Cuprous Chloride Nanocubes Grown on Copper Foil for Pseudocapacitor Electrodes
Corresponding Author: Xiang Wu
Nano-Micro Letters,
Vol. 6 No. 4 (2014), Article Number: 340-346
Abstract
In this paper, for the first time, we report the synthesis of nanoscale cuprous chloride (CuCl) cubic structure by a facile hydrothermal route. A possible mechanism for the growth of those nanostructures is proposed based on the experimental results. It is discovered that the existence of HCl could affect the surface of CuCl nanocubes. This unique cube-like nanostructure with rough surface significantly enhances the electroactive surface areas of CuCl, leading to a high special capacitance of 376 mF cm−2 at the current density of 1.0 mA cm−2. There is still a good reversibility with cycling efficiency of 88.8 % after 2,000 cycles, demonstrating its excellent long-term cycling stability and might be the promising candidates as the excellent electrode material.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). doi:10.1126/science.1158736
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). doi:10.1038/nmat2297
- Y.T. Han, X. Wu, Y.L. Ma, L.H. Gong, F.Y. Qu, H.J. Fan, Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm. 13(10), 3506–3510 (2011). doi:10.1039/C1CE05171G
- J. Liu, G.Z. Cao, Z.G. Yang, D.H. Wang, D. Dubois, X.D. Zhou, G.L. Graff, L.R. Pederson, J.G. Zhang, Oriented nanostructures for energy conversion and storage. ChemSusChem. 1(8–9), 676–697 (2008). doi:10.1002/cssc.200800087
- B.Z. Tian, T.J. Kempa, C.M. Lieber, Single nanowire photovoltaics. Chem. Soc. Rev. 38(1), 16–24 (2009). doi:10.1039/B718703N
- L.N. Gao, X.F. Wang, Z. Xie, W.F. Song, L.J. Wang, X. Wu, F.Y. Qu, D. Chen, G.Z. Shen, High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 1(24), 7167–7173 (2013). doi:10.1039/C3TA10831G
- G.Q. Zhang, L. Yu, H.E. Hoster, X.W. (David) Lou, Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance. Nanoscale 5(3), 877–881 (2013). doi:10.1039/c2nr33326k
- P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. ShittaBey, G.A. Wilson, C.R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy. Environ. Sci. 3(9), 1238–1251 (2010). doi:10.1039/C0EE00004C
- R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta. 45(15–16), 2483–2498 (2000). doi:10.1016/S0013-4686(00)00354-6
- C. Liu, Z. Yu, D. Neff, A. Zhan, Z. Bor, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010). doi:10.1021/nl102661q
- C. Masarapu, H.F. Zeng, K.H. Haung, B. Wei, Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3(8), 2199–2206 (2009). doi:10.1021/nn900500n
- K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 114(17), 8062–8067 (2010). doi:10.1021/jp9113255
- J.P. Liu, J. Jiang, M. Bosmanc, H.J. Fan, Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J. Mater. Chem. A 22(6), 2419–2426 (2012). doi:10.1039/c1jm14804d
- S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112(11), 4406–4417 (2008). doi:10.1021/jp7108785
- J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo, L. Kang, Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 35, 4213–4215 (2008). doi:10.1039/B800264A
- S.K. Mehar, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115(31), 15646–15654 (2011). doi:10.1021/jp201200e
- K.K. Purusothaman, G. Muralidharan, The effect of annealing temperature on the electrochromic properties of nanostructured NiO films. Energy. Mater. Sol. Cells. 93(8), 1195 (2009). doi:10.1016/j.solmat.2008.12.029
- X. Xu, T.P. Ding, L.Y. Yuan, Y.Q. Shen, Q.Z. Zhong, X.H. Zhang, Y.Z. Cao, B. Hu, T. Zhai, L. Gong, J. Chen, Y.X. Tong, J. Zhou, Z.L. Wang, WO3–x/MoO3–x core/shell nanowires on carbon fabric as an anode for all-solid-State asymmetric supercapacitors. Adv. Energy. Mater. 2(11), 1328–1332 (2012). doi:10.1002/aenm.201200380
