Diphylleia Grayi-Inspired Intelligent Temperature-Responsive Transparent Nanofiber Membranes
Corresponding Author: Bin Ding
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 65
Abstract
Nanofiber membranes (NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent (TRT) membranes, which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 °C, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance (> 90%), and fast response (5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices.
Highlights:
1 Temperature-responsive transparent nanofiber membranes were successfully fabricated using a straightforward and widely applicable method.
2 The temperature-responsive nanofiber membranes exhibit a lower reaction temperature (~ 37 °C) and higher transmittance (> 90%).
3 The prepared temperature-responsive transparent nanofiber membranes exhibited a short response temperature time (~ 5 s), and remarkable stability
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Abraham, V. Cherpak, B. Senyuk, J.B. ten Hove, T. Lee et al., Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings. Nat. Energy 8(4), 381–396 (2023). https://doi.org/10.1038/s41560-023-01226-7
- J. Lee, H. Chae, K. Kim, H.S. Kim, T. Seo, Detection method for transparent window cleaning device, image processing approach. Sci. Rep. 12(1), 3229 (2022). https://doi.org/10.1038/s41598-022-07235-y
- Y. Shi, P. Yang, R. Lei, Z. Liu, X. Dong et al., Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface. Nat. Commun. 14(1), 3315 (2023). https://doi.org/10.1038/s41467-023-39068-2
- S.Z. Sheng, J.L. Wang, B. Zhao, Z. He, X.F. Feng et al., Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation. Nat. Commun. 14(1), 3231 (2023). https://doi.org/10.1038/s41467-023-38353-4
- Z. Li, Z. Huang, Q. Yang, M. Su, X. Zhou et al., Bioinspired anti-moiré random grids via patterning foams. Adv. Opt. Mater. 5(23), 1700751 (2017). https://doi.org/10.1002/adom.201700751
- Q. Liu, Z. Liu, C. Li, K. Xie, P. Zhu et al., Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Adv. Sci. 7(10), 2000348 (2020). https://doi.org/10.1002/advs.202000348
- V.H. Nguyen, D.T. Papanastasiou, J. Resende, L. Bardet, T. Sannicolo et al., Advances in flexible metallic transparent electrodes. Small 18(19), e2106006 (2022). https://doi.org/10.1002/smll.202106006
- S. Yu, X. Liu, P. Yang, L. Zhao, H. Dong et al., Highly stable silver nanowire networks with tin oxide shells for freestanding transparent conductive nanomembranes through all-solution processes. Chem. Eng. J. 446(5), 137481 (2022). https://doi.org/10.1016/j.cej.2022.137481
- S.S. de Souza, K.P.V. de Oliveira, F.V. Berti, J.P.M.G. Godoi, D. Müller et al., Optically transparent and stretchable pure bacterial nanocellulose. J. Polym. Res. 29(9), 389 (2022). https://doi.org/10.1007/s10965-022-03213-0
- K. Ma, Y. Qiu, Y. Fu, Q. Ni, Electrospun sandwich configuration nanofibers as transparent membranes for skin care drug delivery systems. J. Mater. Sci. 53(15), 10617–10626 (2018). https://doi.org/10.1007/s10853-018-2241-4
- C. Wang, N. Meng, A.A. Babar, X. Gong, G. Liu et al., Highly transparent nanofibrous membranes used as transparent masks for efficient PM0.3 removal. ACS Nano 16(1), 119–128 (2022). https://doi.org/10.1021/acsnano.1c09055
- J. Chen, C. Guo, Q. Zhang, X. Wu, L. Zhong et al., Preparation of transparent, amphiphobic and recyclable electrospun window screen air filter for high-efficiency particulate matters capture. J. Membr. Sci. 675, 121545 (2023). https://doi.org/10.1016/j.memsci.2023.121545
