Strategies for Enhancing Energy-Level Matching in Perovskite Solar Cells: An Energy Flow Perspective
Corresponding Author: Yonghua Chen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 313
Abstract
Metal halide perovskites, owing to their remarkable optoelectronic properties and broad application prospects, have emerged as a research hotspot in materials science and photovoltaics. In addressing challenges related to energy loss, photoelectric conversion efficiency, and operational stability in perovskite solar cells (PSCs), various strategies have been proposed, such as improving perovskite crystallization, developing tandem architectures, and advancing interfacial engineering. However, the specific impact of these approaches on internal energy transfer and conversion mechanisms within PSCs remains insufficiently understood. This review systematically examines the relationship between energy and perovskite materials throughout the photon absorption to charge carrier transport process, with particular focus on key strategies for minimizing energy losses and their underlying influence on energy-level alignment-especially in the electron transport layer and hole transport layer. It summarizes optimal absorption conditions and contributing factors during energy transfer, alongside representative case studies of high-performing systems. By elucidating these mechanisms, this work offers valuable theoretical insights for optimizing energy-level alignment, reducing energy dissipation, and guiding experimental design in PSCs research.
Highlights:
1 Energy transfer is systematically reviewed as a guiding principle for current materials and optimization strategies in perovskite solar cells.
2 Characteristic mechanisms are identified to classify energy-level optimization strategies into two categories.
3 Performance-enhancement strategies for perovskite solar cells are analyzed from a quantum-level perspective.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Hu, C. Ran, H. Zhang, L. Chao, Y. Chen et al., The Current status and development trend of perovskite solar cells. Engineering 21, 15–19 (2023). https://doi.org/10.1016/j.eng.2022.10.012
- NREL, Best research-cell efficiency chart. (NREL, 2024), https://www2.nrel.gov/pv/interactive-cell-efficiency . Accessed 29 Apr 2025.
- Y. Da, Y. Xuan, Q. Li, Quantifying energy losses in planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 174, 206–213 (2018). https://doi.org/10.1016/j.solmat.2017.09.002
- J.P.N. Torres, C.A. Fernandes, J.C. Leite, Photovoltaic cell string layout. Sustainable. Energy 5, 16–25 (2019). https://doi.org/10.12691/rse-5-1-3
- K. Wang, L. Zheng, Y. Hou, A. Nozariasbmarz, B. Poudel et al., Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 6(4), 756–771 (2022). https://doi.org/10.1016/j.joule.2022.01.009
- S. Yang, M. Wu, X. Lei, J. Wang, Y. Han et al., Ultra-high 1.27 V VOC of pure CsPbI3 perovskite solar cells with an efficiency of 21.8%. ACS Energy Lett. 9(10), 4817–4826 (2024). https://doi.org/10.1021/acsenergylett.4c01323
- H.J. Lee, M.M. Ali Gamel, P.J. Ker, M.Z. Jamaludin, Y.H. Wong et al., Absorption coefficient of bulk III-V semiconductor materials: a review on methods, properties and future prospects. J. Electron. Mater. 51(11), 6082–6107 (2022). https://doi.org/10.1007/s11664-022-09846-7
- A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352(6283), aad4424 (2016). https://doi.org/10.1126/science.aad4424
- S. De Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014). https://doi.org/10.1021/jz500279b
- S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016). https://doi.org/10.1016/j.solener.2016.02.015
- S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
- A.J. Nozik, J. Miller, Introduction to solar photon conversion. Chem. Rev. 110(11), 6443–6445 (2010). https://doi.org/10.1021/cr1003419
- J. Liu, Y. He, L. Ding, H. Zhang, Q. Li et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
- T. Zdanowicz, T. Rodziewicz, M. Zabkowska-Waclawek, Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations. Sol. Energy Mater. Sol. Cells 87(1–4), 757–769 (2005). https://doi.org/10.1016/j.solmat.2004.07.049
- A. Richter, M. Hermle, S.W. Glunz, Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3(4), 1184–1191 (2013). https://doi.org/10.1109/JPHOTOV.2013.2270351
- J. Keller, K. Kiselman, O. Donzel-Gargand, N.M. Martin, M. Babucci et al., High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 236% efficiency. Nat. Energy 9(4), 467–478 (2024). https://doi.org/10.1038/s41560-024-01472-3
- C. Tan, Y. Cui et al., In situ reconstructing the buried interface for efficient CsPbI3 perovskite solar cells. ACS Energy Lett. 10(2), 703–712 (2025). https://doi.org/10.1021/acsenergylett.4c03282
- T. Zhao, R. He, T. Liu, Y. Li, D. Yu et al., Mitigating the efficiency deficit in single-crystal perovskite solar cells by precise control of the growth processes. ACS Nano 19(3), 3282–3292 (2025). https://doi.org/10.1021/acsnano.4c11691
- A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194), 295–298 (2014). https://doi.org/10.1126/science.1254763
- C. Li, X. Lu, W. Ding, L. Feng, Y. Gao et al., Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. Sect. B 64(6), 702–707 (2008). https://doi.org/10.1107/S0108768108032734
- B.-Q. Zhao, Y. Li, X.-Y. Chen, Y. Han, S.-H. Wei et al., Engineering carrier dynamics in halide perovskites by dynamical lattice distortion. Adv. Sci. 10(33), 2300386 (2023). https://doi.org/10.1002/advs.202300386
- Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
- A.E. Fedorovskiy, N.A. Drigo, M.K. Nazeeruddin, The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range. Small Meth. 4(5), 1900426 (2020). https://doi.org/10.1002/smtd.201900426
- T. Sato, S. Takagi, S. Deledda, B.C. Hauback, S.-I. Orimo, Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds. Sci. Rep. 6, 23592 (2016). https://doi.org/10.1038/srep23592
- B. Kim, J. Kim, N. Park, First-principles identification of the charge-shifting mechanism and ferroelectricity in hybrid halide perovskites. Sci. Rep. 10(1), 19635 (2020). https://doi.org/10.1038/s41598-020-76742-7
- J. Ning, L. Zheng, W. Lei, S. Wang, J. Xi et al., Temperature-dependence of the band gap in the all-inorganic perovskite CsPbI3 from room to high temperatures. Phys. Chem. Chem. Phys. 24(26), 16003–16010 (2022). https://doi.org/10.1039/d2cp00940d
- S. Hwang, W. Kim, K. Kim, M.J. Ko, Theoretical studies on the electronic structures of halide perovskites: a critical review. Korean J. Chem. Eng. 41(14), 3737–3749 (2024). https://doi.org/10.1007/s11814-024-00336-6
- S. Liu, J. Wang, Z. Hu, Z. Duan, H. Zhang et al., Role of organic cation orientation in formamidine based perovskite materials. Sci. Rep. 11(1), 20433 (2021). https://doi.org/10.1038/s41598-021-99621-1
- Y. Hu, J. Schlipf, M. Wussler, M.L. Petrus, W. Jaegermann et al., Hybrid perovskite/perovskite heterojunction solar cells. ACS Nano 10(6), 5999–6007 (2016). https://doi.org/10.1021/acsnano.6b01535
- C. Ma, C. Leng, Y. Ji, X. Wei, K. Sun et al., 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale 8(43), 18309–18314 (2016). https://doi.org/10.1039/c6nr04741f
- S.S. Mali, J.V. Patil, J.-Y. Shao, Y.-W. Zhong, S.R. Rondiya et al., Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency. Nat. Energy 8(9), 989–1001 (2023). https://doi.org/10.1038/s41560-023-01310-y
- Y. Zhang, Z. Yang, T. Ma, Z. Ai, C. Wang et al., A theoretical investigation of transport layer-free homojunction perovskite solar cells via a detailed photoelectric simulation. Adv. Energy Mater. 13(12), 2203366 (2023). https://doi.org/10.1002/aenm.202203366
- H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
- T. Ma, S. Wang, Y. Zhang, K. Zhang, L. Yi, The development of all-inorganic CsPbX3 perovskite solar cells. J. Mater. Sci. 55(2), 464–479 (2020). https://doi.org/10.1007/s10853-019-03974-y
- F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M. De Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8(2), 89–108 (2022). https://doi.org/10.1038/s41578-022-00503-3
- W. Tian, H. Zhou, L. Li, Hybrid organic–inorganic perovskite photodetectors. Small 13(41), 1702107 (2017). https://doi.org/10.1002/smll.201702107
- K. Mahmood, S. Sarwar, M.T. Mehran, Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv. 7(28), 17044–17062 (2017). https://doi.org/10.1039/C7RA00002B
- J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
- L. Lin, T.W. Jones, T.C. Yang, N.W. Duffy, J. Li et al., Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater. 31(5), 2008300 (2021). https://doi.org/10.1002/adfm.202008300
- W. Chai, W. Zhu, Z. Zhang, H. Xi, D. Chen et al., Selectively localized growth of two-dimensional perovskites at grain boundaries for efficient and stable CsPbI3 perovskite solar cells. Mater. Today Phys. 34, 101088 (2023). https://doi.org/10.1016/j.mtphys.2023.101088
