Interface Engineering Strategies for Shuttle Mitigation in Alkali Metal–Sulfur Batteries: A Comparative Review from Li–S to Na–S and K–S Systems
Corresponding Author: Jianguo Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 167
Abstract
Rechargeable alkali metal-sulfur (M–S) batteries, including Li/Na/K–S chemistries, have the potential to utilize abundant and low-cost sulfur cathodes yet offer high theoretical energy densities. However, their practical electrochemical performance is fundamentally limited by the polysulfide shuttle effect. This challenge is particularly exacerbated in Na–S and K–S systems owing to larger metal-ion radii, weaker solvation energies, slower redox kinetics, and greater electrolyte–electrode incompatibilities compared to Li–S batteries. This review presents a comparative analysis of interface engineering strategies designed to suppress the shuttle effect across these three systems. Following a summary of sulfur cathode properties and reaction mechanisms, we systematically examine the origins of polysulfide shuttling. Our analysis progresses from functional separator design and interlayer enhancements to the implementation of solid‑state electrolytes for root-cause inhibition. By evaluating interface engineering research specific to Na–S and K–S batteries, we elucidate both shared principles and unique challenges inherent to alkali M-S systems. Finally, we propose multifaceted solutions to achieve shuttle-free operation and enhance overall battery performance, thereby establishing a foundation for future advancements.
Highlights:
1 The inherent differences and connections in interface engineering for inhibiting shuttle effects in alkali M (Li, Na, K)-S batteries are reviewed.
2 The research progress on the application of internal interface engineering in shuttle suppression is summarized.
3 The shuttle effect challenge analysis of Li-, Na- and K-S batteries and the prospect of the development direction of the next generation of alkaline M-S batteries are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Zhang, T. Bian, X. Wang, R. Shi, Y. Zhao, Unlocking mechanism of anion and cation interaction on ion conduction of polymer based electrolyte in metal batteries. Angew. Chem. Int. Ed. 64(3), e202415343 (2025). https://doi.org/10.1002/anie.202415343
- Y. Gao, Q. Yu, H. Yang, J. Zhang, W. Wang, The enormous potential of sodium/potassium-ion batteries as the mainstream energy storage technology for large-scale commercial applications. Adv. Mater. 36(39), 2405989 (2024). https://doi.org/10.1002/adma.202405989
- Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121(3), 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
- J. Xu, J. Yang, Y. Qiu, Y. Jin, T. Wang et al., Achieving high-performance sodium metal anodes: from structural design to reaction kinetic improvement. Nano Res. 17(3), 1288–1312 (2024). https://doi.org/10.1007/s12274-023-5889-2
- J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
- J. Peng, W. Zhang, Z. Hu, L. Zhao, C. Wu, G. Peleckis, Q. Gu, J.-Z. Wang, H.K. Liu, S.X. Dou, S. Chou, Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries. Nano Lett. 22(3), 1302–1310 (2022). https://doi.org/10.1021/acs.nanolett.1c04492
- Y.-J. Lei, H.-W. Liu, Z. Yang, L.-F. Zhao, W.-H. Lai, Y.-J. Lei, H.-W. Liu, L.-F. Zhao, W.-H. Lai, M. Chen, S. Dou, Y.-X. Wang, A review on the status and challenges of cathodes in room-temperature Na-S batteries. Adv. Funct. Mater. 33(11), 2212600 (2023). https://doi.org/10.1002/adfm.202212600
- W. Gao, Y. Lu, X. Xiong, Z. Luo, Y. Yu, S. Ullah, T. Wang, Y. Ma, Y. Zhong, F. Wang, X. Cheng, Z. Zhu, J. He, Y. Wu, Review on suppressing the shuttle effect for room-temperature sodium-sulfur batteries. Chem. Eng. J. 498, 155230 (2024). https://doi.org/10.1016/j.cej.2024.155230
- L. Chen, G. Cao, Y. Li, G. Zu, R. Duan, Y. Bai, K. Xue, Y. Fu, Y. Xu, J. Wang, X. Li, A review on engineering transition metal compound catalysts to accelerate the redox kinetics of sulfur cathodes for lithium-sulfur batteries. Nano-Micro Lett. 16(1), 97 (2024). https://doi.org/10.1007/s40820-023-01299-9
- T. Yang, Y. Niu, Q. Liu, M. Xu, Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: a state-of-the-art review. Nano Mater. Sci. 5(2), 119–140 (2023). https://doi.org/10.1016/j.nanoms.2022.01.001
- D. Zhou, Y. Chen, B. Li, H. Fan, F. Cheng et al., A stable quasi-solid-state sodium–sulfur battery. Angew. Chem. Int. Ed. 57(32), 10168–10172 (2018). https://doi.org/10.1002/anie.201805008
- F. Yang, S.M. Ali Mousavie, T.K. Oh, T. Yang, Y. Lu et al., Sodium–sulfur flow battery for low-cost electrical storage. Adv. Energy Mater. 8(11), 1701991 (2018). https://doi.org/10.1002/aenm.201701991
- B.-W. Zhang, T. Sheng, Y.-X. Wang, S. Chou, K. Davey et al., Long-life room-temperature sodium–sulfur batteries by virtue of transition-metal-nanocluster–sulfur interactions. Angew. Chem. Int. Ed. 58(5), 1484–1488 (2019). https://doi.org/10.1002/anie.201811080
- D. Liu, Z. Li, X. Li, X. Chen, Z. Li et al., Stable room-temperature sodium–sulfur batteries in ether-based electrolytes enabled by the fluoroethylene carbonate additive. ACS Appl. Mater. Interfaces 14(5), 6658–6666 (2022). https://doi.org/10.1021/acsami.1c21059
- R. Yan, T. Ma, M. Cheng, X. Tao, Z. Yang, F. Ran, S. Li, Bo. Yin, C. Cheng, W. Yang, Metal-organic-framework-derived nanostructures as multifaceted electrodes in metal-sulfur batteries. Adv. Mater. 33(27), 2008784 (2021). https://doi.org/10.1002/adma.202008784
- R. Yan, Z. Zhao, M. Cheng, Z. Yang, C. Cheng, X. Liu, Bo. Yin, S. Li, Origin and acceleration of insoluble Li2S2−Li2S reduction catalysis in ferromagnetic atoms-based lithium-sulfur battery cathodes. Angew. Chem. Int. Ed. 62(1), e202215414 (2023). https://doi.org/10.1002/anie.202215414
- R. Zhu, Z. Wu, C. He, S. Li, X. Liu et al., Electronegative co-WO2 interface with Li+ pump effects for efficient polysulfide conversion in high-performance Li-sulfur batteries. ACS Nano 19(25), 23479–23489 (2025). https://doi.org/10.1021/acsnano.5c07464
- I. Kim, J.-Y. Park, C. Kim, J.-W. Park, J.-P. Ahn et al., Sodium polysulfides during charge/discharge of the room-temperature Na/S battery using TEGDME electrolyte. J. Electrochem. Soc. 163(5), A611–A616 (2016). https://doi.org/10.1149/2.0201605jes
- Q. Zou, Z. Liang, G.-Y. Du, C.-Y. Liu, E.Y. Li et al., Cation-directed selective polysulfide stabilization in alkali metal-sulfur batteries. J. Am. Chem. Soc. 140(34), 10740–10748 (2018). https://doi.org/10.1021/jacs.8b04536
- H. Liu, W.-H. Lai, Q. Yang, Y. Lei, C. Wu et al., Understanding sulfur redox mechanisms in different electrolytes for room-temperature Na-S batteries. Nano-Micro Lett. 13(1), 121 (2021). https://doi.org/10.1007/s40820-021-00648-w
- G. Liu, Q. Sun, Q. Li, J. Zhang, J. Ming, Electrolyte issues in lithium–sulfur batteries: development, prospect, and challenges. Energy Fuels 35(13), 10405–10427 (2021). https://doi.org/10.1021/acs.energyfuels.1c00990
- H. Chen, K. Chen, J. Yang, B. Liu, L. Luo et al., Designing advanced electrolytes for high-safety and long-lifetime sodium-ion batteries via anion–cation interaction modulation. J. Am. Chem. Soc. 146(23), 15751–15760 (2024). https://doi.org/10.1021/jacs.4c01395
- L. Carbone, M. Gobet, J. Peng, M. Devany, B. Scrosati et al., Comparative study of ether-based electrolytes for application in lithium–sulfur battery. ACS Appl. Mater. Interfaces 7(25), 13859–13865 (2015). https://doi.org/10.1021/acsami.5b02160
- F. Jin, R. Wang, Y. Liu, N. Zhang, C. Bao, D. Li, D. Wang, T. Cheng, H. Liu, S. Dou, Bo. Wang, Conversion mechanism of sulfur in room-temperature sodium-sulfur battery with carbonate-based electrolyte. Energy Storage Mater. 69, 103388 (2024). https://doi.org/10.1016/j.ensm.2024.103388
- Y. Yuan, Y. Hu, Y. Gan, Z. Dong, Y. Wang, E. Jin, M. Yang, F.B. Holness, V. Martins, Q. Tu, Y. Zhao, Self-sacrifice of sulfide electrolytes facilitating stable solid-state sodium–sulfur batteries. Energy Environ. Sci. 18(9), 4288–4301 (2025). https://doi.org/10.1039/d4ee06171c
- S. Weng, Y. Liu, S. Lu, J. Xu, J. Xue, H. Tu, Z. Wang, L. Liu, Y. Gao, G. Sun, H. Li, X. Wu, Unraveling the multifunctional mechanism of fluoroethylene carbonate in enhancing high-performance room-temperature sodium-sulfur batteries. Angew. Chem. Int. Ed. 64(11), e202421602 (2025). https://doi.org/10.1002/anie.202421602
- Y. Wang, D. Zhou, V. Palomares, D. Shanmukaraj, B. Sun et al., Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review. Energy Environ. Sci. 13(11), 3848–3879 (2020). https://doi.org/10.1039/d0ee02203a
- Q. Guo, S. Li, X. Liu, H. Lu, X. Chang, H. Zhang, X. Zhu, Q. Xia, C. Yan, H. Xia, Ultrastable sodium–sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier. Adv. Sci. 7(11), 1903246 (2020). https://doi.org/10.1002/advs.201903246
- X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang, B. Li, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9(1), 3870 (2018). https://doi.org/10.1038/s41467-018-06443-3
- M.M. Gross, A. Manthiram, Rechargeable zinc-aqueous polysulfide battery with a mediator-ion solid electrolyte. ACS Appl. Mater. Interfaces 10(13), 10612–10617 (2018). https://doi.org/10.1021/acsami.8b00981
- A.L. Phan, P.M.L. Le, C. Wang, Realizing high-energy and long-life Li/SPAN batteries. Joule 8(6), 1601–1618 (2024). https://doi.org/10.1016/j.joule.2024.04.003
- B. Han, Y. Zou, Z. Zhang, X. Yang, X. Shi et al., Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nat. Commun. 12(1), 3066 (2021). https://doi.org/10.1038/s41467-021-23368-6
- X. Zhao, Y. Lu, Z. Qian, R. Wang, Z. Guo, Potassium-sulfur batteries: status and perspectives. EcoMat 2(3), e12038 (2020). https://doi.org/10.1002/eom2.12038
- S. Gu, N. Xiao, F. Wu, Y. Bai, C. Wu et al., Chemical synthesis of K2S2 and K2S3 for probing electrochemical mechanisms in K-S batteries. ACS Energy Lett. 3(12), 2858–2864 (2018). https://doi.org/10.1021/acsenergylett.8b01719
- Q. Zhao, Y. Hu, K. Zhang, J. Chen, Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. Inorg. Chem. 53(17), 9000–9005 (2014). https://doi.org/10.1021/ic500919e
- J.-Y. Hwang, H.M. Kim, Y.-K. Sun, High performance potassium–sulfur batteries based on a sulfurized polyacrylonitrile cathode and polyacrylic acid binder. J. Mater. Chem. A 6(30), 14587–14593 (2018). https://doi.org/10.1039/c8ta03135e
- P. Xiong, X. Han, X. Zhao, P. Bai, Y. Liu et al., Room-temperature potassium–sulfur batteries enabled by microporous carbon stabilized small-molecule sulfur cathodes. ACS Nano 13(2), 2536–2543 (2019). https://doi.org/10.1021/acsnano.8b09503
- C. Ye, J. Shan, H. Li, C.-C. Kao, Q. Gu, C.-C. Kao, S.-Z. Qiao, Reducing overpotential of solid-state sulfide conversion in potassium-sulfur batteries. Angew. Chem. Int. Ed. 62(22), e202301681 (2023). https://doi.org/10.1002/anie.202301681
- Y. Liu, F. Bettels, Z. Lin, Z. Li, Y. Shao, F. Ding, S. Liu, L. Zhang, Recent advances in transition-metal-based catalytic material for room-temperature sodium–sulfur batteries. Adv. Funct. Mater. 34(5), 2302626 (2024). https://doi.org/10.1002/adfm.202302626
- W. Song, X. Yang, T. Zhang, Z. Huang, H. Wang, J. Sun, Y. Xu, J. Ding, W. Hu, Optimizing potassium polysulfides for high performance potassium-sulfur batteries. Nat. Commun. 15(1), 1005 (2024). https://doi.org/10.1038/s41467-024-45405-w
- H. Wang, D. Yu, C. Kuang, L. Cheng, W. Li et al., Alkali metal anodes for rechargeable batteries. Chem 5(2), 313–338 (2019). https://doi.org/10.1016/j.chempr.2018.11.005
- L. Zhou, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed. Adv. Energy Mater. 11(15), 2001304 (2021). https://doi.org/10.1002/aenm.202001304
