Copper-Based Targeted Nanocatalytic Therapeutics for Non-Small Cell Lung Cancer
Corresponding Author: Dong Xie
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 152
Abstract
Conventional treatments for non-small cell lung cancer (NSCLC) suffer from low remission rates, high drug resistance, and severe adverse effects. To leverage the therapeutic potential of reactive oxygen species (ROS), nanocatalytic medicine utilizes nanomaterials to generate ROS specifically within tumor sites, enabling efficient and targeted cancer treatment. In this study, hyaluronic acid (HA)-modified copper-N,N-dimethyl-N-phenylsulfonylbisamine (DMSA)-assembled nanoparticles (Cu-DMSA-HA NPs) are developed with tumor-targeting capability and efficiently catalyze ROS production via coordination chemistry. Targeted delivery is facilitated by HA surface modification through recognition of overexpressed cluster of differentiation 44 receptors on cancer cells, which enhances nanoparticle uptake. Once internalized, intracellular glutathione is depleted by the NPs, followed by a Fenton-like reaction that sustains ROS production. Both in vitro and in vivo studies demonstrate that this catalytic strategy effectively inhibits DNA replication, prevents cell cycle progression, downregulates glutathione peroxidase 4 expression, induces ferroptosis, and ultimately suppresses NSCLC progression. Overall, the readily prepared Cu-DMSA-HA NPs exhibit robust catalytic activity and tumor specificity, highlighting their strong potential for clinical translation in nanocatalytic cancer therapy.
Highlights:
1 Developed a novel type of nanoparticles (NPs)—hyaluronic acid (HA)-modified copper-N,N-dimethyl-N-phenylsulfonylbisamine (DMSA)-assembled NPs (Cu-DMSA-HA NPs).
2 The constructed NPs were surface-modified with HA to selectively target overexpressed cluster of differentiation 44 (CD44) receptors on cancer cells and catalytically generate highly efficient reactive oxygen species (ROS) via coordination chemistry.
3 Such efficient ROS generation induced intracellular ROS accumulation, mitochondrial disruption, glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) downregulation, ultimately triggering ferroptosis in cancer cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74(3), 229–263 (2024). https://doi.org/10.3322/caac.21834
- J.R. Molina, P. Yang, S.D. Cassivi, S.E. Schild, A.A. Adjei, Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83(5), 584–594 (2008). https://doi.org/10.4065/83.5.584
- A.A. Thai, B.J. Solomon, L.V. Sequist, J.F. Gainor, R.S. Heist, Lung cancer. Lancet 398(10299), 535–554 (2021). https://doi.org/10.1016/S0140-6736(21)00312-3
- F.R. Hirsch, G.V. Scagliotti, J.L. Mulshine, R. Kwon, W.J. Curran et al., Lung cancer: current therapies and new targeted treatments. Lancet 389(10066), 299–311 (2017). https://doi.org/10.1016/S0140-6736(16)30958-8
- L.-B. Tang, Y.-L. Peng, J. Chen, J.-T. Li, M.-M. Zheng et al., Rechallenge with immune-checkpoint inhibitors in patients with advanced-stage lung cancer. Nat. Rev. Clin. Oncol. 22(8), 546–565 (2025). https://doi.org/10.1038/s41571-025-01029-7
- P.-L. Su, N. Furuya, A. Asrar, C. Rolfo, Z. Li et al., Recent advances in therapeutic strategies for non-small cell lung cancer. J. Hematol. Oncol. 18(1), 35 (2025). https://doi.org/10.1186/s13045-025-01679-1
