High Durability Sliding TENG with Enhanced Output Achieved by Capturing Multiple Region Charges for Harvesting Wind Energy
Corresponding Author: Chenguo Hu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 199
Abstract
Improving the electric output and durability of triboelectric nanogenerator (TENG) remains a great challenge. In sliding-mode TENG, surface charge dissipation and charge leakage caused by the volume effect result in serious energy waste. In this work, a durable dual output mode TENG (DDO-TENG), which includes alteranting current and direct current output modes, is designed to capture the dissipating charges in the surface of charge space accumulation area and the inner leakage charge in porous network to further improve the output performance of sliding TENGs. The output charge density of DDO-TENG reaches 0.847 mC m−2, which is 2.39 times as that of the single mode device. In addition, it has strong durability, remaining 95.7% after over 271 k cycles, and it can continuously power electronics by harvesting wind energy. This work provides a strategy for achieving the improvement on output performance and durability and expands the application of TENG.
Highlights:
1 A dual output mode triboelectric nanogenerator for capturing multiple regions charges is proposed.
2 Achieving a 139% improvement in charge transferring rate compared to traditional device.
3 A charge density of 846.7 μC m−2 is achieved based on microscale dielectric material.
4 The device can supply power for remote road signs under wind energy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Gao, H. Luo, X. Wang, J. Chen, J. Li et al., A wearable muscle telescopic monitoring sensor with an adjustable double-sponge-modular structure based on triboelectric nanogenerator. Nano Energy 123, 109412 (2024). https://doi.org/10.1016/j.nanoen.2024.109412
- C. Cao, Z. Li, F. Shen, Q. Zhang, Y. Gong et al., Progress in techniques for improving the output performance of triboelectric nanogenerators. Energy Environ. Sci. 17(3), 885–924 (2024). https://doi.org/10.1039/d3ee03520d
- N. Kumar Das, S. Badhulika, Recyclable waste derived green triboelectric nanogenerator for self-powered synthesis of defect-free graphene via mechano-electrochemical exfoliation. Chem. Eng. J. 480, 147897 (2024). https://doi.org/10.1016/j.cej.2023.147897
- H. Qin, G. Cheng, Y. Zi, G. Gu, B. Zhang et al., High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater. 28(51), 1805216 (2018). https://doi.org/10.1002/adfm.201805216
- H. Wu, C. Shan, S. Fu, K. Li, J. Wang et al., Efficient energy conversion mechanism and energy storage strategy for triboelectric nanogenerators. Nat. Commun. 15(1), 6558 (2024). https://doi.org/10.1038/s41467-024-50978-7
- S. Liu, S. Liao, D. Liu, W. Qing, K. Wei et al., A compact hybridized triboelectric-electromagnetic road energy harvester for vehicle speed measurement. DeCarbon 3, 100036 (2024). https://doi.org/10.1016/j.decarb.2024.100036
- N. Vargas Perdomo, M.P. Kim, X. Li, L.A. Cuccia, Contemporary evaluation of triboelectric nanogenerators as self-powered devices: a bibliometric analysis from 2012 to 2023. DeCarbon 7, 100093 (2025). https://doi.org/10.1016/j.decarb.2024.100093
- K. Ghosh, C. Iffelsberger, M. Konečný, J. Vyskočil, J. Michalička et al., Nanoarchitectonics of triboelectric nanogenerator for conversion of abundant mechanical energy to green hydrogen. Adv. Energy Mater. 13(11), 2203476 (2023). https://doi.org/10.1002/aenm.202203476
- G. Jian, Q. Meng, N. Yang, L. Feng, F. Wang et al., Superhigh charge density and direct-current output in triboelectric nanogenerators via peak shifting modified charge pumping. Nano Energy 102, 107637 (2022). https://doi.org/10.1016/j.nanoen.2022.107637