- Y. Huang, L. Zhao, L. Li, M. Xie, F. Wu, R. Chen, Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv. Mater. 31(21), 1808393 (2019). https://doi.org/10.1002/adma.201808393
- A. Ponrouch, E. Marchante, M. Courty, J.-M. Tarascon, M.R. Palacín, In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5(9), 8572 (2012). https://doi.org/10.1039/c2ee22258b
- Z. Li, S. Wang, J. Shi, Y. Liu, S. Zheng et al., A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Mater. 47, 262–270 (2022). https://doi.org/10.1016/j.ensm.2022.02.014
- X. Xu, C. Niu, M. Duan, X. Wang, L. Huang et al., Alkaline earth metal vanadates as sodium-ion battery anodes. Nat. Commun. 8(1), 460 (2017). https://doi.org/10.1038/s41467-017-00211-5
- Y.-X. Wang, B. Zhang, W. Lai, Y. Xu, S.-L. Chou, Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Room-temperature sodium-sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7(24), 1602829 (2017). https://doi.org/10.1002/aenm.201602829
- G. Zhou, S. Pei, L. Li, D.-W. Wang, S. Wang et al., A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 26(4), 625–631 (2014). https://doi.org/10.1002/adma.201302877
- P.-Y. Zhai, H.-J. Peng, X.-B. Cheng, L. Zhu, J.-Q. Huang et al., Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries. Energy Storage Mater. 7, 56–63 (2017). https://doi.org/10.1016/j.ensm.2016.12.004
- Z. Fan, X. Chen, J. Shi, H. Nie, X. Zhang et al., Functionalized separators boosting electrochemical performances for lithium batteries. Nano-Micro Lett. 17(1), 128 (2025). https://doi.org/10.1007/s40820-024-01596-x
- J. Xu, S. An, X. Song, Y. Cao, N. Wang et al., Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 33(49), e2105178 (2021). https://doi.org/10.1002/adma.202105178
- R. Razaq, M.M.U. Din, D.R. Småbråten, V. Eyupoglu, S. Janakiram, T.O. Sunde, N. Allahgoli, D. Rettenwander, L. Deng, Synergistic effect of bimetallic MOF modified separator for long cycle life lithium-sulfur batteries. Adv. Energy Mater. 14(3), 2302897 (2024). https://doi.org/10.1002/aenm.202302897
- W. Wang, K. Xi, B. Li, H. Li, S. Liu, J. Wang, H. Zhao, A.M. Abdelkader, X. Gao, G. Li, A sustainable multipurpose separator directed against the shuttle effect of polysulfides for high-performance lithium–sulfur batteries. Adv. Energy Mater. 12(19), 2200160 (2022). https://doi.org/10.1002/aenm.202200160
- L. Feng, R. Yan, X.-R. Sun, Z. Zhu, W. Jia et al., Cell-membrane inspired multifunctional nanocoating for rescuing the active-material microenvironment in high-capacity sulfur cathode. Adv. Energy Mater. 14(14), 2303848 (2024). https://doi.org/10.1002/aenm.202303848
- R. Yan, Z. Zhao, R. Zhu, M. Wu, X. Liu, M. Adeli, Bo. Yin, C. Cheng, S. Li, Alveoli-inspired carbon cathodes with interconnected porous structure and asymmetric coordinated vanadium sites for superior Li−S batteries. Angew. Chem. Int. Ed. 63(25), e202404019 (2024). https://doi.org/10.1002/anie.202404019
- S. Tang, Q. Chen, Y. Si, W. Guo, B. Mao, Y. Fu, Size effect of organosulfur and in situ formed oligomers enables high-utilization Na–organosulfur batteries. Adv. Mater. 33(33), 2100824 (2021). https://doi.org/10.1002/adma.202100824
- D. Chan, Y. Liu, Y. Fan, H. Wang, S. Chen, T. Hao, H. Li, Z. Bai, H. Shao, G. Xing, Y. Zhang, Y. Tang, Functional Janus membranes: promising platform for advanced lithium batteries and beyond. Energy Environ. Mater. 6(5), e12451 (2023). https://doi.org/10.1002/eem2.12451
- X. Yu, A. Manthiram, Performance enhancement and mechanistic studies of room-temperature sodium–sulfur batteries with a carbon-coated functional nafion separator and a Na2S/activated carbon nanofiber cathode. Chem. Mater. 28(3), 896–905 (2016). https://doi.org/10.1021/acs.chemmater.5b04588
- W.-Y. Diao, D. Xie, D.-L. Li, F.-Y. Tao, C. Liu, H.-Z. Sun, X.-Y. Zhang, W.-L. Li, X.-L. Wu, J.-P. Zhang, Ion sieve membrane: homogenizing Li+ flux and restricting polysulfides migration enables long life and highly stable Li-S battery. J. Colloid Interface Sci. 627, 730–738 (2022). https://doi.org/10.1016/j.jcis.2022.07.079
- Y. Hao, Y. Xing, H. Kong, Y. Jiao, Polyzwitterions functionalized nafion barrier toward high performance lithium-sulfur batteries. ChemElectroChem 8(12), 2329–2335 (2021). https://doi.org/10.1002/celc.202100491
- D.B. Babu, K. Giribabu, K. Ramesha, Permselective SPEEK/nafion composite-coated separator as a potential polysulfide crossover barrier layer for Li–S batteries. ACS Appl. Mater. Interfaces 10(23), 19721–19729 (2018). https://doi.org/10.1021/acsami.8b04888
- Y. He, S. Wu, Q. Li, H. Zhou, Designing a multifunctional separator for high-performance Li–S batteries at elevated temperature. Small 15(47), 1904332 (2019). https://doi.org/10.1002/smll.201904332
- D. Son, H. Park, W.-G. Lim, S. Baek, S.H. Kang, J.-C. Lee, T. Maiyalagan, Y.-G. Lee, S. Park, J. Lee, Ultrathin mixed ionic–electronic conducting interlayer via the solution shearing technique for high-performance lithium–sulfur batteries. ACS Nano 17(24), 25507–25518 (2023). https://doi.org/10.1021/acsnano.3c09333
- S. Wu, Y. Yao, X. Nie, Z. Yu, Y. Yu, F. Huang, Interfacial engineering of binder-free Janus separator with ultra-thin multifunctional layer for simultaneous enhancement of both metallic Li anode and sulfur cathode. Small 18(28), 2202651 (2022). https://doi.org/10.1002/smll.202202651
- H. Wu, M. Jiang, X. Gao, X. Chen, C. Cheng, S. Cai, W. Ren, X. Yang, R. Sun, All-in-one Janus covalent organic frameworks separator as fast Li nucleator and polysulfides catalyzer in lithium-sulfur batteries. J. Colloid Interface Sci. 662, 138–148 (2024). https://doi.org/10.1016/j.jcis.2024.02.038
- I. Bauer, M. Kohl, H. Althues, S. Kaskel, Shuttle suppression in room temperature sodium–sulfur batteries using ion selective polymer membranes. Chem. Commun. 50(24), 3208–3210 (2014). https://doi.org/10.1039/c4cc00161c
- X. Yu, A. Manthiram, Ambient-temperature sodium–sulfur batteries with a sodiated nafion membrane and a carbon nanofiber-activated carbon composite electrode. Adv. Energy Mater. 5(12), 1500350 (2015). https://doi.org/10.1002/aenm.201500350
- E.C. Cengiz, Z. Erdol, B. Sakar, A. Aslan, A. Ata et al., Investigation of the effect of using Al2O3–nafion barrier on room-temperature Na–S batteries. J. Phys. Chem. C 121(28), 15120–15126 (2017). https://doi.org/10.1021/acs.jpcc.7b04711
- S. Chen, L. Liang, Y. Li, D. Wang, J. Lu, X. Zhan, Y. Hou, Q. Zhang, Brain capillary-inspired self-assembled covalent organic framework membrane for sodium–sulfur battery separator. Adv. Energy Mater. 13(11), 2204334 (2023). https://doi.org/10.1002/aenm.202204334
- Y.X. Ren, H.R. Jiang, T.S. Zhao, L. Zeng, C. Xiong, Remedies of capacity fading in room-temperature sodium-sulfur batteries. J. Power. Sources 396, 304–313 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.056
- C. Yin, Z. Li, D. Zhao, J. Yang, Y. Zhang, Ya. Du, Y. Wang, Azo-branched covalent organic framework thin films as active separators for superior sodium–sulfur batteries. ACS Nano 16(9), 14178–14187 (2022). https://doi.org/10.1021/acsnano.2c04273
- C. Wu, J. Li, L. Liu, H. Zhang, Z. Zou et al., Growing intact membrane by tuning carbon down to ultrasmall 0.37 nm microporous structure for confining dissolution of polysulfides toward high-performance sodium–sulfur batteries. Energy Environ. Mater. 6(4), e12634 (2023). https://doi.org/10.1002/eem2.12634
- J. Qin, H. Shi, K. Huang, P. Lu, P. Wen, F. Xing, B. Yang, M. Ye, Y. Yu, Z.-S. Wu, Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nat. Commun. 12(1), 5786 (2021). https://doi.org/10.1038/s41467-021-26032-1
- X. Jiao, C. Yang, K. Ma, C. Feng, Q. Jiao, Y. Zhao, A novel modified PI separator with enhanced dendrite suppression, puncture prevention and improved size stability for room-temperature sodium–sulfur batteries. New J. Chem. 49(4), 1499–1505 (2025). https://doi.org/10.1039/d4nj04589k
- G.-K. Gao, Y.-R. Wang, S.-B. Wang, R.-X. Yang, Y. Chen et al., Stepped channels integrated lithium–sulfur separator via photoinduced multidimensional fabrication of metal–organic frameworks. Angew. Chem. Int. Ed. 60(18), 10147–10154 (2021). https://doi.org/10.1002/anie.202016608
- K. Zhang, X. Li, L. Ma, F. Chen, Z. Chen et al., Fluorinated covalent organic framework-based nanofluidic interface for robust lithium-sulfur batteries. ACS Nano 17(3), 2901–2911 (2023). https://doi.org/10.1021/acsnano.2c11300
- A.P. Vijaya Kumar Saroja, A. Rajamani, K. Muthusamy, R. Sundara, Repelling polysulfides using white graphite introduced polymer membrane as a shielding layer in ambient temperature sodium sulfur battery. Adv. Mater. Interfaces 6(24), 1901497 (2019). https://doi.org/10.1002/admi.201901497
- H. Xu, Y. Xiang, X. Xu, Y. Liang, Y. Li, Y. Qi, M. Xu, A polysulfides-defensive, dendrite-suppressed, and flame-retardant separator with lean electrolyte for room temperature sodium–sulfur batteries. Adv. Funct. Mater. 34(40), 2403663 (2024). https://doi.org/10.1002/adfm.202403663
- L. Wang, Y. Xu, L. Xiao, Y. Liu, L. Wang et al., Ionic covalent organic framework membrane as active separator for highly reversible zinc–sulfur battery. ACS Appl. Mater. Interfaces 16(38), 50036–50044 (2024). https://doi.org/10.1021/acsami.4c11422
- T. Liang, X. Zhang, Y. Huang, Y. Lu, H. Jia et al., Cutting-edge progress in aqueous Zn-S batteries: innovations in cathodes, electrolytes, and mediators. Small 21(7), 2405810 (2025). https://doi.org/10.1002/smll.202405810
- Y.-W. Song, J. Zhou, Z.-X. Chen, J.-D. Zhang, L. Shen, F. Sun, M. Zhao, B.-Q. Li, Reducing the cathode Thiele modulus to promote the discharge capacity of lithium–sulfur batteries. J. Energy Chem. 106, 993–1001 (2025). https://doi.org/10.1016/j.jechem.2025.04.075
- A. Andersen, N.N. Rajput, K.S. Han, H. Pan, N. Govind et al., Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1, 3-dioxolane and 1, 2-dimethoxyethane. Chem. Mater. 31(7), 2308–2319 (2019). https://doi.org/10.1021/acs.chemmater.8b03944
- N.N. Rajput, V. Murugesan, Y. Shin, K.S. Han, K.C. Lau et al., Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions. Chem. Mater. 29(8), 3375–3379 (2017). https://doi.org/10.1021/acs.chemmater.7b00068
- A. Gupta, A. Bhargav, J.-P. Jones, R.V. Bugga, A. Manthiram, Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium–sulfur batteries. Chem. Mater. 32(5), 2070–2077 (2020). https://doi.org/10.1021/acs.chemmater.9b05164
- E. Senokos, H. Au, E.O. Eren, T. Horner, Z. Song, N.V. Tarakina, E.B. Yılmaz, A. Vasileiadis, H. Zschiesche, M. Antonietti, P. Giusto, Sustainable sulfur-carbon hybrids for efficient sulfur redox conversions in nanoconfined spaces. Small 20(51), 2407300 (2024). https://doi.org/10.1002/smll.202407300
- X. Gao, Z. Yu, J. Wang, X. Zheng, Y. Ye et al., Electrolytes with moderate lithium polysulfide solubility for high-performance long-calendar-life lithium-sulfur batteries. Proc. Natl. Acad. Sci. U. S. A. 120(31), e2301260120 (2023). https://doi.org/10.1073/pnas.2301260120
- J. Luque Di Salvo, G.L. Luque, E.P.M. Leiva, G. De Luca, Molecular insight into LiTFSI and Li2S6 transport through hydrophobic nanochannels. J. Power. Sources 603, 234380 (2024). https://doi.org/10.1016/j.jpowsour.2024.234380
- Q. Liu, Z. Yu, Y. Hu, M. Tang, Q. Zhang et al., Designing advanced separators toward lithium-ion batteries. Adv. Energy Mater. e03217 (2025). https://doi.org/10.1002/aenm.202503217
- X. Kang, T. He, S. Niu, J. Zhang, R. Zou et al., Precise design of a 0.8 nm pore size in a separator interfacial layer inspired by a sieving effect toward inhibiting polysulfide shuttling and promoting Li+ diffusion. Nano Lett. 24(33), 10007–10015 (2024). https://doi.org/10.1021/acs.nanolett.4c01480
