Superelastic and Washable Micro/Nanofibrous Sponges Based on Biomimetic Helical Fibers for Efficient Thermal Insulation
Corresponding Author: Fei Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 42
Abstract
Extreme cold weather seriously harms human thermoregulatory system, necessitating high-performance insulating garments to maintain body temperature. However, as the core insulating layer, advanced fibrous materials always struggle to balance mechanical properties and thermal insulation, resulting in their inability to meet the demands for both washing resistance and personal protection. Herein, inspired by the natural spring-like structures of cucumber tendrils, a superelastic and washable micro/nanofibrous sponge (MNFS) based on biomimetic helical fibers is directly prepared utilizing multiple-jet electrospinning technology for high-performance thermal insulation. By regulating the conductivity of polyvinylidene fluoride solution, multiple-jet ejection and multiple-stage whipping of jets are achieved, and further control of phase separation rates enables the rapid solidification of jets to form spring-like helical fibers, which are directly entangled to assemble MNFS. The resulting MNFS exhibits superelasticity that can withstand large tensile strain (200%), 1000 cyclic tensile or compression deformations, and retain good resilience even in liquid nitrogen (− 196 °C). Furthermore, the MNFS shows efficient thermal insulation with low thermal conductivity (24.85 mW m−1 K−1), close to the value of dry air, and remains structural stability even after cyclic washing. This work offers new possibilities for advanced fibrous sponges in transportation, environmental, and energy applications.
Highlights:
1 A superelastic and washable sponge based on biomimetic spring-like helical micro/nanofibers is directly fabricated by multiple-jet electrospinning technology.
2 The resulting sponge exhibits both lightweight (low density of 7.1 mg cm–3) and robust mechanical property (large tensile strain up to 200%).
3 The sponge also shows efficient thermal insulation performance with low thermal conductivity (24.85 mW m–1 K–1), and remains structural stability even after cyclic washing, making it a promising candidate for personal protection in cold environments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Gu, Q. Xu, H. Wang, H. Pan, D. Zhao, A hierarchically nanofibrous self-cleaning textile for efficient personal thermal management in severe hot and cold environments. ACS Nano 17(18), 18308–18317 (2023). https://doi.org/10.1021/acsnano.3c05460
- Z. Wang, Y. Bo, P. Bai, S. Zhang, G. Li et al., Self-sustaining personal all-day thermoregulatory clothing using only sunlight. Science 382(6676), 1291–1296 (2023). https://doi.org/10.1126/science.adj3654
- Y. Tian, Y. Chen, S. Wang, X. Wang, J. Yu et al., Ultrathin aerogel-structured micro/nanofiber metafabric via dual air-gelation synthesis for self-sustainable heating. Nat. Commun. 15(1), 6416 (2024). https://doi.org/10.1038/s41467-024-50654-w
- X. Li, W. Guo, P.-C. Hsu, Personal thermoregulation by moisture-engineered materials. Adv. Mater. 36(12), 2209825 (2024). https://doi.org/10.1002/adma.202209825
- Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4(4), 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
- S. Zhong, B. Lu, D.-C. Wang, B. Arianpour, S. Wang et al., Passive isothermal flexible sensor enabled by smart thermal-regulating aerogels. Adv. Mater. 37(8), e2415386 (2025). https://doi.org/10.1002/adma.202415386
- J. Zhu, Y. Zhu, Y. Ye, Z. Qiu, Y. Zhang et al., Superelastic and ultralight aerogel assembled from hemp microfibers. Adv. Funct. Mater. 33(22), 2300893 (2023). https://doi.org/10.1002/adfm.202300893
- L. Xie, X. Wang, Y. Bai, X. Zou, X. Liu, Fast-developing dynamic radiative thermal management: full-scale fundamentals, switching methods, applications, and challenges. Nano-Micro Lett. 17(1), 146 (2025). https://doi.org/10.1007/s40820-025-01676-6