- M.-L. Meyer, B.G. Fitzgerald, L. Paz-Ares, F. Cappuzzo, P.A. Jänne et al., New promises and challenges in the treatment of advanced non-small-cell lung cancer. Lancet 404(10454), 803–822 (2024). https://doi.org/10.1016/S0140-6736(24)01029-8
- S. Zhao, H. Zhao, W. Yang, L. Zhang, The next generation of immunotherapies for lung cancers. Nat. Rev. Clin. Oncol. 22(8), 592–616 (2025). https://doi.org/10.1038/s41571-025-01035-9
- L. Mao, J. Lu, X. Wen, Z. Song, C. Sun et al., Cuproptosis: mechanisms and nanotherapeutic strategies in cancer and beyond. Chem. Soc. Rev. 54(13), 6282–6334 (2025). https://doi.org/10.1039/d5cs00083a
- S. Chen, P. Zhu, L. Mao, W. Wu, H. Lin et al., Piezocatalytic medicine: an emerging frontier using piezoelectric materials for biomedical applications. Adv. Mater. 35(25), 2208256 (2023). https://doi.org/10.1002/adma.202208256
- Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5(11), 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y
- X. Wu, Z. Zhou, K. Li, S. Liu, Nanomaterials-induced redox imbalance: challenged and opportunities for nanomaterials in cancer therapy. Adv. Sci. 11(16), 2308632 (2024). https://doi.org/10.1002/advs.202308632
- J.F. Chatal, C.A. Hoefnagel, Radionuclide therapy. Lancet 354(9182), 931–935 (1999). https://doi.org/10.1016/S0140-6736(99)06002-X
- I.I. Verginadis, D.E. Citrin, B. Ky, S.J. Feigenberg, A.G. Georgakilas et al., Radiotherapy toxicities: mechanisms, management, and future directions. Lancet 405(10475), 338–352 (2025). https://doi.org/10.1016/S0140-6736(24)02319-5
- A. Sobrero, E. Bennicelli, Chemotherapy: which drug and when? Ann. Oncol. 21(Suppl 7), vii130–vii133 (2010). https://doi.org/10.1093/annonc/mdq293
- Y. Feng, Q. Tang, B. Wang, Q. Yang, Y. Zhang et al., Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy. J. Nanobiotechnol. 22(1), 737 (2024). https://doi.org/10.1186/s12951-024-03005-2
- B. Yang, Y. Chen, J. Shi, Nanocatalytic medicine. Adv. Mater. 31(39), e1901778 (2019). https://doi.org/10.1002/adma.201901778
- M. Li, H. Jiang, P. Hu, J. Shi, Nanocatalytic anti-tumor immune regulation. Angew. Chem. Int. Ed. 63(13), e202316606 (2024). https://doi.org/10.1002/anie.202316606
- G.S.R. Raju, E. Pavitra, G.L. Varaprasad, S.S. Bandaru, G.P. Nagaraju et al., Nanops mediated tumor microenvironment modulation: current advances and applications. J. Nanobiotechnol. 20(1), 274 (2022). https://doi.org/10.1186/s12951-022-01476-9
- C. Wang, S. Wang, D.D. Kang, Y. Dong, Biomaterials for in situ cell therapy. BMEMat 1(3), e12039 (2023). https://doi.org/10.1002/bmm2.12039
- Z. Tang, Y. Liu, M. He, W. Bu, Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew. Chem. Int. Ed. 58(4), 946–956 (2019). https://doi.org/10.1002/anie.201805664
- Y. Zhou, S. Fan, L. Feng, X. Huang, X. Chen, Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv. Mater. 33(48), 2104223 (2021). https://doi.org/10.1002/adma.202104223
- H. Lin, Y. Chen, J. Shi, Nanop-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 47(6), 1938–1958 (2018). https://doi.org/10.1039/C7CS00471K
- J.-N. Hao, K. Ge, G. Chen, B. Dai, Y. Li, Strategies to engineer various nanocarrier-based hybrid catalysts for enhanced chemodynamic cancer therapy. Chem. Soc. Rev. 52(22), 7707–7736 (2023). https://doi.org/10.1039/D3CS00356F
- C. Jia, Y. Guo, F.-G. Wu, Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small 18(6), 2103868 (2022). https://doi.org/10.1002/smll.202103868
