Strategies for Sustainable Production of Hydrogen Peroxide via Oxygen Reduction Reaction: From Catalyst Design to Device Setup
Corresponding Author: Shanqing Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 122
Abstract
An environmentally benign, sustainable, and cost-effective supply of H2O2 as a rapidly expanding consumption raw material is highly desired for chemical industries, medical treatment, and household disinfection. The electrocatalytic production route via electrochemical oxygen reduction reaction (ORR) offers a sustainable avenue for the on-site production of H2O2 from O2 and H2O. The most crucial and innovative part of such technology lies in the availability of suitable electrocatalysts that promote two-electron (2e–) ORR. In recent years, tremendous progress has been achieved in designing efficient, robust, and cost-effective catalyst materials, including noble metals and their alloys, metal-free carbon-based materials, single-atom catalysts, and molecular catalysts. Meanwhile, innovative cell designs have significantly advanced electrochemical applications at the industrial level. This review summarizes fundamental basics and recent advances in H2O2 production via 2e–-ORR, including catalyst design, mechanistic explorations, theoretical computations, experimental evaluations, and electrochemical cell designs. Perspectives on addressing remaining challenges are also presented with an emphasis on the large-scale synthesis of H2O2 via the electrochemical route.
Highlights:
1 The state-of-the-art development in electrochemical H2O2 production via the two-electron oxygen reduction reaction is reviewed with emphasis on material science, reaction mechanisms, and fundamental factors that govern the reaction route.
2 General principles and strategies for catalyst design are summarized to understand the inherent relationships between the catalyst properties and electrocatalytic performances.
3 Perspectives and challenges are presented to get insights into the large-scale manufacturing of H2O2 via the electrochemical routes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Campos-Martin, G. Blanco-Brieva, J.L. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006). https://doi.org/10.1002/anie.200503779
- Z. Chen, J. Wu, Z. Chen, H. Yang, K. Zou et al., Entropy enhanced perovskite oxide ceramic for efficient electrochemical reduction of oxygen to hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202200086 (2022). https://doi.org/10.1002/anie.202200086
- I. Yamanaka, T. Murayama, Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem. Int. Ed. 47, 1900–1902 (2008). https://doi.org/10.1002/anie.200704431
- J. Tang, T. Zhao, D. Solanki, X. Miao, W. Zhou et al., Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering. Joule 5, 1432–1461 (2021). https://doi.org/10.1016/j.joule.2021.04.012
- L. An, T. Zhao, X. Yan, X. Zhou, P. Tan, The dual role of hydrogen peroxide in fuel cells. Sci. Bull. 60, 55–64 (2015). https://doi.org/10.1007/s11434-014-0694-7
- S. Fukuzumi, Artificial photosynthesis for production of hydrogen peroxide and its fuel cells. Biochim. Biophys. Acta 1857, 604–611 (2016). https://doi.org/10.1016/j.bbabio.2015.08.012
- K. Lee, J. Lim, M.J. Lee, K. Ryu, H. Lee et al., Structure-controlled graphene electrocatalysts for high-performance H2O2 production. Energy Environ. Sci. 15, 2858–2866 (2022). https://doi.org/10.1039/D2EE00548D
- S. Ranganathan, V. Sieber, Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis—a review. Catalysts 8, 379 (2018). https://doi.org/10.3390/catal8090379
- S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida et al., Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013). https://doi.org/10.1038/nmat3795
- Y. Feng, Q. Shao, B. Huang, J. Zhang, X. Huang, Surface engineering at the interface of core/shell nanops promotes hydrogen peroxide generation. Nat. Sci. Rev. 5, 895–906 (2018). https://doi.org/10.1093/nsr/nwy065
- H. Yin, Y. Dou, S. Chen, Z. Zhu, P. Liu et al., 2D electrocatalysts for converting earth-abundant simple molecules into value-added commodity chemicals: recent progress and perspectives. Adv. Mater. 32, 1904870 (2019). https://doi.org/10.1002/adma.201904870