- J. Zhang, G. Zhang, Y. Liao, Z. Pan, H. Rao et al., Interfacial energy-level alignment via poly-3-hexylthiophene-CsPbI3 quantum dots hybrid hole conductor for efficient carbon-based CsPbI2Br solar cells. Chem. Eng. J. 453, 139842 (2023). https://doi.org/10.1016/j.cej.2022.139842
- W. Ren, Y. Liu, Y. Wu, Q. Sun, Y. Cui et al., Interface modification of an electron transport layer using europium acetate for enhancing the performance of P3HT-based inorganic perovskite solar cells. Phys. Chem. Chem. Phys. 23(41), 23818–23826 (2021). https://doi.org/10.1039/D1CP03645A
- M. Yue, J. Su, P. Zhao, Z. Lin, J. Zhang et al., Optimizing the performance of CsPbI3-based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering. Nano-Micro Lett. 11(1), 91 (2019). https://doi.org/10.1007/s40820-019-0320-y
- H.J. Kwak, C. Kiguye, M. Gong, J.H. Park, G.H. Kim et al., Enhanced performance of inverted perovskite quantum dot light-emitting diode using electron suppression layer and surface morphology control. Materials 16(22), 7171 (2023). https://doi.org/10.3390/ma16227171
- C. Huang, C. Huang, Y. Ni, P. Lin, N. Fu, B. Fan, W. Zhang, Highly-crystalline SnO2 thin films for efficient planar perovskite solar cells. ACS Appl. Energy Mater. 5(5), 5704–5710 (2022). https://doi.org/10.1021/acsaem.1c04094
- H. Wang, J. Yuan, J. Xi, J. Du, J. Tian, Multiple-function surface engineering of SnO2 nanops to achieve efficient perovskite solar cells. J. Phys. Chem. Lett. 12(37), 9142–9148 (2021). https://doi.org/10.1021/acs.jpclett.1c02682
- S. Zhang, H. Si, W. Fan, M. Shi, M. Li et al., Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew. Chem. Int. Ed. 59(28), 11573–11582 (2020). https://doi.org/10.1002/anie.202003502
- Z. Lv, L. He, H. Jiang, X. Ma, F. Wang et al., Diluted-CdS quantum dot-assisted SnO2 electron transport layer with excellent conductivity and suitable band alignment for high-performance planar perovskite solar cells. ACS Appl. Mater. Interfaces 13(14), 16326–16335 (2021). https://doi.org/10.1021/acsami.1c00896
- M.S. Reza, M.S. Reza, A. Ghosh, M.F. Rahman, J.R. Rajabathar et al., New highly efficient perovskite solar cell with power conversion efficiency of 31% based on Ca3NI3 and an effective charge transport layer. Opt. Commun. 561, 130511 (2024). https://doi.org/10.1016/j.optcom.2024.130511
- X. Meng, J. Zhou, J. Hou, X. Tao, S.H. Cheung et al., Versatility of carbon enables all carbon based perovskite solar cells to achieve high efficiency and high stability. Adv. Mater. 30(36), 1804637 (2018). https://doi.org/10.1002/adma.201804637
- H. Guan, Y. Lei, Q. Wu, X. Zhou, H. Wang et al., An interface co-modification strategy for improving the efficiency and stability of CsPbI3 perovskite solar cells. ACS Appl. Energy Mater. 5(11), 13419–13428 (2022). https://doi.org/10.1021/acsaem.2c02096
- N. Sun, S. Fu, Y. Li, L. Chen, J. Chung et al., Tailoring crystallization dynamics of CsPbI3 for scalable production of efficient inorganic perovskite solar cells. Adv. Funct. Mater. 34(6), 2309894 (2024). https://doi.org/10.1002/adfm.202309894
- J. Chen, N.-G. Park, Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31(47), e1803019 (2019). https://doi.org/10.1002/adma.201803019
- T. Zhang, Z. Ren, S. Guo, G. Zhang, S. Wang et al., Broadband self-powered CdS ETL-based MAPbI3 heterojunction photodetector induced by a photovoltaic-pyroelectric-thermoelectric effect. ACS Appl. Mater. Interfaces 15(37), 44444–44455 (2023). https://doi.org/10.1021/acsami.3c07585
- J. Jia, J. Wu, J. Dong, L. Fan, M. Huang et al., Cadmium sulfide as an efficient electron transport material for inverted planar perovskite solar cells. Chem. Commun. 54(25), 3170–3173 (2018). https://doi.org/10.1039/C7CC09838C
- C.-S. Jo, K. Noh, S.H. Noh, H. Yoo, Y. Kim et al., Solution-processed fabrication of light-emitting diodes using CsPbBr3 perovskite nanocrystals. ACS Appl. Nano Mater. 3(12), 11801–11810 (2020). https://doi.org/10.1021/acsanm.0c02334
- B. Zhou, L. Qin, P. Wang, Z. Chen, J. Zang et al., Fabrication of ZnO dual electron transport layer via atomic layer deposition for highly stable and efficient CsPbBr3 perovskite nanocrystals light-emitting diodes. Nanotechnology 34(2), 025203 (2023). https://doi.org/10.1088/1361-6528/ac98ce
- P. Lu, J. Wu, X. Shen, X. Gao, Z. Shi et al., ZnO–Ti3C2 MXene electron transport layer for high external quantum efficiency perovskite nanocrystal light-emitting diodes. Adv. Sci. 7(19), 2001562 (2020). https://doi.org/10.1002/advs.202001562
- Y. Wang, T. Zhang, P. Zhang, D. Liu, L. Ji et al., Solution processed PCBM-CH3NH3PbI3 heterojunction photodetectors with enhanced performance and stability. Org. Electron. 57, 263–268 (2018). https://doi.org/10.1016/j.orgel.2018.02.043
- K. Choi, D.H. Lee, W. Jung, S. Kim, S.H. Kim et al., 3D interaction of zwitterions for highly stable and efficient inorganic CsPbI3 solar cells. Adv. Funct. Mater. 32(16), 2112027 (2022). https://doi.org/10.1002/adfm.202112027
- J. Wang, Y. Che, Y. Duan, Z. Liu, S. Yang et al., 21.15%-efficiency and stable γ-CsPbI3 perovskite solar cells enabled by an acyloin ligand. Adv. Mater. 35(12), e2210223 (2023). https://doi.org/10.1002/adma.202210223
- Y. Du, Q. Tian, X. Chang, J. Fang, X. Gu et al., Ionic liquid treatment for highest-efficiency ambient printed stable all-inorganic CsPbI3 perovskite solar cells. Adv. Mater. 34(10), 2106750 (2022). https://doi.org/10.1002/adma.202106750
- J. Choi, S. Song, M.T. Hörantner, H.J. Snaith, T. Park, Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 10(6), 6029–6036 (2016). https://doi.org/10.1021/acsnano.6b01575
- T.-H. Le, H. Driscoll, C.-H. Hou, A. Montgomery, W. Li et al., Perovskite solar module: promise and challenges in efficiency, meta-stability, and operational lifetime. Adv. Electron. Mater. 9(10), 2300093 (2023). https://doi.org/10.1002/aelm.202300093
- W. Cheng, R. Zhou, S. Peng, C. Wang, L. Chen, Research on passivation of perovskite layer in perovskite solar cells. Mater. Today Commun. 38, 107879 (2024). https://doi.org/10.1016/j.mtcomm.2023.107879
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- W. Chi, S.K. Banerjee, Engineering strategies for two-dimensional perovskite solar cells. Trends Chem. 4(11), 1005–1020 (2022). https://doi.org/10.1016/j.trechm.2022.08.009
- J. Chen, N.-G. Park, Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 5(8), 2742–2786 (2020). https://doi.org/10.1021/acsenergylett.0c01240
- R. Ji, Z. Zhang, Y.J. Hofstetter, R. Buschbeck, C. Hänisch et al., Perovskite phase heterojunction solar cells. Nat. Energy 7(12), 1170–1179 (2022). https://doi.org/10.1038/s41560-022-01154-y
- Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
- F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10(13), 1902579 (2020). https://doi.org/10.1002/aenm.201902579
- B. Liu, Y. Wang, S. Bian, Z. Liu, Y. Wu et al., Perovskite solar cells with extremely high 24.63% efficiency through design of double electron transport layers and double luminescent converter layers. Adv. Funct. Mater. 34(34), 2401007 (2024). https://doi.org/10.1002/adfm.202401007
- H. Bian, D. Bai, Z. Jin, K. Wang, L. Liang et al., Graded bandgap CsPbI2+xBr1–x perovskite solar cells with a stabilized efficiency of 14.4%. Joule 2(8), 1500–1510 (2018). https://doi.org/10.1016/j.joule.2018.04.012
- R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628(8006), 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
- S. Wang, C. Bi, A. Portniagin, J. Yuan, J. Ning et al., CsPbI3/PbSe heterostructured nanocrystals for high-efficiency solar cells. ACS Energy Lett. 5(7), 2401–2410 (2020). https://doi.org/10.1021/acsenergylett.0c01222
- J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
- S.-M. Yoo, S.-Y. Lee, E. Velilla Hernandez, M. Kim, G. Kim et al., Nanoscale perovskite-sensitized solar cell revisited: dye-cell or perovskite-cell? Chemsuschem 13(10), 2571–2576 (2020). https://doi.org/10.1002/cssc.202000223
- K. Rakstys, C. Igci, M.K. Nazeeruddin, Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells. Chem. Sci. 10(28), 6748–6769 (2019). https://doi.org/10.1039/C9SC01184F
- N. Li, J. Yan, Y. Ai, E. Jiang, L. Lin et al., A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells. Sci. China Mater. 63(2), 207–215 (2020). https://doi.org/10.1007/s40843-019-9586-x
- W. Huang, R. Zhang, X. Xia, P. Steichen, N. Liu et al., Room temperature processed double electron transport layers for efficient perovskite solar cells. Nanomaterials 11(2), 329 (2021). https://doi.org/10.3390/nano11020329
- M. Pols, A.C.T. van Duin, S. Calero, S. Tao, Mixing I and Br in inorganic perovskites: atomistic insights from reactive molecular dynamics simulations. J. Phys. Chem. C Nanomater. Interfaces 128(9), 4111–4118 (2024). https://doi.org/10.1021/acs.jpcc.4c00563