- J. Hu, M.I. Iqbal, F. Sun, Wool can be cool: water-actuating woolen knitwear for both hot and cold. Adv. Funct. Mater. 30(51), 2005033 (2020). https://doi.org/10.1002/adfm.202005033
- T. Xue, C. Zhu, D. Yu, X. Zhang, F. Lai et al., Fast and scalable production of crosslinked polyimide aerogel fibers for ultrathin thermoregulating clothes. Nat. Commun. 14(1), 8378 (2023). https://doi.org/10.1038/s41467-023-43663-8
- H. Li, L. Qi, J. Li, Effects of DTAC on the warmth retention of down fiber based on response surface method. Fibres Polym. 17(7), 1115–1122 (2016). https://doi.org/10.1007/s12221-016-5796-1
- S. Wang, C. Zhu, F. Wang, J. Yu, S. Zhang et al., Ultralight and superelastic curly micro/nanofibrous aerogels by direct electrospinning enable high-performance warmth retention. Small 19(41), 2302835 (2023). https://doi.org/10.1002/smll.202302835
- M. Wang, Y. Liu, G. Yang, T. Xiang, Y. Ji et al., Multi-modal heat rechargeable phase change composites based on MXene coated core-sheath fiber strategy. J. Alloys Compd. 1002, 175177 (2024). https://doi.org/10.1016/j.jallcom.2024.175177
- Y. Tian, R. Ding, S.S. Yoon, S. Zhang, J. Yu et al., Recent advances in next-generation textiles. Adv. Mater. 37(8), 2417022 (2025). https://doi.org/10.1002/adma.202417022
- P. Hu, F. Wu, B. Ma, J. Luo, P. Zhang et al., Robust and flame-retardant zylon aerogel fibers for wearable thermal insulation and sensing in harsh environment. Adv. Mater. 36(6), 2310023 (2024). https://doi.org/10.1002/adma.202310023
- S. Wang, C. Liu, F. Wang, X. Yin, J. Yu et al., Recent advances in ultrafine fibrous materials for effective warmth retention. Adv. Fiber Mater. 5(3), 847–867 (2023). https://doi.org/10.1007/s42765-022-00209-9
- Z. Hu, S. Yan, X. Li, R. You, Q. Zhang et al., Natural silk nanofibril aerogels with distinctive filtration capacity and heat-retention performance. ACS Nano 15(5), 8171–8183 (2021). https://doi.org/10.1021/acsnano.1c00346
- X. Fu, L. Si, Z. Zhang, T. Yang, Q. Feng et al., Gradient all-nanostructured aerogel fibers for enhanced thermal insulation and mechanical properties. Nat. Commun. 16(1), 2357 (2025). https://doi.org/10.1038/s41467-025-57646-4
- B. Zhan, Y. Qu, X. Qi, J. Ding, J.-J. Shao et al., Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures for microwave absorption, anti-corrosion and thermal insulation. Nano-Micro Lett. 16(1), 221 (2024). https://doi.org/10.1007/s40820-024-01447-9
- W. Zhang, G. Liang, S. Wang, F. Yang, X. Liu et al., Loofah-inspired ultralight and superelastic micro/nanofibrous aerogels for highly efficient thermal insulation. Adv. Funct. Mater. 35(2), 2412424 (2025). https://doi.org/10.1002/adfm.202412424
- S. Dang, J. Guo, Y. Deng, H. Yu, H. Zhao et al., Highly-buckled nanofibrous ceramic aerogels with ultra-large stretchability and tensile-insensitive thermal insulation. Adv. Mater. 37(4), 2415159 (2025). https://doi.org/10.1002/adma.202415159
- D. Wang, C. Song, S. Dang, J. Guo, H. Yu et al., High-entropy ceramic aerogel with ultrahigh thermomechanical properties. ACS Appl. Mater. Interfaces 17(12), 18636–18644 (2025). https://doi.org/10.1021/acsami.4c22818
- S.J. Gerbode, J.R. Puzey, A.G. McCormick, L. Mahadevan, How the cucumber tendril coils and overwinds. Science 337(6098), 1087–1091 (2012). https://doi.org/10.1126/science.1223304
- L. Li, C. Jia, Y. Liu, B. Fang, W. Zhu et al., Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Mater. Today 54, 72–82 (2022). https://doi.org/10.1016/j.mattod.2022.02.007
- C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11(1), 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
- Y. Liu, X. Pan, Z. Zhou, Y. Xiao, H. Mei et al., Ultralight and elastic polyimide microtube aerogel via airflow-induced spinning. Adv. Mater. (2025). https://doi.org/10.1002/adma.202503499
