A Facile Route for the Large Scale Fabrication of Graphene Oxide Papers and Their Mechanical Enhancement by Cross-linking with Glutaraldehyde
Corresponding Author: Yafei Zhang
Nano-Micro Letters,
Vol. 3 No. 4 (2011), Article Number: 215-222
Abstract
A facile route for the large scale production of graphene oxide (GO) papers and their mechanical enhancement has been presented in this work. The novel paper-like GO made from individual GO sheets in aqueous suspension can be achieved in large scale by a simple drop casting method on hydrophobic substrates. Significant enhancement in mechanical stiffness (341%) and fracture strength (234%) of GO paper have been achieved upon modification with a small amount (less than 10 wt%) of glutaraldehyde (GA). The cross-linking reaction takes place between hydroxyl groups on the surface of GO and aldehyde groups of GA, through forming hemiacetal structure, which can result in distinct mechanical enhancement of the GO papers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849
- C. Lee, X. Wei, J.W. Kysar and J. Hone, Science 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996
- A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano Lett. 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872
- K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, Solid State Commun. 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024
- M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett. 8, 3498 (2008). http://dx.doi.org/10.1021/nl802558y
- Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature 438, 201 (2005). http://dx.doi.org/10.1038/nature04235
- S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Nature 442, 282 (2006). http://dx.doi.org/10.1038/nature04969
- X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science 319, 1229 (2008). http://dx.doi.org/10.1126/science.1150878
- P. Avouris, Z. Chen and V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007). http://dx.doi.org/10.1038/nnano.2007.300
- V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S. Park, R. S. Ruoff and S. K. Manohar, Angew. Chem. Int. Ed. 49, 2154 (2010). http://dx.doi.org/10.1002/anie.200905089
- J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei and P. E. Sheehan, Nano Lett. 8, 3137 (2008). http://dx.doi.org/10.1021/nl8013007
- D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen and R. S. Ruoff, Nature 448, 457 (2007). http://dx.doi.org/10.1038/nature06016
- S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen and R. S. Ruoff, ACS Nano 2, 572 (2008). http://dx.doi.org/10.1021/nn700349a
- S. Park, N. Mohanty, J.W Suk., A. Nagaraja, J. An, R.D. Piner, W. Cai, D. R. Dreyer, V. Berry and R. S. Ruoff, Adv. Mater. 22, 1736 (2010). http://dx.doi.org/10.1002/adma.200903611
- X. Wang, H. Bai, Z. Yao, A. Liu and G. Shi, J. Mater. Chem. 20, 9032 (2010). http://dx.doi.org/10.1039/c0jm01852j
- J. Oh, J. H. Lee, J. C. Koo, H. R. Choi, Y. Lee, T. Kim, N. D. Luong and J. D. Nam, J. Mater. Chem. 20, 9200 (2010). http://dx.doi.org/10.1039/c0jm00107d
- K. S. Novoselov, A. K. Geim, S. V Morozov., D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Crigorieva and A. A. Firsov, Science 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896
- C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. D. Heer, J. Phys. Chem. B 108, 19912 (2004). http://dx.doi.org/10.1021/jp040650f
- A. Dato, V. Radmilovic, Z. Lee, J. Phillips and M. Frenklach, Nano Lett. 8, 2012 (2008). http://dx.doi.org/10.1021/nl8011566
- K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Nature 457, 706 (2009). http://dx.doi.org/10.1038/nature07719
- A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett. 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v
- P. W. Sutter, J. I. Flege and E. A. Sutter, Nat. Mater. 7, 406 (2008). http://dx.doi.org/10.1038/nmat2166
- D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451
- S. Park and R. S. Ruoff, Nat. Nanotechnol. 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58