- D. Yu, F. Cao, J. Liao, B. Wang, C. Su et al., Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin. Nat. Commun. 13(1), 6229 (2022). https://doi.org/10.1038/s41467-022-33752-5
- X. Liu, D. Luo, Z.H. Lu, J.S. Yun, M. Saliba et al., Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7(7), 462–479 (2023). https://doi.org/10.1038/s41570-023-00492-z
- P. Mahajan, B. Padha, S. Verma, V. Gupta, R. Datt et al., Review of current progress in hole-transporting materials for perovskite solar cells. J. Energy Chem. 68, 330–386 (2022). https://doi.org/10.1016/j.jechem.2021.12.003
- W.-M. Gu, K.-J. Jiang, F. Li, G.-H. Yu, Y. Xu et al., A multifunctional interlayer for highly stable and efficient perovskite solar cells based on pristine poly(3-hexylthiophene). Chem. Eng. J. 444, 136644 (2022). https://doi.org/10.1016/j.cej.2022.136644
- J. Sun, N. Zhang, J. Wu, W. Yang, H. He et al., Additive engineering of the CuSCN hole transport layer for high-performance perovskite semitransparent solar cells. ACS Appl. Mater. Interfaces 14(46), 52223–52232 (2022). https://doi.org/10.1021/acsami.2c18120
- F. Shoukat, A. Ali, J.H. Lee, Y. Khan, B. Walker et al., Ag: PSS polyelectrolyte/PTB7 bilayers as efficient hole transport layers for perovskite solar cells. Synth. Met. 307, 117679 (2024). https://doi.org/10.1016/j.synthmet.2024.117679
- D.B. Khadka, Y. Shirai, M. Yanagida, K. Miyano, Ammoniated aqueous precursor ink processed copper iodide as hole transport layer for inverted planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 210, 110486 (2020). https://doi.org/10.1016/j.solmat.2020.110486
- L. Zhang, Y. Chen, Atomistic understanding on molecular halide perovskite/organic/TiO2 interface with bifunctional interfacial modifier: a case study on halogen bond and carboxylic acid group. Appl. Surf. Sci. 502, 144274 (2020). https://doi.org/10.1016/j.apsusc.2019.144274
- J.-W. Liang, Y. Firdaus, R. Azmi, H. Faber, D. Kaltsas et al., Cl2-doped CuSCN hole transport layer for organic and perovskite solar cells with improved stability. ACS Energy Lett. 7(9), 3139–3148 (2022). https://doi.org/10.1021/acsenergylett.2c01545
- D. Saranin, P. Gostischev, D. Tatarinov, I. Ermanova, V. Mazov et al., Copper iodide interlayer for improved charge extraction and stability of inverted perovskite solar cells. Materials 12(9), 1406 (2019). https://doi.org/10.3390/ma12091406
- X. Gao, Y. Du, X. Meng, Cupric oxide film with a record hole mobility of 48.44 cm2/Vs via direct–current reactive magnetron sputtering for perovskite solar cell application. Sol. Energy 191, 205–209 (2019). https://doi.org/10.1016/j.solener.2019.08.080
- C. Yan, Z. Li, Y. Sun, J. Zhao, X. Huang et al., Decreasing energy loss and optimizing band alignment for high performance CsPbI3 solar cells through guanidine hydrobromide post-treatment. J. Mater. Chem. A 8(20), 10346–10353 (2020). https://doi.org/10.1039/D0TA02488K
- J.-Y. Shao, Y.-W. Zhong, Design of small molecular hole-transporting materials for stable and high-performance perovskite solar cells. Chem. Phys. Rev. 2(2), 021302 (2021). https://doi.org/10.1063/5.0051254
- M.M.H. Desoky, M. Bonomo, R. Buscaino, A. Fin, G. Viscardi et al., Dopant-free all-organic small-molecule HTMs for perovskite solar cells: concepts and structure–property relationships. Energies 14(8), 2279 (2021). https://doi.org/10.3390/en14082279
- H. Tian, X. Jiang, X. Liu, F. Sun, X. Guo et al., Enhancing performances of inverted perovskite solar cells by modifying the buried interface with sodium copper chlorophyllin. Nano Energy 126, 109616 (2024). https://doi.org/10.1016/j.nanoen.2024.109616
- N. Cheng, Z. Liu, Z. Yu, W. Li, Z. Zhao et al., High performance inverted perovskite solar cells using PEDOT: PSS/KCl hybrid hole transporting layer. Org. Electron. 98, 106298 (2021). https://doi.org/10.1016/j.orgel.2021.106298
- Z. Zhu, D. Zhao, C.-C. Chueh, X. Shi, Z. Li et al., Highly efficient and stable perovskite solar cells enabled by all-crosslinked charge-transporting layers. Joule 2(1), 168–183 (2018). https://doi.org/10.1016/j.joule.2017.11.006
- C.-H. Kuan, G.-S. Luo, S. Narra, S. Maity, H. Hiramatsu et al., How can a hydrophobic polymer PTAA serve as a hole- transport layer for an inverted tin perovskite solar cell? Chem. Eng. J. 450, 138037 (2022). https://doi.org/10.1016/j.cej.2022.138037
- S.P. Koiry, P. Jha, C. Sridevi, D. Gupta, V. Putta et al., Improving perovskite/P3HT interface without an interlayer: impact of perovskite surface topography on photovoltaic performance of P3HT-based perovskite solar cells. Mater. Today Commun. 36, 106418 (2023). https://doi.org/10.1016/j.mtcomm.2023.106418
- Z. Iqbal, F. Zu, A. Musiienko, E. Gutierrez-Partida, H. Köbler et al., Interface modification for energy level alignment and charge extraction in CsPbI3 perovskite solar cells. ACS Energy Lett. 8(10), 4304–4314 (2023). https://doi.org/10.1021/acsenergylett.3c01522
- W. Xu, F. He, M. Zhang, P. Nie, S. Zhang et al., Minimizing voltage loss in efficient all-inorganic CsPbI2Br perovskite solar cells through energy level alignment. ACS Energy Lett. 4(10), 2491–2499 (2019). https://doi.org/10.1021/acsenergylett.9b01662
- W.-J. Chi, D.-Y. Zheng, X.-F. Chen, Z.-S. Li, Optimizing thienothiophene chain lengths of D–π–D hole transport materials in perovskite solar cells for improving energy levels and hole mobility. J. Mater. Chem. C 5(38), 10055–10060 (2017). https://doi.org/10.1039/C7TC03232C
- H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383(6688), 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
- H. Xie, J. Liu, X. Yin, Y. Guo, D. Liu et al., Perovskite/P3HT graded heterojunction by an additive-assisted method for high-efficiency perovskite solar cells with carbon electrodes. Colloids Surf. A Physicochem. Eng. Aspects 635, 128072 (2022). https://doi.org/10.1016/j.colsurfa.2021.128072
- D. Yeo, J. Shin, D. Kim, J.Y. Jaung, I.H. Jung, Self-assembled monolayer-based hole-transporting materials for perovskite solar cells. Nanomaterials 14(2), 175 (2024). https://doi.org/10.3390/nano14020175
- L. Bu, Z. Liu, M. Zhang, W. Li, A. Zhu et al., Semitransparent fully air processed perovskite solar cells. ACS Appl. Mater. Interfaces 7(32), 17776–17781 (2015). https://doi.org/10.1021/acsami.5b04040
- J. Xu, Q. Xiong, X. Huang, P. Sun, Q. Zhou et al., Symmetry-breaking induced dipole enhancement for efficient spiro-type hole transporting materials: easy synthesis with high stability. Small 19(12), 2206435 (2023). https://doi.org/10.1002/smll.202206435
- M. Zhai, M. Li, Z. Deng, R. Yao, L. Wang et al., Perovskite solar cells and modules employing facile synthesis and green-solvent-processable organic hole transport materials. ACS Energy Lett. 8(11), 4966–4975 (2023). https://doi.org/10.1021/acsenergylett.3c01472
- C. Duan, F. Zou, S. Li, Q. Zhu, J. Li et al., Dopant-free starlike molecular hole conductor with ordered packing for durable all-inorganic perovskite solar cells. Adv. Energy Mater. 14(14), 2303997 (2024). https://doi.org/10.1002/aenm.202303997
- Z. Xia, W. Zhang, C. Chen, Y. Miao, X. Ding et al., Low-cost star-shaped hole-transporting materials with isotropic properties and its application in perovskite solar cells. Dyes Pigm. 207, 110695 (2022). https://doi.org/10.1016/j.dyepig.2022.110695
- Z. Wang, S. Yan, Z. Yang, Y. Zou, J. Chen et al., Tetrathienopyrrole-based hole-transporting materials for highly efficient and robust perovskite solar cells. Chem. Eng. J. 450, 138189 (2022). https://doi.org/10.1016/j.cej.2022.138189
- L. Yuan, W. Zhu, Y. Zhang, Y. Li, C.C.S. Chan et al., A conformally bonded molecular interface retarded iodine migration for durable perovskite solar cells. Energy Environ. Sci. 16(4), 1597–1609 (2023). https://doi.org/10.1039/D2EE03565K
- W. Zhang, X. Li, X. Feng, X. Zhao, J. Fang, A conjugated ligand interfacial modifier for enhancing efficiency and operational stability of planar perovskite solar cells. Chem. Eng. J. 412, 128680 (2021). https://doi.org/10.1016/j.cej.2021.128680
- Y. Shi, L. Zhang, S. Hu, X. Wang, J. Han et al., Bridging the buried interface with conjugated molecule for highly efficient carbon-based inorganic CsPbI2Br perovskite solar cells fabricated in air. Chem. Eng. J. 492, 152210 (2024). https://doi.org/10.1016/j.cej.2024.152210
- H. Dong, J. Xi, L. Zuo, J. Li, Y. Yang et al., Conjugated molecules “bridge”: functional ligand toward highly efficient and long-term stable perovskite solar cell. Adv. Funct. Mater. 29(17), 1808119 (2019). https://doi.org/10.1002/adfm.201808119
- R. Wang, T.-G. Sun, T. Wu, Z. Zhu, J.-Y. Shao et al., Hydrophobic π-conjugated organic small molecule as a multi-functional interface material enables efficient and stable perovskite solar cells. Chem. Eng. J. 430, 133065 (2022). https://doi.org/10.1016/j.cej.2021.133065
