. Yang, X. Zhang et al., Direct synthesis of ultralight, elastic, high-temperature insulation N-doped TiO2 ceramic nanofibrous sponges via conjugate electrospinning. Nanoscale 16(3), 1135–1146 (2024). https://doi.org/10.1039/D3NR04987F
X. Cheng, Y.-T. Liu, Y. Si, J. Yu, B. Ding, Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. Nat. Commun. 13(1), 2637 (2022). https://doi.org/10.1038/s41467-022-30435-z
X. Cheng, X. Chang, X. Zhang, J. Dai, H. Fong et al., Way to a library of Ti-series oxide nanofiber sponges that are highly stretchable, compressible, and bendable. Adv. Mater. 36(14), 2307690 (2024). https://doi.org/10.1002/adma.202307690
J. Dong, Y. Xie, L. Liu, Z. Deng, W. Liu et al., Lightweight and resilient ZrO2–TiO2 fiber sponges with layered structure for thermal insulation. Adv. Eng. Mater. 24(8), 2101603 (2022). https://doi.org/10.1002/adem.202101603
J.T. Cahill, S. Turner, J. Ye, B. Shevitski, S. Aloni et al., Ultrahigh-temperature ceramic aerogels. Chem. Mater. 31(10), 3700–3704 (2019). https://doi.org/10.1021/acs.chemmater.9b00496
C. Ziegler, A. Wolf, W. Liu, A.-K. Herrmann, N. Gaponik et al., Modern inorganic aerogels. Angew. Chem. Int. Ed. 56(43), 13200–13221 (2017). https://doi.org/10.1002/anie.201611552
X. Xu, S. Fu, J. Guo, H. Li, Y. Huang et al., Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater. Today 42, 162–177 (2021). https://doi.org/10.1016/j.mattod.2020.09.034
H. Shan, X. Wang, F. Shi, J. Yan, J. Yu et al., Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl. Mater. Interfaces 9(22), 18966–18976 (2017). https://doi.org/10.1021/acsami.7b04518
F. Wu, Y. Liu, Y. Si, J. Yu, B. Ding, Multiphase ceramic nanofibers with super-elasticity from − 196–1600 ℃. Nano Today 44, 101455 (2022). https://doi.org/10.1016/j.nantod.2022.101455
H. Liu, X. Huo, P. Zhao, R. Xu, X. Zhang et al., Confined gelation synthesis of flexible barium aluminate nanofibers as a high-performance refractory material. ACS Nano 18(42), 29273–29281 (2024). https://doi.org/10.1021/acsnano.4c11854
Z. Li, M.K. Joshi, J. Chen, Z. Zhang, Z. Li et al., Mechanically compatible UV photodetectors based on electrospun free-standing Y3+-doped TiO2 nanofibrous membranes with enhanced flexibility. Adv. Funct. Mater. 30(52), 2005291 (2020). https://doi.org/10.1002/adfm.202005291
X. Wang, Y. Zhang, Y. Zhao, G. Li, J. Yan et al., A general strategy to fabricate flexible oxide ceramic nanofibers with gradient bending-resilience properties. Adv. Funct. Mater. 31(36), 2103989 (2021). https://doi.org/10.1002/adfm.202103989
N. Wu, B. Wang, Y. Wang, Enhanced mechanical properties of amorphous SiOC nanofibrous membrane through in situ embedding nanops. J. Am. Ceram. Soc. 101(10), 4763–4772 (2018). https://doi.org/10.1111/jace.15732
Y. Zhang, S. Liu, J. Yan, X. Zhang, S. Xia et al., Superior flexibility in oxide ceramic crystal nanofibers. Adv. Mater. 33(44), 2105011 (2021). https://doi.org/10.1002/adma.202105011
X. Mao, L. Zhao, K. Zhang, Y.-Y. Wang, B. Ding, Highly flexible ceramic nanofibrous membranes for superior thermal insulation and fire retardancy. Nano Res. 15(3), 2592–2598 (2022). https://doi.org/10.1007/s12274-021-3799-8
C. Liu, Y. Liao, W. Jiao, X. Zhang, N. Wang et al., High toughness combined with high strength in oxide ceramic nanofibers. Adv. Mater. 35(32), 2304401 (2023). https://doi.org/10.1002/adma.202304401
Z. Xu, H. Liu, F. Wu, L. Cheng, J. Yu et al., Inhibited grain growth through phase transition modulation enables excellent mechanical properties in oxide ceramic nanofibers up to 1700 ℃. Adv. Mater. 35(44), 2305336 (2023). https://doi.org/10.1002/adma.202305336
Z. Xu, Y. Liu, Q. Xin, J. Dai, J. Yu et al., Ceramic meta-aerogel with thermal superinsulation up to 1700 ℃ constructed by self-crosslinked nanofibrous network via reaction electrospinning. Adv. Mater. 36(32), 2401299 (2024). https://doi.org/10.1002/adma.202401299
G. Poologasundarampillai, D. Wang, S. Li, J. Nakamura, R. Bradley et al., Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomater. 10(8), 3733–3746 (2014). https://doi.org/10.1016/j.actbio.2014.05.020
D. Zong, X. Yin, J. Yu, W. Jiao, S. Zhang et al., Heat-conducting elastic ultrafine fiber sponges with boron nitride networks for noise reduction. J. Colloid Interface Sci. 649, 1023–1030 (2023). https://doi.org/10.1016/j.jcis.2023.05.209
L. Xu, L. Huang, J. Yu, Y. Si, B. Ding, Ultralight and superelastic Gd2O3/Bi2O3 nanofibrous aerogels with nacre-mimetic brick-mortar structure for superior X-ray shielding. Nano Lett. 22(21), 8711–8718 (2022). https://doi.org/10.1021/acs.nanolett.2c03484
H. Liu, X. Zhang, Y. Liao, J. Yu, Y.-T. Liu et al., Building-envelope-inspired, thermomechanically robust all-fiber ceramic meta-aerogel for temperature-controlled dominant infrared camouflage. Adv. Mater. 36(25), e2313720 (2024). https://doi.org/10.1002/adma.202313720
Y. Wang, W. Xu, X. Zou, W. Fu, X. Meng et al., MXene-decorated flexible Al2O3/TiO2 nanofibrous mats with self-adaptive stress dispersion towards multifunctional desalination. J. Mater. Chem. A 11(14), 7422–7431 (2023). https://doi.org/10.1039/D2TA09488F
D. Zong, L. Cao, X. Yin, Y. Si, S. Zhang et al., Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nat. Commun. 12(1), 6599 (2021). https://doi.org/10.1038/s41467-021-26890-9