- X. Chi, Y. Zhang, F. Hao, S. Kmiec, H. Dong, R. Xu, K. Zhao, Q. Ai, T. Terlier, L. Wang, L. Zhao, L. Guo, J. Lou, H.L. Xin, S.W. Martin, Y. Yao, An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries. Nat. Commun. 13(1), 2854 (2022). https://doi.org/10.1038/s41467-022-30517-y
- S.-H. Chung, A. Manthiram, High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator. J. Phys. Chem. Lett. 5(11), 1978–1983 (2014). https://doi.org/10.1021/jz5006913
- S.-H. Chung, A. Manthiram, Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv. Funct. Mater. 24(33), 5299–5306 (2014). https://doi.org/10.1002/adfm.201400845
- A.P. Vijaya Kumar Saroja, Y. Xu, Carbon materials for Na-S and K-S batteries. Matter 5(3), 808–836 (2022). https://doi.org/10.1016/j.matt.2021.12.023
- X. Yu, A. Manthiram, A reversible nonaqueous room-temperature potassium-sulfur chemistry for electrochemical energy storage. Energy Storage Mater. 15, 368–373 (2018). https://doi.org/10.1016/j.ensm.2018.06.020
- Q. Wu, W. Zhang, M. Qin, W. Zhong, H. Yan, H. Zhu, S. Cheng, J. Xie, Tellurium doped sulfurized polyacrylonitrile nanoflower for high-energy-density, long-lifespan sodium-sulfur batteries. Nano Energy 129, 110049 (2024). https://doi.org/10.1016/j.nanoen.2024.110049
- Y. Wang, Y. Wang, C. Xu, Y. Meng, P. Liu et al., Phosphor-doped carbon network electrocatalyst enables accelerated redox kinetics of polysulfides for sodium–sulfur batteries. ACS Nano 18(4), 3839–3849 (2024). https://doi.org/10.1021/acsnano.3c12754
- M.K. Aslam, T. Hussain, H. Tabassum, Z. Wei, W. Tang, S. Li, S.-J. Bao, X.S. Zhao, M. Xu, Sulfur encapsulation into yolk-shell Fe2N@nitrogen doped carbon for ambient-temperature sodium-sulfur battery cathode. Chem. Eng. J. 429, 132389 (2022). https://doi.org/10.1016/j.cej.2021.132389
- H. Zhang, M. Wang, B. Song, X.-L. Huang, W. Zhang, X.-L. Huang, E. Zhang, Y. Cheng, Ke. Lu, Quasi-solid sulfur conversion for energetic all-solid-state Na−S battery. Angew. Chem. Int. Ed. 63(19), e202402274 (2024). https://doi.org/10.1002/anie.202402274
- Y. Qi, Q.-J. Li, Y. Wu, S.-J. Bao, C. Li, Y. Chen, G. Wang, M. Xu, A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nat. Commun. 12(1), 6347 (2021). https://doi.org/10.1038/s41467-021-26631-y
- J. Mou, Y. Li, L. Ou, J. Huang, A highly-efficient electrocatalyst for room temperature sodium-sulfur batteries: assembled nitrogen-doped hollow porous carbon spheres decorated with ultrafine α-MoC1- x nanops. Energy Storage Mater. 52, 111–119 (2022). https://doi.org/10.1016/j.ensm.2022.07.028
- J. Huang, Y. Zhang, L. Ou, J. Mou, Phosphorus and nitrogen dual-doped hollow porous carbon spheres toward enhanced cycling stability of room-temperature Na–S batteries. ACS Appl. Mater. Interfaces 16(42), 57064–57073 (2024). https://doi.org/10.1021/acsami.4c11488
- C. Dong, H. Zhou, H. Liu, B. Jin, Z. Wen, X. Lang, J. Li, J. Kim, Q. Jiang, Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries. J. Mater. Sci. Technol. 113, 207–216 (2022). https://doi.org/10.1016/j.jmst.2021.10.027
- S.F. Zhao, C. Li, Z. Cui, J. Zhang, W. Hu, R. Ma, C.M. Li, Biomass-derived micro-mesoporous carbon with oxygen functional groups for high-rate Na–S batteries at room temperature. Adv. Energy Mater. 13(45), 2302490 (2023). https://doi.org/10.1002/aenm.202302490
- Y. Liu, D.J. Lee, H.-J. Ahn, S.Y. Nam, K.-K. Cho et al., Waste coffee grounds-derived carbon: nanoarchitectured pore-structure regulation for sustainable room-temperature sodium–sulfur batteries. Renew. Energy 212, 865–874 (2023). https://doi.org/10.1016/j.renene.2023.05.105
- D. Zhao, S. Jiang, S. Yu, J. Ren, Z. Zhang et al., Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries. Carbon 201, 864–870 (2023). https://doi.org/10.1016/j.carbon.2022.09.075
- W. Yang, W. Yang, R. Zou, Y. Huang, H. Lai, Z. Chen, X. Peng, Cellulose nanofiber-derived carbon aerogel for advanced room-temperature sodium–sulfur batteries. Carbon Energy 5(1), e203 (2023). https://doi.org/10.1002/cey2.203
- X. Chen, Y.-K. Bai, C.-Z. Zhao, X. Shen, Q. Zhang, Lithium bonds in lithium batteries. Angew. Chem. Int. Ed. 59(28), 11192–11195 (2020). https://doi.org/10.1002/anie.201915623
- J. Wu, T. Ye, Y. Wang, P. Yang, Q. Wang et al., Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries. ACS Nano 16(10), 15734–15759 (2022). https://doi.org/10.1021/acsnano.2c08581
- X.L. Huang, X. Zhang, L. Zhou, Z. Guo, H.K. Liu, S.X. Dou, Z. Wang, Orthorhombic Nb2O5 decorated carbon nanoreactors enable bidirectionally regulated redox behaviors in room-temperature Na–S batteries. Adv. Sci. 10(4), 2206558 (2023). https://doi.org/10.1002/advs.202206558
- C. Chang, C. Yang, Q. Wu, X. Wang, H. Nie, X. Zhou, X. Xie, B. Hwang, Y. Ye, All-in-one Janus separator for lithium–sulfur batteries with lithium polysulfide and dendrite growth suppressed at temperature gradient effect. J. Power. Sources 550, 232115 (2022). https://doi.org/10.1016/j.jpowsour.2022.232115
- Y. Chen, Y. Yao, W. Zhao, L. Wang, H. Li et al., Precise solid-phase synthesis of CoFe@FeOx nanops for efficient polysulfide regulation in lithium/sodium-sulfur batteries. Nat. Commun. 14, 7487 (2023). https://doi.org/10.1038/s41467-023-42941-9
- J. Zhang, Y. Zhou, H. Shu, Z. Yan, Z. Wu et al., The design of chemisorption and catalysis synergistic defender for efficient room temperature sodium-sulfur batteries. J. Colloid Interface Sci. 678(Pt A), 292–300 (2025). https://doi.org/10.1016/j.jcis.2024.08.173
- J.-Y. Zhang, X.-Y. Zhang, J. Wang, Y. Feng, L.-L. Fan, J.-Y. Zhang, X.-Y. Zhang, L.-L. Fan, Y.-D. Cao, H. Liu, C.-L. Lv, G.-G. Gao, The explicit multi-electron catalytic mechanism of heteropolyvanadotungstate dominating ultra-durable room-temperature Na-S batteries. Adv. Funct. Mater. 34(33), 2400170 (2024). https://doi.org/10.1002/adfm.202400170
- Q. Zhang, L. Bo, H. Li, L. Shen, J. Li et al., Inhibiting shuttle effect and dendrite growth in sodium–sulfur batteries enabled by applying external acoustic field. Nano Lett. 24(35), 10711–10717 (2024). https://doi.org/10.1021/acs.nanolett.4c00864
- Y. Ji, X. Liu-Théato, Y. Xiu, S. Indris, C. Njel, J. Maibach, H. Ehrenberg, M. Fichtner, Z. Zhao‐Karger, Polyoxometalate modified separator for performance enhancement of magnesium–sulfur batteries. Adv. Funct. Mater. 31(26), 2100868 (2021). https://doi.org/10.1002/adfm.202100868
- G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. U. S. A. 114(5), 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
- C. Ma, X. Wang, J. Lan, J. Zhang, K. Song, J. Chen, J. Ge, W. Chen, Dynamic multistage coupling of FeS2/S enables ultrahigh reversible Na–S batteries. Adv. Funct. Mater. 33(5), 2211821 (2023). https://doi.org/10.1002/adfm.202211821
- J. He, A. Bhargav, L. Su, H. Charalambous, A. Manthiram, Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries. Nat. Commun. 14(1), 6568 (2023). https://doi.org/10.1038/s41467-023-42383-3
- T. Yang, B. Guo, W. Du, M.K. Aslam, M. Tao, W. Zhong, Y. Chen, S.-J. Bao, X. Zhang, M. Xu, Design and construction of sodium polysulfides defense system for room-temperature Na–S battery. Adv. Sci. 6(23), 1901557 (2019). https://doi.org/10.1002/advs.201901557
- H. Wang, C. Deng, X. Li, D. Yan, M. Xie, S. Zhang, B. Huang, Designing dual-defending system based on catalytic and kinetic iron Pyrite@C hybrid fibers for long-life room-temperature sodium-sulfur batteries. Chem. Eng. J. 420, 129681 (2021). https://doi.org/10.1016/j.cej.2021.129681
- H. Li, M. Zhao, B. Jin, Z. Wen, H.K. Liu, Q. Jiang, Mesoporous nitrogen-doped carbon nanospheres as sulfur matrix and a novel chelate-modified separator for high-performance room-temperature Na-S batteries. Small 16(29), 1907464 (2020). https://doi.org/10.1002/smll.201907464
- S. Zhang, Y. Yao, X. Jiao, M. Ma, H. Huang, X. Zhou, L. Wang, J. Bai, Y. Yu, Mo2N–W2N heterostructures embedded in spherical carbon superstructure as highly efficient polysulfide electrocatalysts for stable room-temperature Na–S batteries. Adv. Mater. 33(43), 2103846 (2021). https://doi.org/10.1002/adma.202103846
- H. Zhao, Z. Li, M. Liu, S. Ge, K. Ma, Q. Jiao, H. Li, H. Xie, Y. Zhao, C. Feng, Synergistically promoting the catalytic conversion of polysulfides via in situ construction of Ni-MnO2 heterostructure on N-doped hollow carbon spheres towards high-performance sodium-sulfur batteries. Chem. Eng. J. 494, 153006 (2024). https://doi.org/10.1016/j.cej.2024.153006
- Y.-J. Lei, X. Lu, H. Yoshikawa, D. Matsumura, Y. Fan et al., Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries. Nat. Commun. 15(1), 3325 (2024). https://doi.org/10.1038/s41467-024-47628-3
- S. Zhai, Z. Ye, R. Liu, H. Xu, C. Li, W. Liu, X. Wang, T. Mei, Defect strategy-regulated MoSe2-modified self-supporting graphene aerogels serving as both cathode and interlayer of lithium-sulfur batteries. Adv. Funct. Mater. 34(17), 2314379 (2024). https://doi.org/10.1002/adfm.202314379
- C. Dong, H. Zhou, B. Jin, W. Gao, X. Lang et al., Enabling high-performance room-temperature sodium/sulfur batteries with few-layer 2H-MoSe2 embellished nitrogen-doped hollow carbon spheres as polysulfide barriers. J. Mater. Chem. A 9(6), 3451–3463 (2021). https://doi.org/10.1039/d0ta10159a
- C. Li, D. Yang, J. Yu, J. Wang, C. Zhang, T. Yang, C. Huang, B. Nan, J. Li, J. Arbiol, Y. Zhou, Q. Zhang, A. Cabot, Three birds with one stone: multifunctional separators based on SnSe nanosheets enable high-performance Li-, Na- and K-sulfur batteries. Adv. Energy Mater. 14(29), 2303551 (2024). https://doi.org/10.1002/aenm.202303551
- Y. Wang, T. Guo, E. Alhajji, Z. Tian, Z. Shi, Y.-Z. Zhang, H.N. Alshareef, MXenes for sulfur-based batteries. Adv. Energy Mater. 13(4), 2202860 (2023). https://doi.org/10.1002/aenm.202202860
- X. Zuo, Y. Qiu, M. Zhen, D. Liu, Y. Zhang, Review on MXenes-based electrocatalysts for high-energy-density lithium-sulfur batteries. Nano-Micro Lett. 17(1), 209 (2025). https://doi.org/10.1007/s40820-025-01726-z
- Z. Huang, S. Wang, X. Guo, J. Safaei, Y. Lei, W.-H. Lai, X. Zhang, B. Sun, D. Shanmukaraj, M. Armand, T. Rojo, G. Wang, A hierarchical hybrid MXenes interlayer with triple function for room-temperature sodium-sulfur batteries. Adv. Mater. Technol. 8(14), 2202147 (2023). https://doi.org/10.1002/admt.202202147
- D. Zhou, X. Tang, X. Guo, P. Li, D. Shanmukaraj et al., Polyolefin-based janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. 59(38), 16725–16734 (2020). https://doi.org/10.1002/anie.202007008
- C. Wang, K. Wu, J. Cui, X. Fang, J. Li et al., Robust room-temperature sodium-sulfur batteries enabled by a sandwich-structured MXene@C/polyolefin/MXene@C dual-functional separator. Small 18(43), 2106983 (2022). https://doi.org/10.1002/smll.202106983
- Y. Zhu, Y. Zuo, X. Jiao, R. Manjunatha, E.R. Ezeigwe, W. Yan, J. Zhang, Selective sulfur conversion with surface engineering of electrocatalysts in a lithium–sulfur battery. Carbon Energy 5(2), e249 (2023). https://doi.org/10.1002/cey2.249
- Y. Du, Y. Liu, F. Cao, H. Ye, Defect-induced-reduced Au quantum Dots@MXene decorated separator enables lithium-sulfur batteries with high sulfur utilization. Energy Mater. 4(2), 400014 (2024). https://doi.org/10.20517/energymater.2023.76
- P. Xiong, F. Zhang, X. Zhang, Y. Liu, Y. Wu, S. Wang, J. Safaei, B. Sun, R. Ma, Z. Liu, Y. Bando, T. Sasaki, X. Wang, J. Zhu, G. Wang, Atomic-scale regulation of anionic and cationic migration in alkali metal batteries. Nat. Commun. 12(1), 4184 (2021). https://doi.org/10.1038/s41467-021-24399-9
- W. Sun, J. Hou, Y. Zhou, T. Zhu, Q. Yuan et al., Amorphous FeSnOx nanosheets with hierarchical vacancies for room-temperature sodium-sulfur batteries. Angew. Chem. Int. Ed. 63(38), e202404816 (2024). https://doi.org/10.1002/anie.202404816