- S. Wu, D. Chen, W. Han, Y. Xie, G. Zhao et al., Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 446, 137093 (2022). https://doi.org/10.1016/j.cej.2022.137093
- J. Feng, Z. Ma, J. Wu, Z. Zhou, Z. Liu et al., Fire-safe aerogels and foams for thermal insulation: from materials to properties. Adv. Mater. 37(3), e2411856 (2025). https://doi.org/10.1002/adma.202411856
- S. Wang, R. Ding, G. Liang, W. Zhang, F. Yang et al., Direct synthesis of polyimide curly nanofibrous aerogels for high-performance thermal insulation under extreme temperature. Adv. Mater. 36(13), 2313444 (2024). https://doi.org/10.1002/adma.202313444
- C. Xu, C. Yue, Y. Yao, Y. Yu, L. Li et al., 3D cotton-like phase change fibers via electrospinning for thermal management of textile. J. Energy Storage 84, 110991 (2024). https://doi.org/10.1016/j.est.2024.110991
- T. Han, D.H. Reneker, A.L. Yarin, Buckling of jets in electrospinning. Polymer 48(20), 6064–6076 (2007). https://doi.org/10.1016/j.polymer.2007.08.002
- D.H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer 49(10), 2387–2425 (2008). https://doi.org/10.1016/j.polymer.2008.02.002
- J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
- D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87(9), 4531–4547 (2000). https://doi.org/10.1063/1.373532
- A. Ghodsi, H. Fashandi, M. Zarrebini, M. Mirzaei, Controlling the morphology of PVDF hollow fiber membranes by promotion of liquid–liquid phase separation. Adv. Eng. Mater. 20(7), 1701169 (2018). https://doi.org/10.1002/adem.201701169
- R.M. Boom, T. van den Boomgaard, J.W.A. van den Berg, C.A. Smolders, Linearized cloudpoint curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent. Polymer 34(11), 2348–2356 (1993). https://doi.org/10.1016/0032-3861(93)90819-V
- S. Ahankari, P. Paliwal, A. Subhedar, H. Kargarzadeh, Recent developments in nanocellulose-based aerogels in thermal applications: a review. ACS Nano 15(3), 3849–3874 (2021). https://doi.org/10.1021/acsnano.0c09678
- Z. Niu, F. Qu, F. Chen, X. Ma, B. Chen et al., Multifunctional integrated organic-inorganic-metal hybrid aerogel for excellent thermal insulation and electromagnetic shielding performance. Nano-Micro Lett. 16(1), 200 (2024). https://doi.org/10.1007/s40820-024-01409-1
- P. Wu, J. Gu, X. Liu, Y. Ren, X. Mi et al., A robust core-shell nanofabric with personal protection, health monitoring and physical comfort for smart sportswear. Adv. Mater. 36(47), e2411131 (2024). https://doi.org/10.1002/adma.202411131
- F. Hu, S. Wu, Y. Sun, Hollow-structured materials for thermal insulation. Adv. Mater. 31(38), 1801001 (2019). https://doi.org/10.1002/adma.201801001
- V. Apostolopoulou-Kalkavoura, P. Munier, L. Bergström, Thermally insulating nanocellulose-based materials. Adv. Mater. 33(28), 2001839 (2021). https://doi.org/10.1002/adma.202001839
- B. Wu, Q. Qi, L. Liu, Y. Liu, J. Wang, Wearable aerogels for personal thermal management and smart devices. ACS Nano 18(14), 9798–9822 (2024). https://doi.org/10.1021/acsnano.4c00967
- H.W. Koh, D.K. Le, G.N. Ng, X. Zhang, N. Phan-Thien et al., Advanced recycled polyethylene terephthalate aerogels from plastic waste for acoustic and thermal insulation applications. Gels 4(2), 43 (2018). https://doi.org/10.3390/gels4020043
- H. Xie, W. Yang, A.C.Y. Yuen, C. Xie, J. Xie et al., Study on flame retarded flexible polyurethane foam/alumina aerogel composites with improved fire safety. Chem. Eng. J. 311, 310–317 (2017). https://doi.org/10.1016/j.cej.2016.11.110
- A. Hegyi, C. Bulacu, H. Szilagyi, A.-V. Lăzărescu, V. Meiţă et al., Improving indoor air quality by using sheep wool thermal insulation. Materials 14(9), 2443 (2021). https://doi.org/10.3390/ma14092443
- T.-O. Dénes, R. Iştoan, D.R. Tǎmaş-Gavrea, D.L. Manea, A. Hegyi et al., Analysis of sheep wool-based composites for building insulation. Polymers 14(10), 2109 (2022). https://doi.org/10.3390/polym14102109