- Y. Ma, Z. Su, L. Zhou, L. He, Z. Hou et al., Biodegradable metal–organic-framework-gated organosilica for tumor-microenvironment-unlocked glutathione-depletion-enhanced synergistic therapy. Adv. Mater. 34(12), 2107560 (2022). https://doi.org/10.1002/adma.202107560
- J. Lu, Z. Jiang, J. Ren, W. Zhang, P. Li et al., One-pot synthesis of multifunctional carbon-based nanop-supported dispersed Cu2+ disrupts redox homeostasis to enhance CDT. Angew. Chem. Int. Ed. 61(4), e202114373 (2022). https://doi.org/10.1002/anie.202114373
- B. Yang, Y. Chen, J. Shi, Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119(8), 4881–4985 (2019). https://doi.org/10.1021/acs.chemrev.8b00626
- X. Han, X. Zhang, Z. Liu, H. Liu, D. Wu et al., Copper-based nanotubes that enhance starvation therapy through cuproptosis for synergistic cancer treatment. Adv. Sci. 12(32), e04121 (2025). https://doi.org/10.1002/advs.202504121
- M. Li, J. Sun, W. Zhang, Y. Zhao, S. Zhang et al., Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr. Polym. 251, 117103 (2021). https://doi.org/10.1016/j.carbpol.2020.117103
- T.J. Rabelink, G. Wang, J. van der Vlag, B.M. van den Berg, The roles of hyaluronan in kidney development, physiology and disease. Nat. Rev. Nephrol. 20(12), 822–832 (2024). https://doi.org/10.1038/s41581-024-00883-5
- W. Tang, X. Huang, Y.-D. Yi, F. Cao, M. Deng et al., Hyaluronic acid-curcumin nanops for preventing the progression of experimental autoimmune uveitis through the Keap1/Nrf2/HO-1 signaling pathway. J. Nanobiotechnol. 23(1), 89 (2025). https://doi.org/10.1186/s12951-024-03082-3
- C. Chen, S. Zhao, A. Karnad, J.W. Freeman, The biology and role of CD44 in cancer progression: therapeutic implications. J. Hematol. Oncol. 11(1), 64 (2018). https://doi.org/10.1186/s13045-018-0605-5
- Q. Feng, W. Fang, Y. Guo, P. Hu, J. Shi, Nebulized therapy of early orthotopic lung cancer by iron-based nanops: macrophage-regulated ferroptosis of cancer stem cells. J. Am. Chem. Soc. 145(44), 24153–24165 (2023). https://doi.org/10.1021/jacs.3c08032
- X. Weng, S. Maxwell-Warburton, A. Hasib, L. Ma, L. Kang, The membrane receptor CD44: novel insights into metabolism. Trends Endocrinol Metab 33(5), 318–332 (2022). https://doi.org/10.1016/j.tem.2022.02.002
- I. Kim, W. Xu, J.C. Reed, Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7(12), 1013–1030 (2008). https://doi.org/10.1038/nrd2755
- J.R. Cubillos-Ruiz, S.E. Bettigole, L.H. Glimcher, Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168(4), 692–706 (2017). https://doi.org/10.1016/j.cell.2016.12.004
- D. Reichmann, W. Voth, U. Jakob, Maintaining a healthy proteome during oxidative stress. Mol. Cell 69(2), 203–213 (2018). https://doi.org/10.1016/j.molcel.2017.12.021
- J. Zheng, M. Conrad, Ferroptosis: when metabolism meets cell death. Physiol. Rev. 105(2), 651–706 (2025). https://doi.org/10.1152/physrev.00031.2024
- S. Bhowmick, S. Banerjee, V. Shridhar, S. Mondal, Reprogrammed immuno-metabolic environment of cancer: the driving force of ferroptosis resistance. Mol. Cancer 24(1), 161 (2025). https://doi.org/10.1186/s12943-025-02337-3
- C. Wu, Z. Liu, Z. Chen, D. Xu, L. Chen et al., A nonferrous ferroptosis-like strategy for antioxidant inhibition-synergized nanocatalytic tumor therapeutics. Sci. Adv. 7(39), eabj8833 (2021). https://doi.org/10.1126/sciadv.abj8833
- Y. Xie, R. Kang, D.J. Klionsky, D. Tang, GPX4 in cell death, autophagy, and disease. Autophagy 19(10), 2621–2638 (2023). https://doi.org/10.1080/15548627.2023.2218764