- L. Porz, A.J. Klomp, X. Fang, N. Li, C. Yildirim et al., Dislocation-toughened ceramics. Mater. Horiz. 8(5), 1528–1537 (2021). https://doi.org/10.1039/d0mh02033h
- J. Cheng, H. Wang, J. Gao, X. Liu, M. Li et al., First-aid hydrogel wound dressing with reliable hemostatic and antibacterial capability for traumatic injuries. Adv. Healthc. Mater. 12, e2300312 (2023). https://doi.org/10.1002/adhm.202300312
- Y. Zhu, Y. Shmidov, E.A. Harris, M.H. Theus, R. Bitton et al., Activating hidden signals by mimicking cryptic sites in a synthetic extracellular matrix. Nat. Commun. 14(1), 3635 (2023). https://doi.org/10.1038/s41467-023-39349-w
- S. Correa, A.K. Grosskopf, H. Lopez Hernandez, D. Chan, A.C. Yu et al., Translational applications of hydrogels. Chem. Rev. 121(18), 11385–11457 (2021). https://doi.org/10.1021/acs.chemrev.0c01177
- J.Y.C. Lim, S.S. Goh, X.J. Loh, Bottom-up engineering of responsive hydrogel materials for molecular detection and biosensing. ACS Mater. Lett. 2(8), 918–950 (2020). https://doi.org/10.1021/acsmaterialslett.0c00204
- F. Wu, S. Qiang, X.D. Zhu, W. Jiao, L. Liu et al., Fibrous mxene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
- M. Zheng, X. Wang, O. Yue, M. Hou, H. Zhang et al., Skin-inspired gelatin-based flexible bio-electronic hydrogel for wound healing promotion and motion sensing. Biomaterials 276, 121026 (2021). https://doi.org/10.1016/j.biomaterials.2021.121026
- S. Guan, C. Xu, X. Dong, M. Qi, Highly tough, fatigue-resistant, low hysteresis hybrid hydrogel with hierarchical cross-linked structure for wearable strain sensor. J. Mater. Chem. A 11, 15404–15415 (2023). https://doi.org/10.1039/d3ta02584e
- Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel membranes for wireless respiration monitoring. Nano-Micro Lett. 14(1), 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
- W. Zhao, F. Shao, F. Sun, Z. Su, S. Liu et al., Neuron-inspired sticky artificial spider silk for signal transmission. Adv. Mater. 35, e2300876 (2023). https://doi.org/10.1002/adma.202300876
- Y. Miao, M. Xu, L. Zhang, Electrochemistry-induced improvements of mechanical strength, self-healing, and interfacial adhesion of hydrogels. Adv. Mater. 33(40), e2102308 (2021). https://doi.org/10.1002/adma.202102308
- C. Wang, J. Zhao, L. Liu, P. Zhang, X. Wang et al., Transformation of fibrous membranes from opaque to transparent under mechanical pressing. Engineering 19, 84 (2021). https://doi.org/10.1016/j.eng.2021.02.018
- N. Pan, J. Qin, P. Feng, B. Song, Window screen inspired fibrous materials with anisotropic thickness gradients for improving light transmittance. Nanoscale 11(28), 13521–13531 (2019). https://doi.org/10.1039/c9nr02810b
- X. Gong, C. Jin, X.Y. Liu, J. Yu, S. Zhang et al., Scalable fabrication of electrospun true-nanoscale fiber membranes for effective selective separation. Nano Lett. 23(3), 1044–1051 (2023). https://doi.org/10.1021/acs.nanolett.2c04667
- J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15(1), 11 (2022). https://doi.org/10.1007/s40820-022-00982-7
- G. Jacucci, J. Bertolotti, S. Vignolini, Role of anisotropy and refractive index in scattering and whiteness optimization. Adv. Opt. Mater. 7(23), 1900980 (2019). https://doi.org/10.1002/adom.201900980
- X. Yan, X. Xiao, C. Au, S. Mathur, L. Huang et al., Electrospinning nanofibers and nanomembranes for oil/water separation. Mater. Chem. A 9, 21659–21684 (2021). https://doi.org/10.1039/D1TA05873H
