Controlling the Diameter of Single-Walled Carbon Nanotubes by Improving the Dispersion of the Uniform Catalyst Nanoparticles on Substrate
Corresponding Author: Shaoming Huang
Nano-Micro Letters,
Vol. 7 No. 4 (2015), Article Number: 353-359
Abstract
To have uniform nanoparticles individually dispersed on substrate before single-walled carbon nanotubes (SWNTs) growth at high temperature is the key for controlling the diameter of the SWNTs. In this letter, a facile approach to control the diameter and distribution of the SWNTs by improving the dispersion of the uniform Fe/Mo nanoparticles on silicon wafers with silica layer chemically modified by 1,1,1,3,3,3-hexamethyldisilazane under different conditions is reported. It is found that the dispersion of the catalyst nanoparticles on Si wafer surface can be improved greatly from hydrophilic to hydrophobic, and the diameter and distribution of the SWNTs depend strongly on the dispersion of the catalyst on the substrate surface. Well dispersion of the catalyst results in relatively smaller diameter and narrower distribution of the SWNTs due to the decrease of aggregation and enhancement of dispersion of the catalyst nanoparticles before growth. It is also found that the diameter of the superlong aligned SWNTs is smaller with more narrow distribution than that of random nanotubes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). doi:10.1038/354056a0
- J. Li, W. Yue, Z. Guo, Y. Yang, X. Wang, A.A. Syed, Y. Zhang, Unique characteristics of vertical carbon nanotube field-effect transistors on silicon. Nano-Micro Lett. 6(3), 287–292 (2014). doi:10.5101/nml140031a
- M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013). doi:10.1126/science.1222453
- Q. Wei, Y. Liu, L. Zhang, S. Huang, Growth and formation mechanism of branched carbon nanotubes by pyrolysis of iron(II) phthalocyanine. Nano-Micro Lett. 5(2), 124–128 (2013). doi:10.5101/nml.v5i2.p124-128
- M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes Synthesis, Structure, Properties, and Applications (Springer, New York, 2001)
- T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992). doi:10.1038/358220a0
- T. Guo, P. Nikolaev, A.G. Rinzler, D. TomBnek, D.T. Colbert, R.E. Smalley, Self-assembly of tubular fullerenes. J. Phys. Chem. B 99(27), 10694–10699 (1995). doi:10.1021/j100027a002
- M. Su, B. Zheng, J. Liu, A scalable CVD method for the synthesis of single walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 322(5), 321–324 (2000). doi:10.1016/S0009-2614(00)00422-X
- S.M. Huang, X.Y. Cai, J. Liu, Growth of millimeter-long and horizontally aligned SWNT on flat substrates. J. Am. Chem. Soc. 125(19), 5636–5637 (2003). doi:10.1021/ja034475c
- J.W.G. WildÖer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998). doi:10.1038/34139
- T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998). doi:10.1038/34145
- H.S. Cheng, A.C. Copper, G.P. Pez, M.K. Kistov, P. Piotrowski, S.J. Stuart, Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. J. Phys. Chem. B 109(9), 3780–3786 (2005). doi:10.1021/jp045358m
- X. Tu, S. Manohar, A. Jagota, M. Zheng, DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009). doi:10.1038/nature08116
- H. Liu, T. Tanaka, Y. Urabe, H. Kataura, High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography. Nano Lett. 13(5), 1996–2003 (2013). doi:10.1021/nl400128m