- E. Jung, H. Shin, W. Hooch Antink, Y.E. Sung, T. Hyeon, Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design. ACS Energy Lett. 5, 1881–1892 (2020). https://doi.org/10.1021/acsenergylett.0c00812
- Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
- X. Zhang, Y. Xia, C. Xia, H. Wang, Insights into practical-scale electrochemical H2O2 synthesis. Trends in Chem. 2, 942–953 (2020). https://doi.org/10.1016/j.trechm.2020.07.007
- S.C. Perry, S. Mavrikis, L. Wang, C. Ponce de León, Future perspectives for the advancement of electrochemical hydrogen peroxide production. Curr. Opin. Electrochem 30, 100792 (2021). https://doi.org/10.1016/j.coelec.2021.100792
- X. Shi, S. Back, T.M. Gill, S. Siahrostami, X. Zheng, Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem 7, 38–63 (2020). https://doi.org/10.1016/j.chempr.2020.09.013
- Y.Y. Jiang, P.J. Ni, C.X. Chen, Y.Z. Lu, P. Yang, B. Kong, A. Fisher, X. Wang, Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 8, 1801909 (2018). https://doi.org/10.1002/aenm.201801909
- X. Yang, Y. Zeng, W. Alnoush, Y. Hou, D. Higgins, G. Wu, Tuning two-electron oxygen-reduction pathways for H2O2 electrosynthesis via engineering atomically dispersed single metal site catalysts. Adv. Mater. 9, 2107954 (2022). https://doi.org/10.1002/adma.202107954
- Y. Sun, L. Han, P. Strasser, A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 49, 6605–6631 (2020). https://doi.org/10.1039/D0CS00458H
- S.C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber, L. Wang, C. Ponce de León, F.C. Walsh, Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019). https://doi.org/10.1038/s41570-019-0110-6
- C. Xia, J.Y. Kim, H. Wang, Recommended practice to report selectivity in electrochemical synthesis of H2O2. Nat. Catal. 3, 605–607 (2020). https://doi.org/10.1038/s41929-020-0486-1
- M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). https://doi.org/10.1038/nature11115
- Q. Zhao, Z. Yan, C. Chen, J. Chen, Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117, 10121–10211 (2017). https://doi.org/10.1021/acs.chemrev.7b00051
- X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang et al., Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5, 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
- E. Davari, D.G. Ivey, Bifunctional electrocatalysts for Zn–air batteries. Sustain. Energy Fuels 2, 39–67 (2018). https://doi.org/10.1039/C7SE00413C
- M.M. Montemore, M.A. van Spronsen, R.J. Madix, C.M. Friend, O2 Activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 118, 2816–2862 (2018). https://doi.org/10.1021/acs.chemrev.7b00217
- A.K. Fajrial, A.G. Saputro, M.K. Agusta, F. Rusydi, A. Nugraha, H.K. Dipojono, First principles study of oxygen molecule interaction with the graphitic active sites of a boron-doped pyrolyzed Fe-N-C catalyst. Phys. Chem. Chem. Phys. 19, 23497–23504 (2017). https://doi.org/10.1039/C7CP02390A
- S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić, R. Frydendal et al., Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018). https://doi.org/10.1021/acscatal.8b00217
- A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
- J. Zhang, H. Zhang, M.J. Cheng, Q. Lu, Tailoring the electrochemical production of H2O2: strategies for the rational design of high-performance electrocatalysts. Small 16, 1902845 (2019). https://doi.org/10.1002/smll.201902845
- W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Earth-abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 55, 2650–2676 (2016). https://doi.org/10.1002/anie.201504830
- H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
- J.J. Gao, H.B. Yang, X. Huang, S.F. Hung, W.Z. Cai et al., Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 6, 658–674 (2020). https://doi.org/10.1016/j.chempr.2019.12.008
- T.M. Gill, X. Zheng, Comparing methods for quantifying electrochemically accumulated H2O2. Chem. Mater. 32, 6285–6294 (2020). https://doi.org/10.1021/acs.chemmater.0c02010
- H. Sheng, E.D. Hermes, X. Yang, D. Ying, A.N. Janes et al., Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 9, 8433–8442 (2019). https://doi.org/10.1021/acscatal.9b02546
- G.F. Han, F. Li, W. Zou, M. Karamad, J.P. Jeon et al., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 11, 2209 (2020). https://doi.org/10.1038/s41467-020-15782-z