- K. Ma, H.R. Atapattu, Q. Zhao, Y. Gao, B.P. Finkenauer et al., Multifunctional conjugated ligand engineering for stable and efficient perovskite solar cells. Adv. Mater. 33(32), 2100791 (2021). https://doi.org/10.1002/adma.202100791
- I.G. Sonsona, M. Carrera, M. Más-Montoya, R.S. Sánchez, P. Serafini et al., 2D-self-assembled organic materials in undoped hole transport bilayers for efficient inverted perovskite solar cells. ACS Appl. Mater. Interfaces 15(18), 22310–22319 (2023). https://doi.org/10.1021/acsami.2c23010
- F.S. Ghoreishi, V. Ahmadi, R. Poursalehi, M. SamadPour, M.B. Johansson et al., Enhanced performance of CH3NH3PbI3 perovskite solar cells via interface modification using phenyl ammonium iodide derivatives. J. Power. Sources 473, 228492 (2020). https://doi.org/10.1016/j.jpowsour.2020.228492
- H. Zhang, Y. Mao, J. Xu, S. Li, F. Guo et al., Methylthiophene terminated D–π–D molecular semiconductors as multifunctional interfacial materials for high performance perovskite solar cells. J. Mater. Chem. C 10(5), 1862–1869 (2022). https://doi.org/10.1039/D1TC05354J
- S. Ma, C. Wang, Y. Dong, W. Jing, P. Wei et al., Microsphere-gel composite system with mesenchymal stem cell recruitment, antibacterial, and immunomodulatory properties promote bone regeneration via sequential release of LL37 and W9 peptides. ACS Appl. Mater. Interfaces 14(34), 38525–38540 (2022). https://doi.org/10.1021/acsami.2c10242
- J. Deng, H. Zhang, K. Wei, Y. Xiao, C. Zhang et al., Molecular bridge assisted bifacial defect healing enables low energy loss for efficient and stable perovskite solar cells. Adv. Funct. Mater. 32(52), 2209516 (2022). https://doi.org/10.1002/adfm.202209516
- R. Zhu, Q.-S. Li, Z.-S. Li, Molecular engineering of hexaazatriphenylene derivatives toward more efficient electron-transporting materials for inverted perovskite solar cells. ACS Appl. Mater. Interfaces 12(34), 38222–38231 (2020). https://doi.org/10.1021/acsami.0c10996
- M.-H. Li, X. Ma, J. Fu, S. Wang, J. Wu et al., Molecularly tailored perovskite/poly(3-hexylthiophene) interfaces for high-performance solar cells. Energy Environ. Sci. 17(15), 5513–5520 (2024). https://doi.org/10.1039/d4ee02251c
- D. Zhang, X. Wang, T. Tian, X. Xia, J. Duan et al., Multi-functional buried interface engineering derived from in-situ-formed 2D perovskites using π-conjugated liquid-crystalline molecule with aggregation-induced emission for efficient and stable NiOx-based inverted perovskite solar cells. Chem. Eng. J. 469, 143789 (2023). https://doi.org/10.1016/j.cej.2023.143789
- W. Jiang, M. Liu, Y. Li, F.R. Lin, A.K.Y. Jen, Rational molecular design of multifunctional self-assembled monolayers for efficient hole selection and buried interface passivation in inverted perovskite solar cells. Chem. Sci. 15(8), 2778–2785 (2024). https://doi.org/10.1039/D3SC05485C
- D. Li, Y. Huang, R. Ma, H. Liu, Q. Liang et al., Surface regulation with polymerized small molecular acceptor towards efficient inverted perovskite solar cells. Adv. Energy Mater. 13(18), 2204247 (2023). https://doi.org/10.1002/aenm.202204247
- K. Wang, B. Yu, C. Lin, R. Yao, H. Yu et al., Synergistic passivation on buried interface for highly efficient and stable p–i–n perovskite solar cells. Small 20(42), 2403494 (2024). https://doi.org/10.1002/smll.202403494
- P. Han, Y. Zhang, Recent advances in carbazole-based self-assembled monolayer for solution-processed optoelectronic devices. Adv. Mater. 36(33), e2405630 (2024). https://doi.org/10.1002/adma.202405630
- T. Niu, Q. Xue, H.-L. Yip, Molecularly engineered interfaces in metal halide perovskite solar cells. J. Phys. Chem. Lett. 12(20), 4882–4901 (2021). https://doi.org/10.1021/acs.jpclett.1c00954
- E.-B. Abdullah, M.S. Kim, H.-S. Akhtar, S.A. Shin et al., Influence of donor groups on benzoselenadiazole-based dopant-free hole transporting materials for high performance perovskite solar cells. ACS Appl. Energy Mater. 4(1), 312–321 (2021). https://doi.org/10.1021/acsaem.0c02264
- M. Zhai, Y. Miao, C. Chen, L. Liu, H. Wang et al., Modulating donor assemblies of D-π-D type hole transport materials for perovskite solar cells. J. Power. Sources 551, 232199 (2022). https://doi.org/10.1016/j.jpowsour.2022.232199
- Z. Hu, W. Fu, L. Yan, J. Miao, H. Yu et al., Effects of heteroatom substitution in spiro-bifluorene hole transport materials. Chem. Sci. 7(8), 5007–5012 (2016). https://doi.org/10.1039/c6sc00973e
- N.J. Jeon, H.G. Lee, Y.C. Kim, J. Seo, J.H. Noh et al., O-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. J. Am. Chem. Soc. 136(22), 7837–7840 (2014). https://doi.org/10.1021/ja502824c
- F. Zhang, X. Liu, C. Yi, D. Bi, J. Luo et al., Dopant-free donor (D)-π-D-π-D conjugated hole-transport materials for efficient and stable perovskite solar cells. Chemsuschem 9(18), 2578–2585 (2016). https://doi.org/10.1002/cssc.201600905
- Z. Zhang, Z. Tang, K. Wang, P. Wang, J. Yang, Effect of steric hindrance and number of substituents on the transfer and interface properties of Y-shaped hole-transporting materials for perovskite solar cells. Phys. Chem. Chem. Phys. 25(37), 25850–25861 (2023). https://doi.org/10.1039/D3CP03322H
- Z.-R. Lan, J.-Y. Shao, Y.-W. Zhong, Self-assembled monolayers as hole-transporting materials for inverted perovskite solar cells. Mol. Syst. Des. Eng. 8(12), 1440–1455 (2023). https://doi.org/10.1039/d3me00144j
- Q. Liao, Y. Wang, Z. Zhang, K. Yang, Y. Shi et al., Self-assembled donor-acceptor hole contacts for inverted perovskite solar cells with an efficiency approaching 22%: the impact of anchoring groups. J. Energy Chem. 68, 87–95 (2022). https://doi.org/10.1016/j.jechem.2021.11.001
- P.-H. Liu, C.-H. Chuang, Y.-L. Zhou, S.-H. Wang, R.-J. Jeng et al., Conjugated polyelectrolytes as promising hole transport materials for inverted perovskite solar cells: effect of ionic groups. J. Mater. Chem. A 8(47), 25173–25177 (2020). https://doi.org/10.1039/D0TA09063H
- B. Li, C. Zhang, D. Gao, X. Sun, S. Zhang et al., Suppressing oxidation at perovskite–NiOx interface for efficient and stable tin perovskite solar cells. Adv. Mater. 36(17), 2309768 (2024). https://doi.org/10.1002/adma.202309768
- X. Cao, L. Zhi, Y. Li, F. Fang, X. Cui et al., Elucidating the key role of a lewis base solvent in the formation of perovskite films fabricated from the lewis adduct approach. ACS Appl. Mater. Interfaces 9(38), 32868–32875 (2017). https://doi.org/10.1021/acsami.7b07216
- J. Duan, Y. Wang, X. Yang, Q. Tang, Alkyl-chain-regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells. Angew. Chem. Int. Ed. 59(11), 4391–4395 (2020). https://doi.org/10.1002/anie.202000199
- A. Pan, B. He, X. Fan, Z. Liu, J.J. Urban et al., Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10(8), 7943–7954 (2016). https://doi.org/10.1021/acsnano.6b03863
- X. Huo, Y. Li, W. Liu, X. Huang, J. Meng et al., Nonpolar and ultra-long-chain ligand to modify the perovskite interface toward high-efficiency and stable wide bandgap perovskite solar cells. ACS Appl. Energy Mater. 6(3), 1731–1740 (2023). https://doi.org/10.1021/acsaem.2c03611
- Z. Liu, H. Wang, H. Han, H. Jiang, N. Liu et al., Tailoring the molecular size of alkylamine modifiers for fabricating efficient and stable inverted CsPbI3 perovskite solar cells. J. Mater. Chem. C 12(28), 10604–10612 (2024). https://doi.org/10.1039/D4TC01871K
- X. Sun, F. Wu, C. Zhong, L. Zhu, Z.-A. Li, A structure–property study of fluoranthene-cored hole-transporting materials enables 19.3% efficiency in dopant-free perovskite solar cells. Chem. Sci. 10(28), 6899–6907 (2019). https://doi.org/10.1039/C9SC01697J
- Y. Ding, C. Duan, Q. Guo, Y. Meng, Z. Wang et al., Side-chain engineering of benzotriazole-based polymers as hole transport material enables high-efficiency CsPbI2Br single-junction and tandem perovskite solar cells. Nano Today 53, 102046 (2023). https://doi.org/10.1016/j.nantod.2023.102046
- L. Fang, A. Zheng, M. Ren, X. Xie, P. Wang, Unraveling the structure-property relationship of molecular hole-transporting materials for perovskite solar cells. ACS Appl. Mater. Interfaces 11(42), 39001–39009 (2019). https://doi.org/10.1021/acsami.9b13189
- D. Li, Q. Lian, T. Du, R. Ma, H. Liu et al., Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells. Nat. Commun. 15(1), 7605 (2024). https://doi.org/10.1038/s41467-024-51760-5
- Z. Lan, H. Huang, S. Du, Y. Lu, C. Sun et al., Cascade reaction in organic hole transport layer enables efficient perovskite solar cells. Angew. Chem. Int. Ed. 63(21), e202402840 (2024). https://doi.org/10.1002/anie.202402840
References
Z. Hu, C. Ran, H. Zhang, L. Chao, Y. Chen et al., The Current status and development trend of perovskite solar cells. Engineering 21, 15–19 (2023). https://doi.org/10.1016/j.eng.2022.10.012
NREL, Best research-cell efficiency chart. (NREL, 2024), https://www2.nrel.gov/pv/interactive-cell-efficiency . Accessed 29 Apr 2025.