- X. Yan, Y. Wang, B. Li, Z. Huang, Z. Gao et al., Polyacrylonitrile fluorescent nanofibers for selective and reversible copper detection in aqueous solutions. Appl. Surf. Sci. 602, 154302 (2022). https://doi.org/10.1016/j.apsusc.2022.154302
- X. Yan, Y. Wang, Z. Huang, Z. Gao, X. Mao et al., Janus polyacrylonitrile/carbon nanotube nanofiber membranes for oil/water separation. ACS Appl. Nano Mater. 6, 4511–4521 (2023). https://doi.org/10.1021/acsanm.3c00006
- J. Qi, Y. Chen, W. Zhang, L. Li, H. Huang et al., Imparting cellulose acetate membranes with hydrophobicity, high transparency, and self-cleaning function by constructing a slippery liquid-infused porous surface. Ind. Eng. Chem. Res. 61(23), 7962–7970 (2022). https://doi.org/10.1021/acs.iecr.2c00776
- Y. Xu, Y. Li, N. Zheng, Q. Zhao, T. Xie, Transparent origami glass. Nat. Commun. 12(1), 4261 (2021). https://doi.org/10.1038/s41467-021-24559-x
- M. Motamedi, M.E. Warkiani, R.A. Taylor, Transparent surfaces inspired by nature. Adv. Opt. Mater. 6(14), 1800091 (2018). https://doi.org/10.1002/adom.201800091
- S.H. Lee, B.S. Kang, M.K. Kwak, Facile design and realization of extremely water-repellent surface by mimicking the greta oto’s wings. Int. J. Mech. Sci. 222, 107218 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107218
- T. Kimura, M. Takasaki, R. Hatai, Y. Nagai, K. Uematsu et al., Guanine crystals regulated by chitin-based honeycomb frameworks for tunable structural colors of sapphirinid copepod, sapphirina nigromaculata. Sci. Rep. 10(1), 2266 (2020). https://doi.org/10.1038/s41598-020-59090-4
- G.Y. Yoo, S. Lee, M. Ko, H. Kim, K.N. Lee et al., Diphylleia grayi-inspired intelligent hydrochromic adhesive film. ACS Appl. Mater. Interfaces 12(44), 49982–49991 (2020). https://doi.org/10.1021/acsami.0c13185
- L. Qin, C. Liu, J. Zhang, M. Xi, S. Pi et al., Sandwich-type phase-change composites with the dual-function of efficient heat management and temperature-regulated electromagnetic interference shielding performance. J. Mater. Chem. C 11(4), 1381–1392 (2023). https://doi.org/10.1039/d2tc04381e
- B. Adak, M. Joshi, B.S. Butola, Polyurethane/functionalized-graphene nanocomposite membranes with enhanced weather resistance and gas barrier properties. Compos. Part B-Eng. 176, 107303 (2019). https://doi.org/10.1016/j.compositesb.2019.107303
- Y. Wang, X. Fang, S. Li, H. Pan, J. Sun, Complexation of sulfonate-containing polyurethane and polyacrylic acid enables fabrication of self-healing hydrogel membranes with high mechanical strength and excellent elasticity. ACS Appl. Mater. Interfaces 15(21), 25082–25090 (2023). https://doi.org/10.1021/acsami.1c21002
- G. Zhang, C. Li, J. Tan, M. Wang, Z. Liu et al., Double modification of poly(urethane-urea): Toward healable, tear-resistant, and mechanically robust elastomers for strain sensors. ACS Appl. Mater. Interfaces 15(1), 2134–2146 (2023). https://doi.org/10.1021/acsami.2c18397
- L. Chen, Q. Li, X. Wang, J. Zhang, G. Xu et al., Electrostatic spraying synthesis of energetic RDX@NGEC nanocomposites. Chem. Eng. J. 431, 133718 (2022). https://doi.org/10.1016/j.cej.2021.133718
- H. Chen, Y. Li, J. Cheng, Y. Luo, Q. Lian, Directly using paraffin as the toughening agent of epoxy composites: an experimental and molecular dynamics simulation study. Langmuir 39, 979 (2023). https://doi.org/10.1021/acs.langmuir.2c02439