- M. Zhang, H. Zheng, X. Zhu, S. Liu, H. Jin et al., Synchronously evoking disulfidptosis and ferroptosis via systematical glucose deprivation targeting SLC7A11/GSH/GPX4 antioxidant axis. ACS Nano 19(14), 14233–14248 (2025). https://doi.org/10.1021/acsnano.5c00730
- Y. Chen, X. Huang, R. Hu, E. Lu, K. Luo et al., Inhalable biomimetic polyunsaturated fatty acid-based nanoreactors for peroxynitrite-augmented ferroptosis potentiate radiotherapy in lung cancer. J. Nanobiotechnol. 23(1), 338 (2025). https://doi.org/10.1186/s12951-025-03409-8
- L. Huang, J. Zhu, W. Xiong, J. Feng, J. Yang et al., Tumor-generated reactive oxygen species storm for high-performance ferroptosis therapy. ACS Nano 17(12), 11492–11506 (2023). https://doi.org/10.1021/acsnano.3c01369
- W. Pi, L. Wu, J. Lu, X. Lin, X. Huang et al., A metal ions-mediated natural small molecules carrier-free injectable hydrogel achieving laser-mediated photo-Fenton-like anticancer therapy by synergy apoptosis/cuproptosis/anti-inflammation. Bioact. Mater. 29, 98–115 (2023). https://doi.org/10.1016/j.bioactmat.2023.06.018
- J. Zhao, Z. Chen, S. Liu, P. Li, S. Yu et al., Nano-bio interactions between 2D nanomaterials and mononuclear phagocyte system cells. BMEMat 2(2), e12066 (2024). https://doi.org/10.1002/bmm2.12066
- N. Kang, S. Son, S. Min, H. Hong, C. Kim et al., Stimuli-responsive ferroptosis for cancer therapy. Chem. Soc. Rev. 52(12), 3955–3972 (2023). https://doi.org/10.1039/d3cs00001j
- H. Zhang, G. Shan, M. Liu, Q. Sun, T. Yang et al., Harnessing ROS amplification and GSH depletion using a carrier-free nanodrug to enhance ferroptosis-based cancer therapy. Small 21(6), e2409250 (2025). https://doi.org/10.1002/smll.202409250
- C. Jiang, X. Li, S. Wan, S. Ji, Q. Wang et al., Copper-doped polydopamine nanops-mediated GSH/GPX4-depleted ferroptosis and cuproptosis sensitizes lung tumor to checkpoint blockade immunotherapy. Small 21(23), e2503208 (2025). https://doi.org/10.1002/smll.202503208
- Z. Ye, M. Cheng, W. Lian, Y. Leng, X. Qin et al., GPX4 deficiency-induced ferroptosis drives endometrial epithelial fibrosis in polycystic ovary syndrome. Redox Biol. 83, 103615 (2025). https://doi.org/10.1016/j.redox.2025.103615
- E. Mishima, T. Nakamura, S. Doll, B. Proneth, M. Fedorova et al., Recommendations for robust and reproducible research on ferroptosis. Nat. Rev. Mol. Cell Biol. 26(8), 615–630 (2025). https://doi.org/10.1038/s41580-025-00843-2
- X. Chen, J. Li, R. Kang, D.J. Klionsky, D. Tang, Ferroptosis: machinery and regulation. Autophagy 17(9), 2054–2081 (2021). https://doi.org/10.1080/15548627.2020.1810918
- T. Lang, R. Zhu, X. Zhu, W. Yan, Y. Li et al., Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanop improves colorectal cancer therapy. Nat. Commun. 14(1), 4746 (2023). https://doi.org/10.1038/s41467-023-40439-y
- Y. Zhu, X. Niu, C. Ding, Y. Lin, W. Fang et al., Carrier-free self-assembly nano-sonosensitizers for sonodynamic-amplified cuproptosis-ferroptosis in glioblastoma therapy. Adv. Sci. 11(23), 2402516 (2024). https://doi.org/10.1002/advs.202402516
- Q. Li, Y. Chao, B. Liu, Z. Xiao, Z. Yang et al., Disulfiram loaded calcium phosphate nanops for enhanced cancer immunotherapy. Biomaterials 291, 121880 (2022). https://doi.org/10.1016/j.biomaterials.2022.121880