- G. Hong, M. Zhou, R. Zhang, S. Hou, W. Choi et al., Separation of metallic and semiconducting single-walled carbon nanotube arrays by scotch tape. Angew. Chem. Int. Ed. 50(30), 6819–6823 (2011). doi:10.1002/anie.201101700
- Q. Wang, H. Wang, L. Wei, S.-W. Yang, Y. Chen, Reactive sites for chiral selective growth of single-walled carbon nanotubes: a DFT study of Ni55–Cn complexes. J. Phys. Chem. A 116(47), 11709–11717 (2012). doi:10.1021/jp308115f
- D. Dutta, W.-H. Chiang, R.M. Sankaran, V.R. Bhethanabotla, Epitaxial nucleation model for chiral-selective growth of single-walled carbon nanotubes on bimetallic catalyst surfaces. Carbon 50(10), 3766–3773 (2012). doi:10.1016/j.carbon.2012.03.051
- M. He, P.V. Fedotov, E.D. Obraztsova, V. Viitanen, J. Sainio et al., Chiral-selective growth of single-walled carbon nanotubes on stainless steel wires. Carbon 50(11), 4294–4297 (2012). doi:10.1016/j.carbon.2012.05.007
- W.-H. Chiang, R.M. Sankaran, Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni(x)fe(1-x) nanoparticles. Nat. Mater. 8, 882–886 (2009). doi:10.1038/nmat2531
- S.M. Bachilo, L. Balzano, J.E. Herrera, F. Pompeo, D.E. Resasco, R.B. Weisman, Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125(37), 11186–11187 (2003). doi:10.1021/ja036622c
- B. Liu, W. Ren, S. Li, C. Liu, H.M. Cheng, High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chem. Commun. 48(18), 2409–2411 (2012). doi:10.1039/c2cc16491d
- M. He, A.I. Chernov, P.V. Fedotov, E.D. Obraztsova, J. Sainio et al., Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. J. Am. Chem. Soc. 132(40), 13994–13996 (2010). doi:10.1021/ja106609y
- W.-H. Chiang, M. Sakr, X.P.A. Gao, R.M. Sankaran, Nanoengineering NixFe1-x catalysts for gas-phase, selective synthesis of semiconducting single-walled carbon nanotubes. ACS Nano 3(12), 4023–4032 (2009). doi:10.1021/nn901222t
- M. He, H. Jiang, B. Liu, P.V. Fedotov, A.I. Chernov et al., Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 3, 1460 (2013). doi:10.1038/srep01460
- F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014). doi:10.1038/nature13434
- H.C. Choi, W. Kim, D. Wang, H.J. Dai, Delivery of catalytic metal species onto surfaces with dendrimer carriers for the synthesis of carbon nanotubes with narrow diameter distribution. J. Phys. Chem. B 106(48), 12361–12365 (2002). doi:10.1021/jp026421f
- U.D. Ciuparu, Y. Chen, S. Lim, G.L. Haller, L. Pfefferle, Uniform diameter single-walled carbon nanotubes catalytically grown in cobalt-Incorporated MCM-41. J. Phys. Chem. B 180(2), 503–507 (2004). doi:10.1021/jp036453i
- S.J. Han, T.Y. Yu, J. Park, B. Koo, J. Joo, T. Hyeon, Diameter-controlled synthesis of discrete and uniform-sized single-walled carbon nanotubes using monodisperse iron oxide nanoparticles embedded in zirconia nanoparticle arrays as catalysts. J. Phys. Chem. B 108(24), 8091–8095 (2004). doi:10.1021/jp037634n
- L. An, J.M. Owens, L.E. McNeil, J. Liu, Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 124(46), 13688–13689 (2002). doi:10.1021/ja0274958
- C.G. Lu, J. Liu, Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. J. Phys. Chem. B 110(41), 20254–20257 (2006). doi:10.1021/jp0632283
- L. Durrer, J. Greenwald, T. Helbling, M. Muoth, R. Riek, C. Hierold, Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts. Nanotechnology 20(35), 355601–355607 (2009). doi:10.1088/0957-4484/20/35/355601
- S. Huang, Q. Cai, J. Chen, Q. Yong, L. Zhang, Catalyst-free growth of SWNTs on substrate. J. Am. Chem. Soc. 131(6), 2094–2095 (2009). doi:10.1021/ja809635s