H. Zheng, H. Shan, Y. Bai, X. Wang, L. Liu et al., Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. RSC Adv. 5(111), 91813–91820 (2015). https://doi.org/10.1039/C5RA18137B
S. Dang, J. Guo, Y. Deng, H. Yu, H. Zhao et al., Highly-buckled nanofibrous ceramic aerogels with ultra-large stretchability and tensile-insensitive thermal insulation. Adv. Mater. 37(4), 2415159 (2025). https://doi.org/10.1002/adma.202415159
X. Zhang, J. Yu, Y. Si, Programmable shape-morphing enables ceramic meta-aerogel highly stretchable for thermal protection. Adv. Mater. 37(3), e2412962 (2025). https://doi.org/10.1002/adma.202412962
H. Wang, L. Cheng, J. Yu, Y. Si, B. Ding, Biomimetic Bouligand chiral fibers array enables strong and superelastic ceramic aerogels. Nat. Commun. 15(1), 336 (2024). https://doi.org/10.1038/s41467-023-44657-2
X. Zhang, J. Yu, C. Zhao, Y. Si, Elastic SiC aerogel for thermal insulation: a systematic review. Small 20(32), e2311464 (2024). https://doi.org/10.1002/smll.202311464
B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10(3), 277–283 (2015). https://doi.org/10.1038/nnano.2014.248
G.H. Tang, C. Bi, Y. Zhao, W.Q. Tao, Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook. Energy 90, 701–721 (2015). https://doi.org/10.1016/j.energy.2015.07.109
Y. Fu, J. Hansson, Y. Liu, S. Chen, A. Zehri et al., Graphene related materials for thermal management. 2D Mater. 7(1), 012001 (2020). https://doi.org/10.1088/2053-1583/ab48d9
C.J.C. Otic, S. Yonemura, Thermally induced Knudsen forces for contactless manipulation of a micro-object. Micromachines 13(7), 1092 (2022). https://doi.org/10.3390/mi13071092
X. Zhao, A.H. Brozena, L. Hu, Critical roles of pores and moisture in sustainable nanocellulose-based super-thermal insulators. Matter 4(3), 769–772 (2021). https://doi.org/10.1016/j.matt.2021.02.002
L. Dou, X. Cheng, X. Zhang, Y. Si, J. Yu et al., Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. J. Mater. Chem. A 8(16), 7775–7783 (2020). https://doi.org/10.1039/d0ta01092h
L. Dou, X. Zhang, X. Cheng, Z. Ma, X. Wang et al., Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 11(32), 29056–29064 (2019). https://doi.org/10.1021/acsami.9b10018
J. Liu, H. Li, H. Li, W. Song, S. Xia et al., Deep-sea glass sponges-like hollow porous ceramic fiber aerogel: Fabrication, anti-shrinkage and thermal insulation. Ceram. Int. 50(20), 37714–37725 (2024). https://doi.org/10.1016/j.ceramint.2024.07.132
Y. Dong, X. Dong, L. Li, J. Wu, L. Yan et al., Lightweight and thermally insulating aluminum borate nanofibrous porous ceramics. Ceram. Int. 47(15), 21029–21037 (2021). https://doi.org/10.1016/j.ceramint.2021.04.104
X. Meng, C. Liu, J. Zhang, W. Guo, N. Li et al., Thermal-insulating ceramic fiber aerogels reinforced by fusing knots of overlapping fibers for superelasticity and high compression resistance. J. Mater. Chem. A 12(26), 16079–16086 (2024). https://doi.org/10.1039/D4TA02257B
S. Dong, B. Maciejewska, R. Millar, N. Grobert, 3D Electrospinning of Al2O3/ZrO2 fibrous aerogels for multipurpose thermal insulation. Adv. Compos. Hybrid Mater. 6(5), 186 (2023). https://doi.org/10.1007/s42114-023-00760-y
L. Li, C. Jia, Y. Liu, B. Fang, W. Zhu et al., Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Mater. Today 54, 72–82 (2022). https://doi.org/10.1016/j.mattod.2022.02.007
L. Dou, Y. Si, J. Yu, B. Ding, Semi-template based, biomimetic-architectured, and mechanically robust ceramic nanofibrous aerogels for thermal insulation. Nano Res. 15(6), 5581–5589 (2022). https://doi.org/10.1007/s12274-022-4194-9
Y. Cheng, B. Ma, P. Hu, J. Zhang, D. Hu et al., Flexible and transformable ceramic aerogels via a fire-reborn strategy for thermal superinsulation in extreme conditions. Adv. Funct. Mater. 33(52), 2309148 (2023). https://doi.org/10.1002/adfm.202309148
Y. Zhong, H. Li, H. Liu, J. Wang, X. Han et al., Elytra-mimetic ceramic fiber aerogel with excellent mechanical, anti-oxidation, and thermal insulation properties. J. Eur. Ceram. Soc. 43(4), 1407–1416 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.11.061
P.-E. Okafor, C. He, G. Tang, Finite-difference time-domain study of hollow Zirconium dioxide nanofibrous aerogel composite for thermal insulation under harsh environments. Int. J. Therm. Sci. 194, 108599 (2023). https://doi.org/10.1016/j.ijthermalsci.2023.108599
S. Fu, D. Liu, Y. Deng, M. Li, H. Zhao et al., Medium-entropy ceramic aerogels for robust thermal sealing. J. Mater. Chem. A 11(2), 742–752 (2023). https://doi.org/10.1039/d2ta08264k
X. Wang, H. Li, H. Li, Z. Cui, J. Wang et al., Coaxial porous SiBCN/SiCN ceramic fiber aerogels with reduced shrinkage and low thermal conductivity. Chem. Eng. J. 501, 157621 (2024). https://doi.org/10.1016/j.cej.2024.157621
W. Wang, Q. You, Z. Wu, S. Cui, W. Shen, Fabrication of the SiC/HfC composite aerogel with ultra-low thermal conductivity and excellent compressive strength. Gels 10(5), 292 (2024). https://doi.org/10.3390/gels10050292
Z. Xu, K. Zhao, F. Li, S. Zhang, X. Zhao et al., High temperature thermal insulation ceramic aerogels fabricated from ZrC nanofibers welded with carbon nanops. ACS Appl. Nano Mater. 7(9), 10046–10055 (2024). https://doi.org/10.1021/acsanm.4c00280
F. Liu, Y. Jiang, F. Peng, J. Feng, L. Li et al., Fiber-reinforced alumina-carbon core-shell aerogel composite with heat-induced gradient structure for thermal protection up to 1800 ℃. Chem. Eng. J. 461, 141721 (2023). https://doi.org/10.1016/j.cej.2023.141721