- C. Yang, H. Zhang, Boosting electrocatalytic activity via introducing carbon vacancies and iron defects towards high-performance room-temperature sodium-sulfur batteries. Appl. Mater. Today 42, 102575 (2025). https://doi.org/10.1016/j.apmt.2024.102575
- X.-Y. Li, M. Zhao, Y.-W. Song, C.-X. Bi, Z. Li, Z.-X. Chen, X.-Q. Zhang, B.-Q. Li, J.-Q. Huang, Polysulfide chemistry in metal–sulfur batteries. Chem. Soc. Rev. 54(10), 4822–4873 (2025). https://doi.org/10.1039/d4cs00318g
- H.-E. Wang, K. Yin, N. Qin, X. Zhao, F.-J. Xia et al., Oxygen-deficient titanium dioxide as a functional host for lithium–sulfur batteries. J. Mater. Chem. A 7(17), 10346–10353 (2019). https://doi.org/10.1039/c9ta01598a
- W. Li, T. Wang, G. Yang, R. Ma, W. Li et al., Oxygen vacancy modified cerium dioxide with excellent catalytic activity for room-temperature Na S batteries. J. Energy Storage 91, 112141 (2024). https://doi.org/10.1016/j.est.2024.112141
- X. Tao, J. Wang, C. Liu, H. Wang, H. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
- F. Liu, C. Dong, C. Yan, Y. Li, X. Xu et al., Metal-organic frameworks derived single atom catalysts for lithium sulfur batteries. Commun. Mater. 6, 185 (2025). https://doi.org/10.1038/s43246-025-00916-x
- T. Sun, F. Huang, J. Liu, H. Yu, X. Feng, Yu. Yang, H. Shu, F. Zhang, Strengthened d-p orbital-hybridization of single atoms with sulfur species induced bidirectional catalysis for lithium–sulfur batteries. Adv. Funct. Mater. 33(51), 2306049 (2023). https://doi.org/10.1002/adfm.202306049
- C. Dong, C. Ma, C. Zhou, Y. Yu, J. Wang, K. Yu, C. Shen, J. Gu, K. Yan, A. Zheng, M. Gong, Xu. Xu, L. Mai, Engineering d-p orbital hybridization with P, S co-coordination asymmetric configuration of single atoms toward high-rate and long-cycling lithium–sulfur battery. Adv. Mater. 36(38), 2407070 (2024). https://doi.org/10.1002/adma.202407070
- J. Xia, W. Hua, L. Wang, Y. Sun, C. Geng, C. Zhang, W. Wang, Y. Wan, Q.-H. Yang, Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li–S batteries. Adv. Funct. Mater. 31(26), 2101980 (2021). https://doi.org/10.1002/adfm.202101980
- J. Zhao, Y. Zhao, W.-C. Yue, X. Li, N. Gao et al., V2O3/VN catalysts decorated free-standing multifunctional interlayer for high-performance Li-S battery. Chem. Eng. J. 441, 136082 (2022). https://doi.org/10.1016/j.cej.2022.136082
- S. Wu, X. Nie, Z. Wang, Z. Yu, F. Huang, Magnetron sputtering engineering of Typha-like carbon nanofiber interlayer integrating brush filter and chemical adsorption for Li–S batteries. Carbon 201, 285–294 (2023). https://doi.org/10.1016/j.carbon.2022.09.020
- R. Saroha, J. Heo, Y. Liu, N. Angulakshmi, Y. Lee, K.-K. Cho, H.-J. Ahn, J.-H. Ahn, V2O3-decorated carbon nanofibers as a robust interlayer for long-lived, high-performance, room-temperature sodium–sulfur batteries. Chem. Eng. J. 431, 134205 (2022). https://doi.org/10.1016/j.cej.2021.134205
- H. Zhou, F. Ling, H. Zhou, J.-C. Wu, X. Li, D. Hou, J. Ge, T. Xu, H. Gao, Polyphenylene sulfite based solid-state separator for blocking polysulfide in sodium-ion battery with cheap FeS anode. J. Alloys Compd. 941, 168886 (2023). https://doi.org/10.1016/j.jallcom.2023.168886
- V.K. Bharti, C.S. Sharma, M. Khandelwal, Carbonized bacterial cellulose as free-standing cathode host and protective interlayer for high-performance potassium-sulfur batteries with enhanced kinetics and stable operation. Carbon 212, 118173 (2023). https://doi.org/10.1016/j.carbon.2023.118173
- A.P. Goswami, V.K. Bharti, C.S. Sharma, M. Khandelwal, In-situ banana fiber-modified carbonized bacterial cellulose as a free-standing and binder-free cathode host for potassium-sulfur batteries. Carbon Trends 16, 100391 (2024). https://doi.org/10.1016/j.cartre.2024.100391
- L. Li, J.S. Nam, M.S. Kim, Y. Wang, S. Jiang, H. Hou, I.-D. Kim, Sulfur–carbon electrode with PEO-LiFSI-PVDF composite coating for high-rate and long-life lithium–sulfur batteries. Adv. Energy Mater. 13(36), 2302139 (2023). https://doi.org/10.1002/aenm.202302139
- W. Guo, Q. Han, J. Jiao, W. Wu, X. Zhu et al., In situ construction of robust biphasic surface layers on lithium metal for lithium–sulfide batteries with long cycle life. Angew. Chem. Int. Ed. 60(13), 7267–7274 (2021). https://doi.org/10.1002/anie.202015049
- P. Shi, S. Zhang, G. Lu, L. Wang, Y. Jiang, F. Liu, Yu. Yao, H. Yang, M. Ma, S. Ye, X. Tao, Y. Feng, X. Wu, X. Rui, Y. Yu, Red phosphorous-derived protective layers with high ionic conductivity and mechanical strength on dendrite-free sodium and potassium metal anodes. Adv. Energy Mater. 11(5), 2003381 (2021). https://doi.org/10.1002/aenm.202003381
- L. Wang, N. Ren, W. Jiang, H. Yang, S. Ye, Y. Jiang, G. Ali, Li. Song, X. Wu, X. Rui, Yu. Yao, Y. Yu, Tailoring Na+ solvation environment and electrode-electrolyte interphases with Sn(OTf)2 additive in non-flammable phosphate electrolytes towards safe and efficient Na-S batteries. Angew. Chem. Int. Ed. 63(12), e202320060 (2024). https://doi.org/10.1002/anie.202320060
- Q. Jin, X. Zhang, H. Gao, L. Li, Z. Zhang, Novel LixSiSy/Nafion as an artificial SEI film to enable dendrite-free Li metal anodes and high stability Li–S batteries. J. Mater. Chem. A 8(18), 8979–8988 (2020). https://doi.org/10.1039/d0ta02999h
- Q. Jin, K. Zhao, X. Zhang, An effective strategy for shielding polysulfides and regulating lithium deposition in lithium–sulfur batteries. J. Power. Sources 489, 229500 (2021). https://doi.org/10.1016/j.jpowsour.2021.229500
- T. Lai, A. Bhargav, A. Manthiram, Lithium tritelluride as an electrolyte additive for stabilizing lithium deposition and enhancing sulfur utilization in anode-free lithium–sulfur batteries. Adv. Funct. Mater. 33(43), 2304568 (2023). https://doi.org/10.1002/adfm.202304568
- P. Liu, H. Hao, H. Celio, J. Cui, M. Ren, Y. Wang, H. Dong, A.R. Chowdhury, T. Hutter, F.A. Perras, J. Nanda, J. Watt, D. Mitlin, Multifunctional separator allows stable cycling of potassium metal anodes and of potassium metal batteries. Adv. Mater. 34(7), 2105855 (2022). https://doi.org/10.1002/adma.202105855
- W. Gao, L. Su, Y. Yu, Y. Lu, X. Liu, Yi. Peng, X. Xiong, J. He, Y. Chen, Y. Wu, Stable dendrite-free room temperature sodium-sulfur batteries enabled by a novel sodium thiotellurate interface. Angew. Chem. Int. Ed. 63(51), e202412287 (2024). https://doi.org/10.1002/anie.202412287
- Y.-J. Zhu, C.-X. Bi, M. Zhao, Z. Li, W.-J. Feng, Y.-J. Zhu, C.-X. Bi, W.-J. Feng, F. Sun, X.-Q. Zhang, B.-Q. Li, J.-Q. Huang, Deciphering the species-dependent polysulfide corrosion on lithium anode toward durable lithium–sulfur batteries. Adv. Mater. 37(37), 2506132 (2025). https://doi.org/10.1002/adma.202506132
- C.-X. Bi, Y.-J. Zhu, Z. Li, M. Zhao, X.-Q. Zhang et al., Evolution of lithium metal anode along cycling in working lithium–sulfur batteries. Adv. Energy Mater. 14(39), 2402609 (2024). https://doi.org/10.1002/aenm.202402609
- X.-Y. Li, B.-Q. Li, S. Feng, Z. Li, L. Shen et al., Two-stage solvation of lithium polysulfides in working lithium–sulfur batteries. J. Am. Chem. Soc. 147(18), 15435–15447 (2025). https://doi.org/10.1021/jacs.5c01588
- Z.-X. Chen, J.-J. Zhao, G.-Y. Fang, S. Zhang, J. Ma et al., Accelerating the sulfur redox kinetics in weakly-solvating lithium-sulfur batteries under lean-electrolyte conditions. Energy Storage Mater (2025). https://doi.org/10.1016/j.ensm.2025.104502
- T. Jin, X.-Y. Li, M. Zhao, S. Feng, Z. Li, X.-Y. Li, Z.-X. Chen, H.-J. Peng, B.-Q. Li, J.-Q. Huang, Promoting the rate performances of weakly solvating electrolyte-based lithium‒sulfur batteries. Angew. Chem. Int. Ed. 64(32), e202504898 (2025). https://doi.org/10.1002/anie.202504898
- Y. Zhang, Y. Xiao, Z. Tang, L. Zou, Q. Liu, X. Fu, X. Xiang, J. Deng, Poly(ethylene oxide)-based composite solid electrolyte modified by Li7La3Zr2O12 inorganic filler with grafted imidazolium-based ionic liquids functional groups. Chem. Eng. J. 500, 157191 (2024). https://doi.org/10.1016/j.cej.2024.157191
- J. Zhang, Y. Wang, Q. Xia, X. Li, B. Liu, T. Hu, M. Tebyetekerwa, S. Hu, R. Knibbe, S. Chou, Confining polymer electrolyte in MOF for safe and high-performance all-solid-state sodium metal batteries. Angew. Chem. Int. Ed. 63(16), e202318822 (2024). https://doi.org/10.1002/anie.202318822
- X. Wang, C. Zhang, M. Sawczyk, J. Sun, Q. Yuan et al., Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 21(9), 1057–1065 (2022). https://doi.org/10.1038/s41563-022-01296-0
- X. Zhou, Z. Li, W. Li, X. Li, J. Fu, Lu. Wei, H. Yang, X. Guo, Regulating Na-ion solvation in quasi-solid electrolyte to stabilize Na metal anode. Adv. Funct. Mater. 33(11), 2212866 (2023). https://doi.org/10.1002/adfm.202212866
- R. Fang, Y. Li, N. Wu, B. Xu, Y. Liu, A. Manthiram, J.B. Goodenough, Ultra-thin single-p-layer sodium beta-alumina-based composite polymer electrolyte membrane for sodium-metal batteries. Adv. Funct. Mater. 33(6), 2211229 (2023). https://doi.org/10.1002/adfm.202211229
- L.-L. Chiu, S.-H. Chung, Composite gel-polymer electrolyte for high-loading polysulfide cathodes. J. Mater. Chem. A 10(26), 13719–13726 (2022). https://doi.org/10.1039/d2ta01867e
- H. Ryu, H. Ahn, K. Kim, J. Ahn, J. Lee, E. Cairns, Self-discharge of lithium–sulfur cells using stainless-steel current-collectors. J. Power. Sources 140(2), 365–369 (2005). https://doi.org/10.1016/j.jpowsour.2004.08.039
- C.-W. Park, J.-H. Ahn, H.-S. Ryu, K.-W. Kim, H.-J. Ahn, Room-temperature solid-state Sodium∕Sulfur battery. Electrochem. Solid-State Lett. 9(3), A123 (2006). https://doi.org/10.1149/1.2164607
- Y.-M. Chiang, Building a better battery. Science 330(6010), 1485–1486 (2010). https://doi.org/10.1126/science.1198591
- T. Zhu, X. Dong, Y. Liu, Y.-G. Wang, C. Wang, Y.-Y. Xia, An all-solid-state sodium–sulfur battery using a sulfur/carbonized polyacrylonitrile composite cathode. ACS Appl. Energy Mater. 2(7), 5263–5271 (2019). https://doi.org/10.1021/acsaem.9b00953
- X. Hu, Y. Ni, C. Wang, H. Wang, E. Matios, J. Chen, W. Li, Facile-processed nanocarbon-promoted sulfur cathode for highly stable sodium-sulfur batteries. Cell Rep. Phys. Sci. 1(2), 100015 (2020). https://doi.org/10.1016/j.xcrp.2020.100015
- C. She, X. Shi, J. Zhou, Z. Zhu, K. Lu, Z. Zheng, Y. Zhu, A ZIF-8-enhanced PVDF/PEO blending polymer gel membrane for quasi-solid-state Na-S batteries with long cycling lifespan. Chem. Eng. J. 494, 153119 (2024). https://doi.org/10.1016/j.cej.2024.153119
- G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8(25), 1801219 (2018). https://doi.org/10.1002/aenm.201801219
- S. Murugan, S.V. Klostermann, P. Schützendübe, G. Richter, J. Kästner, M.R. Buchmeiser, Stable cycling of room-temperature sodium-sulfur batteries based on an in situ crosslinked gel polymer electrolyte. Adv. Funct. Mater. 32(32), 2201191 (2022). https://doi.org/10.1002/adfm.202201191
- G.S. Hegde, R. Sundara, A flexible, ceramic-rich solid electrolyte for room-temperature sodium-sulfur batteries. Chem. Commun. 58(63), 8794–8797 (2022). https://doi.org/10.1039/d2cc02326a
- A. Yang, R. Ye, H. Song, Q. Lu, X. Wang, E. Dashjav, K. Yao, D. Grüner, Q. Ma, F. Tietz, O. Guillon, Pressureless all-solid-state Na/S batteries with self-supporting Na5YSi4O12 scaffolds. Carbon Energy 5(12), e371 (2023). https://doi.org/10.1002/cey2.371
- W. Zhang, M. Wang, H. Zhang, X. Huang, B. Shen et al., Binary atomic sites enable a confined bidirectional tandem electrocatalytic sulfur conversion for low-temperature all-solid-state Na−S batteries. Angew. Chem. Int. Ed. 63(6), e202317776 (2024). https://doi.org/10.1002/anie.202317776
- Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1(4), 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
- A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3(1), 856 (2012). https://doi.org/10.1038/ncomms1843