- Y. Chen, J. Zhang, Diameter controlled growth of single-walled carbon nanotubes from SiO2 nanoparticles. Carbon 49(10), 3316–3324 (2011). doi:10.1016/j.carbon.2011.04.016
- Q. Cai, Y. Hu, Y. Liu, S. Huang, Growth of carbon nanotubes from titanium dioxide nanoparticles. Appl. Surf. Sci. 258(20), 8019–8025 (2012). doi:10.1016/j.apsusc.2012.04.161
- G. Chen, Y. Seki, H. Kimura, S. Sakurai, M. Yumura, K. Hata, D.N. Futaba, Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition. Sci. Rep. 4, 3804–3808 (2014). doi:10.1038/srep03804
- Q. Liu, W. Ren, Z. Chen, D. Wang, B. Liu, F. Li, H. Cong, H. Chen, B. Yu, Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method. ACS Nano 2(8), 1722–1728 (2008). doi:10.1021/nn8003394
- Y. Li, J. Liu, Y.Q. Wang, Z.L. Wang, Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13(3), 1008–1014 (2001). doi:10.1021/cm000787s
- R. Xiang, T. Wu, E. Einarsson, Y. Suzuki, Y. Murakami, J. Shiomi, S. Maruyama, High-precision selective deposition of catalyst for facile localized growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 131(30), 10344–10345 (2009). doi:10.1021/ja902904v
- G. Zhong, J.H. Warner, M. Fouquet, A.W. Robertson, B. Chen, J. Robertson, Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano 6(4), 2893–2903 (2012). doi:10.1021/nn203035x
- W. Song, C. Jeon, Y.S. Kim, Y.T. Kwon, D.S. Jung et al., Synthesis of bandgap-controlled semiconducting single-walled carbon nanotubes. ACS Nano 4(2), 1012–1018 (2010). doi:10.1021/nn901135b
- R. Xiang, E. Einarsson, Y. Murakami, J. Shiomi, S. Chiashi, Z. Tang, S. Maruyama, Diameter modulation of vertically aligned single-walled carbon nanotubes. ACS Nano 6(8), 7472–7479 (2012). doi:10.1021/nn302750x
- Y. Tian, M.Y. Timmermans, S. Kivistö, A.G. Nasibulin, Z. Zhu, H. Jiang, O.G. Okhotnikov, E.I. Kauppinen, Tailoring the diameter of single-walled carbon nanotubes for optical applications. Nano Res. 4(8), 807–815 (2011). doi:10.1007/s12274-011-0137-6
- S. Huang, X. Cai, J. Liu, Growth of millimeter-long and horizontally aligned SWNT on flat substrates. J. Am. Chem. Soc. 125(19), 5636–5637 (2003). doi:10.1021/ja034475c
- S. Huang, B. Maynor, J. Liu, Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 15(19), 1651–1654 (2003). doi:10.1002/adma.200305203
- S. Huang, M. Woodson, J. Liu, R. Smalley, Growth mechanism of oriented long single-walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett. 4(6), 1025–1028 (2004). doi:10.1021/nl049691d
References
S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). doi:10.1038/354056a0
J. Li, W. Yue, Z. Guo, Y. Yang, X. Wang, A.A. Syed, Y. Zhang, Unique characteristics of vertical carbon nanotube field-effect transistors on silicon. Nano-Micro Lett. 6(3), 287–292 (2014). doi:10.5101/nml140031a
M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013). doi:10.1126/science.1222453
Q. Wei, Y. Liu, L. Zhang, S. Huang, Growth and formation mechanism of branched carbon nanotubes by pyrolysis of iron(II) phthalocyanine. Nano-Micro Lett. 5(2), 124–128 (2013). doi:10.5101/nml.v5i2.p124-128
M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes Synthesis, Structure, Properties, and Applications (Springer, New York, 2001)
T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992). doi:10.1038/358220a0
T. Guo, P. Nikolaev, A.G. Rinzler, D. TomBnek, D.T. Colbert, R.E. Smalley, Self-assembly of tubular fullerenes. J. Phys. Chem. B 99(27), 10694–10699 (1995). doi:10.1021/j100027a002