Y. Da, Y. Xuan, Q. Li, Quantifying energy losses in planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 174, 206–213 (2018). https://doi.org/10.1016/j.solmat.2017.09.002
J.P.N. Torres, C.A. Fernandes, J.C. Leite, Photovoltaic cell string layout. Sustainable. Energy 5, 16–25 (2019). https://doi.org/10.12691/rse-5-1-3
K. Wang, L. Zheng, Y. Hou, A. Nozariasbmarz, B. Poudel et al., Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 6(4), 756–771 (2022). https://doi.org/10.1016/j.joule.2022.01.009
S. Yang, M. Wu, X. Lei, J. Wang, Y. Han et al., Ultra-high 1.27 V VOC of pure CsPbI3 perovskite solar cells with an efficiency of 21.8%. ACS Energy Lett. 9(10), 4817–4826 (2024). https://doi.org/10.1021/acsenergylett.4c01323
H.J. Lee, M.M. Ali Gamel, P.J. Ker, M.Z. Jamaludin, Y.H. Wong et al., Absorption coefficient of bulk III-V semiconductor materials: a review on methods, properties and future prospects. J. Electron. Mater. 51(11), 6082–6107 (2022). https://doi.org/10.1007/s11664-022-09846-7
A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352(6283), aad4424 (2016). https://doi.org/10.1126/science.aad4424
S. De Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014). https://doi.org/10.1021/jz500279b
S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016). https://doi.org/10.1016/j.solener.2016.02.015
S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
A.J. Nozik, J. Miller, Introduction to solar photon conversion. Chem. Rev. 110(11), 6443–6445 (2010). https://doi.org/10.1021/cr1003419
J. Liu, Y. He, L. Ding, H. Zhang, Q. Li et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
T. Zdanowicz, T. Rodziewicz, M. Zabkowska-Waclawek, Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations. Sol. Energy Mater. Sol. Cells 87(1–4), 757–769 (2005). https://doi.org/10.1016/j.solmat.2004.07.049
A. Richter, M. Hermle, S.W. Glunz, Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3(4), 1184–1191 (2013). https://doi.org/10.1109/JPHOTOV.2013.2270351
J. Keller, K. Kiselman, O. Donzel-Gargand, N.M. Martin, M. Babucci et al., High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 236% efficiency. Nat. Energy 9(4), 467–478 (2024). https://doi.org/10.1038/s41560-024-01472-3
C. Tan, Y. Cui et al., In situ reconstructing the buried interface for efficient CsPbI3 perovskite solar cells. ACS Energy Lett. 10(2), 703–712 (2025). https://doi.org/10.1021/acsenergylett.4c03282
T. Zhao, R. He, T. Liu, Y. Li, D. Yu et al., Mitigating the efficiency deficit in single-crystal perovskite solar cells by precise control of the growth processes. ACS Nano 19(3), 3282–3292 (2025). https://doi.org/10.1021/acsnano.4c11691
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194), 295–298 (2014). https://doi.org/10.1126/science.1254763
C. Li, X. Lu, W. Ding, L. Feng, Y. Gao et al., Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. Sect. B 64(6), 702–707 (2008). https://doi.org/10.1107/S0108768108032734
B.-Q. Zhao, Y. Li, X.-Y. Chen, Y. Han, S.-H. Wei et al., Engineering carrier dynamics in halide perovskites by dynamical lattice distortion. Adv. Sci. 10(33), 2300386 (2023). https://doi.org/10.1002/advs.202300386
Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
A.E. Fedorovskiy, N.A. Drigo, M.K. Nazeeruddin, The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range. Small Meth. 4(5), 1900426 (2020). https://doi.org/10.1002/smtd.201900426
T. Sato, S. Takagi, S. Deledda, B.C. Hauback, S.-I. Orimo, Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds. Sci. Rep. 6, 23592 (2016). https://doi.org/10.1038/srep23592
B. Kim, J. Kim, N. Park, First-principles identification of the charge-shifting mechanism and ferroelectricity in hybrid halide perovskites. Sci. Rep. 10(1), 19635 (2020). https://doi.org/10.1038/s41598-020-76742-7
J. Ning, L. Zheng, W. Lei, S. Wang, J. Xi et al., Temperature-dependence of the band gap in the all-inorganic perovskite CsPbI3 from room to high temperatures. Phys. Chem. Chem. Phys. 24(26), 16003–16010 (2022). https://doi.org/10.1039/d2cp00940d
S. Hwang, W. Kim, K. Kim, M.J. Ko, Theoretical studies on the electronic structures of halide perovskites: a critical review. Korean J. Chem. Eng. 41(14), 3737–3749 (2024). https://doi.org/10.1007/s11814-024-00336-6
S. Liu, J. Wang, Z. Hu, Z. Duan, H. Zhang et al., Role of organic cation orientation in formamidine based perovskite materials. Sci. Rep. 11(1), 20433 (2021). https://doi.org/10.1038/s41598-021-99621-1
Y. Hu, J. Schlipf, M. Wussler, M.L. Petrus, W. Jaegermann et al., Hybrid perovskite/perovskite heterojunction solar cells. ACS Nano 10(6), 5999–6007 (2016). https://doi.org/10.1021/acsnano.6b01535
C. Ma, C. Leng, Y. Ji, X. Wei, K. Sun et al., 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale 8(43), 18309–18314 (2016). https://doi.org/10.1039/c6nr04741f
S.S. Mali, J.V. Patil, J.-Y. Shao, Y.-W. Zhong, S.R. Rondiya et al., Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency. Nat. Energy 8(9), 989–1001 (2023). https://doi.org/10.1038/s41560-023-01310-y
Y. Zhang, Z. Yang, T. Ma, Z. Ai, C. Wang et al., A theoretical investigation of transport layer-free homojunction perovskite solar cells via a detailed photoelectric simulation. Adv. Energy Mater. 13(12), 2203366 (2023). https://doi.org/10.1002/aenm.202203366
H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
T. Ma, S. Wang, Y. Zhang, K. Zhang, L. Yi, The development of all-inorganic CsPbX3 perovskite solar cells. J. Mater. Sci. 55(2), 464–479 (2020). https://doi.org/10.1007/s10853-019-03974-y
F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M. De Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8(2), 89–108 (2022). https://doi.org/10.1038/s41578-022-00503-3
W. Tian, H. Zhou, L. Li, Hybrid organic–inorganic perovskite photodetectors. Small 13(41), 1702107 (2017). https://doi.org/10.1002/smll.201702107
K. Mahmood, S. Sarwar, M.T. Mehran, Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv. 7(28), 17044–17062 (2017). https://doi.org/10.1039/C7RA00002B
J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
L. Lin, T.W. Jones, T.C. Yang, N.W. Duffy, J. Li et al., Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater. 31(5), 2008300 (2021). https://doi.org/10.1002/adfm.202008300
W. Chai, W. Zhu, Z. Zhang, H. Xi, D. Chen et al., Selectively localized growth of two-dimensional perovskites at grain boundaries for efficient and stable CsPbI3 perovskite solar cells. Mater. Today Phys. 34, 101088 (2023). https://doi.org/10.1016/j.mtphys.2023.101088
J. Zhang, G. Zhang, Y. Liao, Z. Pan, H. Rao et al., Interfacial energy-level alignment via poly-3-hexylthiophene-CsPbI3 quantum dots hybrid hole conductor for efficient carbon-based CsPbI2Br solar cells. Chem. Eng. J. 453, 139842 (2023). https://doi.org/10.1016/j.cej.2022.139842
W. Ren, Y. Liu, Y. Wu, Q. Sun, Y. Cui et al., Interface modification of an electron transport layer using europium acetate for enhancing the performance of P3HT-based inorganic perovskite solar cells. Phys. Chem. Chem. Phys. 23(41), 23818–23826 (2021). https://doi.org/10.1039/D1CP03645A
M. Yue, J. Su, P. Zhao, Z. Lin, J. Zhang et al., Optimizing the performance of CsPbI3-based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering. Nano-Micro Lett. 11(1), 91 (2019). https://doi.org/10.1007/s40820-019-0320-y
H.J. Kwak, C. Kiguye, M. Gong, J.H. Park, G.H. Kim et al., Enhanced performance of inverted perovskite quantum dot light-emitting diode using electron suppression layer and surface morphology control. Materials 16(22), 7171 (2023). https://doi.org/10.3390/ma16227171
C. Huang, C. Huang, Y. Ni, P. Lin, N. Fu, B. Fan, W. Zhang, Highly-crystalline SnO2 thin films for efficient planar perovskite solar cells. ACS Appl. Energy Mater. 5(5), 5704–5710 (2022). https://doi.org/10.1021/acsaem.1c04094
H. Wang, J. Yuan, J. Xi, J. Du, J. Tian, Multiple-function surface engineering of SnO2 nanops to achieve efficient perovskite solar cells. J. Phys. Chem. Lett. 12(37), 9142–9148 (2021). https://doi.org/10.1021/acs.jpclett.1c02682