- D.D. Zhu, Y.D. Wang, G.L. Yuan, H. Xia, High-performance supercapacitor electrodes based on hierarchical Ti@MnO2 nanowire arrays. Chem. Commun. 50(22), 2876–2878 (2014). doi:10.1039/c3cc49800j
- P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 250–273 (2013). doi:10.5101/nml.v5i4.p260-273
- Q.Q. Sun, S.J. Bao, Effects of reaction temperature on microstructure and advanced pseudocapacitor properties of NiO prepared via simple precipitation method. Nano-Micro Lett. 5(4), 289–295 (2013). doi:10.5101/nml.v5i4.p289-295
- Z. Yang, R.G. Gao, N.T. Hu, J. Chai, Y.W. Cheng, L.Y. Zhang, H. Wei, E.S.W. Kong, Y.F. Zhang, The prospective 2D graphene nanosheets: preparation, functionalization and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.3786/nml.v4i1.p1-9
- D.D. Zhao, Y. Wang, Y.F. Zhang, High-performance Li-ion batteries and supercapacitors base on Prospective 1-D nanomaterials. Nano-Micro Lett. 3(1), 62–71 (2011). doi:10.3786/nml.v3i1.p62-71
- Y. Liu, Y. Jiao, Z.L. Zhang, F.Y. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014). doi:10.1021/am405301v
- Z.J. Gu, H.Q. Li, T.Y. Zhai, W.S. Yang, Y.Y. Xia, Y. Ma, J.N. Yao, Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. J. Solid. State. Chem. 180(1), 98 (2007). doi:10.1016/j.jssc.2006.09.020
- C. Zhou, Y.W. Zhang, Y.Y. Li, J.P. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013). doi:10.1021/nl400378j
- F.O. Lucas, A. Mitra, P.J. MacNally, S. Daniels, A.L. Bradley, D.M. Taylor, Y.Y. Proskuryakov, K. Durose, Cameron, Evaluation of the chemical, electronic and optoelectronic properties of γ-CuCl thin films and their fabrication on Si substrates. J. Phys. D: Appl. Phys. 40(11), 3461 (2007). doi:10.1088/0022-3727/40/11/030
- M. Niederberger, H. Colfen, Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8(28), 3271 (2006). doi:10.1039/B604589H
- M.S.G.A.L. Applegarth, C.R. Corbeil, D.J.W. Mercer, C.C. Pye, P.R. Tremaine, Raman and ab initio investigation of aqueous Cu(I) Chloride complexes from 25 to 80 °C. J. Phy. Chem. B 118(1), 204 (2014). doi:10.1021/jp406580q
- C.H. An, Y.J. Wang, Y.P. Wang, G. Liu, L. Li, F.Y. Qiu, Y.N. Xu, L.F. Jiao, H.T. Yuan, Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles. RSC Adv. 3, 4628 (2013). doi:10.1039/C3RA00079F
- R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12(5), 2559 (2012). doi:10.1021/nl300779a
References
J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). doi:10.1126/science.1158736
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). doi:10.1038/nmat2297
Y.T. Han, X. Wu, Y.L. Ma, L.H. Gong, F.Y. Qu, H.J. Fan, Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm. 13(10), 3506–3510 (2011). doi:10.1039/C1CE05171G
J. Liu, G.Z. Cao, Z.G. Yang, D.H. Wang, D. Dubois, X.D. Zhou, G.L. Graff, L.R. Pederson, J.G. Zhang, Oriented nanostructures for energy conversion and storage. ChemSusChem. 1(8–9), 676–697 (2008). doi:10.1002/cssc.200800087
B.Z. Tian, T.J. Kempa, C.M. Lieber, Single nanowire photovoltaics. Chem. Soc. Rev. 38(1), 16–24 (2009). doi:10.1039/B718703N
L.N. Gao, X.F. Wang, Z. Xie, W.F. Song, L.J. Wang, X. Wu, F.Y. Qu, D. Chen, G.Z. Shen, High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 1(24), 7167–7173 (2013). doi:10.1039/C3TA10831G
G.Q. Zhang, L. Yu, H.E. Hoster, X.W. (David) Lou, Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance. Nanoscale 5(3), 877–881 (2013). doi:10.1039/c2nr33326k
P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. ShittaBey, G.A. Wilson, C.R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy. Environ. Sci. 3(9), 1238–1251 (2010). doi:10.1039/C0EE00004C
R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta. 45(15–16), 2483–2498 (2000). doi:10.1016/S0013-4686(00)00354-6