- Y. Li, J. Liu, R.R. Weichselbaum, W. Lin, Mitochondria-targeted multifunctional nanops combine cuproptosis and programmed cell death-1 downregulation for cancer immunotherapy. Adv. Sci. 11(35), 2403520 (2024). https://doi.org/10.1002/advs.202403520
- M. Chen, C. Guo, L. Qin, L. Wang, L. Qiao et al., Atomically precise Cu nanoclusters: recent advances, challenges, and perspectives in synthesis and catalytic applications. Nano-Micro Lett. 17(1), 83 (2024). https://doi.org/10.1007/s40820-024-01555-6
- M. Xu, J. Liu, L. Feng, J. Hu, W. Guo et al., Designing a sulfur vacancy redox disruptor for photothermoelectric and cascade-catalytic-driven cuproptosis-ferroptosis-apoptosis therapy. Nano-Micro Lett. 17(1), 321 (2025). https://doi.org/10.1007/s40820-025-01828-8
- Z. Guo, X. Gao, J. Lu, Y. Li, Z. Jin et al., Apoptosis and paraptosis induced by disulfiram-loaded Ca2+/Cu2+ dual-ions nano trap for breast cancer treatment. ACS Nano 18(9), 6975–6989 (2024). https://doi.org/10.1021/acsnano.3c10173
- S. Lu, Y. Li, Y. Yu, Glutathione-scavenging celastrol-Cu nanops induce self-amplified cuproptosis for augmented cancer immunotherapy. Adv. Mater. 36(35), 2404971 (2024). https://doi.org/10.1002/adma.202404971
References
F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74(3), 229–263 (2024). https://doi.org/10.3322/caac.21834
J.R. Molina, P. Yang, S.D. Cassivi, S.E. Schild, A.A. Adjei, Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83(5), 584–594 (2008). https://doi.org/10.4065/83.5.584
A.A. Thai, B.J. Solomon, L.V. Sequist, J.F. Gainor, R.S. Heist, Lung cancer. Lancet 398(10299), 535–554 (2021). https://doi.org/10.1016/S0140-6736(21)00312-3
F.R. Hirsch, G.V. Scagliotti, J.L. Mulshine, R. Kwon, W.J. Curran et al., Lung cancer: current therapies and new targeted treatments. Lancet 389(10066), 299–311 (2017). https://doi.org/10.1016/S0140-6736(16)30958-8
L.-B. Tang, Y.-L. Peng, J. Chen, J.-T. Li, M.-M. Zheng et al., Rechallenge with immune-checkpoint inhibitors in patients with advanced-stage lung cancer. Nat. Rev. Clin. Oncol. 22(8), 546–565 (2025). https://doi.org/10.1038/s41571-025-01029-7
P.-L. Su, N. Furuya, A. Asrar, C. Rolfo, Z. Li et al., Recent advances in therapeutic strategies for non-small cell lung cancer. J. Hematol. Oncol. 18(1), 35 (2025). https://doi.org/10.1186/s13045-025-01679-1
M.-L. Meyer, B.G. Fitzgerald, L. Paz-Ares, F. Cappuzzo, P.A. Jänne et al., New promises and challenges in the treatment of advanced non-small-cell lung cancer. Lancet 404(10454), 803–822 (2024). https://doi.org/10.1016/S0140-6736(24)01029-8
S. Zhao, H. Zhao, W. Yang, L. Zhang, The next generation of immunotherapies for lung cancers. Nat. Rev. Clin. Oncol. 22(8), 592–616 (2025). https://doi.org/10.1038/s41571-025-01035-9
L. Mao, J. Lu, X. Wen, Z. Song, C. Sun et al., Cuproptosis: mechanisms and nanotherapeutic strategies in cancer and beyond. Chem. Soc. Rev. 54(13), 6282–6334 (2025). https://doi.org/10.1039/d5cs00083a
S. Chen, P. Zhu, L. Mao, W. Wu, H. Lin et al., Piezocatalytic medicine: an emerging frontier using piezoelectric materials for biomedical applications. Adv. Mater. 35(25), 2208256 (2023). https://doi.org/10.1002/adma.202208256
Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5(11), 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y
X. Wu, Z. Zhou, K. Li, S. Liu, Nanomaterials-induced redox imbalance: challenged and opportunities for nanomaterials in cancer therapy. Adv. Sci. 11(16), 2308632 (2024). https://doi.org/10.1002/advs.202308632