S. Zhang, H. Si, W. Fan, M. Shi, M. Li et al., Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew. Chem. Int. Ed. 59(28), 11573–11582 (2020). https://doi.org/10.1002/anie.202003502
Z. Lv, L. He, H. Jiang, X. Ma, F. Wang et al., Diluted-CdS quantum dot-assisted SnO2 electron transport layer with excellent conductivity and suitable band alignment for high-performance planar perovskite solar cells. ACS Appl. Mater. Interfaces 13(14), 16326–16335 (2021). https://doi.org/10.1021/acsami.1c00896
M.S. Reza, M.S. Reza, A. Ghosh, M.F. Rahman, J.R. Rajabathar et al., New highly efficient perovskite solar cell with power conversion efficiency of 31% based on Ca3NI3 and an effective charge transport layer. Opt. Commun. 561, 130511 (2024). https://doi.org/10.1016/j.optcom.2024.130511
X. Meng, J. Zhou, J. Hou, X. Tao, S.H. Cheung et al., Versatility of carbon enables all carbon based perovskite solar cells to achieve high efficiency and high stability. Adv. Mater. 30(36), 1804637 (2018). https://doi.org/10.1002/adma.201804637
H. Guan, Y. Lei, Q. Wu, X. Zhou, H. Wang et al., An interface co-modification strategy for improving the efficiency and stability of CsPbI3 perovskite solar cells. ACS Appl. Energy Mater. 5(11), 13419–13428 (2022). https://doi.org/10.1021/acsaem.2c02096
N. Sun, S. Fu, Y. Li, L. Chen, J. Chung et al., Tailoring crystallization dynamics of CsPbI3 for scalable production of efficient inorganic perovskite solar cells. Adv. Funct. Mater. 34(6), 2309894 (2024). https://doi.org/10.1002/adfm.202309894
J. Chen, N.-G. Park, Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31(47), e1803019 (2019). https://doi.org/10.1002/adma.201803019
T. Zhang, Z. Ren, S. Guo, G. Zhang, S. Wang et al., Broadband self-powered CdS ETL-based MAPbI3 heterojunction photodetector induced by a photovoltaic-pyroelectric-thermoelectric effect. ACS Appl. Mater. Interfaces 15(37), 44444–44455 (2023). https://doi.org/10.1021/acsami.3c07585
J. Jia, J. Wu, J. Dong, L. Fan, M. Huang et al., Cadmium sulfide as an efficient electron transport material for inverted planar perovskite solar cells. Chem. Commun. 54(25), 3170–3173 (2018). https://doi.org/10.1039/C7CC09838C
C.-S. Jo, K. Noh, S.H. Noh, H. Yoo, Y. Kim et al., Solution-processed fabrication of light-emitting diodes using CsPbBr3 perovskite nanocrystals. ACS Appl. Nano Mater. 3(12), 11801–11810 (2020). https://doi.org/10.1021/acsanm.0c02334
B. Zhou, L. Qin, P. Wang, Z. Chen, J. Zang et al., Fabrication of ZnO dual electron transport layer via atomic layer deposition for highly stable and efficient CsPbBr3 perovskite nanocrystals light-emitting diodes. Nanotechnology 34(2), 025203 (2023). https://doi.org/10.1088/1361-6528/ac98ce
P. Lu, J. Wu, X. Shen, X. Gao, Z. Shi et al., ZnO–Ti3C2 MXene electron transport layer for high external quantum efficiency perovskite nanocrystal light-emitting diodes. Adv. Sci. 7(19), 2001562 (2020). https://doi.org/10.1002/advs.202001562
Y. Wang, T. Zhang, P. Zhang, D. Liu, L. Ji et al., Solution processed PCBM-CH3NH3PbI3 heterojunction photodetectors with enhanced performance and stability. Org. Electron. 57, 263–268 (2018). https://doi.org/10.1016/j.orgel.2018.02.043
K. Choi, D.H. Lee, W. Jung, S. Kim, S.H. Kim et al., 3D interaction of zwitterions for highly stable and efficient inorganic CsPbI3 solar cells. Adv. Funct. Mater. 32(16), 2112027 (2022). https://doi.org/10.1002/adfm.202112027
J. Wang, Y. Che, Y. Duan, Z. Liu, S. Yang et al., 21.15%-efficiency and stable γ-CsPbI3 perovskite solar cells enabled by an acyloin ligand. Adv. Mater. 35(12), e2210223 (2023). https://doi.org/10.1002/adma.202210223
Y. Du, Q. Tian, X. Chang, J. Fang, X. Gu et al., Ionic liquid treatment for highest-efficiency ambient printed stable all-inorganic CsPbI3 perovskite solar cells. Adv. Mater. 34(10), 2106750 (2022). https://doi.org/10.1002/adma.202106750
J. Choi, S. Song, M.T. Hörantner, H.J. Snaith, T. Park, Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 10(6), 6029–6036 (2016). https://doi.org/10.1021/acsnano.6b01575
T.-H. Le, H. Driscoll, C.-H. Hou, A. Montgomery, W. Li et al., Perovskite solar module: promise and challenges in efficiency, meta-stability, and operational lifetime. Adv. Electron. Mater. 9(10), 2300093 (2023). https://doi.org/10.1002/aelm.202300093
W. Cheng, R. Zhou, S. Peng, C. Wang, L. Chen, Research on passivation of perovskite layer in perovskite solar cells. Mater. Today Commun. 38, 107879 (2024). https://doi.org/10.1016/j.mtcomm.2023.107879
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
W. Chi, S.K. Banerjee, Engineering strategies for two-dimensional perovskite solar cells. Trends Chem. 4(11), 1005–1020 (2022). https://doi.org/10.1016/j.trechm.2022.08.009
J. Chen, N.-G. Park, Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 5(8), 2742–2786 (2020). https://doi.org/10.1021/acsenergylett.0c01240
R. Ji, Z. Zhang, Y.J. Hofstetter, R. Buschbeck, C. Hänisch et al., Perovskite phase heterojunction solar cells. Nat. Energy 7(12), 1170–1179 (2022). https://doi.org/10.1038/s41560-022-01154-y
Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10(13), 1902579 (2020). https://doi.org/10.1002/aenm.201902579
B. Liu, Y. Wang, S. Bian, Z. Liu, Y. Wu et al., Perovskite solar cells with extremely high 24.63% efficiency through design of double electron transport layers and double luminescent converter layers. Adv. Funct. Mater. 34(34), 2401007 (2024). https://doi.org/10.1002/adfm.202401007
H. Bian, D. Bai, Z. Jin, K. Wang, L. Liang et al., Graded bandgap CsPbI2+xBr1–x perovskite solar cells with a stabilized efficiency of 14.4%. Joule 2(8), 1500–1510 (2018). https://doi.org/10.1016/j.joule.2018.04.012
R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628(8006), 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
S. Wang, C. Bi, A. Portniagin, J. Yuan, J. Ning et al., CsPbI3/PbSe heterostructured nanocrystals for high-efficiency solar cells. ACS Energy Lett. 5(7), 2401–2410 (2020). https://doi.org/10.1021/acsenergylett.0c01222
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
S.-M. Yoo, S.-Y. Lee, E. Velilla Hernandez, M. Kim, G. Kim et al., Nanoscale perovskite-sensitized solar cell revisited: dye-cell or perovskite-cell? Chemsuschem 13(10), 2571–2576 (2020). https://doi.org/10.1002/cssc.202000223
K. Rakstys, C. Igci, M.K. Nazeeruddin, Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells. Chem. Sci. 10(28), 6748–6769 (2019). https://doi.org/10.1039/C9SC01184F
N. Li, J. Yan, Y. Ai, E. Jiang, L. Lin et al., A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells. Sci. China Mater. 63(2), 207–215 (2020). https://doi.org/10.1007/s40843-019-9586-x
W. Huang, R. Zhang, X. Xia, P. Steichen, N. Liu et al., Room temperature processed double electron transport layers for efficient perovskite solar cells. Nanomaterials 11(2), 329 (2021). https://doi.org/10.3390/nano11020329
M. Pols, A.C.T. van Duin, S. Calero, S. Tao, Mixing I and Br in inorganic perovskites: atomistic insights from reactive molecular dynamics simulations. J. Phys. Chem. C Nanomater. Interfaces 128(9), 4111–4118 (2024). https://doi.org/10.1021/acs.jpcc.4c00563
D. Yu, F. Cao, J. Liao, B. Wang, C. Su et al., Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin. Nat. Commun. 13(1), 6229 (2022). https://doi.org/10.1038/s41467-022-33752-5
X. Liu, D. Luo, Z.H. Lu, J.S. Yun, M. Saliba et al., Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7(7), 462–479 (2023). https://doi.org/10.1038/s41570-023-00492-z
P. Mahajan, B. Padha, S. Verma, V. Gupta, R. Datt et al., Review of current progress in hole-transporting materials for perovskite solar cells. J. Energy Chem. 68, 330–386 (2022). https://doi.org/10.1016/j.jechem.2021.12.003
W.-M. Gu, K.-J. Jiang, F. Li, G.-H. Yu, Y. Xu et al., A multifunctional interlayer for highly stable and efficient perovskite solar cells based on pristine poly(3-hexylthiophene). Chem. Eng. J. 444, 136644 (2022). https://doi.org/10.1016/j.cej.2022.136644
J. Sun, N. Zhang, J. Wu, W. Yang, H. He et al., Additive engineering of the CuSCN hole transport layer for high-performance perovskite semitransparent solar cells. ACS Appl. Mater. Interfaces 14(46), 52223–52232 (2022). https://doi.org/10.1021/acsami.2c18120