- J. Li, C. Wei, Y. Chen, Z. Jin, N. Wan et al., Quantitative evaluation method of triboelectric nano-electroporation based on electrical impedance spectroscopy. Nano Energy 124, 109514 (2024). https://doi.org/10.1016/j.nanoen.2024.109514
- T. Cheng, J. Shao, Z.L. Wang, Triboelectric nanogenerators. Nat. Rev. Methods Primers 3, 39 (2023). https://doi.org/10.1038/s43586-023-00220-3
- Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
- G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015). https://doi.org/10.1016/j.nanoen.2014.11.050
- Q. He, X. Feng, Z. Xu, S. Sun, A. Meng et al., A self-decoupled and high-resolution 2D displacement sensor based on triboelectric nanogenerator for manipulator precision positioning. Adv. Mater. Technol. 8(23), 2300944 (2023). https://doi.org/10.1002/admt.202300944
- H. Jung, H. Ouro-Koura, A. Salalila, M. Salalila, Z.D. Deng, Frequency-multiplied cylindrical triboelectric nanogenerator for harvesting low frequency wave energy to power ocean observation system. Nano Energy 99, 107365 (2022). https://doi.org/10.1016/j.nanoen.2022.107365
- T. Li, Y. Xu, M. Willander, F. Xing, X. Cao et al., Lightweight triboelectric nanogenerator for energy harvesting and sensing tiny mechanical motion. Adv. Funct. Mater. 26(24), 4370–4376 (2016). https://doi.org/10.1002/adfm.201600279
- Z.B. Li, H.Y. Li, Y.J. Fan, L. Liu, Y.H. Chen et al., Small-sized, lightweight, and flexible triboelectric nanogenerator enhanced by PTFE/PDMS nanocomposite electret. ACS Appl. Mater. Interfaces 11(22), 20370–20377 (2019). https://doi.org/10.1021/acsami.9b04321
- Y. Hu, H. Qiu, Q. Sun, Z.L. Wang, L. Xu, Wheel-structured triboelectric nanogenerators with hyperelastic networking for high-performance wave energy harvesting. Small Methods 7(10), 2300582 (2023). https://doi.org/10.1002/smtd.202300582
- P. Sarkar, T. Kamilya, S. Acharya, Introduction of triboelectric positive bioplastic for powering portable electronics and self-powered gait sensor. ACS Appl. Energy Mater. 2(8), 5507–5514 (2019). https://doi.org/10.1021/acsaem.9b00677
- S. Dai, Y. Chai, H. Liu, D. Yu, K. Wang et al., Experimental study of high performance mercury-based triboelectric nanogenerator for low-frequency wave energy harvesting. Nano Energy 115, 108728 (2023). https://doi.org/10.1016/j.nanoen.2023.108728
- B. Zhao, Y. Long, T. Huang, J. Niu, Y. Liu et al., Self-adaptive and soft-contact ellipsoidal pendulum-structured triboelectric nanogenerator for harvesting water wave energy. Chem. Eng. J. 489, 151399 (2024). https://doi.org/10.1016/j.cej.2024.151399
- W. He, W. Liu, J. Chen, Z. Wang, Y. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11(1), 4277 (2020). https://doi.org/10.1038/s41467-020-18086-4
- U. Khan, S.-W. Kim, Triboelectric nanogenerators for blue energy harvesting. ACS Nano 10(7), 6429–6432 (2016). https://doi.org/10.1021/acsnano.6b04213
- Y. Yu, Q. Gao, X. Zhang, D. Zhao, X. Xia et al., Contact-sliding-separation mode triboelectric nanogenerator. Energy Environ. Sci. 16(9), 3932–3941 (2023). https://doi.org/10.1039/d3ee01290e
- H. Wang, Z. Xiang, P. Giorgia, X. Mu, Y. Yang et al., Triboelectric liquid volume sensor for self-powered lab-on-chip applications. Nano Energy 23, 80–88 (2016). https://doi.org/10.1016/j.nanoen.2016.02.054
- X. Li, L. Xu, Z.L. Wang, Networking strategies of triboelectric nanogenerators for harvesting ocean blue energy. Nanoenergy Adv. 4(1), 70–96 (2024). https://doi.org/10.3390/nanoenergyadv4010004
- H. Wang, L. Xu, Y. Bai, Z.L. Wang, Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 11(1), 4203 (2020). https://doi.org/10.1038/s41467-020-17891-1
- Z. Yi, D. Liu, L. Zhou, S. Li, Z. Zhao et al., Enhancing output performance of direct-current triboelectric nanogenerator under controlled atmosphere. Nano Energy 84, 105864 (2021). https://doi.org/10.1016/j.nanoen.2021.105864