- A. Majumdar, S. Mukhopadhyay, R. Yadav, Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. Int. J. Therm. Sci. 49(10), 2042–2048 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.05.017
- Q.D. Gibson, T. Zhao, L.M. Daniels, H.C. Walker, R. Daou et al., Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch. Science 373(6558), 1017–1022 (2021). https://doi.org/10.1126/science.abh1619
- Y. Yu, C. Xu, Z. Hu, H. Xiang, J. Zhang et al., Industrial scale sea-island melt-spun continuous ultrafine fibers for highly comfortable insulated aerogel felt clothing. Adv. Mater. 36(52), 2414731 (2024). https://doi.org/10.1002/adma.202414731
- S. Wang, X. Zhao, Z. Yang, R. Ding, Y. Tian et al., Direct assembly of aerogel micro-nanofiber/MXene sponges with dual-network structures for all-day personal heating. Adv. Funct. Mater. 34(27), 2316657 (2024). https://doi.org/10.1002/adfm.202316657
- J. Zhang, J. Zheng, M. Gao, C. Xu, Y. Cheng et al., Nacre-mimetic nanocomposite aerogels with exceptional mechanical performance for thermal superinsulation at extreme conditions. Adv. Mater. 35(29), 2300813 (2023). https://doi.org/10.1002/adma.202300813
References
B. Gu, Q. Xu, H. Wang, H. Pan, D. Zhao, A hierarchically nanofibrous self-cleaning textile for efficient personal thermal management in severe hot and cold environments. ACS Nano 17(18), 18308–18317 (2023). https://doi.org/10.1021/acsnano.3c05460
Z. Wang, Y. Bo, P. Bai, S. Zhang, G. Li et al., Self-sustaining personal all-day thermoregulatory clothing using only sunlight. Science 382(6676), 1291–1296 (2023). https://doi.org/10.1126/science.adj3654
Y. Tian, Y. Chen, S. Wang, X. Wang, J. Yu et al., Ultrathin aerogel-structured micro/nanofiber metafabric via dual air-gelation synthesis for self-sustainable heating. Nat. Commun. 15(1), 6416 (2024). https://doi.org/10.1038/s41467-024-50654-w
X. Li, W. Guo, P.-C. Hsu, Personal thermoregulation by moisture-engineered materials. Adv. Mater. 36(12), 2209825 (2024). https://doi.org/10.1002/adma.202209825
Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4(4), 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
S. Zhong, B. Lu, D.-C. Wang, B. Arianpour, S. Wang et al., Passive isothermal flexible sensor enabled by smart thermal-regulating aerogels. Adv. Mater. 37(8), e2415386 (2025). https://doi.org/10.1002/adma.202415386
J. Zhu, Y. Zhu, Y. Ye, Z. Qiu, Y. Zhang et al., Superelastic and ultralight aerogel assembled from hemp microfibers. Adv. Funct. Mater. 33(22), 2300893 (2023). https://doi.org/10.1002/adfm.202300893
L. Xie, X. Wang, Y. Bai, X. Zou, X. Liu, Fast-developing dynamic radiative thermal management: full-scale fundamentals, switching methods, applications, and challenges. Nano-Micro Lett. 17(1), 146 (2025). https://doi.org/10.1007/s40820-025-01676-6
J. Hu, M.I. Iqbal, F. Sun, Wool can be cool: water-actuating woolen knitwear for both hot and cold. Adv. Funct. Mater. 30(51), 2005033 (2020). https://doi.org/10.1002/adfm.202005033
T. Xue, C. Zhu, D. Yu, X. Zhang, F. Lai et al., Fast and scalable production of crosslinked polyimide aerogel fibers for ultrathin thermoregulating clothes. Nat. Commun. 14(1), 8378 (2023). https://doi.org/10.1038/s41467-023-43663-8
H. Li, L. Qi, J. Li, Effects of DTAC on the warmth retention of down fiber based on response surface method. Fibres Polym. 17(7), 1115–1122 (2016). https://doi.org/10.1007/s12221-016-5796-1
S. Wang, C. Zhu, F. Wang, J. Yu, S. Zhang et al., Ultralight and superelastic curly micro/nanofibrous aerogels by direct electrospinning enable high-performance warmth retention. Small 19(41), 2302835 (2023). https://doi.org/10.1002/smll.202302835
M. Wang, Y. Liu, G. Yang, T. Xiang, Y. Ji et al., Multi-modal heat rechargeable phase change composites based on MXene coated core-sheath fiber strategy. J. Alloys Compd. 1002, 175177 (2024). https://doi.org/10.1016/j.jallcom.2024.175177