- Q. Lian, K. Li, A.A.S. Sayyed, J. Cheng, J. Zhang, Study on a reliable epoxy-based phase change material: facile preparation, tunable properties, and phase/microphase separation behavior. J. Mater. Chem. A 5(28), 14562–14574 (2017). https://doi.org/10.1039/c7ta02816d
- T. Yu, Y. Hu, W. He, Y. Xu, A. Zhan et al., An injectable and self-healing hydrogel with dual physical crosslinking for in-situ bone formation. Mater. Today Bio. 19, 100558 (2023). https://doi.org/10.1016/j.mtbio.2023.100558
- G. Zhang, C. Ni, L. Liu, G. Zhao, F. Fina et al., Macro-mesoporous resorcinol-formaldehyde polymer resins as amorphous metal-free visible light photocatalysts. J. Mater. Chem. A 3(30), 15413–15419 (2015). https://doi.org/10.1039/c5ta03628c
- L. Liu, Y. Xu, Y. Di, M. Xu, Y. Pan et al., Simultaneously enhancing the fire retardancy and crystallization rate of biodegradable polylactic acid with piperazine-1,4-diylbis(diphenylphosphine oxide). Compos. Part B-Eng. 202, 108407 (2020). https://doi.org/10.1016/j.compositesb.2020.108407
- X. Liu, X. Liu, Y. Li, Y. Zhang, X. Xie et al., Nanoengineering of transparent polypropylene containing sorbitol-based clarifier. J. Polym. Res. 27(8), 198 (2020). https://doi.org/10.1007/s10965-020-02169-3
- X. Xiao, D. Li, Y. Li, S. Lu, Microstructural evolution and stress relaxation cracking mechanism for super304H austenitic stainless steel weld metal. J. Mater. Sci. Technol. 100, 82–90 (2022). https://doi.org/10.1016/j.jmst.2021.06.010
- F. Peng, Y. Zhang, Y. Ji, K. Dai, L. Mi et al., Sandwiched film with reversibly switchable transparency through cyclic melting-crystallization. Chem. Eng. J. 442, 136205 (2022). https://doi.org/10.1016/j.cej.2022.136205
- Y. Chen, Y. Liu, Y. Xia, X. Liu, Z. Qiang et al., Electric field-induced assembly and alignment of silver-coated cellulose for polymer composite membranes with enhanced dielectric permittivity and anisotropic light transmission. ACS Appl. Mater. Interfaces 12(21), 24242–24249 (2020). https://doi.org/10.1021/acsami.0c03086
- M.V. Gorkunov, I.V. Kasyanova, V.V. Artemov, A.A. Ezhov, A.V. Mamonova et al., Liquid-crystal metasurfaces self-assembled on focused ion beam patterned polymer layers: electro-optical control of light diffraction and transmission. ACS Appl. Mater. Interfaces 12(27), 30815–30823 (2020). https://doi.org/10.1021/acsami.0c07320
- F. Li, L. Zhang, C. Hu, X. Xing, B. Yan et al., Enhanced azo dye decolorization through charge transmission by σ-sb3+-azo complexes on amorphous Sb2S3 under visible light irradiation. Appl. Catal. B-Environ. 240, 132–140 (2019). https://doi.org/10.1016/j.apcatb.2018.08.062
- K. Sun, Y. Kou, H. Dong, S. Ye, D. Zhao et al., The design of phase change materials with carbon aerogel composites for multi-responsive thermal energy capture and storage. J. Mater. Chem. A 9(2), 1213–1220 (2021). https://doi.org/10.1039/d0ta09035b
- M. Amin, T. Lammers, T.L.M. Ten Hagen, Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: Towards bypassing EPR. Adv. Drug Deliv. Rev. 189, 114503 (2022). https://doi.org/10.1016/j.addr.2022.114503
- Y. Liang, J. Zhao, Q. Huang, P. Hu, C. Xiao, PVDF fiber membrane with ordered porous structure via 3D printing near field electrospinning. J. Membr. Sci. 618, 118709 (2021). https://doi.org/10.1016/j.memsci.2020.118709