- T. An, H. Jia, L. Peng, J. Xie, Material and interfacial modification toward a stable room-temperature solid-state Na–S battery. ACS Appl. Mater. Interfaces 12(18), 20563–20569 (2020). https://doi.org/10.1021/acsami.0c03899
- Y. Ren, N. Hortance, J. McBride, K.B. Hatzell, Sodium–sulfur batteries enabled by a protected inorganic/organic hybrid solid electrolyte. ACS Energy Lett. 6(2), 345–353 (2021). https://doi.org/10.1021/acsenergylett.0c02494
- X. Lu, M.E. Bowden, V.L. Sprenkle, J. Liu, A low cost, high energy density, and long cycle life potassium–sulfur battery for grid-scale energy storage. Adv. Mater. 27(39), 5915–5922 (2015). https://doi.org/10.1002/adma.201502343
- H. Yuan, H. Li, T. Zhang, G. Li, T. He, F. Du, S. Feng, A K2Fe4O7 superionic conductor for all-solid-state potassium metal batteries. J. Mater. Chem. A 6(18), 8413–8418 (2018). https://doi.org/10.1039/c8ta01418c
- J. Shao, J. Zheng, L. Qin, S. Zhang, Y. Ren, Y. Wu, K3SbS4 as a potassium superionic conductor with low activation energy for K–S batteries. Angew. Chem. Int. Ed. 61(20), e202200606 (2022). https://doi.org/10.1002/anie.202200606
- N. Tanibata, K. Noi, A. Hayashi, M. Tatsumisago, Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes. RSC Adv. 4(33), 17120–17123 (2014). https://doi.org/10.1039/c4ra00996g
References
Q. Zhang, T. Bian, X. Wang, R. Shi, Y. Zhao, Unlocking mechanism of anion and cation interaction on ion conduction of polymer based electrolyte in metal batteries. Angew. Chem. Int. Ed. 64(3), e202415343 (2025). https://doi.org/10.1002/anie.202415343
Y. Gao, Q. Yu, H. Yang, J. Zhang, W. Wang, The enormous potential of sodium/potassium-ion batteries as the mainstream energy storage technology for large-scale commercial applications. Adv. Mater. 36(39), 2405989 (2024). https://doi.org/10.1002/adma.202405989
Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121(3), 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
J. Xu, J. Yang, Y. Qiu, Y. Jin, T. Wang et al., Achieving high-performance sodium metal anodes: from structural design to reaction kinetic improvement. Nano Res. 17(3), 1288–1312 (2024). https://doi.org/10.1007/s12274-023-5889-2
J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
J. Peng, W. Zhang, Z. Hu, L. Zhao, C. Wu, G. Peleckis, Q. Gu, J.-Z. Wang, H.K. Liu, S.X. Dou, S. Chou, Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries. Nano Lett. 22(3), 1302–1310 (2022). https://doi.org/10.1021/acs.nanolett.1c04492
Y.-J. Lei, H.-W. Liu, Z. Yang, L.-F. Zhao, W.-H. Lai, Y.-J. Lei, H.-W. Liu, L.-F. Zhao, W.-H. Lai, M. Chen, S. Dou, Y.-X. Wang, A review on the status and challenges of cathodes in room-temperature Na-S batteries. Adv. Funct. Mater. 33(11), 2212600 (2023). https://doi.org/10.1002/adfm.202212600
W. Gao, Y. Lu, X. Xiong, Z. Luo, Y. Yu, S. Ullah, T. Wang, Y. Ma, Y. Zhong, F. Wang, X. Cheng, Z. Zhu, J. He, Y. Wu, Review on suppressing the shuttle effect for room-temperature sodium-sulfur batteries. Chem. Eng. J. 498, 155230 (2024). https://doi.org/10.1016/j.cej.2024.155230
L. Chen, G. Cao, Y. Li, G. Zu, R. Duan, Y. Bai, K. Xue, Y. Fu, Y. Xu, J. Wang, X. Li, A review on engineering transition metal compound catalysts to accelerate the redox kinetics of sulfur cathodes for lithium-sulfur batteries. Nano-Micro Lett. 16(1), 97 (2024). https://doi.org/10.1007/s40820-023-01299-9
T. Yang, Y. Niu, Q. Liu, M. Xu, Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: a state-of-the-art review. Nano Mater. Sci. 5(2), 119–140 (2023). https://doi.org/10.1016/j.nanoms.2022.01.001
D. Zhou, Y. Chen, B. Li, H. Fan, F. Cheng et al., A stable quasi-solid-state sodium–sulfur battery. Angew. Chem. Int. Ed. 57(32), 10168–10172 (2018). https://doi.org/10.1002/anie.201805008
F. Yang, S.M. Ali Mousavie, T.K. Oh, T. Yang, Y. Lu et al., Sodium–sulfur flow battery for low-cost electrical storage. Adv. Energy Mater. 8(11), 1701991 (2018). https://doi.org/10.1002/aenm.201701991
B.-W. Zhang, T. Sheng, Y.-X. Wang, S. Chou, K. Davey et al., Long-life room-temperature sodium–sulfur batteries by virtue of transition-metal-nanocluster–sulfur interactions. Angew. Chem. Int. Ed. 58(5), 1484–1488 (2019). https://doi.org/10.1002/anie.201811080
D. Liu, Z. Li, X. Li, X. Chen, Z. Li et al., Stable room-temperature sodium–sulfur batteries in ether-based electrolytes enabled by the fluoroethylene carbonate additive. ACS Appl. Mater. Interfaces 14(5), 6658–6666 (2022). https://doi.org/10.1021/acsami.1c21059
R. Yan, T. Ma, M. Cheng, X. Tao, Z. Yang, F. Ran, S. Li, Bo. Yin, C. Cheng, W. Yang, Metal-organic-framework-derived nanostructures as multifaceted electrodes in metal-sulfur batteries. Adv. Mater. 33(27), 2008784 (2021). https://doi.org/10.1002/adma.202008784
R. Yan, Z. Zhao, M. Cheng, Z. Yang, C. Cheng, X. Liu, Bo. Yin, S. Li, Origin and acceleration of insoluble Li2S2−Li2S reduction catalysis in ferromagnetic atoms-based lithium-sulfur battery cathodes. Angew. Chem. Int. Ed. 62(1), e202215414 (2023). https://doi.org/10.1002/anie.202215414
R. Zhu, Z. Wu, C. He, S. Li, X. Liu et al., Electronegative co-WO2 interface with Li+ pump effects for efficient polysulfide conversion in high-performance Li-sulfur batteries. ACS Nano 19(25), 23479–23489 (2025). https://doi.org/10.1021/acsnano.5c07464
I. Kim, J.-Y. Park, C. Kim, J.-W. Park, J.-P. Ahn et al., Sodium polysulfides during charge/discharge of the room-temperature Na/S battery using TEGDME electrolyte. J. Electrochem. Soc. 163(5), A611–A616 (2016). https://doi.org/10.1149/2.0201605jes
Q. Zou, Z. Liang, G.-Y. Du, C.-Y. Liu, E.Y. Li et al., Cation-directed selective polysulfide stabilization in alkali metal-sulfur batteries. J. Am. Chem. Soc. 140(34), 10740–10748 (2018). https://doi.org/10.1021/jacs.8b04536
H. Liu, W.-H. Lai, Q. Yang, Y. Lei, C. Wu et al., Understanding sulfur redox mechanisms in different electrolytes for room-temperature Na-S batteries. Nano-Micro Lett. 13(1), 121 (2021). https://doi.org/10.1007/s40820-021-00648-w
G. Liu, Q. Sun, Q. Li, J. Zhang, J. Ming, Electrolyte issues in lithium–sulfur batteries: development, prospect, and challenges. Energy Fuels 35(13), 10405–10427 (2021). https://doi.org/10.1021/acs.energyfuels.1c00990
H. Chen, K. Chen, J. Yang, B. Liu, L. Luo et al., Designing advanced electrolytes for high-safety and long-lifetime sodium-ion batteries via anion–cation interaction modulation. J. Am. Chem. Soc. 146(23), 15751–15760 (2024). https://doi.org/10.1021/jacs.4c01395
L. Carbone, M. Gobet, J. Peng, M. Devany, B. Scrosati et al., Comparative study of ether-based electrolytes for application in lithium–sulfur battery. ACS Appl. Mater. Interfaces 7(25), 13859–13865 (2015). https://doi.org/10.1021/acsami.5b02160
F. Jin, R. Wang, Y. Liu, N. Zhang, C. Bao, D. Li, D. Wang, T. Cheng, H. Liu, S. Dou, Bo. Wang, Conversion mechanism of sulfur in room-temperature sodium-sulfur battery with carbonate-based electrolyte. Energy Storage Mater. 69, 103388 (2024). https://doi.org/10.1016/j.ensm.2024.103388
Y. Yuan, Y. Hu, Y. Gan, Z. Dong, Y. Wang, E. Jin, M. Yang, F.B. Holness, V. Martins, Q. Tu, Y. Zhao, Self-sacrifice of sulfide electrolytes facilitating stable solid-state sodium–sulfur batteries. Energy Environ. Sci. 18(9), 4288–4301 (2025). https://doi.org/10.1039/d4ee06171c
S. Weng, Y. Liu, S. Lu, J. Xu, J. Xue, H. Tu, Z. Wang, L. Liu, Y. Gao, G. Sun, H. Li, X. Wu, Unraveling the multifunctional mechanism of fluoroethylene carbonate in enhancing high-performance room-temperature sodium-sulfur batteries. Angew. Chem. Int. Ed. 64(11), e202421602 (2025). https://doi.org/10.1002/anie.202421602
Y. Wang, D. Zhou, V. Palomares, D. Shanmukaraj, B. Sun et al., Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review. Energy Environ. Sci. 13(11), 3848–3879 (2020). https://doi.org/10.1039/d0ee02203a
Q. Guo, S. Li, X. Liu, H. Lu, X. Chang, H. Zhang, X. Zhu, Q. Xia, C. Yan, H. Xia, Ultrastable sodium–sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier. Adv. Sci. 7(11), 1903246 (2020). https://doi.org/10.1002/advs.201903246
X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang, B. Li, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9(1), 3870 (2018). https://doi.org/10.1038/s41467-018-06443-3
M.M. Gross, A. Manthiram, Rechargeable zinc-aqueous polysulfide battery with a mediator-ion solid electrolyte. ACS Appl. Mater. Interfaces 10(13), 10612–10617 (2018). https://doi.org/10.1021/acsami.8b00981
A.L. Phan, P.M.L. Le, C. Wang, Realizing high-energy and long-life Li/SPAN batteries. Joule 8(6), 1601–1618 (2024). https://doi.org/10.1016/j.joule.2024.04.003
B. Han, Y. Zou, Z. Zhang, X. Yang, X. Shi et al., Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nat. Commun. 12(1), 3066 (2021). https://doi.org/10.1038/s41467-021-23368-6
X. Zhao, Y. Lu, Z. Qian, R. Wang, Z. Guo, Potassium-sulfur batteries: status and perspectives. EcoMat 2(3), e12038 (2020). https://doi.org/10.1002/eom2.12038
S. Gu, N. Xiao, F. Wu, Y. Bai, C. Wu et al., Chemical synthesis of K2S2 and K2S3 for probing electrochemical mechanisms in K-S batteries. ACS Energy Lett. 3(12), 2858–2864 (2018). https://doi.org/10.1021/acsenergylett.8b01719
Q. Zhao, Y. Hu, K. Zhang, J. Chen, Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. Inorg. Chem. 53(17), 9000–9005 (2014). https://doi.org/10.1021/ic500919e
J.-Y. Hwang, H.M. Kim, Y.-K. Sun, High performance potassium–sulfur batteries based on a sulfurized polyacrylonitrile cathode and polyacrylic acid binder. J. Mater. Chem. A 6(30), 14587–14593 (2018). https://doi.org/10.1039/c8ta03135e
P. Xiong, X. Han, X. Zhao, P. Bai, Y. Liu et al., Room-temperature potassium–sulfur batteries enabled by microporous carbon stabilized small-molecule sulfur cathodes. ACS Nano 13(2), 2536–2543 (2019). https://doi.org/10.1021/acsnano.8b09503
C. Ye, J. Shan, H. Li, C.-C. Kao, Q. Gu, C.-C. Kao, S.-Z. Qiao, Reducing overpotential of solid-state sulfide conversion in potassium-sulfur batteries. Angew. Chem. Int. Ed. 62(22), e202301681 (2023). https://doi.org/10.1002/anie.202301681
Y. Liu, F. Bettels, Z. Lin, Z. Li, Y. Shao, F. Ding, S. Liu, L. Zhang, Recent advances in transition-metal-based catalytic material for room-temperature sodium–sulfur batteries. Adv. Funct. Mater. 34(5), 2302626 (2024). https://doi.org/10.1002/adfm.202302626
W. Song, X. Yang, T. Zhang, Z. Huang, H. Wang, J. Sun, Y. Xu, J. Ding, W. Hu, Optimizing potassium polysulfides for high performance potassium-sulfur batteries. Nat. Commun. 15(1), 1005 (2024). https://doi.org/10.1038/s41467-024-45405-w
H. Wang, D. Yu, C. Kuang, L. Cheng, W. Li et al., Alkali metal anodes for rechargeable batteries. Chem 5(2), 313–338 (2019). https://doi.org/10.1016/j.chempr.2018.11.005
L. Zhou, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed. Adv. Energy Mater. 11(15), 2001304 (2021). https://doi.org/10.1002/aenm.202001304
Y. Huang, L. Zhao, L. Li, M. Xie, F. Wu, R. Chen, Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv. Mater. 31(21), 1808393 (2019). https://doi.org/10.1002/adma.201808393
A. Ponrouch, E. Marchante, M. Courty, J.-M. Tarascon, M.R. Palacín, In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5(9), 8572 (2012). https://doi.org/10.1039/c2ee22258b
Z. Li, S. Wang, J. Shi, Y. Liu, S. Zheng et al., A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Mater. 47, 262–270 (2022). https://doi.org/10.1016/j.ensm.2022.02.014
X. Xu, C. Niu, M. Duan, X. Wang, L. Huang et al., Alkaline earth metal vanadates as sodium-ion battery anodes. Nat. Commun. 8(1), 460 (2017). https://doi.org/10.1038/s41467-017-00211-5
Y.-X. Wang, B. Zhang, W. Lai, Y. Xu, S.-L. Chou, Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Room-temperature sodium-sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7(24), 1602829 (2017). https://doi.org/10.1002/aenm.201602829