- H. Zhang, Y. Chen, L. Deng, X. Zhu, C. Xu et al., Efficient electrical energy conversion strategies from triboelectric nanogenerators to practical applications: a review. Nano Energy 132, 110383 (2024). https://doi.org/10.1016/j.nanoen.2024.110383
- B. Cheng, Q. Xu, Y. Ding, S. Bai, X. Jia et al., High performance temperature difference triboelectric nanogenerator. Nat. Commun. 12, 4782 (2021). https://doi.org/10.1038/s41467-021-25043-2
- N. Luo, D. Yang, M. Feng, Y. Dong, Y. Feng et al., Vacuum discharge triboelectric nanogenerator with ultrahigh current density. Cell Rep. Phys. Sci. 4(3), 101320 (2023). https://doi.org/10.1016/j.xcrp.2023.101320
- H. Meng, J. Zhang, R. Zhu, J. Wang, Y. Ge et al., Elevating outputs of droplet triboelectric nanogenerator through strategic surface molecular engineering. ACS Energy Lett. 9(6), 2670–2676 (2024). https://doi.org/10.1021/acsenergylett.4c00532
- F. Shen, D. Zhang, Q. Zhang, Z. Li, H. Guo et al., Influence of temperature difference on performance of solid-liquid triboelectric nanogenerators. Nano Energy 99, 107431 (2022). https://doi.org/10.1016/j.nanoen.2022.107431
- S. Chen, S. Hong, Y. Li, Y. Zhang, P. Wang, High-performance triboelectric nanogenerators doped with carbon nanomaterials derived from cobalt-nickel bimetallic organic frameworks for harvesting low-frequency mechanical energy. Chem. Eng. J. 505, 159111 (2025). https://doi.org/10.1016/j.cej.2024.159111
- J. Han, J. Li, X. Zhang, L. Zhao, C. Wang, Enhancing the performance of triboelectric nanogenerator via chitosan films surface modification. Chem. Eng. J. 489, 151493 (2024). https://doi.org/10.1016/j.cej.2024.151493
- Y. Lei, J. Yang, Y. Xiong, S. Wu, W. Guo et al., Surface engineering AgNW transparent conductive films for triboelectric nanogenerator and self-powered pressure sensor. Chem. Eng. J. 462, 142170 (2023). https://doi.org/10.1016/j.cej.2023.142170
- H. Wu, W. He, C. Shan, Z. Wang, S. Fu et al., Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 34(13), 2109918 (2022). https://doi.org/10.1002/adma.202109918
- W. He, C. Shan, H. Wu, S. Fu, Q. Li et al., Capturing dissipation charge in charge space accumulation area for enhancing output performance of sliding triboelectric nanogenerator. Adv. Energy Mater. 12(31), 2201454 (2022). https://doi.org/10.1002/aenm.202201454
- S. Fu, H. Wu, W. He, Q. Li, C. Shan et al., Conversion of dielectric surface effect into volume effect for high output energy. Adv. Mater. 35(40), 2302954 (2023). https://doi.org/10.1002/adma.202302954
- D. Liu, X. Yin, H. Guo, L. Zhou, X. Li et al., A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 5(4), eaav6437 (2019). https://doi.org/10.1126/sciadv.aav6437
- C. Shan, W. He, H. Wu, S. Fu, Q. Tang et al., A high-performance bidirectional direct current TENG by triboelectrification of two dielectrics and local corona discharge. Adv. Energy Mater. 12(25), 2200963 (2022). https://doi.org/10.1002/aenm.202200963
- P. Chen, Y. Luo, R. Cheng, S. Shu, J. An et al., Achieving high power density and durability of sliding mode triboelectric nanogenerator by double charge supplement strategy. Adv. Energy Mater. 12(33), 2201813 (2022). https://doi.org/10.1002/aenm.202201813
- Q. Mu, W. He, C. Shan, S. Fu, S. Du et al., Achieving high-efficiency wind energy harvesting triboelectric nanogenerator by coupling soft contact, charge space accumulation, and charge dissipation design. Adv. Funct. Mater. 34(2), 2309421 (2024). https://doi.org/10.1002/adfm.202309421
- Q. Tang, Z. Wang, W. Chang, J. Sun, W. He et al., Interface static friction enabled ultra-durable and high output sliding mode triboelectric nanogenerator. Adv. Funct. Mater. 32(26), 2202055 (2022). https://doi.org/10.1002/adfm.202202055