- B. Zhou, Y. Li, G. Zheng, K. Dai, C. Liu et al., Continuously fabricated transparent conductive polycarbonate/carbon nanotube nanocomposite membranes for switchable thermochromic applications. J. Mater. Chem. C 6(31), 8360–8371 (2018). https://doi.org/10.1039/c8tc01779d
- B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato et al., Random lasing in an anderson localizing optical fiber. Light Sci. Appl. 6(8), e17041 (2017). https://doi.org/10.1038/lsa.2017.41
- C. Wang, X. Wang, J. Yu, B. Ding, Highly transparent carbon nanofibrous membranes inspired by dragonfly wings. ACS Nano 17(11), 10888–10897 (2023). https://doi.org/10.1021/acsnano.3c02667
References
E. Abraham, V. Cherpak, B. Senyuk, J.B. ten Hove, T. Lee et al., Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings. Nat. Energy 8(4), 381–396 (2023). https://doi.org/10.1038/s41560-023-01226-7
J. Lee, H. Chae, K. Kim, H.S. Kim, T. Seo, Detection method for transparent window cleaning device, image processing approach. Sci. Rep. 12(1), 3229 (2022). https://doi.org/10.1038/s41598-022-07235-y
Y. Shi, P. Yang, R. Lei, Z. Liu, X. Dong et al., Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface. Nat. Commun. 14(1), 3315 (2023). https://doi.org/10.1038/s41467-023-39068-2
S.Z. Sheng, J.L. Wang, B. Zhao, Z. He, X.F. Feng et al., Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation. Nat. Commun. 14(1), 3231 (2023). https://doi.org/10.1038/s41467-023-38353-4
Z. Li, Z. Huang, Q. Yang, M. Su, X. Zhou et al., Bioinspired anti-moiré random grids via patterning foams. Adv. Opt. Mater. 5(23), 1700751 (2017). https://doi.org/10.1002/adom.201700751
Q. Liu, Z. Liu, C. Li, K. Xie, P. Zhu et al., Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Adv. Sci. 7(10), 2000348 (2020). https://doi.org/10.1002/advs.202000348
V.H. Nguyen, D.T. Papanastasiou, J. Resende, L. Bardet, T. Sannicolo et al., Advances in flexible metallic transparent electrodes. Small 18(19), e2106006 (2022). https://doi.org/10.1002/smll.202106006
S. Yu, X. Liu, P. Yang, L. Zhao, H. Dong et al., Highly stable silver nanowire networks with tin oxide shells for freestanding transparent conductive nanomembranes through all-solution processes. Chem. Eng. J. 446(5), 137481 (2022). https://doi.org/10.1016/j.cej.2022.137481
S.S. de Souza, K.P.V. de Oliveira, F.V. Berti, J.P.M.G. Godoi, D. Müller et al., Optically transparent and stretchable pure bacterial nanocellulose. J. Polym. Res. 29(9), 389 (2022). https://doi.org/10.1007/s10965-022-03213-0
K. Ma, Y. Qiu, Y. Fu, Q. Ni, Electrospun sandwich configuration nanofibers as transparent membranes for skin care drug delivery systems. J. Mater. Sci. 53(15), 10617–10626 (2018). https://doi.org/10.1007/s10853-018-2241-4
C. Wang, N. Meng, A.A. Babar, X. Gong, G. Liu et al., Highly transparent nanofibrous membranes used as transparent masks for efficient PM0.3 removal. ACS Nano 16(1), 119–128 (2022). https://doi.org/10.1021/acsnano.1c09055
J. Chen, C. Guo, Q. Zhang, X. Wu, L. Zhong et al., Preparation of transparent, amphiphobic and recyclable electrospun window screen air filter for high-efficiency particulate matters capture. J. Membr. Sci. 675, 121545 (2023). https://doi.org/10.1016/j.memsci.2023.121545
L. Porz, A.J. Klomp, X. Fang, N. Li, C. Yildirim et al., Dislocation-toughened ceramics. Mater. Horiz. 8(5), 1528–1537 (2021). https://doi.org/10.1039/d0mh02033h
J. Cheng, H. Wang, J. Gao, X. Liu, M. Li et al., First-aid hydrogel wound dressing with reliable hemostatic and antibacterial capability for traumatic injuries. Adv. Healthc. Mater. 12, e2300312 (2023). https://doi.org/10.1002/adhm.202300312