G. Zhou, S. Pei, L. Li, D.-W. Wang, S. Wang et al., A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 26(4), 625–631 (2014). https://doi.org/10.1002/adma.201302877
P.-Y. Zhai, H.-J. Peng, X.-B. Cheng, L. Zhu, J.-Q. Huang et al., Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries. Energy Storage Mater. 7, 56–63 (2017). https://doi.org/10.1016/j.ensm.2016.12.004
Z. Fan, X. Chen, J. Shi, H. Nie, X. Zhang et al., Functionalized separators boosting electrochemical performances for lithium batteries. Nano-Micro Lett. 17(1), 128 (2025). https://doi.org/10.1007/s40820-024-01596-x
J. Xu, S. An, X. Song, Y. Cao, N. Wang et al., Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 33(49), e2105178 (2021). https://doi.org/10.1002/adma.202105178
R. Razaq, M.M.U. Din, D.R. Småbråten, V. Eyupoglu, S. Janakiram, T.O. Sunde, N. Allahgoli, D. Rettenwander, L. Deng, Synergistic effect of bimetallic MOF modified separator for long cycle life lithium-sulfur batteries. Adv. Energy Mater. 14(3), 2302897 (2024). https://doi.org/10.1002/aenm.202302897
W. Wang, K. Xi, B. Li, H. Li, S. Liu, J. Wang, H. Zhao, A.M. Abdelkader, X. Gao, G. Li, A sustainable multipurpose separator directed against the shuttle effect of polysulfides for high-performance lithium–sulfur batteries. Adv. Energy Mater. 12(19), 2200160 (2022). https://doi.org/10.1002/aenm.202200160
L. Feng, R. Yan, X.-R. Sun, Z. Zhu, W. Jia et al., Cell-membrane inspired multifunctional nanocoating for rescuing the active-material microenvironment in high-capacity sulfur cathode. Adv. Energy Mater. 14(14), 2303848 (2024). https://doi.org/10.1002/aenm.202303848
R. Yan, Z. Zhao, R. Zhu, M. Wu, X. Liu, M. Adeli, Bo. Yin, C. Cheng, S. Li, Alveoli-inspired carbon cathodes with interconnected porous structure and asymmetric coordinated vanadium sites for superior Li−S batteries. Angew. Chem. Int. Ed. 63(25), e202404019 (2024). https://doi.org/10.1002/anie.202404019
S. Tang, Q. Chen, Y. Si, W. Guo, B. Mao, Y. Fu, Size effect of organosulfur and in situ formed oligomers enables high-utilization Na–organosulfur batteries. Adv. Mater. 33(33), 2100824 (2021). https://doi.org/10.1002/adma.202100824
D. Chan, Y. Liu, Y. Fan, H. Wang, S. Chen, T. Hao, H. Li, Z. Bai, H. Shao, G. Xing, Y. Zhang, Y. Tang, Functional Janus membranes: promising platform for advanced lithium batteries and beyond. Energy Environ. Mater. 6(5), e12451 (2023). https://doi.org/10.1002/eem2.12451
X. Yu, A. Manthiram, Performance enhancement and mechanistic studies of room-temperature sodium–sulfur batteries with a carbon-coated functional nafion separator and a Na2S/activated carbon nanofiber cathode. Chem. Mater. 28(3), 896–905 (2016). https://doi.org/10.1021/acs.chemmater.5b04588
W.-Y. Diao, D. Xie, D.-L. Li, F.-Y. Tao, C. Liu, H.-Z. Sun, X.-Y. Zhang, W.-L. Li, X.-L. Wu, J.-P. Zhang, Ion sieve membrane: homogenizing Li+ flux and restricting polysulfides migration enables long life and highly stable Li-S battery. J. Colloid Interface Sci. 627, 730–738 (2022). https://doi.org/10.1016/j.jcis.2022.07.079
Y. Hao, Y. Xing, H. Kong, Y. Jiao, Polyzwitterions functionalized nafion barrier toward high performance lithium-sulfur batteries. ChemElectroChem 8(12), 2329–2335 (2021). https://doi.org/10.1002/celc.202100491
D.B. Babu, K. Giribabu, K. Ramesha, Permselective SPEEK/nafion composite-coated separator as a potential polysulfide crossover barrier layer for Li–S batteries. ACS Appl. Mater. Interfaces 10(23), 19721–19729 (2018). https://doi.org/10.1021/acsami.8b04888
Y. He, S. Wu, Q. Li, H. Zhou, Designing a multifunctional separator for high-performance Li–S batteries at elevated temperature. Small 15(47), 1904332 (2019). https://doi.org/10.1002/smll.201904332
D. Son, H. Park, W.-G. Lim, S. Baek, S.H. Kang, J.-C. Lee, T. Maiyalagan, Y.-G. Lee, S. Park, J. Lee, Ultrathin mixed ionic–electronic conducting interlayer via the solution shearing technique for high-performance lithium–sulfur batteries. ACS Nano 17(24), 25507–25518 (2023). https://doi.org/10.1021/acsnano.3c09333
S. Wu, Y. Yao, X. Nie, Z. Yu, Y. Yu, F. Huang, Interfacial engineering of binder-free Janus separator with ultra-thin multifunctional layer for simultaneous enhancement of both metallic Li anode and sulfur cathode. Small 18(28), 2202651 (2022). https://doi.org/10.1002/smll.202202651
H. Wu, M. Jiang, X. Gao, X. Chen, C. Cheng, S. Cai, W. Ren, X. Yang, R. Sun, All-in-one Janus covalent organic frameworks separator as fast Li nucleator and polysulfides catalyzer in lithium-sulfur batteries. J. Colloid Interface Sci. 662, 138–148 (2024). https://doi.org/10.1016/j.jcis.2024.02.038
I. Bauer, M. Kohl, H. Althues, S. Kaskel, Shuttle suppression in room temperature sodium–sulfur batteries using ion selective polymer membranes. Chem. Commun. 50(24), 3208–3210 (2014). https://doi.org/10.1039/c4cc00161c
X. Yu, A. Manthiram, Ambient-temperature sodium–sulfur batteries with a sodiated nafion membrane and a carbon nanofiber-activated carbon composite electrode. Adv. Energy Mater. 5(12), 1500350 (2015). https://doi.org/10.1002/aenm.201500350
E.C. Cengiz, Z. Erdol, B. Sakar, A. Aslan, A. Ata et al., Investigation of the effect of using Al2O3–nafion barrier on room-temperature Na–S batteries. J. Phys. Chem. C 121(28), 15120–15126 (2017). https://doi.org/10.1021/acs.jpcc.7b04711
S. Chen, L. Liang, Y. Li, D. Wang, J. Lu, X. Zhan, Y. Hou, Q. Zhang, Brain capillary-inspired self-assembled covalent organic framework membrane for sodium–sulfur battery separator. Adv. Energy Mater. 13(11), 2204334 (2023). https://doi.org/10.1002/aenm.202204334
Y.X. Ren, H.R. Jiang, T.S. Zhao, L. Zeng, C. Xiong, Remedies of capacity fading in room-temperature sodium-sulfur batteries. J. Power. Sources 396, 304–313 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.056
C. Yin, Z. Li, D. Zhao, J. Yang, Y. Zhang, Ya. Du, Y. Wang, Azo-branched covalent organic framework thin films as active separators for superior sodium–sulfur batteries. ACS Nano 16(9), 14178–14187 (2022). https://doi.org/10.1021/acsnano.2c04273
C. Wu, J. Li, L. Liu, H. Zhang, Z. Zou et al., Growing intact membrane by tuning carbon down to ultrasmall 0.37 nm microporous structure for confining dissolution of polysulfides toward high-performance sodium–sulfur batteries. Energy Environ. Mater. 6(4), e12634 (2023). https://doi.org/10.1002/eem2.12634
J. Qin, H. Shi, K. Huang, P. Lu, P. Wen, F. Xing, B. Yang, M. Ye, Y. Yu, Z.-S. Wu, Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nat. Commun. 12(1), 5786 (2021). https://doi.org/10.1038/s41467-021-26032-1
X. Jiao, C. Yang, K. Ma, C. Feng, Q. Jiao, Y. Zhao, A novel modified PI separator with enhanced dendrite suppression, puncture prevention and improved size stability for room-temperature sodium–sulfur batteries. New J. Chem. 49(4), 1499–1505 (2025). https://doi.org/10.1039/d4nj04589k
G.-K. Gao, Y.-R. Wang, S.-B. Wang, R.-X. Yang, Y. Chen et al., Stepped channels integrated lithium–sulfur separator via photoinduced multidimensional fabrication of metal–organic frameworks. Angew. Chem. Int. Ed. 60(18), 10147–10154 (2021). https://doi.org/10.1002/anie.202016608
K. Zhang, X. Li, L. Ma, F. Chen, Z. Chen et al., Fluorinated covalent organic framework-based nanofluidic interface for robust lithium-sulfur batteries. ACS Nano 17(3), 2901–2911 (2023). https://doi.org/10.1021/acsnano.2c11300
A.P. Vijaya Kumar Saroja, A. Rajamani, K. Muthusamy, R. Sundara, Repelling polysulfides using white graphite introduced polymer membrane as a shielding layer in ambient temperature sodium sulfur battery. Adv. Mater. Interfaces 6(24), 1901497 (2019). https://doi.org/10.1002/admi.201901497
H. Xu, Y. Xiang, X. Xu, Y. Liang, Y. Li, Y. Qi, M. Xu, A polysulfides-defensive, dendrite-suppressed, and flame-retardant separator with lean electrolyte for room temperature sodium–sulfur batteries. Adv. Funct. Mater. 34(40), 2403663 (2024). https://doi.org/10.1002/adfm.202403663
L. Wang, Y. Xu, L. Xiao, Y. Liu, L. Wang et al., Ionic covalent organic framework membrane as active separator for highly reversible zinc–sulfur battery. ACS Appl. Mater. Interfaces 16(38), 50036–50044 (2024). https://doi.org/10.1021/acsami.4c11422
T. Liang, X. Zhang, Y. Huang, Y. Lu, H. Jia et al., Cutting-edge progress in aqueous Zn-S batteries: innovations in cathodes, electrolytes, and mediators. Small 21(7), 2405810 (2025). https://doi.org/10.1002/smll.202405810
Y.-W. Song, J. Zhou, Z.-X. Chen, J.-D. Zhang, L. Shen, F. Sun, M. Zhao, B.-Q. Li, Reducing the cathode Thiele modulus to promote the discharge capacity of lithium–sulfur batteries. J. Energy Chem. 106, 993–1001 (2025). https://doi.org/10.1016/j.jechem.2025.04.075
A. Andersen, N.N. Rajput, K.S. Han, H. Pan, N. Govind et al., Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1, 3-dioxolane and 1, 2-dimethoxyethane. Chem. Mater. 31(7), 2308–2319 (2019). https://doi.org/10.1021/acs.chemmater.8b03944
N.N. Rajput, V. Murugesan, Y. Shin, K.S. Han, K.C. Lau et al., Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions. Chem. Mater. 29(8), 3375–3379 (2017). https://doi.org/10.1021/acs.chemmater.7b00068
A. Gupta, A. Bhargav, J.-P. Jones, R.V. Bugga, A. Manthiram, Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium–sulfur batteries. Chem. Mater. 32(5), 2070–2077 (2020). https://doi.org/10.1021/acs.chemmater.9b05164
E. Senokos, H. Au, E.O. Eren, T. Horner, Z. Song, N.V. Tarakina, E.B. Yılmaz, A. Vasileiadis, H. Zschiesche, M. Antonietti, P. Giusto, Sustainable sulfur-carbon hybrids for efficient sulfur redox conversions in nanoconfined spaces. Small 20(51), 2407300 (2024). https://doi.org/10.1002/smll.202407300
X. Gao, Z. Yu, J. Wang, X. Zheng, Y. Ye et al., Electrolytes with moderate lithium polysulfide solubility for high-performance long-calendar-life lithium-sulfur batteries. Proc. Natl. Acad. Sci. U. S. A. 120(31), e2301260120 (2023). https://doi.org/10.1073/pnas.2301260120
J. Luque Di Salvo, G.L. Luque, E.P.M. Leiva, G. De Luca, Molecular insight into LiTFSI and Li2S6 transport through hydrophobic nanochannels. J. Power. Sources 603, 234380 (2024). https://doi.org/10.1016/j.jpowsour.2024.234380
Q. Liu, Z. Yu, Y. Hu, M. Tang, Q. Zhang et al., Designing advanced separators toward lithium-ion batteries. Adv. Energy Mater. e03217 (2025). https://doi.org/10.1002/aenm.202503217
X. Kang, T. He, S. Niu, J. Zhang, R. Zou et al., Precise design of a 0.8 nm pore size in a separator interfacial layer inspired by a sieving effect toward inhibiting polysulfide shuttling and promoting Li+ diffusion. Nano Lett. 24(33), 10007–10015 (2024). https://doi.org/10.1021/acs.nanolett.4c01480
X. Chi, Y. Zhang, F. Hao, S. Kmiec, H. Dong, R. Xu, K. Zhao, Q. Ai, T. Terlier, L. Wang, L. Zhao, L. Guo, J. Lou, H.L. Xin, S.W. Martin, Y. Yao, An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries. Nat. Commun. 13(1), 2854 (2022). https://doi.org/10.1038/s41467-022-30517-y
S.-H. Chung, A. Manthiram, High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator. J. Phys. Chem. Lett. 5(11), 1978–1983 (2014). https://doi.org/10.1021/jz5006913
S.-H. Chung, A. Manthiram, Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv. Funct. Mater. 24(33), 5299–5306 (2014). https://doi.org/10.1002/adfm.201400845
A.P. Vijaya Kumar Saroja, Y. Xu, Carbon materials for Na-S and K-S batteries. Matter 5(3), 808–836 (2022). https://doi.org/10.1016/j.matt.2021.12.023
X. Yu, A. Manthiram, A reversible nonaqueous room-temperature potassium-sulfur chemistry for electrochemical energy storage. Energy Storage Mater. 15, 368–373 (2018). https://doi.org/10.1016/j.ensm.2018.06.020