- S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammers, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034
- V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, Nat. Nanotechnol. 4, 25 (2009). http://dx.doi.org/10.1038/nnano.2008.329
- J. W. Suk, R. D. Piner, J. An and R. S. Ruoff, ACS Nano 4, 6557 (2010). http://dx.doi.org/10.1021/nn101781v
- C. Chen, Q. H. Yang, Y. Yang, W. Lv, Y. Wen, P. X. Hou, M. Wang and H. M. Cheng, Adv. Mater. 21, 3007 (2009). http://dx.doi.org/10.1002/adma.200803726
- Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, J. Am. Chem. Soc. 130, 5856 (2008). http://dx.doi.org/10.1021/ja800745y
- D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451
- H. Q. Chen, M. B. Muller, K. J. Gilmore, G. G. Wallace and D. Li, Adv. Mater. 20, 3557 (2008). http://dx.doi.org/10.1002/adma.200800757
- X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, Nat. Nanotechnol. 3, 538 (2008). http://dx.doi.org/10.1038/nnano.2008.210
- L. J. Cote, F. Kim and J. X. Huang, J. Am. Chem. Soc. 131, 1043 (2009). http://dx.doi.org/10.1021/ja806262m
- G. I. Titelman, V. Gelmana, S. Brona, R. L. Khalfinb, Y. Cohenb and H. Bianco-Peled, Carbon 43, 641 (2005). http://dx.doi.org/10.1016/j.carbon.2004.10.035
- J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo, Chem. Commun. 46, 1112 (2010). http://dx.doi.org/10.1039/b917705a
- N. Hu, H. Zhou, G. Dang, X. Rao, C. Chen and W. Zhang, Polym. Int. 56, 655 (2007). http://dx.doi.org/10.1002/pi.2187
- N. Hu, H. Zhou, G. Dang, C. Chen, J. Jing and W. Zhang, Polym. Int. 57, 927 (2008). http://dx.doi.org/10.1002/pi.2429
- S. W. Chang, V. P. Chuang, S. T. Boles, C. A. Ross and C. V. Thompson, Adv. Funct. Mater. 19, 1 (2009). http://dx.doi.org/10.1002/adfm.200900181
- Y. Kurimoto, M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura, Bioresour. Technol. 74, 151 (2000). http://dx.doi.org/10.1016/S0960-8524(00)00009-2
- S. Niyog, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon and R. C. Haddon, J. Am. Chem. Soc. 128, 7720 (2006). http://dx.doi.org/10.1021/ja060680r
- Y. C. Si and E. T. Samulski, Nano Lett. 8, 1679 (2008). http://dx.doi.org/10.1021/nl080604h
- J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso and J. M. D. Tascon, Langmuir 24, 10560 (2008). http://dx.doi.org/10.1021/la801744a
- P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. D. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy and N. A. Kotov, Science 318, 80 (2007). http://dx.doi.org/10.1126/science.1143176
References
A. K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849
C. Lee, X. Wei, J.W. Kysar and J. Hone, Science 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano Lett. 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872
K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, Solid State Commun. 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024
M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett. 8, 3498 (2008). http://dx.doi.org/10.1021/nl802558y
Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature 438, 201 (2005). http://dx.doi.org/10.1038/nature04235
S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Nature 442, 282 (2006). http://dx.doi.org/10.1038/nature04969
X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science 319, 1229 (2008). http://dx.doi.org/10.1126/science.1150878
P. Avouris, Z. Chen and V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007). http://dx.doi.org/10.1038/nnano.2007.300
V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S. Park, R. S. Ruoff and S. K. Manohar, Angew. Chem. Int. Ed. 49, 2154 (2010). http://dx.doi.org/10.1002/anie.200905089
J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei and P. E. Sheehan, Nano Lett. 8, 3137 (2008). http://dx.doi.org/10.1021/nl8013007
D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen and R. S. Ruoff, Nature 448, 457 (2007). http://dx.doi.org/10.1038/nature06016