- X. Gao, F. Xing, F. Guo, J. Wen, H. Li et al., Strongly enhanced charge density via gradient nano-doping for high performance elastic-material-based triboelectric nanogenerators. Mater. Today 65, 26–36 (2023). https://doi.org/10.1016/j.mattod.2023.03.010
- Y. Deng, Q. Qin, W. He, H. Guo, J. Chen, A highly efficient electrolysis system enabled by direct impedance matching between a charge migration triboelectric nanogenerator and series connected electrolysers. Energy Environ. Sci. 18(6), 2940–2948 (2025). https://doi.org/10.1039/d4ee05522e
- S. Lv, H. Li, Y. Xie, B. Zhang, B. Liu et al., High-performance and durable rotational triboelectric nanogenerator leveraging soft-contact coplanar charge pumping strategy. Adv. Energy Mater. 13(43), 2301832 (2023). https://doi.org/10.1002/aenm.202301832
References
Y. Gao, H. Luo, X. Wang, J. Chen, J. Li et al., A wearable muscle telescopic monitoring sensor with an adjustable double-sponge-modular structure based on triboelectric nanogenerator. Nano Energy 123, 109412 (2024). https://doi.org/10.1016/j.nanoen.2024.109412
C. Cao, Z. Li, F. Shen, Q. Zhang, Y. Gong et al., Progress in techniques for improving the output performance of triboelectric nanogenerators. Energy Environ. Sci. 17(3), 885–924 (2024). https://doi.org/10.1039/d3ee03520d
N. Kumar Das, S. Badhulika, Recyclable waste derived green triboelectric nanogenerator for self-powered synthesis of defect-free graphene via mechano-electrochemical exfoliation. Chem. Eng. J. 480, 147897 (2024). https://doi.org/10.1016/j.cej.2023.147897
H. Qin, G. Cheng, Y. Zi, G. Gu, B. Zhang et al., High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater. 28(51), 1805216 (2018). https://doi.org/10.1002/adfm.201805216
H. Wu, C. Shan, S. Fu, K. Li, J. Wang et al., Efficient energy conversion mechanism and energy storage strategy for triboelectric nanogenerators. Nat. Commun. 15(1), 6558 (2024). https://doi.org/10.1038/s41467-024-50978-7
S. Liu, S. Liao, D. Liu, W. Qing, K. Wei et al., A compact hybridized triboelectric-electromagnetic road energy harvester for vehicle speed measurement. DeCarbon 3, 100036 (2024). https://doi.org/10.1016/j.decarb.2024.100036
N. Vargas Perdomo, M.P. Kim, X. Li, L.A. Cuccia, Contemporary evaluation of triboelectric nanogenerators as self-powered devices: a bibliometric analysis from 2012 to 2023. DeCarbon 7, 100093 (2025). https://doi.org/10.1016/j.decarb.2024.100093
K. Ghosh, C. Iffelsberger, M. Konečný, J. Vyskočil, J. Michalička et al., Nanoarchitectonics of triboelectric nanogenerator for conversion of abundant mechanical energy to green hydrogen. Adv. Energy Mater. 13(11), 2203476 (2023). https://doi.org/10.1002/aenm.202203476
G. Jian, Q. Meng, N. Yang, L. Feng, F. Wang et al., Superhigh charge density and direct-current output in triboelectric nanogenerators via peak shifting modified charge pumping. Nano Energy 102, 107637 (2022). https://doi.org/10.1016/j.nanoen.2022.107637
J. Li, C. Wei, Y. Chen, Z. Jin, N. Wan et al., Quantitative evaluation method of triboelectric nano-electroporation based on electrical impedance spectroscopy. Nano Energy 124, 109514 (2024). https://doi.org/10.1016/j.nanoen.2024.109514
T. Cheng, J. Shao, Z.L. Wang, Triboelectric nanogenerators. Nat. Rev. Methods Primers 3, 39 (2023). https://doi.org/10.1038/s43586-023-00220-3
Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015). https://doi.org/10.1016/j.nanoen.2014.11.050
Q. He, X. Feng, Z. Xu, S. Sun, A. Meng et al., A self-decoupled and high-resolution 2D displacement sensor based on triboelectric nanogenerator for manipulator precision positioning. Adv. Mater. Technol. 8(23), 2300944 (2023). https://doi.org/10.1002/admt.202300944