Q. Wu, W. Zhang, M. Qin, W. Zhong, H. Yan, H. Zhu, S. Cheng, J. Xie, Tellurium doped sulfurized polyacrylonitrile nanoflower for high-energy-density, long-lifespan sodium-sulfur batteries. Nano Energy 129, 110049 (2024). https://doi.org/10.1016/j.nanoen.2024.110049
Y. Wang, Y. Wang, C. Xu, Y. Meng, P. Liu et al., Phosphor-doped carbon network electrocatalyst enables accelerated redox kinetics of polysulfides for sodium–sulfur batteries. ACS Nano 18(4), 3839–3849 (2024). https://doi.org/10.1021/acsnano.3c12754
M.K. Aslam, T. Hussain, H. Tabassum, Z. Wei, W. Tang, S. Li, S.-J. Bao, X.S. Zhao, M. Xu, Sulfur encapsulation into yolk-shell Fe2N@nitrogen doped carbon for ambient-temperature sodium-sulfur battery cathode. Chem. Eng. J. 429, 132389 (2022). https://doi.org/10.1016/j.cej.2021.132389
H. Zhang, M. Wang, B. Song, X.-L. Huang, W. Zhang, X.-L. Huang, E. Zhang, Y. Cheng, Ke. Lu, Quasi-solid sulfur conversion for energetic all-solid-state Na−S battery. Angew. Chem. Int. Ed. 63(19), e202402274 (2024). https://doi.org/10.1002/anie.202402274
Y. Qi, Q.-J. Li, Y. Wu, S.-J. Bao, C. Li, Y. Chen, G. Wang, M. Xu, A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nat. Commun. 12(1), 6347 (2021). https://doi.org/10.1038/s41467-021-26631-y
J. Mou, Y. Li, L. Ou, J. Huang, A highly-efficient electrocatalyst for room temperature sodium-sulfur batteries: assembled nitrogen-doped hollow porous carbon spheres decorated with ultrafine α-MoC1- x nanops. Energy Storage Mater. 52, 111–119 (2022). https://doi.org/10.1016/j.ensm.2022.07.028
J. Huang, Y. Zhang, L. Ou, J. Mou, Phosphorus and nitrogen dual-doped hollow porous carbon spheres toward enhanced cycling stability of room-temperature Na–S batteries. ACS Appl. Mater. Interfaces 16(42), 57064–57073 (2024). https://doi.org/10.1021/acsami.4c11488
C. Dong, H. Zhou, H. Liu, B. Jin, Z. Wen, X. Lang, J. Li, J. Kim, Q. Jiang, Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries. J. Mater. Sci. Technol. 113, 207–216 (2022). https://doi.org/10.1016/j.jmst.2021.10.027
S.F. Zhao, C. Li, Z. Cui, J. Zhang, W. Hu, R. Ma, C.M. Li, Biomass-derived micro-mesoporous carbon with oxygen functional groups for high-rate Na–S batteries at room temperature. Adv. Energy Mater. 13(45), 2302490 (2023). https://doi.org/10.1002/aenm.202302490
Y. Liu, D.J. Lee, H.-J. Ahn, S.Y. Nam, K.-K. Cho et al., Waste coffee grounds-derived carbon: nanoarchitectured pore-structure regulation for sustainable room-temperature sodium–sulfur batteries. Renew. Energy 212, 865–874 (2023). https://doi.org/10.1016/j.renene.2023.05.105
D. Zhao, S. Jiang, S. Yu, J. Ren, Z. Zhang et al., Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries. Carbon 201, 864–870 (2023). https://doi.org/10.1016/j.carbon.2022.09.075
W. Yang, W. Yang, R. Zou, Y. Huang, H. Lai, Z. Chen, X. Peng, Cellulose nanofiber-derived carbon aerogel for advanced room-temperature sodium–sulfur batteries. Carbon Energy 5(1), e203 (2023). https://doi.org/10.1002/cey2.203
X. Chen, Y.-K. Bai, C.-Z. Zhao, X. Shen, Q. Zhang, Lithium bonds in lithium batteries. Angew. Chem. Int. Ed. 59(28), 11192–11195 (2020). https://doi.org/10.1002/anie.201915623
J. Wu, T. Ye, Y. Wang, P. Yang, Q. Wang et al., Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries. ACS Nano 16(10), 15734–15759 (2022). https://doi.org/10.1021/acsnano.2c08581
X.L. Huang, X. Zhang, L. Zhou, Z. Guo, H.K. Liu, S.X. Dou, Z. Wang, Orthorhombic Nb2O5 decorated carbon nanoreactors enable bidirectionally regulated redox behaviors in room-temperature Na–S batteries. Adv. Sci. 10(4), 2206558 (2023). https://doi.org/10.1002/advs.202206558
C. Chang, C. Yang, Q. Wu, X. Wang, H. Nie, X. Zhou, X. Xie, B. Hwang, Y. Ye, All-in-one Janus separator for lithium–sulfur batteries with lithium polysulfide and dendrite growth suppressed at temperature gradient effect. J. Power. Sources 550, 232115 (2022). https://doi.org/10.1016/j.jpowsour.2022.232115
Y. Chen, Y. Yao, W. Zhao, L. Wang, H. Li et al., Precise solid-phase synthesis of CoFe@FeOx nanops for efficient polysulfide regulation in lithium/sodium-sulfur batteries. Nat. Commun. 14, 7487 (2023). https://doi.org/10.1038/s41467-023-42941-9
J. Zhang, Y. Zhou, H. Shu, Z. Yan, Z. Wu et al., The design of chemisorption and catalysis synergistic defender for efficient room temperature sodium-sulfur batteries. J. Colloid Interface Sci. 678(Pt A), 292–300 (2025). https://doi.org/10.1016/j.jcis.2024.08.173
J.-Y. Zhang, X.-Y. Zhang, J. Wang, Y. Feng, L.-L. Fan, J.-Y. Zhang, X.-Y. Zhang, L.-L. Fan, Y.-D. Cao, H. Liu, C.-L. Lv, G.-G. Gao, The explicit multi-electron catalytic mechanism of heteropolyvanadotungstate dominating ultra-durable room-temperature Na-S batteries. Adv. Funct. Mater. 34(33), 2400170 (2024). https://doi.org/10.1002/adfm.202400170
Q. Zhang, L. Bo, H. Li, L. Shen, J. Li et al., Inhibiting shuttle effect and dendrite growth in sodium–sulfur batteries enabled by applying external acoustic field. Nano Lett. 24(35), 10711–10717 (2024). https://doi.org/10.1021/acs.nanolett.4c00864
Y. Ji, X. Liu-Théato, Y. Xiu, S. Indris, C. Njel, J. Maibach, H. Ehrenberg, M. Fichtner, Z. Zhao‐Karger, Polyoxometalate modified separator for performance enhancement of magnesium–sulfur batteries. Adv. Funct. Mater. 31(26), 2100868 (2021). https://doi.org/10.1002/adfm.202100868
G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. U. S. A. 114(5), 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
C. Ma, X. Wang, J. Lan, J. Zhang, K. Song, J. Chen, J. Ge, W. Chen, Dynamic multistage coupling of FeS2/S enables ultrahigh reversible Na–S batteries. Adv. Funct. Mater. 33(5), 2211821 (2023). https://doi.org/10.1002/adfm.202211821
J. He, A. Bhargav, L. Su, H. Charalambous, A. Manthiram, Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries. Nat. Commun. 14(1), 6568 (2023). https://doi.org/10.1038/s41467-023-42383-3
T. Yang, B. Guo, W. Du, M.K. Aslam, M. Tao, W. Zhong, Y. Chen, S.-J. Bao, X. Zhang, M. Xu, Design and construction of sodium polysulfides defense system for room-temperature Na–S battery. Adv. Sci. 6(23), 1901557 (2019). https://doi.org/10.1002/advs.201901557
H. Wang, C. Deng, X. Li, D. Yan, M. Xie, S. Zhang, B. Huang, Designing dual-defending system based on catalytic and kinetic iron Pyrite@C hybrid fibers for long-life room-temperature sodium-sulfur batteries. Chem. Eng. J. 420, 129681 (2021). https://doi.org/10.1016/j.cej.2021.129681
H. Li, M. Zhao, B. Jin, Z. Wen, H.K. Liu, Q. Jiang, Mesoporous nitrogen-doped carbon nanospheres as sulfur matrix and a novel chelate-modified separator for high-performance room-temperature Na-S batteries. Small 16(29), 1907464 (2020). https://doi.org/10.1002/smll.201907464
S. Zhang, Y. Yao, X. Jiao, M. Ma, H. Huang, X. Zhou, L. Wang, J. Bai, Y. Yu, Mo2N–W2N heterostructures embedded in spherical carbon superstructure as highly efficient polysulfide electrocatalysts for stable room-temperature Na–S batteries. Adv. Mater. 33(43), 2103846 (2021). https://doi.org/10.1002/adma.202103846
H. Zhao, Z. Li, M. Liu, S. Ge, K. Ma, Q. Jiao, H. Li, H. Xie, Y. Zhao, C. Feng, Synergistically promoting the catalytic conversion of polysulfides via in situ construction of Ni-MnO2 heterostructure on N-doped hollow carbon spheres towards high-performance sodium-sulfur batteries. Chem. Eng. J. 494, 153006 (2024). https://doi.org/10.1016/j.cej.2024.153006
Y.-J. Lei, X. Lu, H. Yoshikawa, D. Matsumura, Y. Fan et al., Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries. Nat. Commun. 15(1), 3325 (2024). https://doi.org/10.1038/s41467-024-47628-3
S. Zhai, Z. Ye, R. Liu, H. Xu, C. Li, W. Liu, X. Wang, T. Mei, Defect strategy-regulated MoSe2-modified self-supporting graphene aerogels serving as both cathode and interlayer of lithium-sulfur batteries. Adv. Funct. Mater. 34(17), 2314379 (2024). https://doi.org/10.1002/adfm.202314379
C. Dong, H. Zhou, B. Jin, W. Gao, X. Lang et al., Enabling high-performance room-temperature sodium/sulfur batteries with few-layer 2H-MoSe2 embellished nitrogen-doped hollow carbon spheres as polysulfide barriers. J. Mater. Chem. A 9(6), 3451–3463 (2021). https://doi.org/10.1039/d0ta10159a
C. Li, D. Yang, J. Yu, J. Wang, C. Zhang, T. Yang, C. Huang, B. Nan, J. Li, J. Arbiol, Y. Zhou, Q. Zhang, A. Cabot, Three birds with one stone: multifunctional separators based on SnSe nanosheets enable high-performance Li-, Na- and K-sulfur batteries. Adv. Energy Mater. 14(29), 2303551 (2024). https://doi.org/10.1002/aenm.202303551
Y. Wang, T. Guo, E. Alhajji, Z. Tian, Z. Shi, Y.-Z. Zhang, H.N. Alshareef, MXenes for sulfur-based batteries. Adv. Energy Mater. 13(4), 2202860 (2023). https://doi.org/10.1002/aenm.202202860
X. Zuo, Y. Qiu, M. Zhen, D. Liu, Y. Zhang, Review on MXenes-based electrocatalysts for high-energy-density lithium-sulfur batteries. Nano-Micro Lett. 17(1), 209 (2025). https://doi.org/10.1007/s40820-025-01726-z
Z. Huang, S. Wang, X. Guo, J. Safaei, Y. Lei, W.-H. Lai, X. Zhang, B. Sun, D. Shanmukaraj, M. Armand, T. Rojo, G. Wang, A hierarchical hybrid MXenes interlayer with triple function for room-temperature sodium-sulfur batteries. Adv. Mater. Technol. 8(14), 2202147 (2023). https://doi.org/10.1002/admt.202202147
D. Zhou, X. Tang, X. Guo, P. Li, D. Shanmukaraj et al., Polyolefin-based janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. 59(38), 16725–16734 (2020). https://doi.org/10.1002/anie.202007008
C. Wang, K. Wu, J. Cui, X. Fang, J. Li et al., Robust room-temperature sodium-sulfur batteries enabled by a sandwich-structured MXene@C/polyolefin/MXene@C dual-functional separator. Small 18(43), 2106983 (2022). https://doi.org/10.1002/smll.202106983
Y. Zhu, Y. Zuo, X. Jiao, R. Manjunatha, E.R. Ezeigwe, W. Yan, J. Zhang, Selective sulfur conversion with surface engineering of electrocatalysts in a lithium–sulfur battery. Carbon Energy 5(2), e249 (2023). https://doi.org/10.1002/cey2.249
Y. Du, Y. Liu, F. Cao, H. Ye, Defect-induced-reduced Au quantum Dots@MXene decorated separator enables lithium-sulfur batteries with high sulfur utilization. Energy Mater. 4(2), 400014 (2024). https://doi.org/10.20517/energymater.2023.76
P. Xiong, F. Zhang, X. Zhang, Y. Liu, Y. Wu, S. Wang, J. Safaei, B. Sun, R. Ma, Z. Liu, Y. Bando, T. Sasaki, X. Wang, J. Zhu, G. Wang, Atomic-scale regulation of anionic and cationic migration in alkali metal batteries. Nat. Commun. 12(1), 4184 (2021). https://doi.org/10.1038/s41467-021-24399-9
W. Sun, J. Hou, Y. Zhou, T. Zhu, Q. Yuan et al., Amorphous FeSnOx nanosheets with hierarchical vacancies for room-temperature sodium-sulfur batteries. Angew. Chem. Int. Ed. 63(38), e202404816 (2024). https://doi.org/10.1002/anie.202404816
C. Yang, H. Zhang, Boosting electrocatalytic activity via introducing carbon vacancies and iron defects towards high-performance room-temperature sodium-sulfur batteries. Appl. Mater. Today 42, 102575 (2025). https://doi.org/10.1016/j.apmt.2024.102575
X.-Y. Li, M. Zhao, Y.-W. Song, C.-X. Bi, Z. Li, Z.-X. Chen, X.-Q. Zhang, B.-Q. Li, J.-Q. Huang, Polysulfide chemistry in metal–sulfur batteries. Chem. Soc. Rev. 54(10), 4822–4873 (2025). https://doi.org/10.1039/d4cs00318g
H.-E. Wang, K. Yin, N. Qin, X. Zhao, F.-J. Xia et al., Oxygen-deficient titanium dioxide as a functional host for lithium–sulfur batteries. J. Mater. Chem. A 7(17), 10346–10353 (2019). https://doi.org/10.1039/c9ta01598a
W. Li, T. Wang, G. Yang, R. Ma, W. Li et al., Oxygen vacancy modified cerium dioxide with excellent catalytic activity for room-temperature Na S batteries. J. Energy Storage 91, 112141 (2024). https://doi.org/10.1016/j.est.2024.112141
X. Tao, J. Wang, C. Liu, H. Wang, H. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
F. Liu, C. Dong, C. Yan, Y. Li, X. Xu et al., Metal-organic frameworks derived single atom catalysts for lithium sulfur batteries. Commun. Mater. 6, 185 (2025). https://doi.org/10.1038/s43246-025-00916-x