J.F. Chatal, C.A. Hoefnagel, Radionuclide therapy. Lancet 354(9182), 931–935 (1999). https://doi.org/10.1016/S0140-6736(99)06002-X
I.I. Verginadis, D.E. Citrin, B. Ky, S.J. Feigenberg, A.G. Georgakilas et al., Radiotherapy toxicities: mechanisms, management, and future directions. Lancet 405(10475), 338–352 (2025). https://doi.org/10.1016/S0140-6736(24)02319-5
A. Sobrero, E. Bennicelli, Chemotherapy: which drug and when? Ann. Oncol. 21(Suppl 7), vii130–vii133 (2010). https://doi.org/10.1093/annonc/mdq293
Y. Feng, Q. Tang, B. Wang, Q. Yang, Y. Zhang et al., Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy. J. Nanobiotechnol. 22(1), 737 (2024). https://doi.org/10.1186/s12951-024-03005-2
B. Yang, Y. Chen, J. Shi, Nanocatalytic medicine. Adv. Mater. 31(39), e1901778 (2019). https://doi.org/10.1002/adma.201901778
M. Li, H. Jiang, P. Hu, J. Shi, Nanocatalytic anti-tumor immune regulation. Angew. Chem. Int. Ed. 63(13), e202316606 (2024). https://doi.org/10.1002/anie.202316606
G.S.R. Raju, E. Pavitra, G.L. Varaprasad, S.S. Bandaru, G.P. Nagaraju et al., Nanops mediated tumor microenvironment modulation: current advances and applications. J. Nanobiotechnol. 20(1), 274 (2022). https://doi.org/10.1186/s12951-022-01476-9
C. Wang, S. Wang, D.D. Kang, Y. Dong, Biomaterials for in situ cell therapy. BMEMat 1(3), e12039 (2023). https://doi.org/10.1002/bmm2.12039
Z. Tang, Y. Liu, M. He, W. Bu, Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew. Chem. Int. Ed. 58(4), 946–956 (2019). https://doi.org/10.1002/anie.201805664
Y. Zhou, S. Fan, L. Feng, X. Huang, X. Chen, Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv. Mater. 33(48), 2104223 (2021). https://doi.org/10.1002/adma.202104223
H. Lin, Y. Chen, J. Shi, Nanop-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 47(6), 1938–1958 (2018). https://doi.org/10.1039/C7CS00471K
J.-N. Hao, K. Ge, G. Chen, B. Dai, Y. Li, Strategies to engineer various nanocarrier-based hybrid catalysts for enhanced chemodynamic cancer therapy. Chem. Soc. Rev. 52(22), 7707–7736 (2023). https://doi.org/10.1039/D3CS00356F
C. Jia, Y. Guo, F.-G. Wu, Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small 18(6), 2103868 (2022). https://doi.org/10.1002/smll.202103868
Y. Ma, Z. Su, L. Zhou, L. He, Z. Hou et al., Biodegradable metal–organic-framework-gated organosilica for tumor-microenvironment-unlocked glutathione-depletion-enhanced synergistic therapy. Adv. Mater. 34(12), 2107560 (2022). https://doi.org/10.1002/adma.202107560
J. Lu, Z. Jiang, J. Ren, W. Zhang, P. Li et al., One-pot synthesis of multifunctional carbon-based nanop-supported dispersed Cu2+ disrupts redox homeostasis to enhance CDT. Angew. Chem. Int. Ed. 61(4), e202114373 (2022). https://doi.org/10.1002/anie.202114373
B. Yang, Y. Chen, J. Shi, Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119(8), 4881–4985 (2019). https://doi.org/10.1021/acs.chemrev.8b00626
X. Han, X. Zhang, Z. Liu, H. Liu, D. Wu et al., Copper-based nanotubes that enhance starvation therapy through cuproptosis for synergistic cancer treatment. Adv. Sci. 12(32), e04121 (2025). https://doi.org/10.1002/advs.202504121
M. Li, J. Sun, W. Zhang, Y. Zhao, S. Zhang et al., Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr. Polym. 251, 117103 (2021). https://doi.org/10.1016/j.carbpol.2020.117103