Y. Zhu, Y. Shmidov, E.A. Harris, M.H. Theus, R. Bitton et al., Activating hidden signals by mimicking cryptic sites in a synthetic extracellular matrix. Nat. Commun. 14(1), 3635 (2023). https://doi.org/10.1038/s41467-023-39349-w
S. Correa, A.K. Grosskopf, H. Lopez Hernandez, D. Chan, A.C. Yu et al., Translational applications of hydrogels. Chem. Rev. 121(18), 11385–11457 (2021). https://doi.org/10.1021/acs.chemrev.0c01177
J.Y.C. Lim, S.S. Goh, X.J. Loh, Bottom-up engineering of responsive hydrogel materials for molecular detection and biosensing. ACS Mater. Lett. 2(8), 918–950 (2020). https://doi.org/10.1021/acsmaterialslett.0c00204
F. Wu, S. Qiang, X.D. Zhu, W. Jiao, L. Liu et al., Fibrous mxene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
M. Zheng, X. Wang, O. Yue, M. Hou, H. Zhang et al., Skin-inspired gelatin-based flexible bio-electronic hydrogel for wound healing promotion and motion sensing. Biomaterials 276, 121026 (2021). https://doi.org/10.1016/j.biomaterials.2021.121026
S. Guan, C. Xu, X. Dong, M. Qi, Highly tough, fatigue-resistant, low hysteresis hybrid hydrogel with hierarchical cross-linked structure for wearable strain sensor. J. Mater. Chem. A 11, 15404–15415 (2023). https://doi.org/10.1039/d3ta02584e
Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel membranes for wireless respiration monitoring. Nano-Micro Lett. 14(1), 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
W. Zhao, F. Shao, F. Sun, Z. Su, S. Liu et al., Neuron-inspired sticky artificial spider silk for signal transmission. Adv. Mater. 35, e2300876 (2023). https://doi.org/10.1002/adma.202300876
Y. Miao, M. Xu, L. Zhang, Electrochemistry-induced improvements of mechanical strength, self-healing, and interfacial adhesion of hydrogels. Adv. Mater. 33(40), e2102308 (2021). https://doi.org/10.1002/adma.202102308
C. Wang, J. Zhao, L. Liu, P. Zhang, X. Wang et al., Transformation of fibrous membranes from opaque to transparent under mechanical pressing. Engineering 19, 84 (2021). https://doi.org/10.1016/j.eng.2021.02.018
N. Pan, J. Qin, P. Feng, B. Song, Window screen inspired fibrous materials with anisotropic thickness gradients for improving light transmittance. Nanoscale 11(28), 13521–13531 (2019). https://doi.org/10.1039/c9nr02810b
X. Gong, C. Jin, X.Y. Liu, J. Yu, S. Zhang et al., Scalable fabrication of electrospun true-nanoscale fiber membranes for effective selective separation. Nano Lett. 23(3), 1044–1051 (2023). https://doi.org/10.1021/acs.nanolett.2c04667
J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15(1), 11 (2022). https://doi.org/10.1007/s40820-022-00982-7
G. Jacucci, J. Bertolotti, S. Vignolini, Role of anisotropy and refractive index in scattering and whiteness optimization. Adv. Opt. Mater. 7(23), 1900980 (2019). https://doi.org/10.1002/adom.201900980
X. Yan, X. Xiao, C. Au, S. Mathur, L. Huang et al., Electrospinning nanofibers and nanomembranes for oil/water separation. Mater. Chem. A 9, 21659–21684 (2021). https://doi.org/10.1039/D1TA05873H
X. Yan, Y. Wang, B. Li, Z. Huang, Z. Gao et al., Polyacrylonitrile fluorescent nanofibers for selective and reversible copper detection in aqueous solutions. Appl. Surf. Sci. 602, 154302 (2022). https://doi.org/10.1016/j.apsusc.2022.154302
X. Yan, Y. Wang, Z. Huang, Z. Gao, X. Mao et al., Janus polyacrylonitrile/carbon nanotube nanofiber membranes for oil/water separation. ACS Appl. Nano Mater. 6, 4511–4521 (2023). https://doi.org/10.1021/acsanm.3c00006