M. Su, B. Zheng, J. Liu, A scalable CVD method for the synthesis of single walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 322(5), 321–324 (2000). doi:10.1016/S0009-2614(00)00422-X
S.M. Huang, X.Y. Cai, J. Liu, Growth of millimeter-long and horizontally aligned SWNT on flat substrates. J. Am. Chem. Soc. 125(19), 5636–5637 (2003). doi:10.1021/ja034475c
J.W.G. WildÖer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998). doi:10.1038/34139
T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998). doi:10.1038/34145
H.S. Cheng, A.C. Copper, G.P. Pez, M.K. Kistov, P. Piotrowski, S.J. Stuart, Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. J. Phys. Chem. B 109(9), 3780–3786 (2005). doi:10.1021/jp045358m
X. Tu, S. Manohar, A. Jagota, M. Zheng, DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009). doi:10.1038/nature08116
H. Liu, T. Tanaka, Y. Urabe, H. Kataura, High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography. Nano Lett. 13(5), 1996–2003 (2013). doi:10.1021/nl400128m
G. Hong, M. Zhou, R. Zhang, S. Hou, W. Choi et al., Separation of metallic and semiconducting single-walled carbon nanotube arrays by scotch tape. Angew. Chem. Int. Ed. 50(30), 6819–6823 (2011). doi:10.1002/anie.201101700
Q. Wang, H. Wang, L. Wei, S.-W. Yang, Y. Chen, Reactive sites for chiral selective growth of single-walled carbon nanotubes: a DFT study of Ni55–Cn complexes. J. Phys. Chem. A 116(47), 11709–11717 (2012). doi:10.1021/jp308115f
D. Dutta, W.-H. Chiang, R.M. Sankaran, V.R. Bhethanabotla, Epitaxial nucleation model for chiral-selective growth of single-walled carbon nanotubes on bimetallic catalyst surfaces. Carbon 50(10), 3766–3773 (2012). doi:10.1016/j.carbon.2012.03.051
M. He, P.V. Fedotov, E.D. Obraztsova, V. Viitanen, J. Sainio et al., Chiral-selective growth of single-walled carbon nanotubes on stainless steel wires. Carbon 50(11), 4294–4297 (2012). doi:10.1016/j.carbon.2012.05.007
W.-H. Chiang, R.M. Sankaran, Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni(x)fe(1-x) nanoparticles. Nat. Mater. 8, 882–886 (2009). doi:10.1038/nmat2531
S.M. Bachilo, L. Balzano, J.E. Herrera, F. Pompeo, D.E. Resasco, R.B. Weisman, Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125(37), 11186–11187 (2003). doi:10.1021/ja036622c
B. Liu, W. Ren, S. Li, C. Liu, H.M. Cheng, High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chem. Commun. 48(18), 2409–2411 (2012). doi:10.1039/c2cc16491d
M. He, A.I. Chernov, P.V. Fedotov, E.D. Obraztsova, J. Sainio et al., Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. J. Am. Chem. Soc. 132(40), 13994–13996 (2010). doi:10.1021/ja106609y
W.-H. Chiang, M. Sakr, X.P.A. Gao, R.M. Sankaran, Nanoengineering NixFe1-x catalysts for gas-phase, selective synthesis of semiconducting single-walled carbon nanotubes. ACS Nano 3(12), 4023–4032 (2009). doi:10.1021/nn901222t
M. He, H. Jiang, B. Liu, P.V. Fedotov, A.I. Chernov et al., Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 3, 1460 (2013). doi:10.1038/srep01460
F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014). doi:10.1038/nature13434
H.C. Choi, W. Kim, D. Wang, H.J. Dai, Delivery of catalytic metal species onto surfaces with dendrimer carriers for the synthesis of carbon nanotubes with narrow diameter distribution. J. Phys. Chem. B 106(48), 12361–12365 (2002). doi:10.1021/jp026421f
U.D. Ciuparu, Y. Chen, S. Lim, G.L. Haller, L. Pfefferle, Uniform diameter single-walled carbon nanotubes catalytically grown in cobalt-Incorporated MCM-41. J. Phys. Chem. B 180(2), 503–507 (2004). doi:10.1021/jp036453i