T.J. Rabelink, G. Wang, J. van der Vlag, B.M. van den Berg, The roles of hyaluronan in kidney development, physiology and disease. Nat. Rev. Nephrol. 20(12), 822–832 (2024). https://doi.org/10.1038/s41581-024-00883-5
W. Tang, X. Huang, Y.-D. Yi, F. Cao, M. Deng et al., Hyaluronic acid-curcumin nanops for preventing the progression of experimental autoimmune uveitis through the Keap1/Nrf2/HO-1 signaling pathway. J. Nanobiotechnol. 23(1), 89 (2025). https://doi.org/10.1186/s12951-024-03082-3
C. Chen, S. Zhao, A. Karnad, J.W. Freeman, The biology and role of CD44 in cancer progression: therapeutic implications. J. Hematol. Oncol. 11(1), 64 (2018). https://doi.org/10.1186/s13045-018-0605-5
Q. Feng, W. Fang, Y. Guo, P. Hu, J. Shi, Nebulized therapy of early orthotopic lung cancer by iron-based nanops: macrophage-regulated ferroptosis of cancer stem cells. J. Am. Chem. Soc. 145(44), 24153–24165 (2023). https://doi.org/10.1021/jacs.3c08032
X. Weng, S. Maxwell-Warburton, A. Hasib, L. Ma, L. Kang, The membrane receptor CD44: novel insights into metabolism. Trends Endocrinol Metab 33(5), 318–332 (2022). https://doi.org/10.1016/j.tem.2022.02.002
I. Kim, W. Xu, J.C. Reed, Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7(12), 1013–1030 (2008). https://doi.org/10.1038/nrd2755
J.R. Cubillos-Ruiz, S.E. Bettigole, L.H. Glimcher, Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168(4), 692–706 (2017). https://doi.org/10.1016/j.cell.2016.12.004
D. Reichmann, W. Voth, U. Jakob, Maintaining a healthy proteome during oxidative stress. Mol. Cell 69(2), 203–213 (2018). https://doi.org/10.1016/j.molcel.2017.12.021
J. Zheng, M. Conrad, Ferroptosis: when metabolism meets cell death. Physiol. Rev. 105(2), 651–706 (2025). https://doi.org/10.1152/physrev.00031.2024
S. Bhowmick, S. Banerjee, V. Shridhar, S. Mondal, Reprogrammed immuno-metabolic environment of cancer: the driving force of ferroptosis resistance. Mol. Cancer 24(1), 161 (2025). https://doi.org/10.1186/s12943-025-02337-3
C. Wu, Z. Liu, Z. Chen, D. Xu, L. Chen et al., A nonferrous ferroptosis-like strategy for antioxidant inhibition-synergized nanocatalytic tumor therapeutics. Sci. Adv. 7(39), eabj8833 (2021). https://doi.org/10.1126/sciadv.abj8833
Y. Xie, R. Kang, D.J. Klionsky, D. Tang, GPX4 in cell death, autophagy, and disease. Autophagy 19(10), 2621–2638 (2023). https://doi.org/10.1080/15548627.2023.2218764
M. Zhang, H. Zheng, X. Zhu, S. Liu, H. Jin et al., Synchronously evoking disulfidptosis and ferroptosis via systematical glucose deprivation targeting SLC7A11/GSH/GPX4 antioxidant axis. ACS Nano 19(14), 14233–14248 (2025). https://doi.org/10.1021/acsnano.5c00730
Y. Chen, X. Huang, R. Hu, E. Lu, K. Luo et al., Inhalable biomimetic polyunsaturated fatty acid-based nanoreactors for peroxynitrite-augmented ferroptosis potentiate radiotherapy in lung cancer. J. Nanobiotechnol. 23(1), 338 (2025). https://doi.org/10.1186/s12951-025-03409-8
L. Huang, J. Zhu, W. Xiong, J. Feng, J. Yang et al., Tumor-generated reactive oxygen species storm for high-performance ferroptosis therapy. ACS Nano 17(12), 11492–11506 (2023). https://doi.org/10.1021/acsnano.3c01369
W. Pi, L. Wu, J. Lu, X. Lin, X. Huang et al., A metal ions-mediated natural small molecules carrier-free injectable hydrogel achieving laser-mediated photo-Fenton-like anticancer therapy by synergy apoptosis/cuproptosis/anti-inflammation. Bioact. Mater. 29, 98–115 (2023). https://doi.org/10.1016/j.bioactmat.2023.06.018