J. Qi, Y. Chen, W. Zhang, L. Li, H. Huang et al., Imparting cellulose acetate membranes with hydrophobicity, high transparency, and self-cleaning function by constructing a slippery liquid-infused porous surface. Ind. Eng. Chem. Res. 61(23), 7962–7970 (2022). https://doi.org/10.1021/acs.iecr.2c00776
Y. Xu, Y. Li, N. Zheng, Q. Zhao, T. Xie, Transparent origami glass. Nat. Commun. 12(1), 4261 (2021). https://doi.org/10.1038/s41467-021-24559-x
M. Motamedi, M.E. Warkiani, R.A. Taylor, Transparent surfaces inspired by nature. Adv. Opt. Mater. 6(14), 1800091 (2018). https://doi.org/10.1002/adom.201800091
S.H. Lee, B.S. Kang, M.K. Kwak, Facile design and realization of extremely water-repellent surface by mimicking the greta oto’s wings. Int. J. Mech. Sci. 222, 107218 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107218
T. Kimura, M. Takasaki, R. Hatai, Y. Nagai, K. Uematsu et al., Guanine crystals regulated by chitin-based honeycomb frameworks for tunable structural colors of sapphirinid copepod, sapphirina nigromaculata. Sci. Rep. 10(1), 2266 (2020). https://doi.org/10.1038/s41598-020-59090-4
G.Y. Yoo, S. Lee, M. Ko, H. Kim, K.N. Lee et al., Diphylleia grayi-inspired intelligent hydrochromic adhesive film. ACS Appl. Mater. Interfaces 12(44), 49982–49991 (2020). https://doi.org/10.1021/acsami.0c13185
L. Qin, C. Liu, J. Zhang, M. Xi, S. Pi et al., Sandwich-type phase-change composites with the dual-function of efficient heat management and temperature-regulated electromagnetic interference shielding performance. J. Mater. Chem. C 11(4), 1381–1392 (2023). https://doi.org/10.1039/d2tc04381e
B. Adak, M. Joshi, B.S. Butola, Polyurethane/functionalized-graphene nanocomposite membranes with enhanced weather resistance and gas barrier properties. Compos. Part B-Eng. 176, 107303 (2019). https://doi.org/10.1016/j.compositesb.2019.107303
Y. Wang, X. Fang, S. Li, H. Pan, J. Sun, Complexation of sulfonate-containing polyurethane and polyacrylic acid enables fabrication of self-healing hydrogel membranes with high mechanical strength and excellent elasticity. ACS Appl. Mater. Interfaces 15(21), 25082–25090 (2023). https://doi.org/10.1021/acsami.1c21002
G. Zhang, C. Li, J. Tan, M. Wang, Z. Liu et al., Double modification of poly(urethane-urea): Toward healable, tear-resistant, and mechanically robust elastomers for strain sensors. ACS Appl. Mater. Interfaces 15(1), 2134–2146 (2023). https://doi.org/10.1021/acsami.2c18397
L. Chen, Q. Li, X. Wang, J. Zhang, G. Xu et al., Electrostatic spraying synthesis of energetic RDX@NGEC nanocomposites. Chem. Eng. J. 431, 133718 (2022). https://doi.org/10.1016/j.cej.2021.133718
H. Chen, Y. Li, J. Cheng, Y. Luo, Q. Lian, Directly using paraffin as the toughening agent of epoxy composites: an experimental and molecular dynamics simulation study. Langmuir 39, 979 (2023). https://doi.org/10.1021/acs.langmuir.2c02439
Q. Lian, K. Li, A.A.S. Sayyed, J. Cheng, J. Zhang, Study on a reliable epoxy-based phase change material: facile preparation, tunable properties, and phase/microphase separation behavior. J. Mater. Chem. A 5(28), 14562–14574 (2017). https://doi.org/10.1039/c7ta02816d
T. Yu, Y. Hu, W. He, Y. Xu, A. Zhan et al., An injectable and self-healing hydrogel with dual physical crosslinking for in-situ bone formation. Mater. Today Bio. 19, 100558 (2023). https://doi.org/10.1016/j.mtbio.2023.100558