X. Chang, Y. Yang, X. Cheng, X. Yin, J. Yu et al., Multiphase symbiotic engineered elastic ceramic-carbon aerogels with advanced thermal protection in extreme oxidative environments. Adv. Mater. 36(32), 2406055 (2024). https://doi.org/10.1002/adma.202406055
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
T.M.J. Nilsson, G.A. Niklasson, Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils. Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995). https://doi.org/10.1016/0927-0248(94)00200-2
A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013). https://doi.org/10.1021/nl4004283
Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
R. Zhang, X. Wang, J. Song, Y. Si, X. Zhuang et al., In situ synthesis of flexible hierarchical TiO2 nanofibrous membranes with enhanced photocatalytic activity. J. Mater. Chem. A 3(44), 22136–22144 (2015). https://doi.org/10.1039/C5TA05442G
K. Yuan, D. Han, J. Liang, W. Zhao, M. Li et al., Microwave induced in situ formation of SiC nanowires on SiCNO ceramic aerogels with excellent electromagnetic wave absorption performance. J. Adv. Ceram. 10(5), 1140–1151 (2021). https://doi.org/10.1007/s40145-021-0510-1
D.A. Kritskaya, E.F. Abdrashitov, V.C. Bokun, A.N. Ponomarev, A study of pore formation and methanol vapor permeability in stretched polytetrafluoroethylene films used as a precursor of composite ion-exchange membranes. Pet. Chem. 58(4), 309–316 (2018). https://doi.org/10.1134/s0965544118040059
S. Haouari, D. Rodrigue, A low-cost porous polymer membrane for gas permeation. Materials 15(10), 3537 (2022). https://doi.org/10.3390/ma15103537
D. Kim, B.T. Duy Nguyen, S.H. Kim, J. Kim, J.F. Kim, New Sherwood correlations for hollow fiber membrane contactor modules: Comparison of porous and nonporous asymmetric membranes. J. Membr. Sci. 723, 123939 (2025). https://doi.org/10.1016/j.memsci.2025.123939
Z. Dai, S. Pradeep, J. Zhu, W. Xie, H.F. Barton et al., Freestanding metal organic framework-based multifunctional membranes fabricated via pseudomorphic replication toward liquid- and gas-hazards abatement. Adv. Mater. Interfaces 8(22), 2101178 (2021). https://doi.org/10.1002/admi.202101178
J. Hu, Z. Zhong, F. Zhang, W. Xing, W. Jin et al., High-efficiency, synergistic ZnO-coated SiC photocatalytic filter with antibacterial properties. Ind. Eng. Chem. Res. 55(23), 6661–6670 (2016). https://doi.org/10.1021/acs.iecr.6b00988
F. Wang, Y. Si, J. Yu, B. Ding, Tailoring nanonets-engineered superflexible nanofibrous aerogels with hierarchical cage-like architecture enables renewable antimicrobial air filtration. Adv. Funct. Mater. 31(49), 2107223 (2021). https://doi.org/10.1002/adfm.202107223
R. Osovsky, D. Kaplan, I. Nir, H. Rotter, S. Elisha et al., Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions. Environ. Sci. Technol. 48(18), 10912–10918 (2014). https://doi.org/10.1021/es502981y
S.S. Kiani, A. Farooq, M. Ahmad, N. Irfan, M. Nawaz et al., Impregnation on activated carbon for removal of chemical warfare agents (CWAs) and radioactive content. Environ. Sci. Pollut. Res. Int. 28(43), 60477–60494 (2021). https://doi.org/10.1007/s11356-021-15973-1
C. Ramakrishna, T. Gopi, S.C. Shekar, A.K. Gupta, R. Krishna, Vapor phase catalytic degradation studies of diethyl sulfide with MnO/Zeolite-13X catalysts in presence of air. Environ. Prog. Sustain. Energy 37(5), 1705–1712 (2018). https://doi.org/10.1002/ep.12858
D. Tušek, D. Ašperger, I. Bačić, L. Ćurković, J. Macan, Environmentally acceptable sorbents of chemical warfare agent simulants. J. Mater. Sci. 52(5), 2591–2604 (2017). https://doi.org/10.1007/s10853-016-0552-x
Y. Liao, F. Yang, Y. Si, J. Yu, B. Ding, Nanoflake-engineered zirconic fibrous aerogels with parallel-arrayed conduits for fast nerve agent degradation. Nano Lett. 21(20), 8839–8847 (2021). https://doi.org/10.1021/acs.nanolett.1c03246
Z. Yan, X. Liu, B. Ding, J. Yu, Y. Si, Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat. Commun. 14(1), 2116 (2023). https://doi.org/10.1038/s41467-023-37693-5
H. Liu, S. Qiang, F. Wu, X.-D. Zhu, X. Liu et al., Scalable synthesis of flexible single-atom monolithic catalysts for high-efficiency, durable CO oxidation at low temperature. ACS Nano 17(19), 19431–19440 (2023). https://doi.org/10.1021/acsnano.3c07888
Y. Liao, J. Song, Y. Si, J. Yu, B. Ding, Superelastic and photothermal RGO/Zr-doped TiO2 nanofibrous aerogels enable the rapid decomposition of chemical warfare agents. Nano Lett. 22(11), 4368–4375 (2022). https://doi.org/10.1021/acs.nanolett.2c00776
A. Larasati, G.D. Fowler, N.J.D. Graham, Insights into chemical regeneration of activated carbon for water treatment. J. Environ. Chem. Eng. 9(4), 105555 (2021). https://doi.org/10.1016/j.jece.2021.105555
L.N. Shiyan, K.I. Machekhina, E.N. Gryaznova, Study the properties of activated carbon and oxyhydroxide aluminum as sorbents for removal humic substances from natural waters. IOP Conf. Ser. Mater. Sci. Eng. 110(1), 012097 (2016). https://doi.org/10.1088/1757-899X/110/1/012097
R.K. Nekouei, F. Pahlevani, M. Assefi, S. Maroufi, V. Sahajwalla, Selective isolation of heavy metals from spent electronic waste solution by macroporous ion-exchange resins. J. Hazard. Mater. 371, 389–396 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.013