J. Zhao, Z. Chen, S. Liu, P. Li, S. Yu et al., Nano-bio interactions between 2D nanomaterials and mononuclear phagocyte system cells. BMEMat 2(2), e12066 (2024). https://doi.org/10.1002/bmm2.12066
N. Kang, S. Son, S. Min, H. Hong, C. Kim et al., Stimuli-responsive ferroptosis for cancer therapy. Chem. Soc. Rev. 52(12), 3955–3972 (2023). https://doi.org/10.1039/d3cs00001j
H. Zhang, G. Shan, M. Liu, Q. Sun, T. Yang et al., Harnessing ROS amplification and GSH depletion using a carrier-free nanodrug to enhance ferroptosis-based cancer therapy. Small 21(6), e2409250 (2025). https://doi.org/10.1002/smll.202409250
C. Jiang, X. Li, S. Wan, S. Ji, Q. Wang et al., Copper-doped polydopamine nanops-mediated GSH/GPX4-depleted ferroptosis and cuproptosis sensitizes lung tumor to checkpoint blockade immunotherapy. Small 21(23), e2503208 (2025). https://doi.org/10.1002/smll.202503208
Z. Ye, M. Cheng, W. Lian, Y. Leng, X. Qin et al., GPX4 deficiency-induced ferroptosis drives endometrial epithelial fibrosis in polycystic ovary syndrome. Redox Biol. 83, 103615 (2025). https://doi.org/10.1016/j.redox.2025.103615
E. Mishima, T. Nakamura, S. Doll, B. Proneth, M. Fedorova et al., Recommendations for robust and reproducible research on ferroptosis. Nat. Rev. Mol. Cell Biol. 26(8), 615–630 (2025). https://doi.org/10.1038/s41580-025-00843-2
X. Chen, J. Li, R. Kang, D.J. Klionsky, D. Tang, Ferroptosis: machinery and regulation. Autophagy 17(9), 2054–2081 (2021). https://doi.org/10.1080/15548627.2020.1810918
T. Lang, R. Zhu, X. Zhu, W. Yan, Y. Li et al., Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanop improves colorectal cancer therapy. Nat. Commun. 14(1), 4746 (2023). https://doi.org/10.1038/s41467-023-40439-y
Y. Zhu, X. Niu, C. Ding, Y. Lin, W. Fang et al., Carrier-free self-assembly nano-sonosensitizers for sonodynamic-amplified cuproptosis-ferroptosis in glioblastoma therapy. Adv. Sci. 11(23), 2402516 (2024). https://doi.org/10.1002/advs.202402516
Q. Li, Y. Chao, B. Liu, Z. Xiao, Z. Yang et al., Disulfiram loaded calcium phosphate nanops for enhanced cancer immunotherapy. Biomaterials 291, 121880 (2022). https://doi.org/10.1016/j.biomaterials.2022.121880
Y. Li, J. Liu, R.R. Weichselbaum, W. Lin, Mitochondria-targeted multifunctional nanops combine cuproptosis and programmed cell death-1 downregulation for cancer immunotherapy. Adv. Sci. 11(35), 2403520 (2024). https://doi.org/10.1002/advs.202403520
M. Chen, C. Guo, L. Qin, L. Wang, L. Qiao et al., Atomically precise Cu nanoclusters: recent advances, challenges, and perspectives in synthesis and catalytic applications. Nano-Micro Lett. 17(1), 83 (2024). https://doi.org/10.1007/s40820-024-01555-6
M. Xu, J. Liu, L. Feng, J. Hu, W. Guo et al., Designing a sulfur vacancy redox disruptor for photothermoelectric and cascade-catalytic-driven cuproptosis-ferroptosis-apoptosis therapy. Nano-Micro Lett. 17(1), 321 (2025). https://doi.org/10.1007/s40820-025-01828-8
Z. Guo, X. Gao, J. Lu, Y. Li, Z. Jin et al., Apoptosis and paraptosis induced by disulfiram-loaded Ca2+/Cu2+ dual-ions nano trap for breast cancer treatment. ACS Nano 18(9), 6975–6989 (2024). https://doi.org/10.1021/acsnano.3c10173
S. Lu, Y. Li, Y. Yu, Glutathione-scavenging celastrol-Cu nanops induce self-amplified cuproptosis for augmented cancer immunotherapy. Adv. Mater. 36(35), 2404971 (2024). https://doi.org/10.1002/adma.202404971