F. Shoukat, A. Ali, J.H. Lee, Y. Khan, B. Walker et al., Ag: PSS polyelectrolyte/PTB7 bilayers as efficient hole transport layers for perovskite solar cells. Synth. Met. 307, 117679 (2024). https://doi.org/10.1016/j.synthmet.2024.117679
D.B. Khadka, Y. Shirai, M. Yanagida, K. Miyano, Ammoniated aqueous precursor ink processed copper iodide as hole transport layer for inverted planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 210, 110486 (2020). https://doi.org/10.1016/j.solmat.2020.110486
L. Zhang, Y. Chen, Atomistic understanding on molecular halide perovskite/organic/TiO2 interface with bifunctional interfacial modifier: a case study on halogen bond and carboxylic acid group. Appl. Surf. Sci. 502, 144274 (2020). https://doi.org/10.1016/j.apsusc.2019.144274
J.-W. Liang, Y. Firdaus, R. Azmi, H. Faber, D. Kaltsas et al., Cl2-doped CuSCN hole transport layer for organic and perovskite solar cells with improved stability. ACS Energy Lett. 7(9), 3139–3148 (2022). https://doi.org/10.1021/acsenergylett.2c01545
D. Saranin, P. Gostischev, D. Tatarinov, I. Ermanova, V. Mazov et al., Copper iodide interlayer for improved charge extraction and stability of inverted perovskite solar cells. Materials 12(9), 1406 (2019). https://doi.org/10.3390/ma12091406
X. Gao, Y. Du, X. Meng, Cupric oxide film with a record hole mobility of 48.44 cm2/Vs via direct–current reactive magnetron sputtering for perovskite solar cell application. Sol. Energy 191, 205–209 (2019). https://doi.org/10.1016/j.solener.2019.08.080
C. Yan, Z. Li, Y. Sun, J. Zhao, X. Huang et al., Decreasing energy loss and optimizing band alignment for high performance CsPbI3 solar cells through guanidine hydrobromide post-treatment. J. Mater. Chem. A 8(20), 10346–10353 (2020). https://doi.org/10.1039/D0TA02488K
J.-Y. Shao, Y.-W. Zhong, Design of small molecular hole-transporting materials for stable and high-performance perovskite solar cells. Chem. Phys. Rev. 2(2), 021302 (2021). https://doi.org/10.1063/5.0051254
M.M.H. Desoky, M. Bonomo, R. Buscaino, A. Fin, G. Viscardi et al., Dopant-free all-organic small-molecule HTMs for perovskite solar cells: concepts and structure–property relationships. Energies 14(8), 2279 (2021). https://doi.org/10.3390/en14082279
H. Tian, X. Jiang, X. Liu, F. Sun, X. Guo et al., Enhancing performances of inverted perovskite solar cells by modifying the buried interface with sodium copper chlorophyllin. Nano Energy 126, 109616 (2024). https://doi.org/10.1016/j.nanoen.2024.109616
N. Cheng, Z. Liu, Z. Yu, W. Li, Z. Zhao et al., High performance inverted perovskite solar cells using PEDOT: PSS/KCl hybrid hole transporting layer. Org. Electron. 98, 106298 (2021). https://doi.org/10.1016/j.orgel.2021.106298
Z. Zhu, D. Zhao, C.-C. Chueh, X. Shi, Z. Li et al., Highly efficient and stable perovskite solar cells enabled by all-crosslinked charge-transporting layers. Joule 2(1), 168–183 (2018). https://doi.org/10.1016/j.joule.2017.11.006
C.-H. Kuan, G.-S. Luo, S. Narra, S. Maity, H. Hiramatsu et al., How can a hydrophobic polymer PTAA serve as a hole- transport layer for an inverted tin perovskite solar cell? Chem. Eng. J. 450, 138037 (2022). https://doi.org/10.1016/j.cej.2022.138037
S.P. Koiry, P. Jha, C. Sridevi, D. Gupta, V. Putta et al., Improving perovskite/P3HT interface without an interlayer: impact of perovskite surface topography on photovoltaic performance of P3HT-based perovskite solar cells. Mater. Today Commun. 36, 106418 (2023). https://doi.org/10.1016/j.mtcomm.2023.106418
Z. Iqbal, F. Zu, A. Musiienko, E. Gutierrez-Partida, H. Köbler et al., Interface modification for energy level alignment and charge extraction in CsPbI3 perovskite solar cells. ACS Energy Lett. 8(10), 4304–4314 (2023). https://doi.org/10.1021/acsenergylett.3c01522
W. Xu, F. He, M. Zhang, P. Nie, S. Zhang et al., Minimizing voltage loss in efficient all-inorganic CsPbI2Br perovskite solar cells through energy level alignment. ACS Energy Lett. 4(10), 2491–2499 (2019). https://doi.org/10.1021/acsenergylett.9b01662
W.-J. Chi, D.-Y. Zheng, X.-F. Chen, Z.-S. Li, Optimizing thienothiophene chain lengths of D–π–D hole transport materials in perovskite solar cells for improving energy levels and hole mobility. J. Mater. Chem. C 5(38), 10055–10060 (2017). https://doi.org/10.1039/C7TC03232C
H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383(6688), 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
H. Xie, J. Liu, X. Yin, Y. Guo, D. Liu et al., Perovskite/P3HT graded heterojunction by an additive-assisted method for high-efficiency perovskite solar cells with carbon electrodes. Colloids Surf. A Physicochem. Eng. Aspects 635, 128072 (2022). https://doi.org/10.1016/j.colsurfa.2021.128072
D. Yeo, J. Shin, D. Kim, J.Y. Jaung, I.H. Jung, Self-assembled monolayer-based hole-transporting materials for perovskite solar cells. Nanomaterials 14(2), 175 (2024). https://doi.org/10.3390/nano14020175
L. Bu, Z. Liu, M. Zhang, W. Li, A. Zhu et al., Semitransparent fully air processed perovskite solar cells. ACS Appl. Mater. Interfaces 7(32), 17776–17781 (2015). https://doi.org/10.1021/acsami.5b04040
J. Xu, Q. Xiong, X. Huang, P. Sun, Q. Zhou et al., Symmetry-breaking induced dipole enhancement for efficient spiro-type hole transporting materials: easy synthesis with high stability. Small 19(12), 2206435 (2023). https://doi.org/10.1002/smll.202206435
M. Zhai, M. Li, Z. Deng, R. Yao, L. Wang et al., Perovskite solar cells and modules employing facile synthesis and green-solvent-processable organic hole transport materials. ACS Energy Lett. 8(11), 4966–4975 (2023). https://doi.org/10.1021/acsenergylett.3c01472
C. Duan, F. Zou, S. Li, Q. Zhu, J. Li et al., Dopant-free starlike molecular hole conductor with ordered packing for durable all-inorganic perovskite solar cells. Adv. Energy Mater. 14(14), 2303997 (2024). https://doi.org/10.1002/aenm.202303997
Z. Xia, W. Zhang, C. Chen, Y. Miao, X. Ding et al., Low-cost star-shaped hole-transporting materials with isotropic properties and its application in perovskite solar cells. Dyes Pigm. 207, 110695 (2022). https://doi.org/10.1016/j.dyepig.2022.110695
Z. Wang, S. Yan, Z. Yang, Y. Zou, J. Chen et al., Tetrathienopyrrole-based hole-transporting materials for highly efficient and robust perovskite solar cells. Chem. Eng. J. 450, 138189 (2022). https://doi.org/10.1016/j.cej.2022.138189
L. Yuan, W. Zhu, Y. Zhang, Y. Li, C.C.S. Chan et al., A conformally bonded molecular interface retarded iodine migration for durable perovskite solar cells. Energy Environ. Sci. 16(4), 1597–1609 (2023). https://doi.org/10.1039/D2EE03565K
W. Zhang, X. Li, X. Feng, X. Zhao, J. Fang, A conjugated ligand interfacial modifier for enhancing efficiency and operational stability of planar perovskite solar cells. Chem. Eng. J. 412, 128680 (2021). https://doi.org/10.1016/j.cej.2021.128680
Y. Shi, L. Zhang, S. Hu, X. Wang, J. Han et al., Bridging the buried interface with conjugated molecule for highly efficient carbon-based inorganic CsPbI2Br perovskite solar cells fabricated in air. Chem. Eng. J. 492, 152210 (2024). https://doi.org/10.1016/j.cej.2024.152210
H. Dong, J. Xi, L. Zuo, J. Li, Y. Yang et al., Conjugated molecules “bridge”: functional ligand toward highly efficient and long-term stable perovskite solar cell. Adv. Funct. Mater. 29(17), 1808119 (2019). https://doi.org/10.1002/adfm.201808119
R. Wang, T.-G. Sun, T. Wu, Z. Zhu, J.-Y. Shao et al., Hydrophobic π-conjugated organic small molecule as a multi-functional interface material enables efficient and stable perovskite solar cells. Chem. Eng. J. 430, 133065 (2022). https://doi.org/10.1016/j.cej.2021.133065
K. Ma, H.R. Atapattu, Q. Zhao, Y. Gao, B.P. Finkenauer et al., Multifunctional conjugated ligand engineering for stable and efficient perovskite solar cells. Adv. Mater. 33(32), 2100791 (2021). https://doi.org/10.1002/adma.202100791
I.G. Sonsona, M. Carrera, M. Más-Montoya, R.S. Sánchez, P. Serafini et al., 2D-self-assembled organic materials in undoped hole transport bilayers for efficient inverted perovskite solar cells. ACS Appl. Mater. Interfaces 15(18), 22310–22319 (2023). https://doi.org/10.1021/acsami.2c23010