- S. Siahrostami, S.J. Villegas, A.H. Bagherzadeh Mostaghimi, S. Back, A.B. Farimani et al., A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 10, 7495–7511 (2020). https://doi.org/10.1021/acscatal.0c01641
- R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang et al., A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput. Mater. 5, 78 (2019). https://doi.org/10.1038/s41524-019-0210-3
- M.T.M. Koper, Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710 (2013). https://doi.org/10.1039/C3SC50205H
- M. Busch, N.B. Halck, U.I. Kramm, S. Siahrostami, P. Krtil et al., Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29, 126–135 (2016). https://doi.org/10.1016/j.nanoen.2016.04.011
- X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen et al., Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: the power of single-atom catalysts. ACS Catal. 9, 11042–11054 (2019). https://doi.org/10.1021/acscatal.9b02778
- Y. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst et al., Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ. Sci. 12, 250–260 (2019). https://doi.org/10.1039/C8EE02694G
- X. Du, J. Huang, J. Zhang, Y. Yan, C. Wu et al., Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem. Int. Ed. 58, 4484–4502 (2019). https://doi.org/10.1002/anie.201810104
- M. Kuang, P. Han, L. Huang, N. Cao, L. Qian et al., Electronic Tuning of Co, Ni-based nanostructured (hydr)oxides for aqueous electrocatalysis. Adv. Funct. Mater. 28, 1804886 (2018). https://doi.org/10.1002/adfm.201804886
- Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). https://doi.org/10.1039/C4CS00470A
- T. Ricciardulli, S. Gorthy, J.S. Adams, C. Thompson, A.M. Karim et al., Effect of Pd coordination and isolation on the catalytic reduction of O2 to H2O2 over PdAu bimetallic nanops. J. Am. Chem. Soc. 143, 5545–5464 (2021). https://doi.org/10.1021/jacs.1c00539
- J. Gao, B. Liu, Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Mater. Lett. 2, 1008–1024 (2020). https://doi.org/10.1021/acsmaterialslett.0c00189
- J.S. Jirkovsky, M. Halasa, D.J. Schiffrin, Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanops. Phys. Chem. Chem. Phys. 12, 8042–8052 (2010). https://doi.org/10.1039/C002416C
- D.C. Ford, A.U. Nilekar, Y. Xu, M. Mavrikakis, Partial and complete reduction of O2 by hydrogen on transition metal surfaces. Surf. Sci. 604, 1565–1575 (2010). https://doi.org/10.1016/j.susc.2010.05.026
- R.R. Adžić, A.V. Tripković, N.M. Marković, Structural effects in electrocatalysis: oxidation of formic acid and oxygen reduction on single-crystal electrodes and the effects of foreign metal adatoms. J. Electroanal. Chem. 150, 79–88 (1983). https://doi.org/10.1016/S0022-0728(83)80192-2
- Q. Chang, P. Zhang, A.H.B. Mostaghimi, X. Zhao, S.R. Denny, Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 11, 2178 (2020). https://doi.org/10.1038/s41467-020-15843-3
- C.H. Choi, H.C. Kwon, S. Yook, H. Shin, H. Kim et al., Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 118, 30063–30070 (2014). https://doi.org/10.1021/jp5113894
- Y.L. Wang, S. Gurses, N. Felvey, A. Boubnov, S.S. Mao et al., In situ deposition of Pd during oxygen reduction yields highly selective and active electrocatalysts for direct H2O2 production. ACS Catal. 9, 8453–8463 (2019). https://doi.org/10.1021/acscatal.9b01758
- S. Yang, Y.J. Tak, J. Kim, A. Soon, H. Lee, Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 7, 1301–1307 (2017). https://doi.org/10.1021/acscatal.6b02899
- E. Pizzutilo, O. Kasian, C.H. Choi, S. Cherevko, G.J. Hutchings et al., Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanops: From fundamentals to continuous production. Chem. Phys. Lett. 683, 436–442 (2017). https://doi.org/10.1016/j.cplett.2017.01.071
- H. Li, P. Wen, D.S. Itanze, Z.D. Hood, S. Adhikari et al., Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nat. Commun. 11, 3928 (2020). https://doi.org/10.1038/s41467-020-17584-9
- C. Yang, S. Bai, Z. Yu, Y. Feng, B. Huang et al., A newly-explored Pd-based nanocrystal for the pH-universal electrosynthesis of H2O2. Nano Energy 89, 106480 (2021). https://doi.org/10.1016/j.nanoen.2021.106480
- I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. 53, 102–121 (2014). https://doi.org/10.1002/anie.201306588