G. Zhang, C. Ni, L. Liu, G. Zhao, F. Fina et al., Macro-mesoporous resorcinol-formaldehyde polymer resins as amorphous metal-free visible light photocatalysts. J. Mater. Chem. A 3(30), 15413–15419 (2015). https://doi.org/10.1039/c5ta03628c
L. Liu, Y. Xu, Y. Di, M. Xu, Y. Pan et al., Simultaneously enhancing the fire retardancy and crystallization rate of biodegradable polylactic acid with piperazine-1,4-diylbis(diphenylphosphine oxide). Compos. Part B-Eng. 202, 108407 (2020). https://doi.org/10.1016/j.compositesb.2020.108407
X. Liu, X. Liu, Y. Li, Y. Zhang, X. Xie et al., Nanoengineering of transparent polypropylene containing sorbitol-based clarifier. J. Polym. Res. 27(8), 198 (2020). https://doi.org/10.1007/s10965-020-02169-3
X. Xiao, D. Li, Y. Li, S. Lu, Microstructural evolution and stress relaxation cracking mechanism for super304H austenitic stainless steel weld metal. J. Mater. Sci. Technol. 100, 82–90 (2022). https://doi.org/10.1016/j.jmst.2021.06.010
F. Peng, Y. Zhang, Y. Ji, K. Dai, L. Mi et al., Sandwiched film with reversibly switchable transparency through cyclic melting-crystallization. Chem. Eng. J. 442, 136205 (2022). https://doi.org/10.1016/j.cej.2022.136205
Y. Chen, Y. Liu, Y. Xia, X. Liu, Z. Qiang et al., Electric field-induced assembly and alignment of silver-coated cellulose for polymer composite membranes with enhanced dielectric permittivity and anisotropic light transmission. ACS Appl. Mater. Interfaces 12(21), 24242–24249 (2020). https://doi.org/10.1021/acsami.0c03086
M.V. Gorkunov, I.V. Kasyanova, V.V. Artemov, A.A. Ezhov, A.V. Mamonova et al., Liquid-crystal metasurfaces self-assembled on focused ion beam patterned polymer layers: electro-optical control of light diffraction and transmission. ACS Appl. Mater. Interfaces 12(27), 30815–30823 (2020). https://doi.org/10.1021/acsami.0c07320
F. Li, L. Zhang, C. Hu, X. Xing, B. Yan et al., Enhanced azo dye decolorization through charge transmission by σ-sb3+-azo complexes on amorphous Sb2S3 under visible light irradiation. Appl. Catal. B-Environ. 240, 132–140 (2019). https://doi.org/10.1016/j.apcatb.2018.08.062
K. Sun, Y. Kou, H. Dong, S. Ye, D. Zhao et al., The design of phase change materials with carbon aerogel composites for multi-responsive thermal energy capture and storage. J. Mater. Chem. A 9(2), 1213–1220 (2021). https://doi.org/10.1039/d0ta09035b
M. Amin, T. Lammers, T.L.M. Ten Hagen, Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: Towards bypassing EPR. Adv. Drug Deliv. Rev. 189, 114503 (2022). https://doi.org/10.1016/j.addr.2022.114503
Y. Liang, J. Zhao, Q. Huang, P. Hu, C. Xiao, PVDF fiber membrane with ordered porous structure via 3D printing near field electrospinning. J. Membr. Sci. 618, 118709 (2021). https://doi.org/10.1016/j.memsci.2020.118709
B. Zhou, Y. Li, G. Zheng, K. Dai, C. Liu et al., Continuously fabricated transparent conductive polycarbonate/carbon nanotube nanocomposite membranes for switchable thermochromic applications. J. Mater. Chem. C 6(31), 8360–8371 (2018). https://doi.org/10.1039/c8tc01779d
B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato et al., Random lasing in an anderson localizing optical fiber. Light Sci. Appl. 6(8), e17041 (2017). https://doi.org/10.1038/lsa.2017.41
C. Wang, X. Wang, J. Yu, B. Ding, Highly transparent carbon nanofibrous membranes inspired by dragonfly wings. ACS Nano 17(11), 10888–10897 (2023). https://doi.org/10.1021/acsnano.3c02667