F.S. Ghoreishi, V. Ahmadi, R. Poursalehi, M. SamadPour, M.B. Johansson et al., Enhanced performance of CH3NH3PbI3 perovskite solar cells via interface modification using phenyl ammonium iodide derivatives. J. Power. Sources 473, 228492 (2020). https://doi.org/10.1016/j.jpowsour.2020.228492
H. Zhang, Y. Mao, J. Xu, S. Li, F. Guo et al., Methylthiophene terminated D–π–D molecular semiconductors as multifunctional interfacial materials for high performance perovskite solar cells. J. Mater. Chem. C 10(5), 1862–1869 (2022). https://doi.org/10.1039/D1TC05354J
S. Ma, C. Wang, Y. Dong, W. Jing, P. Wei et al., Microsphere-gel composite system with mesenchymal stem cell recruitment, antibacterial, and immunomodulatory properties promote bone regeneration via sequential release of LL37 and W9 peptides. ACS Appl. Mater. Interfaces 14(34), 38525–38540 (2022). https://doi.org/10.1021/acsami.2c10242
J. Deng, H. Zhang, K. Wei, Y. Xiao, C. Zhang et al., Molecular bridge assisted bifacial defect healing enables low energy loss for efficient and stable perovskite solar cells. Adv. Funct. Mater. 32(52), 2209516 (2022). https://doi.org/10.1002/adfm.202209516
R. Zhu, Q.-S. Li, Z.-S. Li, Molecular engineering of hexaazatriphenylene derivatives toward more efficient electron-transporting materials for inverted perovskite solar cells. ACS Appl. Mater. Interfaces 12(34), 38222–38231 (2020). https://doi.org/10.1021/acsami.0c10996
M.-H. Li, X. Ma, J. Fu, S. Wang, J. Wu et al., Molecularly tailored perovskite/poly(3-hexylthiophene) interfaces for high-performance solar cells. Energy Environ. Sci. 17(15), 5513–5520 (2024). https://doi.org/10.1039/d4ee02251c
D. Zhang, X. Wang, T. Tian, X. Xia, J. Duan et al., Multi-functional buried interface engineering derived from in-situ-formed 2D perovskites using π-conjugated liquid-crystalline molecule with aggregation-induced emission for efficient and stable NiOx-based inverted perovskite solar cells. Chem. Eng. J. 469, 143789 (2023). https://doi.org/10.1016/j.cej.2023.143789
W. Jiang, M. Liu, Y. Li, F.R. Lin, A.K.Y. Jen, Rational molecular design of multifunctional self-assembled monolayers for efficient hole selection and buried interface passivation in inverted perovskite solar cells. Chem. Sci. 15(8), 2778–2785 (2024). https://doi.org/10.1039/D3SC05485C
D. Li, Y. Huang, R. Ma, H. Liu, Q. Liang et al., Surface regulation with polymerized small molecular acceptor towards efficient inverted perovskite solar cells. Adv. Energy Mater. 13(18), 2204247 (2023). https://doi.org/10.1002/aenm.202204247
K. Wang, B. Yu, C. Lin, R. Yao, H. Yu et al., Synergistic passivation on buried interface for highly efficient and stable p–i–n perovskite solar cells. Small 20(42), 2403494 (2024). https://doi.org/10.1002/smll.202403494
P. Han, Y. Zhang, Recent advances in carbazole-based self-assembled monolayer for solution-processed optoelectronic devices. Adv. Mater. 36(33), e2405630 (2024). https://doi.org/10.1002/adma.202405630
T. Niu, Q. Xue, H.-L. Yip, Molecularly engineered interfaces in metal halide perovskite solar cells. J. Phys. Chem. Lett. 12(20), 4882–4901 (2021). https://doi.org/10.1021/acs.jpclett.1c00954
E.-B. Abdullah, M.S. Kim, H.-S. Akhtar, S.A. Shin et al., Influence of donor groups on benzoselenadiazole-based dopant-free hole transporting materials for high performance perovskite solar cells. ACS Appl. Energy Mater. 4(1), 312–321 (2021). https://doi.org/10.1021/acsaem.0c02264
M. Zhai, Y. Miao, C. Chen, L. Liu, H. Wang et al., Modulating donor assemblies of D-π-D type hole transport materials for perovskite solar cells. J. Power. Sources 551, 232199 (2022). https://doi.org/10.1016/j.jpowsour.2022.232199
Z. Hu, W. Fu, L. Yan, J. Miao, H. Yu et al., Effects of heteroatom substitution in spiro-bifluorene hole transport materials. Chem. Sci. 7(8), 5007–5012 (2016). https://doi.org/10.1039/c6sc00973e
N.J. Jeon, H.G. Lee, Y.C. Kim, J. Seo, J.H. Noh et al., O-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. J. Am. Chem. Soc. 136(22), 7837–7840 (2014). https://doi.org/10.1021/ja502824c
F. Zhang, X. Liu, C. Yi, D. Bi, J. Luo et al., Dopant-free donor (D)-π-D-π-D conjugated hole-transport materials for efficient and stable perovskite solar cells. Chemsuschem 9(18), 2578–2585 (2016). https://doi.org/10.1002/cssc.201600905
Z. Zhang, Z. Tang, K. Wang, P. Wang, J. Yang, Effect of steric hindrance and number of substituents on the transfer and interface properties of Y-shaped hole-transporting materials for perovskite solar cells. Phys. Chem. Chem. Phys. 25(37), 25850–25861 (2023). https://doi.org/10.1039/D3CP03322H
Z.-R. Lan, J.-Y. Shao, Y.-W. Zhong, Self-assembled monolayers as hole-transporting materials for inverted perovskite solar cells. Mol. Syst. Des. Eng. 8(12), 1440–1455 (2023). https://doi.org/10.1039/d3me00144j
Q. Liao, Y. Wang, Z. Zhang, K. Yang, Y. Shi et al., Self-assembled donor-acceptor hole contacts for inverted perovskite solar cells with an efficiency approaching 22%: the impact of anchoring groups. J. Energy Chem. 68, 87–95 (2022). https://doi.org/10.1016/j.jechem.2021.11.001
P.-H. Liu, C.-H. Chuang, Y.-L. Zhou, S.-H. Wang, R.-J. Jeng et al., Conjugated polyelectrolytes as promising hole transport materials for inverted perovskite solar cells: effect of ionic groups. J. Mater. Chem. A 8(47), 25173–25177 (2020). https://doi.org/10.1039/D0TA09063H
B. Li, C. Zhang, D. Gao, X. Sun, S. Zhang et al., Suppressing oxidation at perovskite–NiOx interface for efficient and stable tin perovskite solar cells. Adv. Mater. 36(17), 2309768 (2024). https://doi.org/10.1002/adma.202309768
X. Cao, L. Zhi, Y. Li, F. Fang, X. Cui et al., Elucidating the key role of a lewis base solvent in the formation of perovskite films fabricated from the lewis adduct approach. ACS Appl. Mater. Interfaces 9(38), 32868–32875 (2017). https://doi.org/10.1021/acsami.7b07216
J. Duan, Y. Wang, X. Yang, Q. Tang, Alkyl-chain-regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells. Angew. Chem. Int. Ed. 59(11), 4391–4395 (2020). https://doi.org/10.1002/anie.202000199
A. Pan, B. He, X. Fan, Z. Liu, J.J. Urban et al., Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10(8), 7943–7954 (2016). https://doi.org/10.1021/acsnano.6b03863
X. Huo, Y. Li, W. Liu, X. Huang, J. Meng et al., Nonpolar and ultra-long-chain ligand to modify the perovskite interface toward high-efficiency and stable wide bandgap perovskite solar cells. ACS Appl. Energy Mater. 6(3), 1731–1740 (2023). https://doi.org/10.1021/acsaem.2c03611
Z. Liu, H. Wang, H. Han, H. Jiang, N. Liu et al., Tailoring the molecular size of alkylamine modifiers for fabricating efficient and stable inverted CsPbI3 perovskite solar cells. J. Mater. Chem. C 12(28), 10604–10612 (2024). https://doi.org/10.1039/D4TC01871K
X. Sun, F. Wu, C. Zhong, L. Zhu, Z.-A. Li, A structure–property study of fluoranthene-cored hole-transporting materials enables 19.3% efficiency in dopant-free perovskite solar cells. Chem. Sci. 10(28), 6899–6907 (2019). https://doi.org/10.1039/C9SC01697J
Y. Ding, C. Duan, Q. Guo, Y. Meng, Z. Wang et al., Side-chain engineering of benzotriazole-based polymers as hole transport material enables high-efficiency CsPbI2Br single-junction and tandem perovskite solar cells. Nano Today 53, 102046 (2023). https://doi.org/10.1016/j.nantod.2023.102046
L. Fang, A. Zheng, M. Ren, X. Xie, P. Wang, Unraveling the structure-property relationship of molecular hole-transporting materials for perovskite solar cells. ACS Appl. Mater. Interfaces 11(42), 39001–39009 (2019). https://doi.org/10.1021/acsami.9b13189
D. Li, Q. Lian, T. Du, R. Ma, H. Liu et al., Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells. Nat. Commun. 15(1), 7605 (2024). https://doi.org/10.1038/s41467-024-51760-5
Z. Lan, H. Huang, S. Du, Y. Lu, C. Sun et al., Cascade reaction in organic hole transport layer enables efficient perovskite solar cells. Angew. Chem. Int. Ed. 63(21), e202402840 (2024). https://doi.org/10.1002/anie.202402840