T. Sun, F. Huang, J. Liu, H. Yu, X. Feng, Yu. Yang, H. Shu, F. Zhang, Strengthened d-p orbital-hybridization of single atoms with sulfur species induced bidirectional catalysis for lithium–sulfur batteries. Adv. Funct. Mater. 33(51), 2306049 (2023). https://doi.org/10.1002/adfm.202306049
C. Dong, C. Ma, C. Zhou, Y. Yu, J. Wang, K. Yu, C. Shen, J. Gu, K. Yan, A. Zheng, M. Gong, Xu. Xu, L. Mai, Engineering d-p orbital hybridization with P, S co-coordination asymmetric configuration of single atoms toward high-rate and long-cycling lithium–sulfur battery. Adv. Mater. 36(38), 2407070 (2024). https://doi.org/10.1002/adma.202407070
J. Xia, W. Hua, L. Wang, Y. Sun, C. Geng, C. Zhang, W. Wang, Y. Wan, Q.-H. Yang, Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li–S batteries. Adv. Funct. Mater. 31(26), 2101980 (2021). https://doi.org/10.1002/adfm.202101980
J. Zhao, Y. Zhao, W.-C. Yue, X. Li, N. Gao et al., V2O3/VN catalysts decorated free-standing multifunctional interlayer for high-performance Li-S battery. Chem. Eng. J. 441, 136082 (2022). https://doi.org/10.1016/j.cej.2022.136082
S. Wu, X. Nie, Z. Wang, Z. Yu, F. Huang, Magnetron sputtering engineering of Typha-like carbon nanofiber interlayer integrating brush filter and chemical adsorption for Li–S batteries. Carbon 201, 285–294 (2023). https://doi.org/10.1016/j.carbon.2022.09.020
R. Saroha, J. Heo, Y. Liu, N. Angulakshmi, Y. Lee, K.-K. Cho, H.-J. Ahn, J.-H. Ahn, V2O3-decorated carbon nanofibers as a robust interlayer for long-lived, high-performance, room-temperature sodium–sulfur batteries. Chem. Eng. J. 431, 134205 (2022). https://doi.org/10.1016/j.cej.2021.134205
H. Zhou, F. Ling, H. Zhou, J.-C. Wu, X. Li, D. Hou, J. Ge, T. Xu, H. Gao, Polyphenylene sulfite based solid-state separator for blocking polysulfide in sodium-ion battery with cheap FeS anode. J. Alloys Compd. 941, 168886 (2023). https://doi.org/10.1016/j.jallcom.2023.168886
V.K. Bharti, C.S. Sharma, M. Khandelwal, Carbonized bacterial cellulose as free-standing cathode host and protective interlayer for high-performance potassium-sulfur batteries with enhanced kinetics and stable operation. Carbon 212, 118173 (2023). https://doi.org/10.1016/j.carbon.2023.118173
A.P. Goswami, V.K. Bharti, C.S. Sharma, M. Khandelwal, In-situ banana fiber-modified carbonized bacterial cellulose as a free-standing and binder-free cathode host for potassium-sulfur batteries. Carbon Trends 16, 100391 (2024). https://doi.org/10.1016/j.cartre.2024.100391
L. Li, J.S. Nam, M.S. Kim, Y. Wang, S. Jiang, H. Hou, I.-D. Kim, Sulfur–carbon electrode with PEO-LiFSI-PVDF composite coating for high-rate and long-life lithium–sulfur batteries. Adv. Energy Mater. 13(36), 2302139 (2023). https://doi.org/10.1002/aenm.202302139
W. Guo, Q. Han, J. Jiao, W. Wu, X. Zhu et al., In situ construction of robust biphasic surface layers on lithium metal for lithium–sulfide batteries with long cycle life. Angew. Chem. Int. Ed. 60(13), 7267–7274 (2021). https://doi.org/10.1002/anie.202015049
P. Shi, S. Zhang, G. Lu, L. Wang, Y. Jiang, F. Liu, Yu. Yao, H. Yang, M. Ma, S. Ye, X. Tao, Y. Feng, X. Wu, X. Rui, Y. Yu, Red phosphorous-derived protective layers with high ionic conductivity and mechanical strength on dendrite-free sodium and potassium metal anodes. Adv. Energy Mater. 11(5), 2003381 (2021). https://doi.org/10.1002/aenm.202003381
L. Wang, N. Ren, W. Jiang, H. Yang, S. Ye, Y. Jiang, G. Ali, Li. Song, X. Wu, X. Rui, Yu. Yao, Y. Yu, Tailoring Na+ solvation environment and electrode-electrolyte interphases with Sn(OTf)2 additive in non-flammable phosphate electrolytes towards safe and efficient Na-S batteries. Angew. Chem. Int. Ed. 63(12), e202320060 (2024). https://doi.org/10.1002/anie.202320060
Q. Jin, X. Zhang, H. Gao, L. Li, Z. Zhang, Novel LixSiSy/Nafion as an artificial SEI film to enable dendrite-free Li metal anodes and high stability Li–S batteries. J. Mater. Chem. A 8(18), 8979–8988 (2020). https://doi.org/10.1039/d0ta02999h
Q. Jin, K. Zhao, X. Zhang, An effective strategy for shielding polysulfides and regulating lithium deposition in lithium–sulfur batteries. J. Power. Sources 489, 229500 (2021). https://doi.org/10.1016/j.jpowsour.2021.229500
T. Lai, A. Bhargav, A. Manthiram, Lithium tritelluride as an electrolyte additive for stabilizing lithium deposition and enhancing sulfur utilization in anode-free lithium–sulfur batteries. Adv. Funct. Mater. 33(43), 2304568 (2023). https://doi.org/10.1002/adfm.202304568
P. Liu, H. Hao, H. Celio, J. Cui, M. Ren, Y. Wang, H. Dong, A.R. Chowdhury, T. Hutter, F.A. Perras, J. Nanda, J. Watt, D. Mitlin, Multifunctional separator allows stable cycling of potassium metal anodes and of potassium metal batteries. Adv. Mater. 34(7), 2105855 (2022). https://doi.org/10.1002/adma.202105855
W. Gao, L. Su, Y. Yu, Y. Lu, X. Liu, Yi. Peng, X. Xiong, J. He, Y. Chen, Y. Wu, Stable dendrite-free room temperature sodium-sulfur batteries enabled by a novel sodium thiotellurate interface. Angew. Chem. Int. Ed. 63(51), e202412287 (2024). https://doi.org/10.1002/anie.202412287
Y.-J. Zhu, C.-X. Bi, M. Zhao, Z. Li, W.-J. Feng, Y.-J. Zhu, C.-X. Bi, W.-J. Feng, F. Sun, X.-Q. Zhang, B.-Q. Li, J.-Q. Huang, Deciphering the species-dependent polysulfide corrosion on lithium anode toward durable lithium–sulfur batteries. Adv. Mater. 37(37), 2506132 (2025). https://doi.org/10.1002/adma.202506132
C.-X. Bi, Y.-J. Zhu, Z. Li, M. Zhao, X.-Q. Zhang et al., Evolution of lithium metal anode along cycling in working lithium–sulfur batteries. Adv. Energy Mater. 14(39), 2402609 (2024). https://doi.org/10.1002/aenm.202402609
X.-Y. Li, B.-Q. Li, S. Feng, Z. Li, L. Shen et al., Two-stage solvation of lithium polysulfides in working lithium–sulfur batteries. J. Am. Chem. Soc. 147(18), 15435–15447 (2025). https://doi.org/10.1021/jacs.5c01588
Z.-X. Chen, J.-J. Zhao, G.-Y. Fang, S. Zhang, J. Ma et al., Accelerating the sulfur redox kinetics in weakly-solvating lithium-sulfur batteries under lean-electrolyte conditions. Energy Storage Mater (2025). https://doi.org/10.1016/j.ensm.2025.104502
T. Jin, X.-Y. Li, M. Zhao, S. Feng, Z. Li, X.-Y. Li, Z.-X. Chen, H.-J. Peng, B.-Q. Li, J.-Q. Huang, Promoting the rate performances of weakly solvating electrolyte-based lithium‒sulfur batteries. Angew. Chem. Int. Ed. 64(32), e202504898 (2025). https://doi.org/10.1002/anie.202504898
Y. Zhang, Y. Xiao, Z. Tang, L. Zou, Q. Liu, X. Fu, X. Xiang, J. Deng, Poly(ethylene oxide)-based composite solid electrolyte modified by Li7La3Zr2O12 inorganic filler with grafted imidazolium-based ionic liquids functional groups. Chem. Eng. J. 500, 157191 (2024). https://doi.org/10.1016/j.cej.2024.157191
J. Zhang, Y. Wang, Q. Xia, X. Li, B. Liu, T. Hu, M. Tebyetekerwa, S. Hu, R. Knibbe, S. Chou, Confining polymer electrolyte in MOF for safe and high-performance all-solid-state sodium metal batteries. Angew. Chem. Int. Ed. 63(16), e202318822 (2024). https://doi.org/10.1002/anie.202318822
X. Wang, C. Zhang, M. Sawczyk, J. Sun, Q. Yuan et al., Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 21(9), 1057–1065 (2022). https://doi.org/10.1038/s41563-022-01296-0
X. Zhou, Z. Li, W. Li, X. Li, J. Fu, Lu. Wei, H. Yang, X. Guo, Regulating Na-ion solvation in quasi-solid electrolyte to stabilize Na metal anode. Adv. Funct. Mater. 33(11), 2212866 (2023). https://doi.org/10.1002/adfm.202212866
R. Fang, Y. Li, N. Wu, B. Xu, Y. Liu, A. Manthiram, J.B. Goodenough, Ultra-thin single-p-layer sodium beta-alumina-based composite polymer electrolyte membrane for sodium-metal batteries. Adv. Funct. Mater. 33(6), 2211229 (2023). https://doi.org/10.1002/adfm.202211229
L.-L. Chiu, S.-H. Chung, Composite gel-polymer electrolyte for high-loading polysulfide cathodes. J. Mater. Chem. A 10(26), 13719–13726 (2022). https://doi.org/10.1039/d2ta01867e
H. Ryu, H. Ahn, K. Kim, J. Ahn, J. Lee, E. Cairns, Self-discharge of lithium–sulfur cells using stainless-steel current-collectors. J. Power. Sources 140(2), 365–369 (2005). https://doi.org/10.1016/j.jpowsour.2004.08.039
C.-W. Park, J.-H. Ahn, H.-S. Ryu, K.-W. Kim, H.-J. Ahn, Room-temperature solid-state Sodium∕Sulfur battery. Electrochem. Solid-State Lett. 9(3), A123 (2006). https://doi.org/10.1149/1.2164607
Y.-M. Chiang, Building a better battery. Science 330(6010), 1485–1486 (2010). https://doi.org/10.1126/science.1198591
T. Zhu, X. Dong, Y. Liu, Y.-G. Wang, C. Wang, Y.-Y. Xia, An all-solid-state sodium–sulfur battery using a sulfur/carbonized polyacrylonitrile composite cathode. ACS Appl. Energy Mater. 2(7), 5263–5271 (2019). https://doi.org/10.1021/acsaem.9b00953
X. Hu, Y. Ni, C. Wang, H. Wang, E. Matios, J. Chen, W. Li, Facile-processed nanocarbon-promoted sulfur cathode for highly stable sodium-sulfur batteries. Cell Rep. Phys. Sci. 1(2), 100015 (2020). https://doi.org/10.1016/j.xcrp.2020.100015
C. She, X. Shi, J. Zhou, Z. Zhu, K. Lu, Z. Zheng, Y. Zhu, A ZIF-8-enhanced PVDF/PEO blending polymer gel membrane for quasi-solid-state Na-S batteries with long cycling lifespan. Chem. Eng. J. 494, 153119 (2024). https://doi.org/10.1016/j.cej.2024.153119
G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8(25), 1801219 (2018). https://doi.org/10.1002/aenm.201801219
S. Murugan, S.V. Klostermann, P. Schützendübe, G. Richter, J. Kästner, M.R. Buchmeiser, Stable cycling of room-temperature sodium-sulfur batteries based on an in situ crosslinked gel polymer electrolyte. Adv. Funct. Mater. 32(32), 2201191 (2022). https://doi.org/10.1002/adfm.202201191
G.S. Hegde, R. Sundara, A flexible, ceramic-rich solid electrolyte for room-temperature sodium-sulfur batteries. Chem. Commun. 58(63), 8794–8797 (2022). https://doi.org/10.1039/d2cc02326a
A. Yang, R. Ye, H. Song, Q. Lu, X. Wang, E. Dashjav, K. Yao, D. Grüner, Q. Ma, F. Tietz, O. Guillon, Pressureless all-solid-state Na/S batteries with self-supporting Na5YSi4O12 scaffolds. Carbon Energy 5(12), e371 (2023). https://doi.org/10.1002/cey2.371
W. Zhang, M. Wang, H. Zhang, X. Huang, B. Shen et al., Binary atomic sites enable a confined bidirectional tandem electrocatalytic sulfur conversion for low-temperature all-solid-state Na−S batteries. Angew. Chem. Int. Ed. 63(6), e202317776 (2024). https://doi.org/10.1002/anie.202317776
Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1(4), 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3(1), 856 (2012). https://doi.org/10.1038/ncomms1843
T. An, H. Jia, L. Peng, J. Xie, Material and interfacial modification toward a stable room-temperature solid-state Na–S battery. ACS Appl. Mater. Interfaces 12(18), 20563–20569 (2020). https://doi.org/10.1021/acsami.0c03899
Y. Ren, N. Hortance, J. McBride, K.B. Hatzell, Sodium–sulfur batteries enabled by a protected inorganic/organic hybrid solid electrolyte. ACS Energy Lett. 6(2), 345–353 (2021). https://doi.org/10.1021/acsenergylett.0c02494
X. Lu, M.E. Bowden, V.L. Sprenkle, J. Liu, A low cost, high energy density, and long cycle life potassium–sulfur battery for grid-scale energy storage. Adv. Mater. 27(39), 5915–5922 (2015). https://doi.org/10.1002/adma.201502343
H. Yuan, H. Li, T. Zhang, G. Li, T. He, F. Du, S. Feng, A K2Fe4O7 superionic conductor for all-solid-state potassium metal batteries. J. Mater. Chem. A 6(18), 8413–8418 (2018). https://doi.org/10.1039/c8ta01418c
J. Shao, J. Zheng, L. Qin, S. Zhang, Y. Ren, Y. Wu, K3SbS4 as a potassium superionic conductor with low activation energy for K–S batteries. Angew. Chem. Int. Ed. 61(20), e202200606 (2022). https://doi.org/10.1002/anie.202200606
N. Tanibata, K. Noi, A. Hayashi, M. Tatsumisago, Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes. RSC Adv. 4(33), 17120–17123 (2014). https://doi.org/10.1039/c4ra00996g