Y.E. Ghoussoub, H.M. Fares, J.D. Delgado, L.R. Keller, J.B. Schlenoff, Antifouling ion-exchange resins. ACS Appl. Mater. Interfaces 10(48), 41747–41756 (2018). https://doi.org/10.1021/acsami.8b12865
D. Malwal, P. Gopinath, Fabrication and applications of ceramic nanofibers in water remediation: a review. Crit. Rev. Environ. Sci. Technol. 46(5), 500–534 (2016). https://doi.org/10.1080/10643389.2015.1109913
J. Kim, J. Lee, J.-H. Ha, I.-H. Song, Effect of silica on flexibility of yttria-stabilized zirconia nanofibers for developing water purification membranes. Ceram. Int. 45(14), 17696–17704 (2019). https://doi.org/10.1016/j.ceramint.2019.05.337
X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269
X. Dong, Y. Si, C. Chen, B. Ding, H. Deng, Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 15(7), 12256–12266 (2021). https://doi.org/10.1021/acsnano.1c04035
F. Zhang, Y. Si, J. Yu, B. Ding, Sub-nanoporous engineered fibrous aerogel molecular sieves with nanogating channels for reversible molecular separation. Small 18(25), 2202173 (2022). https://doi.org/10.1002/smll.202202173
M.-J. Chang, W.-Y. Zhu, J. Liu, G. Bai, X. Li et al., Fabrication of elastic SiO2 aerogels with prominent mechanical strength and stability reinforced by SiO2 nanofibers and polyurethane for oil adsorption. Sep. Purif. Technol. 341, 126914 (2024). https://doi.org/10.1016/j.seppur.2024.126914
F. Wang, J. Dai, L. Huang, Y. Si, J. Yu et al., Biomimetic and superelastic silica nanofibrous aerogels with rechargeable bactericidal function for antifouling water disinfection. ACS Nano 14(7), 8975–8984 (2020). https://doi.org/10.1021/acsnano.0c03793
B. Ren, J. Liu, Y. Rong, L. Wang, Y. Lu et al., Nanofibrous aerogel bulk assembled by cross-linked SiC/SiOx core-shell nanofibers with multifunctionality and temperature-invariant hyperelasticity. ACS Nano 13(10), 11603–11612 (2019). https://doi.org/10.1021/acsnano.9b05406
H. Liu, F. Wu, X.-Y. Liu, J. Yu, Y.-T. Liu et al., Multiscale synergetic bandgap/structure engineering in semiconductor nanofibrous aerogels for enhanced solar evaporation. Nano Lett. 23(24), 11907–11915 (2023). https://doi.org/10.1021/acs.nanolett.3c04059
Y. Wang, Z. Li, W. Fu, Y. Sun, Y. Dai, Core–sheath CeO2/SiO2 nanofibers as nanoreactors for stabilizing sinter-resistant Pt, enhanced catalytic oxidation and water remediation. Adv. Fiber Mater. 4(5), 1278–1289 (2022). https://doi.org/10.1007/s42765-022-00177-0
Q. Fu, Y. Si, C. Duan, Z. Yan, L. Liu et al., Highly carboxylated, cellular structured, and underwater superelastic nanofibrous aerogels for efficient protein separation. Adv. Funct. Mater. 29(13), 1808234 (2019). https://doi.org/10.1002/adfm.201808234
T. Pirzada, Z. Ashrafi, W. Xie, S.A. Khan, Cellulose silica hybrid nanofiber aerogels: from Sol–gel electrospun nanofibers to multifunctional aerogels. Adv. Funct. Mater. 30(5), 1907359 (2020). https://doi.org/10.1002/adfm.201907359
Z. Yu, T. Fan, Y. Liu, B. Yang, L. Wang et al., Nanofiber aerogel with layered array with structure coupled photothermal/magnetothermal effect for continuous seawater desalination. Chem. Eng. J. 499, 155969 (2024). https://doi.org/10.1016/j.cej.2024.155969
Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13(11), 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
D. Yu, L. Liu, B. Ding, J. Yu, Y. Si, Spider-Web-Inspired SiO2/Ag nanofibrous aerogels with superelastic and conductive networks for electroporation water disinfection. Chem. Eng. J. 461, 141908 (2023). https://doi.org/10.1016/j.cej.2023.141908
H. Wang, X. Mi, Y. Li, S. Zhan, 3D graphene-based macrostructures for water treatment. Adv. Mater. 32(3), e1806843 (2020). https://doi.org/10.1002/adma.201806843
A. Gopinath, K. Kadirvelu, Strategies to design modified activated carbon fibers for the decontamination of water and air. Environ. Chem. Lett. 16(4), 1137–1168 (2018). https://doi.org/10.1007/s10311-018-0740-9
J. Kim, M.M. Benjamin, Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res. 38(8), 2053–2062 (2004). https://doi.org/10.1016/j.watres.2004.01.012
I.V. Vlassiouk, A scalable graphene-based membrane. Nat. Nanotechnol. 12(11), 1022–1023 (2017). https://doi.org/10.1038/nnano.2017.184
M.R. Landsman, R. Sujanani, S.H. Brodfuehrer, C.M. Cooper, A.G. Darr et al., Water treatment: are membranes the Panacea? Annu. Rev. Chem. Biomol. Eng. 11, 559–585 (2020). https://doi.org/10.1146/annurev-chembioeng-111919-091940
Y. Su, T. Fan, W. Cui, Y. Li, S. Ramakrishna et al., Advanced electrospun nanofibrous materials for efficient oil/water separation. Adv. Fiber Mater. 4(5), 938–958 (2022). https://doi.org/10.1007/s42765-022-00158-3
P. Sahoo, A.A. Ramachandran, P.K. Sow, A comprehensive review of fundamentals and future trajectories in oil-water separation system designs with superwetting materials. J. Environ. Manag. 370, 122641 (2024). https://doi.org/10.1016/j.jenvman.2024.122641
N.Y. Abu-Thabit, M.H. Abu Elella, A.K. Azad, E. Ratemi, A.S. Hakeem, Superwetting metal mesh membranes for oil/water separation: a comprehensive review. Sep. Purif. Technol. 363, 132016 (2025). https://doi.org/10.1016/j.seppur.2025.132016
X. Liu, Z. Liu, X. Wang, Y. Gao, J. Zhang et al., Superhydrophobic nanofibrous sponge with hierarchically layered structure for efficient harsh environmental oil-water separation. J. Hazard. Mater. 440, 129790 (2022). https://doi.org/10.1016/j.jhazmat.2022.129790