H. Jung, H. Ouro-Koura, A. Salalila, M. Salalila, Z.D. Deng, Frequency-multiplied cylindrical triboelectric nanogenerator for harvesting low frequency wave energy to power ocean observation system. Nano Energy 99, 107365 (2022). https://doi.org/10.1016/j.nanoen.2022.107365
T. Li, Y. Xu, M. Willander, F. Xing, X. Cao et al., Lightweight triboelectric nanogenerator for energy harvesting and sensing tiny mechanical motion. Adv. Funct. Mater. 26(24), 4370–4376 (2016). https://doi.org/10.1002/adfm.201600279
Z.B. Li, H.Y. Li, Y.J. Fan, L. Liu, Y.H. Chen et al., Small-sized, lightweight, and flexible triboelectric nanogenerator enhanced by PTFE/PDMS nanocomposite electret. ACS Appl. Mater. Interfaces 11(22), 20370–20377 (2019). https://doi.org/10.1021/acsami.9b04321
Y. Hu, H. Qiu, Q. Sun, Z.L. Wang, L. Xu, Wheel-structured triboelectric nanogenerators with hyperelastic networking for high-performance wave energy harvesting. Small Methods 7(10), 2300582 (2023). https://doi.org/10.1002/smtd.202300582
P. Sarkar, T. Kamilya, S. Acharya, Introduction of triboelectric positive bioplastic for powering portable electronics and self-powered gait sensor. ACS Appl. Energy Mater. 2(8), 5507–5514 (2019). https://doi.org/10.1021/acsaem.9b00677
S. Dai, Y. Chai, H. Liu, D. Yu, K. Wang et al., Experimental study of high performance mercury-based triboelectric nanogenerator for low-frequency wave energy harvesting. Nano Energy 115, 108728 (2023). https://doi.org/10.1016/j.nanoen.2023.108728
B. Zhao, Y. Long, T. Huang, J. Niu, Y. Liu et al., Self-adaptive and soft-contact ellipsoidal pendulum-structured triboelectric nanogenerator for harvesting water wave energy. Chem. Eng. J. 489, 151399 (2024). https://doi.org/10.1016/j.cej.2024.151399
W. He, W. Liu, J. Chen, Z. Wang, Y. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11(1), 4277 (2020). https://doi.org/10.1038/s41467-020-18086-4
U. Khan, S.-W. Kim, Triboelectric nanogenerators for blue energy harvesting. ACS Nano 10(7), 6429–6432 (2016). https://doi.org/10.1021/acsnano.6b04213
Y. Yu, Q. Gao, X. Zhang, D. Zhao, X. Xia et al., Contact-sliding-separation mode triboelectric nanogenerator. Energy Environ. Sci. 16(9), 3932–3941 (2023). https://doi.org/10.1039/d3ee01290e
H. Wang, Z. Xiang, P. Giorgia, X. Mu, Y. Yang et al., Triboelectric liquid volume sensor for self-powered lab-on-chip applications. Nano Energy 23, 80–88 (2016). https://doi.org/10.1016/j.nanoen.2016.02.054
X. Li, L. Xu, Z.L. Wang, Networking strategies of triboelectric nanogenerators for harvesting ocean blue energy. Nanoenergy Adv. 4(1), 70–96 (2024). https://doi.org/10.3390/nanoenergyadv4010004
H. Wang, L. Xu, Y. Bai, Z.L. Wang, Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 11(1), 4203 (2020). https://doi.org/10.1038/s41467-020-17891-1
Z. Yi, D. Liu, L. Zhou, S. Li, Z. Zhao et al., Enhancing output performance of direct-current triboelectric nanogenerator under controlled atmosphere. Nano Energy 84, 105864 (2021). https://doi.org/10.1016/j.nanoen.2021.105864
H. Zhang, Y. Chen, L. Deng, X. Zhu, C. Xu et al., Efficient electrical energy conversion strategies from triboelectric nanogenerators to practical applications: a review. Nano Energy 132, 110383 (2024). https://doi.org/10.1016/j.nanoen.2024.110383
B. Cheng, Q. Xu, Y. Ding, S. Bai, X. Jia et al., High performance temperature difference triboelectric nanogenerator. Nat. Commun. 12, 4782 (2021). https://doi.org/10.1038/s41467-021-25043-2
N. Luo, D. Yang, M. Feng, Y. Dong, Y. Feng et al., Vacuum discharge triboelectric nanogenerator with ultrahigh current density. Cell Rep. Phys. Sci. 4(3), 101320 (2023). https://doi.org/10.1016/j.xcrp.2023.101320