S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen and R. S. Ruoff, ACS Nano 2, 572 (2008). http://dx.doi.org/10.1021/nn700349a
S. Park, N. Mohanty, J.W Suk., A. Nagaraja, J. An, R.D. Piner, W. Cai, D. R. Dreyer, V. Berry and R. S. Ruoff, Adv. Mater. 22, 1736 (2010). http://dx.doi.org/10.1002/adma.200903611
X. Wang, H. Bai, Z. Yao, A. Liu and G. Shi, J. Mater. Chem. 20, 9032 (2010). http://dx.doi.org/10.1039/c0jm01852j
J. Oh, J. H. Lee, J. C. Koo, H. R. Choi, Y. Lee, T. Kim, N. D. Luong and J. D. Nam, J. Mater. Chem. 20, 9200 (2010). http://dx.doi.org/10.1039/c0jm00107d
K. S. Novoselov, A. K. Geim, S. V Morozov., D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Crigorieva and A. A. Firsov, Science 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896
C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. D. Heer, J. Phys. Chem. B 108, 19912 (2004). http://dx.doi.org/10.1021/jp040650f
A. Dato, V. Radmilovic, Z. Lee, J. Phillips and M. Frenklach, Nano Lett. 8, 2012 (2008). http://dx.doi.org/10.1021/nl8011566
K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Nature 457, 706 (2009). http://dx.doi.org/10.1038/nature07719
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett. 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v
P. W. Sutter, J. I. Flege and E. A. Sutter, Nat. Mater. 7, 406 (2008). http://dx.doi.org/10.1038/nmat2166
D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451
S. Park and R. S. Ruoff, Nat. Nanotechnol. 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58
S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammers, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034
V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, Nat. Nanotechnol. 4, 25 (2009). http://dx.doi.org/10.1038/nnano.2008.329
J. W. Suk, R. D. Piner, J. An and R. S. Ruoff, ACS Nano 4, 6557 (2010). http://dx.doi.org/10.1021/nn101781v
C. Chen, Q. H. Yang, Y. Yang, W. Lv, Y. Wen, P. X. Hou, M. Wang and H. M. Cheng, Adv. Mater. 21, 3007 (2009). http://dx.doi.org/10.1002/adma.200803726
Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, J. Am. Chem. Soc. 130, 5856 (2008). http://dx.doi.org/10.1021/ja800745y
D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451
H. Q. Chen, M. B. Muller, K. J. Gilmore, G. G. Wallace and D. Li, Adv. Mater. 20, 3557 (2008). http://dx.doi.org/10.1002/adma.200800757
X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, Nat. Nanotechnol. 3, 538 (2008). http://dx.doi.org/10.1038/nnano.2008.210
L. J. Cote, F. Kim and J. X. Huang, J. Am. Chem. Soc. 131, 1043 (2009). http://dx.doi.org/10.1021/ja806262m
G. I. Titelman, V. Gelmana, S. Brona, R. L. Khalfinb, Y. Cohenb and H. Bianco-Peled, Carbon 43, 641 (2005). http://dx.doi.org/10.1016/j.carbon.2004.10.035
J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo, Chem. Commun. 46, 1112 (2010). http://dx.doi.org/10.1039/b917705a
N. Hu, H. Zhou, G. Dang, X. Rao, C. Chen and W. Zhang, Polym. Int. 56, 655 (2007). http://dx.doi.org/10.1002/pi.2187
N. Hu, H. Zhou, G. Dang, C. Chen, J. Jing and W. Zhang, Polym. Int. 57, 927 (2008). http://dx.doi.org/10.1002/pi.2429
S. W. Chang, V. P. Chuang, S. T. Boles, C. A. Ross and C. V. Thompson, Adv. Funct. Mater. 19, 1 (2009). http://dx.doi.org/10.1002/adfm.200900181
Y. Kurimoto, M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura, Bioresour. Technol. 74, 151 (2000). http://dx.doi.org/10.1016/S0960-8524(00)00009-2
S. Niyog, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon and R. C. Haddon, J. Am. Chem. Soc. 128, 7720 (2006). http://dx.doi.org/10.1021/ja060680r
Y. C. Si and E. T. Samulski, Nano Lett. 8, 1679 (2008). http://dx.doi.org/10.1021/nl080604h
J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso and J. M. D. Tascon, Langmuir 24, 10560 (2008). http://dx.doi.org/10.1021/la801744a
P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. D. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy and N. A. Kotov, Science 318, 80 (2007). http://dx.doi.org/10.1126/science.1143176