Y. Si, Q. Fu, X. Wang, J. Zhu, J. Yu et al., Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9(4), 3791–3799 (2015). https://doi.org/10.1021/nn506633b
X. Wang, Z. Liu, X. Liu, Y. Su, J. Wang et al., Ultralight and multifunctional PVDF/SiO2@GO nanofibrous aerogel for efficient harsh environmental oil–water separation and crude oil absorption. Carbon 193, 77–87 (2022). https://doi.org/10.1016/j.carbon.2022.03.028
Q. Fu, L. Liu, Y. Si, J. Yu, B. Ding, Shapeable, underwater superelastic, and highly phosphorylated nanofibrous aerogels for large-capacity and high-throughput protein separation. ACS Appl. Mater. Interfaces 11(47), 44874–44885 (2019). https://doi.org/10.1021/acsami.9b15760
K.W. Tan, C.M. Yap, Z. Zheng, C.Y. Haw, P.S. Khiew et al., State-of-the-art advances, development, and challenges of metal oxide semiconductor nanomaterials for photothermal solar steam generation. Adv. Sustain. Syst. 6(4), 2100416 (2022). https://doi.org/10.1002/adsu.202100416
Y. Liu, M. Zhang, Z. Shen, N. Li, X. Mo et al., Design of honeycomb-imitated composite hydrophobic aerogel and applications for multifunctional water cleaning. Sep. Purif. Technol. 359, 130341 (2025). https://doi.org/10.1016/j.seppur.2024.130341
X. Zhao, H. Zhang, K.-Y. Chan, X. Huang, Y. Yang et al., Tree-inspired structurally graded aerogel with synergistic water, salt, and thermal transport for high-salinity solar-powered evaporation. Nano-Micro Lett. 16(1), 222 (2024). https://doi.org/10.1007/s40820-024-01448-8
Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15(1), 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
D.T. Lee, J. Zhao, C.J. Oldham, G.W. Peterson, G.N. Parsons, UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Appl. Mater. Interfaces 9(51), 44847–44855 (2017). https://doi.org/10.1021/acsami.7b15397
J.E. Mondloch, M.J. Katz, W.C. Isley, P. Ghosh, P. Liao et al., Destruction of chemical warfare agents using metal–organic frameworks. Nat. Mater. 14(5), 512–516 (2015). https://doi.org/10.1038/nmat4238
I. Del Castillo-Velilla, I. Romero-Muñiz, C. Marini, C. Montoro, A.E. Platero-Prats, Copper single-site engineering in MOF-808 membranes for improved water treatment. Nanoscale 16(13), 6627–6635 (2024). https://doi.org/10.1039/d3nr05821b
V. Rahmanian, M.Z. Ahmad Ebrahim, S. Razavi, M. Abdelmigeed, E. Barbieri et al., Vapor phase synthesis of metal–organic frameworks on a nanofibrous aerogel creates enhanced functionality. J. Mater. Chem. A 12(1), 214–226 (2024). https://doi.org/10.1039/D3TA05299K
L. Cao, X. Yu, X. Yin, Y. Si, J. Yu et al., Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption. J. Colloid Interface Sci. 597, 21–28 (2021). https://doi.org/10.1016/j.jcis.2021.03.172
L. Cao, Y. Si, Y. Wu, X. Wang, J. Yu et al., Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale 11(5), 2289–2298 (2019). https://doi.org/10.1039/C8NR09288E
Y. Feng, D. Zong, Y. Hou, X. Yin, S. Zhang et al., Gradient structured micro/nanofibrous sponges with superior compressibility and stretchability for broadband sound absorption. J. Colloid Interface Sci. 593, 59–66 (2021). https://doi.org/10.1016/j.jcis.2021.03.013
W. Bai, D. Zong, X. Liu, F. Wang, X. Yin et al., Flame-retardant, ultralight, and superelastic electrospun fiber sponges for effective sound absorption. J. Text. Inst. 115(5), 724–732 (2024). https://doi.org/10.1080/00405000.2023.2201553
D. Zong, L. Cao, Y. Li, X. Yin, Y. Si et al., Interlocked dual-network and superelastic electrospun fibrous sponges for efficient low-frequency noise absorption. Small Struct. 1(2), 2000004 (2020). https://doi.org/10.1002/sstr.202000004
M. Yang, Z. Chen, L. Yang, Y. Ding, X. Chen et al., Hierarchically porous networks structure based on flexible SiO2 nanofibrous aerogel with excellent low frequency noise absorption. Ceram. Int. 49(1), 301–308 (2023). https://doi.org/10.1016/j.ceramint.2022.08.344
L. Cao, H. Shan, D. Zong, X. Yu, X. Yin et al., Fire-resistant and hierarchically structured elastic ceramic nanofibrous aerogels for efficient low-frequency noise reduction. Nano Lett. 22(4), 1609–1617 (2022). https://doi.org/10.1021/acs.nanolett.1c04532
D. Zong, W. Bai, X. Yin, J. Yu, S. Zhang et al., Gradient pore structured elastic ceramic nanofiber aerogels with cellulose nanonets for noise absorption. Adv. Funct. Mater. 33(31), 2301870 (2023). https://doi.org/10.1002/adfm.202301870
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
Z. Guo, D. Lan, Z. Jia, Z. Gao, X. Shi et al., Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption. Nano-Micro Lett. 17(1), 23 (2024). https://doi.org/10.1007/s40820-024-01527-w
R. Islam, Y. Sood, H. Mudila, A. Ohlan, A. Kumar, Microwave absorbing properties of polypyrrole-based 2D nanocomposites. J. Mater. Chem. A 12(45), 31004–31027 (2024). https://doi.org/10.1039/d4ta05676k
I. Abdalla, J. Cai, W. Lu, J. Yu, Z. Li et al., Recent progress on electromagnetic wave absorption materials enabled by electrospun carbon nanofibers. Carbon 213, 118300 (2023). https://doi.org/10.1016/j.carbon.2023.118300
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13(1), 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