S.J. Han, T.Y. Yu, J. Park, B. Koo, J. Joo, T. Hyeon, Diameter-controlled synthesis of discrete and uniform-sized single-walled carbon nanotubes using monodisperse iron oxide nanoparticles embedded in zirconia nanoparticle arrays as catalysts. J. Phys. Chem. B 108(24), 8091–8095 (2004). doi:10.1021/jp037634n
L. An, J.M. Owens, L.E. McNeil, J. Liu, Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 124(46), 13688–13689 (2002). doi:10.1021/ja0274958
C.G. Lu, J. Liu, Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. J. Phys. Chem. B 110(41), 20254–20257 (2006). doi:10.1021/jp0632283
L. Durrer, J. Greenwald, T. Helbling, M. Muoth, R. Riek, C. Hierold, Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts. Nanotechnology 20(35), 355601–355607 (2009). doi:10.1088/0957-4484/20/35/355601
S. Huang, Q. Cai, J. Chen, Q. Yong, L. Zhang, Catalyst-free growth of SWNTs on substrate. J. Am. Chem. Soc. 131(6), 2094–2095 (2009). doi:10.1021/ja809635s
Y. Chen, J. Zhang, Diameter controlled growth of single-walled carbon nanotubes from SiO2 nanoparticles. Carbon 49(10), 3316–3324 (2011). doi:10.1016/j.carbon.2011.04.016
Q. Cai, Y. Hu, Y. Liu, S. Huang, Growth of carbon nanotubes from titanium dioxide nanoparticles. Appl. Surf. Sci. 258(20), 8019–8025 (2012). doi:10.1016/j.apsusc.2012.04.161
G. Chen, Y. Seki, H. Kimura, S. Sakurai, M. Yumura, K. Hata, D.N. Futaba, Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition. Sci. Rep. 4, 3804–3808 (2014). doi:10.1038/srep03804
Q. Liu, W. Ren, Z. Chen, D. Wang, B. Liu, F. Li, H. Cong, H. Chen, B. Yu, Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method. ACS Nano 2(8), 1722–1728 (2008). doi:10.1021/nn8003394
Y. Li, J. Liu, Y.Q. Wang, Z.L. Wang, Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13(3), 1008–1014 (2001). doi:10.1021/cm000787s
R. Xiang, T. Wu, E. Einarsson, Y. Suzuki, Y. Murakami, J. Shiomi, S. Maruyama, High-precision selective deposition of catalyst for facile localized growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 131(30), 10344–10345 (2009). doi:10.1021/ja902904v
G. Zhong, J.H. Warner, M. Fouquet, A.W. Robertson, B. Chen, J. Robertson, Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano 6(4), 2893–2903 (2012). doi:10.1021/nn203035x
W. Song, C. Jeon, Y.S. Kim, Y.T. Kwon, D.S. Jung et al., Synthesis of bandgap-controlled semiconducting single-walled carbon nanotubes. ACS Nano 4(2), 1012–1018 (2010). doi:10.1021/nn901135b
R. Xiang, E. Einarsson, Y. Murakami, J. Shiomi, S. Chiashi, Z. Tang, S. Maruyama, Diameter modulation of vertically aligned single-walled carbon nanotubes. ACS Nano 6(8), 7472–7479 (2012). doi:10.1021/nn302750x
Y. Tian, M.Y. Timmermans, S. Kivistö, A.G. Nasibulin, Z. Zhu, H. Jiang, O.G. Okhotnikov, E.I. Kauppinen, Tailoring the diameter of single-walled carbon nanotubes for optical applications. Nano Res. 4(8), 807–815 (2011). doi:10.1007/s12274-011-0137-6
S. Huang, X. Cai, J. Liu, Growth of millimeter-long and horizontally aligned SWNT on flat substrates. J. Am. Chem. Soc. 125(19), 5636–5637 (2003). doi:10.1021/ja034475c
S. Huang, B. Maynor, J. Liu, Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 15(19), 1651–1654 (2003). doi:10.1002/adma.200305203
S. Huang, M. Woodson, J. Liu, R. Smalley, Growth mechanism of oriented long single-walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett. 4(6), 1025–1028 (2004). doi:10.1021/nl049691d