C. Liu, Z. Yu, D. Neff, A. Zhan, Z. Bor, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010). doi:10.1021/nl102661q
C. Masarapu, H.F. Zeng, K.H. Haung, B. Wei, Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3(8), 2199–2206 (2009). doi:10.1021/nn900500n
K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 114(17), 8062–8067 (2010). doi:10.1021/jp9113255
J.P. Liu, J. Jiang, M. Bosmanc, H.J. Fan, Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J. Mater. Chem. A 22(6), 2419–2426 (2012). doi:10.1039/c1jm14804d
S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112(11), 4406–4417 (2008). doi:10.1021/jp7108785
J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo, L. Kang, Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 35, 4213–4215 (2008). doi:10.1039/B800264A
S.K. Mehar, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115(31), 15646–15654 (2011). doi:10.1021/jp201200e
K.K. Purusothaman, G. Muralidharan, The effect of annealing temperature on the electrochromic properties of nanostructured NiO films. Energy. Mater. Sol. Cells. 93(8), 1195 (2009). doi:10.1016/j.solmat.2008.12.029
X. Xu, T.P. Ding, L.Y. Yuan, Y.Q. Shen, Q.Z. Zhong, X.H. Zhang, Y.Z. Cao, B. Hu, T. Zhai, L. Gong, J. Chen, Y.X. Tong, J. Zhou, Z.L. Wang, WO3–x/MoO3–x core/shell nanowires on carbon fabric as an anode for all-solid-State asymmetric supercapacitors. Adv. Energy. Mater. 2(11), 1328–1332 (2012). doi:10.1002/aenm.201200380
D.D. Zhu, Y.D. Wang, G.L. Yuan, H. Xia, High-performance supercapacitor electrodes based on hierarchical Ti@MnO2 nanowire arrays. Chem. Commun. 50(22), 2876–2878 (2014). doi:10.1039/c3cc49800j
P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 250–273 (2013). doi:10.5101/nml.v5i4.p260-273
Q.Q. Sun, S.J. Bao, Effects of reaction temperature on microstructure and advanced pseudocapacitor properties of NiO prepared via simple precipitation method. Nano-Micro Lett. 5(4), 289–295 (2013). doi:10.5101/nml.v5i4.p289-295
Z. Yang, R.G. Gao, N.T. Hu, J. Chai, Y.W. Cheng, L.Y. Zhang, H. Wei, E.S.W. Kong, Y.F. Zhang, The prospective 2D graphene nanosheets: preparation, functionalization and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.3786/nml.v4i1.p1-9
D.D. Zhao, Y. Wang, Y.F. Zhang, High-performance Li-ion batteries and supercapacitors base on Prospective 1-D nanomaterials. Nano-Micro Lett. 3(1), 62–71 (2011). doi:10.3786/nml.v3i1.p62-71
Y. Liu, Y. Jiao, Z.L. Zhang, F.Y. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014). doi:10.1021/am405301v
Z.J. Gu, H.Q. Li, T.Y. Zhai, W.S. Yang, Y.Y. Xia, Y. Ma, J.N. Yao, Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. J. Solid. State. Chem. 180(1), 98 (2007). doi:10.1016/j.jssc.2006.09.020
C. Zhou, Y.W. Zhang, Y.Y. Li, J.P. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013). doi:10.1021/nl400378j
F.O. Lucas, A. Mitra, P.J. MacNally, S. Daniels, A.L. Bradley, D.M. Taylor, Y.Y. Proskuryakov, K. Durose, Cameron, Evaluation of the chemical, electronic and optoelectronic properties of γ-CuCl thin films and their fabrication on Si substrates. J. Phys. D: Appl. Phys. 40(11), 3461 (2007). doi:10.1088/0022-3727/40/11/030
M. Niederberger, H. Colfen, Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8(28), 3271 (2006). doi:10.1039/B604589H
M.S.G.A.L. Applegarth, C.R. Corbeil, D.J.W. Mercer, C.C. Pye, P.R. Tremaine, Raman and ab initio investigation of aqueous Cu(I) Chloride complexes from 25 to 80 °C. J. Phy. Chem. B 118(1), 204 (2014). doi:10.1021/jp406580q
C.H. An, Y.J. Wang, Y.P. Wang, G. Liu, L. Li, F.Y. Qiu, Y.N. Xu, L.F. Jiao, H.T. Yuan, Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles. RSC Adv. 3, 4628 (2013). doi:10.1039/C3RA00079F
R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12(5), 2559 (2012). doi:10.1021/nl300779a