J. Cheng, Y. Jin, J. Zhao, Q. Jing, B. Gu et al., From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption. Nano-Micro Lett. 16(1), 29 (2023). https://doi.org/10.1007/s40820-023-01247-7
L. Yue, B. Zhong, L. Xia, T. Zhang, Y. Yu et al., Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption. J. Colloid Interface Sci. 582, 177–186 (2021). https://doi.org/10.1016/j.jcis.2020.08.024
L. Xu, X. Zhang, L. Huang, J. Yu, Y. Si et al., Janus dual self-strengthening structure of Bi2O3/Gd2O3 nanofibrous membranes for superior X-ray shielding. Small 19(40), 2303012 (2023). https://doi.org/10.1002/smll.202303012
Y. Xia, Z. Zhang, K. Li, S. Zhao, G. Chen et al., Lightweight and high-strength SiC/MWCNTs nanofibrous aerogel derived from RGO/MWCNTs aerogel for microwave absorption. Chem. Eng. J. 486, 150417 (2024). https://doi.org/10.1016/j.cej.2024.150417
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
C. Liu, J. Lin, N. Wu, C. Weng, M. Han et al., Perspectives for electromagnetic wave absorption with graphene. Carbon 223, 119017 (2024). https://doi.org/10.1016/j.carbon.2024.119017
S. Sharma, S.R. Parne, S.S.S. Panda, S. Gandi, Progress in microwave absorbing materials: a critical review. Adv. Colloid Interface Sci. 327, 103143 (2024). https://doi.org/10.1016/j.cis.2024.103143
Y. Cheng, X. Sun, Y. Yuan, S. Yang, Y. Ning et al., Flexible SiO2/rGO aerogel for wide-angle broadband microwave absorption. Carbon 217, 118580 (2024). https://doi.org/10.1016/j.carbon.2023.118580
Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32(42), 2204591 (2022). https://doi.org/10.1002/adfm.202204591
L. Gai, Y. Wang, P. Wan, S. Yu, Y. Chen et al., Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 16(1), 167 (2024). https://doi.org/10.1007/s40820-024-01369-6
G. Shao, C. Ding, G. Yu, R. Xu, X. Huang, Bridged polysilsesquioxane-derived SiOCN ceramic aerogels for microwave absorption. J. Am. Ceram. Soc. 106(4), 2407–2419 (2023). https://doi.org/10.1111/jace.18937
X. Sun, Y. Pu, F. Wu, J. He, G. Deng et al., 0D–1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chem. Eng. J. 423, 130132 (2021). https://doi.org/10.1016/j.cej.2021.130132
X. Wang, Y. Yuan, X. Sun, R. Qiang, Y. Xu et al., Lightweight, flexible, and thermal insulating carbon/SiO2@CNTs composite aerogel for high-efficiency microwave absorption. Small 20(30), e2311657 (2024). https://doi.org/10.1002/smll.202311657
J. Wang, S. Shi, Y. Yan, G. Wan, H. Zhai et al., Manganese oxides/graphene aerogels as lightweight microwave absorbers for extreme environment application. Chem. Eng. J. 493, 152277 (2024). https://doi.org/10.1016/j.cej.2024.152277
J. Zhao, M. Li, X. Gao, Construction of SnO2 nanop cluster@PANI core-shell microspheres for efficient X-band electromagnetic wave absorption. J. Alloys Compd. 915, 165439 (2022). https://doi.org/10.1016/j.jallcom.2022.165439
M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 8(8), 2004640 (2021). https://doi.org/10.1002/advs.202004640
J.-P. Chen, Y.-F. Du, Z.-F. Wang, L.-L. Liang, H. Jia et al., Anchoring of SiC whiskers on the hollow carbon microspheres inducing interfacial polarization to promote electromagnetic wave attenuation capability. Carbon 175, 11–19 (2021). https://doi.org/10.1016/j.carbon.2020.12.073
M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge et al., Microwave magnetic properties of Co50/(SiO2)50 nanops. Appl. Phys. Lett. 80(23), 4404–4406 (2002). https://doi.org/10.1063/1.1484248
B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. 34(22), 2314653 (2024). https://doi.org/10.1002/adfm.202314653
Y. Feng, Z. Li, X. Chen, Y. Pan, X. Zhao et al., Three-dimensional porous, flexible and lightweight reduced graphene oxide/Li0.35Zn0.3Fe2.35O4@SiO2 nanofibers aerogel for efficient microwave absorption. J. Alloys Compd. 988, 174273 (2024). https://doi.org/10.1016/j.jallcom.2024.174273
Y. Wang, B. Li, Hard X-ray attosecond pulse reflection from realistic W/B4C multilayer structures. Nucl. Instrum. Meth. Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1001, 165233 (2021). https://doi.org/10.1016/j.nima.2021.165233
A.M. Grishin, A. Jalalian, M.I. Tsindlekht, Gadolinia nanofibers as a multimodal bioimaging and potential radiation therapy agent. AIP Adv. 5(5), 057104 (2015). https://doi.org/10.1063/1.4919810
L. Xu, J. Zhao, L. Huang, J. Yu, Y. Si et al., Bi2O3/Gd2O3 meta-aerogel with leaf-inspired nanotrap array enables efficient X-ray absorption. ACS Nano 17(23), 24080–24089 (2023). https://doi.org/10.1021/acsnano.3c09063
B. Sun, T. Wang, C. Qin, M. Amjad Majeed, Z. Wang et al., Responsive aerogels of ultra-light flexibility and Fouling-Resistant characteristics to safeguarding X-ray exposure. Chem. Eng. J. 495, 153888 (2024). https://doi.org/10.1016/j.cej.2024.153888
H. Peng, B. Cai, Y. Zhang, L. Gao, P.-Y. Zhao et al., Radar-terahertz-infrared compatible stealth coaxial silver Nanowire@Carbon nano-cable aerogel. Angew. Chem. Int. Ed. 64(10), e202421090 (2025). https://doi.org/10.1002/anie.202421090
X. Liu, K. Pang, H. Yang, X. Guo, Intrinsically microstructured graphene aerogel exhibiting excellent mechanical performance and super-high adsorption capacity. Carbon 161, 146–152 (2020). https://doi.org/10.1016/j.carbon.2020.01.065
X. Wang, Y. Lu, T. Zhu, S. Chang, W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 388, 124317 (2020). https://doi.org/10.1016/j.cej.2020.124317