Y. Tian, R. Ding, S.S. Yoon, S. Zhang, J. Yu et al., Recent advances in next-generation textiles. Adv. Mater. 37(8), 2417022 (2025). https://doi.org/10.1002/adma.202417022
P. Hu, F. Wu, B. Ma, J. Luo, P. Zhang et al., Robust and flame-retardant zylon aerogel fibers for wearable thermal insulation and sensing in harsh environment. Adv. Mater. 36(6), 2310023 (2024). https://doi.org/10.1002/adma.202310023
S. Wang, C. Liu, F. Wang, X. Yin, J. Yu et al., Recent advances in ultrafine fibrous materials for effective warmth retention. Adv. Fiber Mater. 5(3), 847–867 (2023). https://doi.org/10.1007/s42765-022-00209-9
Z. Hu, S. Yan, X. Li, R. You, Q. Zhang et al., Natural silk nanofibril aerogels with distinctive filtration capacity and heat-retention performance. ACS Nano 15(5), 8171–8183 (2021). https://doi.org/10.1021/acsnano.1c00346
X. Fu, L. Si, Z. Zhang, T. Yang, Q. Feng et al., Gradient all-nanostructured aerogel fibers for enhanced thermal insulation and mechanical properties. Nat. Commun. 16(1), 2357 (2025). https://doi.org/10.1038/s41467-025-57646-4
B. Zhan, Y. Qu, X. Qi, J. Ding, J.-J. Shao et al., Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures for microwave absorption, anti-corrosion and thermal insulation. Nano-Micro Lett. 16(1), 221 (2024). https://doi.org/10.1007/s40820-024-01447-9
W. Zhang, G. Liang, S. Wang, F. Yang, X. Liu et al., Loofah-inspired ultralight and superelastic micro/nanofibrous aerogels for highly efficient thermal insulation. Adv. Funct. Mater. 35(2), 2412424 (2025). https://doi.org/10.1002/adfm.202412424
S. Dang, J. Guo, Y. Deng, H. Yu, H. Zhao et al., Highly-buckled nanofibrous ceramic aerogels with ultra-large stretchability and tensile-insensitive thermal insulation. Adv. Mater. 37(4), 2415159 (2025). https://doi.org/10.1002/adma.202415159
D. Wang, C. Song, S. Dang, J. Guo, H. Yu et al., High-entropy ceramic aerogel with ultrahigh thermomechanical properties. ACS Appl. Mater. Interfaces 17(12), 18636–18644 (2025). https://doi.org/10.1021/acsami.4c22818
S.J. Gerbode, J.R. Puzey, A.G. McCormick, L. Mahadevan, How the cucumber tendril coils and overwinds. Science 337(6098), 1087–1091 (2012). https://doi.org/10.1126/science.1223304
L. Li, C. Jia, Y. Liu, B. Fang, W. Zhu et al., Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Mater. Today 54, 72–82 (2022). https://doi.org/10.1016/j.mattod.2022.02.007
C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11(1), 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
Y. Liu, X. Pan, Z. Zhou, Y. Xiao, H. Mei et al., Ultralight and elastic polyimide microtube aerogel via airflow-induced spinning. Adv. Mater. (2025). https://doi.org/10.1002/adma.202503499
S. Wu, D. Chen, W. Han, Y. Xie, G. Zhao et al., Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 446, 137093 (2022). https://doi.org/10.1016/j.cej.2022.137093
J. Feng, Z. Ma, J. Wu, Z. Zhou, Z. Liu et al., Fire-safe aerogels and foams for thermal insulation: from materials to properties. Adv. Mater. 37(3), e2411856 (2025). https://doi.org/10.1002/adma.202411856
S. Wang, R. Ding, G. Liang, W. Zhang, F. Yang et al., Direct synthesis of polyimide curly nanofibrous aerogels for high-performance thermal insulation under extreme temperature. Adv. Mater. 36(13), 2313444 (2024). https://doi.org/10.1002/adma.202313444
C. Xu, C. Yue, Y. Yao, Y. Yu, L. Li et al., 3D cotton-like phase change fibers via electrospinning for thermal management of textile. J. Energy Storage 84, 110991 (2024). https://doi.org/10.1016/j.est.2024.110991
T. Han, D.H. Reneker, A.L. Yarin, Buckling of jets in electrospinning. Polymer 48(20), 6064–6076 (2007). https://doi.org/10.1016/j.polymer.2007.08.002
D.H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer 49(10), 2387–2425 (2008). https://doi.org/10.1016/j.polymer.2008.02.002