H. Meng, J. Zhang, R. Zhu, J. Wang, Y. Ge et al., Elevating outputs of droplet triboelectric nanogenerator through strategic surface molecular engineering. ACS Energy Lett. 9(6), 2670–2676 (2024). https://doi.org/10.1021/acsenergylett.4c00532
F. Shen, D. Zhang, Q. Zhang, Z. Li, H. Guo et al., Influence of temperature difference on performance of solid-liquid triboelectric nanogenerators. Nano Energy 99, 107431 (2022). https://doi.org/10.1016/j.nanoen.2022.107431
S. Chen, S. Hong, Y. Li, Y. Zhang, P. Wang, High-performance triboelectric nanogenerators doped with carbon nanomaterials derived from cobalt-nickel bimetallic organic frameworks for harvesting low-frequency mechanical energy. Chem. Eng. J. 505, 159111 (2025). https://doi.org/10.1016/j.cej.2024.159111
J. Han, J. Li, X. Zhang, L. Zhao, C. Wang, Enhancing the performance of triboelectric nanogenerator via chitosan films surface modification. Chem. Eng. J. 489, 151493 (2024). https://doi.org/10.1016/j.cej.2024.151493
Y. Lei, J. Yang, Y. Xiong, S. Wu, W. Guo et al., Surface engineering AgNW transparent conductive films for triboelectric nanogenerator and self-powered pressure sensor. Chem. Eng. J. 462, 142170 (2023). https://doi.org/10.1016/j.cej.2023.142170
H. Wu, W. He, C. Shan, Z. Wang, S. Fu et al., Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 34(13), 2109918 (2022). https://doi.org/10.1002/adma.202109918
W. He, C. Shan, H. Wu, S. Fu, Q. Li et al., Capturing dissipation charge in charge space accumulation area for enhancing output performance of sliding triboelectric nanogenerator. Adv. Energy Mater. 12(31), 2201454 (2022). https://doi.org/10.1002/aenm.202201454
S. Fu, H. Wu, W. He, Q. Li, C. Shan et al., Conversion of dielectric surface effect into volume effect for high output energy. Adv. Mater. 35(40), 2302954 (2023). https://doi.org/10.1002/adma.202302954
D. Liu, X. Yin, H. Guo, L. Zhou, X. Li et al., A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 5(4), eaav6437 (2019). https://doi.org/10.1126/sciadv.aav6437
C. Shan, W. He, H. Wu, S. Fu, Q. Tang et al., A high-performance bidirectional direct current TENG by triboelectrification of two dielectrics and local corona discharge. Adv. Energy Mater. 12(25), 2200963 (2022). https://doi.org/10.1002/aenm.202200963
P. Chen, Y. Luo, R. Cheng, S. Shu, J. An et al., Achieving high power density and durability of sliding mode triboelectric nanogenerator by double charge supplement strategy. Adv. Energy Mater. 12(33), 2201813 (2022). https://doi.org/10.1002/aenm.202201813
Q. Mu, W. He, C. Shan, S. Fu, S. Du et al., Achieving high-efficiency wind energy harvesting triboelectric nanogenerator by coupling soft contact, charge space accumulation, and charge dissipation design. Adv. Funct. Mater. 34(2), 2309421 (2024). https://doi.org/10.1002/adfm.202309421
Q. Tang, Z. Wang, W. Chang, J. Sun, W. He et al., Interface static friction enabled ultra-durable and high output sliding mode triboelectric nanogenerator. Adv. Funct. Mater. 32(26), 2202055 (2022). https://doi.org/10.1002/adfm.202202055
X. Gao, F. Xing, F. Guo, J. Wen, H. Li et al., Strongly enhanced charge density via gradient nano-doping for high performance elastic-material-based triboelectric nanogenerators. Mater. Today 65, 26–36 (2023). https://doi.org/10.1016/j.mattod.2023.03.010
Y. Deng, Q. Qin, W. He, H. Guo, J. Chen, A highly efficient electrolysis system enabled by direct impedance matching between a charge migration triboelectric nanogenerator and series connected electrolysers. Energy Environ. Sci. 18(6), 2940–2948 (2025). https://doi.org/10.1039/d4ee05522e
S. Lv, H. Li, Y. Xie, B. Zhang, B. Liu et al., High-performance and durable rotational triboelectric nanogenerator leveraging soft-contact coplanar charge pumping strategy. Adv. Energy Mater. 13(43), 2301832 (2023). https://doi.org/10.1002/aenm.202301832