Z. Hao, Z. Song, J. Huang, K. Huang, A. Panetta et al., The scaffold microenvironment for stem cell based bone tissue engineering. Biomater. Sci. 5(8), 1382–1392 (2017). https://doi.org/10.1039/c7bm00146k
S.-J. Jiang, M.-H. Wang, Z.-Y. Wang, H.-L. Gao, S.-M. Chen et al., Radially porous nanocomposite scaffolds with enhanced capability for guiding bone regeneration in vivo. Adv. Funct. Mater. 32(18), 2110931 (2022). https://doi.org/10.1002/adfm.202110931
L.F.B. Nogueira, M.A.E. Cruz, M.T. de Melo, B.C. Maniglia, F. Caroleo et al., Collagen/κ-carrageenan-based scaffolds as biomimetic constructs for in vitro bone mineralization studies. Biomacromol 24(3), 1258–1266 (2023). https://doi.org/10.1021/acs.biomac.2c01313
L. Fang, X. Lin, R. Xu, L. Liu, Y. Zhang et al., Advances in the development of gradient scaffolds made of nano-micromaterials for musculoskeletal tissue regeneration. Nano-Micro Lett. 17(1), 75 (2024). https://doi.org/10.1007/s40820-024-01581-4
G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3(3), 278–314 (2018). https://doi.org/10.1016/j.bioactmat.2017.10.001
N. Sezer, Z. Evis, M. Koç, Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. J. Magnes. Alloys 9(2), 392–415 (2021). https://doi.org/10.1016/j.jma.2020.09.014
C. Zhou, S. Su, J. Fan, J. Lin, X. Wang, Engineered electrospun poly(lactic-co-glycolic acid)/Si3N4 nanofiber scaffold promotes osteogenesis of mesenchymal stem cell. Front. Mater. 9, 991018 (2022). https://doi.org/10.3389/fmats.2022.991018
W. Zhai, H. Lu, C. Wu, L. Chen, X. Lin et al., Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater. 9(8), 8004–8014 (2013). https://doi.org/10.1016/j.actbio.2013.04.024
L. Weng, S.K. Boda, H. Wang, M.J. Teusink, F.D. Shuler et al., Novel 3D hybrid nanofiber aerogels coupled with BMP-2 peptides for cranial bone regeneration. Adv. Healthc. Mater. 7(10), 1701415 (2018). https://doi.org/10.1002/adhm.201701415
L. Wang, Y. Qiu, Y. Guo, Y. Si, L. Liu et al., Smart, elastic, and nanofiber-based 3D scaffolds with self-deploying capability for osteoporotic bone regeneration. Nano Lett. 19(12), 9112–9120 (2019). https://doi.org/10.1021/acs.nanolett.9b04313
B. Guo, R. Dong, Y. Liang, M. Li, Haemostatic materials for wound healing applications. Nat. Rev. Chem. 5(11), 773–791 (2021). https://doi.org/10.1038/s41570-021-00323-z
X. Wang, Z. Yuan, M. Shafiq, G. Cai, Z. Lei et al., Composite aerogel scaffolds containing flexible silica nanofiber and tricalcium phosphate enable skin regeneration. ACS Appl. Mater. Interfaces 16(20), 25843–25855 (2024). https://doi.org/10.1021/acsami.4c03744
J. Huang, Y. Zheng, W. Ma, Y. Han, J. Xue et al., SiO2-based inorganic nanofiber aerogel with rapid hemostasis and liver wound healing functions. Acta Biomater. 194, 483–497 (2025). https://doi.org/10.1016/j.actbio.2025.01.027
X. Li, B. Dai, J. Guo, L. Zheng, Q. Guo et al., Nanop-cartilage interaction: pathology-based intra-articular drug delivery for osteoarthritis therapy. Nano-Micro Lett. 13(1), 149 (2021). https://doi.org/10.1007/s40820-021-00670-y
J. Ren, Z. Zhang, S. Geng, Y. Cheng, H. Han et al., Molecular mechanisms of intracellular delivery of nanops monitored by an enzyme-induced proximity labeling. Nano-Micro Lett. 16(1), 103 (2024). https://doi.org/10.1007/s40820-023-01313-0
Y. Zhang, J. Li, P. Habibovic, Magnetically responsive nanofibrous ceramic scaffolds for on-demand motion and drug delivery. Bioact. Mater. 15, 372–381 (2022). https://doi.org/10.1016/j.bioactmat.2022.02.028
V. Uskoković, P.P. Lee, L.A. Walsh, K.E. Fischer, T.A. Desai, PEGylated silicon nanowire coated silica microps for drug delivery across intestinal epithelium. Biomaterials 33(5), 1663–1672 (2012). https://doi.org/10.1016/j.biomaterials.2011.11.010
A.I. Martínez-Banderas, A. Aires, M. Quintanilla, J.A. Holguín-Lerma, C. Lozano-Pedraza et al., Iron-based core-shell nanowires for combinatorial drug delivery and photothermal and magnetic therapy. ACS Appl. Mater. Interfaces 11(47), 43976–43988 (2019). https://doi.org/10.1021/acsami.9b17512
Y. Zhao, C. Cheng, X. Wang, Z. Yuan, B. Sun et al., Aspirin-loaded anti-inflammatory ZnO-SiO2 aerogel scaffolds for bone regeneration. ACS Appl. Mater. Interfaces 16(14), 17092–17108 (2024). https://doi.org/10.1021/acsami.3c17152
Y. Zhang, J. Li, M. Soleimani, F. Giacomini, H. Friedrich et al., Biodegradable elastic sponge from nanofibrous biphasic calcium phosphate ceramic as an advanced material for regenerative medicine. Adv. Funct. Mater. 31(40), 2102911 (2021). https://doi.org/10.1002/adfm.202102911
M. Zhang, J. Dai, S. Huang, D. Fang, Y. Liu et al., Pt/TiO2–x nanofibrous aerogel for effective nitrogen reduction: a simple strategy for simultaneous Pt formation and TiO2–x vacancy engineering. Chin. Chem. Lett. 33(2), 1001–1005 (2022). https://doi.org/10.1016/j.cclet.2021.08.069
F. Zhang, J. Yu, Y. Si, B. Ding, Meta-aerogel ion motor for nanofluid osmotic energy harvesting. Adv. Mater. 35(38), e2302511 (2023). https://doi.org/10.1002/adma.202302511
S.L. Foster, S.I.P. Bakovic, R.D. Duda, S. Maheshwari, R.D. Milton et al., Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1(7), 490–500 (2018). https://doi.org/10.1038/s41929-018-0092-7
V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, M. Stoukides, An electrochemical Haber-Bosch process. Joule 4(1), 142–158 (2020). https://doi.org/10.1016/j.joule.2019.10.006