J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87(9), 4531–4547 (2000). https://doi.org/10.1063/1.373532
A. Ghodsi, H. Fashandi, M. Zarrebini, M. Mirzaei, Controlling the morphology of PVDF hollow fiber membranes by promotion of liquid–liquid phase separation. Adv. Eng. Mater. 20(7), 1701169 (2018). https://doi.org/10.1002/adem.201701169
R.M. Boom, T. van den Boomgaard, J.W.A. van den Berg, C.A. Smolders, Linearized cloudpoint curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent. Polymer 34(11), 2348–2356 (1993). https://doi.org/10.1016/0032-3861(93)90819-V
S. Ahankari, P. Paliwal, A. Subhedar, H. Kargarzadeh, Recent developments in nanocellulose-based aerogels in thermal applications: a review. ACS Nano 15(3), 3849–3874 (2021). https://doi.org/10.1021/acsnano.0c09678
Z. Niu, F. Qu, F. Chen, X. Ma, B. Chen et al., Multifunctional integrated organic-inorganic-metal hybrid aerogel for excellent thermal insulation and electromagnetic shielding performance. Nano-Micro Lett. 16(1), 200 (2024). https://doi.org/10.1007/s40820-024-01409-1
P. Wu, J. Gu, X. Liu, Y. Ren, X. Mi et al., A robust core-shell nanofabric with personal protection, health monitoring and physical comfort for smart sportswear. Adv. Mater. 36(47), e2411131 (2024). https://doi.org/10.1002/adma.202411131
F. Hu, S. Wu, Y. Sun, Hollow-structured materials for thermal insulation. Adv. Mater. 31(38), 1801001 (2019). https://doi.org/10.1002/adma.201801001
V. Apostolopoulou-Kalkavoura, P. Munier, L. Bergström, Thermally insulating nanocellulose-based materials. Adv. Mater. 33(28), 2001839 (2021). https://doi.org/10.1002/adma.202001839
B. Wu, Q. Qi, L. Liu, Y. Liu, J. Wang, Wearable aerogels for personal thermal management and smart devices. ACS Nano 18(14), 9798–9822 (2024). https://doi.org/10.1021/acsnano.4c00967
H.W. Koh, D.K. Le, G.N. Ng, X. Zhang, N. Phan-Thien et al., Advanced recycled polyethylene terephthalate aerogels from plastic waste for acoustic and thermal insulation applications. Gels 4(2), 43 (2018). https://doi.org/10.3390/gels4020043
H. Xie, W. Yang, A.C.Y. Yuen, C. Xie, J. Xie et al., Study on flame retarded flexible polyurethane foam/alumina aerogel composites with improved fire safety. Chem. Eng. J. 311, 310–317 (2017). https://doi.org/10.1016/j.cej.2016.11.110
A. Hegyi, C. Bulacu, H. Szilagyi, A.-V. Lăzărescu, V. Meiţă et al., Improving indoor air quality by using sheep wool thermal insulation. Materials 14(9), 2443 (2021). https://doi.org/10.3390/ma14092443
T.-O. Dénes, R. Iştoan, D.R. Tǎmaş-Gavrea, D.L. Manea, A. Hegyi et al., Analysis of sheep wool-based composites for building insulation. Polymers 14(10), 2109 (2022). https://doi.org/10.3390/polym14102109
A. Majumdar, S. Mukhopadhyay, R. Yadav, Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. Int. J. Therm. Sci. 49(10), 2042–2048 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.05.017
Q.D. Gibson, T. Zhao, L.M. Daniels, H.C. Walker, R. Daou et al., Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch. Science 373(6558), 1017–1022 (2021). https://doi.org/10.1126/science.abh1619
Y. Yu, C. Xu, Z. Hu, H. Xiang, J. Zhang et al., Industrial scale sea-island melt-spun continuous ultrafine fibers for highly comfortable insulated aerogel felt clothing. Adv. Mater. 36(52), 2414731 (2024). https://doi.org/10.1002/adma.202414731
S. Wang, X. Zhao, Z. Yang, R. Ding, Y. Tian et al., Direct assembly of aerogel micro-nanofiber/MXene sponges with dual-network structures for all-day personal heating. Adv. Funct. Mater. 34(27), 2316657 (2024). https://doi.org/10.1002/adfm.202316657
J. Zhang, J. Zheng, M. Gao, C. Xu, Y. Cheng et al., Nacre-mimetic nanocomposite aerogels with exceptional mechanical performance for thermal superinsulation at extreme conditions. Adv. Mater. 35(29), 2300813 (2023). https://doi.org/10.1002/adma.202300813