C.M. Goodwin, P. Lömker, D. Degerman, B. Davies, M. Shipilin et al., operando probing of the surface chemistry during the Haber-Bosch process. Nature 625(7994), 282–286 (2024). https://doi.org/10.1038/s41586-023-06844-5
R.D. Cusick, Y. Kim, B.E. Logan, Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science 335(6075), 1474–1477 (2012). https://doi.org/10.1126/science.1219330
F. Hong, C. Yan, Y. Si, J. He, J. Yu et al., Nickel ferrite nanops anchored onto silica nanofibers for designing magnetic and flexible nanofibrous membranes. ACS Appl. Mater. Interfaces 7(36), 20200–20207 (2015). https://doi.org/10.1021/acsami.5b05754
X. Zhang, Y. Liu, Y. Si, J. Yu, B. Ding, Flexible and tough zirconia-based nanofibrous membranes for thermal insulation. Compos. Commun. 33, 101219 (2022). https://doi.org/10.1016/j.coco.2022.101219
V.V. Rodaev, A.I. Tyurin, S.S. Razlivalova, V.V. Korenkov, Y.I. Golovin, Effect of zirconia nanofibers structure evolution on the hardness and Young’s modulus of their mats. Polymers 13(22), 3932 (2021). https://doi.org/10.3390/polym13223932
X. Mao, Y. Bai, J. Yu, B. Ding, Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration. J. Am. Ceram. Soc. 99(8), 2760–2768 (2016). https://doi.org/10.1111/jace.14278
L. Yao, W. Pan, J. Luo, X. Zhao, J. Cheng et al., Stabilizing nanocrystalline oxide nanofibers at elevated temperatures by coating nanoscale surface amorphous films. Nano Lett. 18(1), 130–136 (2018). https://doi.org/10.1021/acs.nanolett.7b03651
X. Mao, J. Hong, Y.-X. Wu, Q. Zhang, J. Liu et al., An efficient strategy for reinforcing flexible ceramic membranes. Nano Lett. 21(22), 9419–9425 (2021). https://doi.org/10.1021/acs.nanolett.1c02657
S. Li, X. Zhang, X. Cheng, G. Han, Y. Si et al., Flexible and compressive Al2O3/ZrO2/Y2O3 nanofibrous membranes for thermal insulation at 1400 ℃. Compos. Commun. 35, 101290 (2022). https://doi.org/10.1016/j.coco.2022.101290
Y. Wang, W. Li, Y. Xia, X. Jiao, D. Chen, Electrospun flexible self-standing γ-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media. J. Mater. Chem. A 2(36), 15124–15131 (2014). https://doi.org/10.1039/C4TA01770F
X. Song, K. Zhang, Y. Song, Z. Duan, Q. Liu et al., Morphology, microstructure and mechanical properties of electrospun alumina nanofibers prepared using different polymer templates: a comparative study. J. Alloys Compd. 829, 154502 (2020). https://doi.org/10.1016/j.jallcom.2020.154502
J. Jiang, N. Ni, X. Zhao, F. Guo, X. Fan et al., Flexible and robust YAG-Al2O3 composite nanofibrous membranes enabled by a hybrid nanocrystalline-amorphous structure. J. Eur. Ceram. Soc. 40(6), 2463–2469 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.056
J. Song, J. Dai, P. Zhang, Y. Liu, J. Yu et al., G-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS quantum dots: a hierarchically structured, self-supported electrocatalyst toward synergistic NH3 synthesis. Nano Res. 14(5), 1479–1487 (2021). https://doi.org/10.1007/s12274-020-3206-x
W. Li, Y. Wang, B. Ji, X. Jiao, D. Chen, Flexible Pd/CeO2–TiO2 nanofibrous membrane with high efficiency ultrafine particulate filtration and improved CO catalytic oxidation performance. RSC Adv. 5(72), 58120–58127 (2015). https://doi.org/10.1039/C5RA09198E
J. Song, X. Wang, J. Yan, J. Yu, G. Sun et al., Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 7(1), 1636 (2017). https://doi.org/10.1038/s41598-017-01969-w
Y. Hou, L. Cheng, Y. Zhang, Y. Yang, C. Deng et al., Enhanced flexibility and microwave absorption properties of HfC/SiC nanofiber mats. ACS Appl. Mater. Interfaces 10(35), 29876–29883 (2018). https://doi.org/10.1021/acsami.8b07980
J. Chen, Y. Zhang, D. Yan, Y. Gou, Flexible ultrafine nearly stoichiometric polycrystalline SiC fibers with excellent oxidation resistance and superior thermal stability up to 1900 ℃. J. Eur. Ceram. Soc. 42(5), 1938–1946 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.049
P. Yu, Z. Lin, Y. Mu, J. Yu, Highly flexible and strong SiC fibre mats prepared by electrospinning and hot-drawing. Adv. Appl. Ceram. 120(3), 144–155 (2021). https://doi.org/10.1080/17436753.2021.1904767
X. Zhang, B. Wang, N. Wu, C. Han, Y. Wang, Multi-phase SiZrOC nanofibers with outstanding flexibility and stability for thermal insulation up to 1400 ℃. Chem. Eng. J. 410, 128304 (2021). https://doi.org/10.1016/j.cej.2020.128304
X. Zhang, B. Wang, N. Wu, C. Han, C. Wu et al., Flexible and thermal-stable SiZrOC nanofiber membranes with low thermal conductivity at high-temperature. J. Eur. Ceram. Soc. 40(5), 1877–1885 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.037
Z. Xu, F. Wu, K. Pan, Y. Liao, F. Wang et al., Ceramic aerogels constructed from dense, non-porous ceramic nanofibers with robust and elastic properties up to 1300 ℃. Ceram. Int. 50(4), 6381–6387 (2024). https://doi.org/10.1016/j.ceramint.2023.11.373
F. Wang, L. Dou, J. Dai, Y. Li, L. Huang et al., In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem. Int. Ed. 59(21), 8285–8292 (2020). https://doi.org/10.1002/anie.202001679
X. Zhang, W. Huang, J. Yu, C. Zhao, Y. Si, Nacre-mimetic multi-mechanical synergistic ceramic aerogels with interfacial bridging and stress delocalization. Adv. Funct. Mater. 35(10), 2416857 (2025). https://doi.org/10.1002/adfm.202416857
R. Zhang, Z.