- H. Yang, S. Kumar, S. Zou, Electroreduction of O2 on uniform arrays of Pt nanops. J. Electroanal. Chem. 688, 180–188 (2013). https://doi.org/10.1016/j.jelechem.2012.08.030
- M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanops: p size effect on oxygen reduction reaction activity. Nano Lett. 11, 3714–3719 (2011). https://doi.org/10.1021/nl2017459
- E. Fabbri, S. Taylor, A. Rabis, P. Levecque, O. Conrad et al., The effect of platinum nanop distribution on oxygen electroreduction activity and selectivity. ChemCatChem 6, 1410–1418 (2014). https://doi.org/10.1002/cctc.201300987
- S. Taylor, E. Fabbri, P. Levecque, T.J. Schmidt, O. Conrad, The effect of platinum loading and surface morphology on oxygen reduction activity. Electrocatalysis 7, 287–296 (2016). https://doi.org/10.1007/s12678-016-0304-3
- G.V. Fortunato, E. Pizzutilo, A.M. Mingers, O. Kasian, S. Cherevko et al., Impact of palladium loading and interp distance on the selectivity for the oxygen reduction reaction toward hydrogen peroxide. J. Phys. Chem. C 122, 15878–15885 (2018). https://doi.org/10.1021/acs.jpcc.8b04262
- C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
- J.M. Thomas, R. Raja, D.W. Lewis, Single-site heterogeneous catalysts. Angew. Chem. Int. Ed. 44, 6456–6482 (2005). https://doi.org/10.1002/anie.200462473
- J. Liu, Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2016). https://doi.org/10.1021/acscatal.6b01534
- S. Shin, J. Kim, S. Park, H. Kim, T. Sung et al., Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. Chem. Commun. 55, 6389-6392 (2019). https://doi.org/10.1039/C9CC01593K
- M. Ledendecker, E. Pizzutilo, G. Malta, G.V. Fortunato, K.J.J. Mayrhofer et al., Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis. ACS Catal. 10, 5928–5938 (2020). https://doi.org/10.1021/acscatal.0c01305
- J.H. Kim, D. Shin, J. Lee, D.S. Baek, T.J. Shin et al., A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano 14, 1990–2001 (2020). https://doi.org/10.1021/acsnano.9b08494
- S.K. Sahoo, Y. Ye, S. Lee, J. Park, H. Lee et al., Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions. ACS Energy Lett. 4, 126–132 (2018). https://doi.org/10.1021/acsenergylett.8b01942
- R. Shen, W. Chen, Q. Peng, S. Lu, L. Zheng et al., High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 5, 2099–2110 (2019). https://doi.org/10.1016/j.chempr.2019.04.024
- R.T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020). https://doi.org/10.1021/acs.chemrev.0c00078
- A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida et al., Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014). https://doi.org/10.1021/jacs.9b05576
- R.M. Félix-Navarro, M. Beltrán-Gastélum, E.A. Reynoso-Soto, F. Paraguay-Delgado, G. Alonso-Nuñez, Bimetallic Pt–Au nanops supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction. Renew. Energy 87, 31–41 (2016). https://doi.org/10.1016/j.renene.2015.09.060
- X. Zhao, H. Yang, J. Xu, T. Cheng, Y. Li, Bimetallic PdAu nanoframes for electrochemical H2O2 production in acids. ACS Mater. Lett. 3, 996–1002 (2021). https://doi.org/10.1021/acsmaterialslett.1c00263
- Z. Zheng, Y.H. Ng, D.W. Wang, R. Amal, Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 28, 9949–9955 (2016). https://doi.org/10.1002/adma.201603662
- W. Qian, S. Xu, X. Zhang, C. Li, W. Yang, C.R. Bowen, Y. Yang, Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 (2021). https://doi.org/10.1007/s40820-021-00681-9
- J. Huang, J. Chen, C. Fu, P. Cai, Y. Li et al., 2D Hybrid of Ni-LDH chips on carbon nanosheets as cathode of zinc-air battery for electrocatalytic conversion of O2 into H2O2. Chemsuschem 13, 1496–1503 (2019). https://doi.org/10.1002/cssc.201902429
- H. Sheng, A.N. Janes, R.D. Ross, D. Kaiman, J. Huang et al., Stable and selective electrosynthesis of hydrogen peroxide and the electro-fenton process on CoSe2 polymorph catalysts. Energy Environ. Sci. 13, 4189–4203 (2020). https://doi.org/10.1039/D0EE01925A
- J. Liang, Y. Wang, Q. Liu, Y. Luo, T. Li et al., Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. J. Mater. Chem. A 9, 6117–6122 (2021). https://doi.org/10.1039/D0TA12008A
- F. Xia, B. Li, Y. Liu, Y. Liu, S. Gao, K. Lu et al., Carbon free and noble metal free Ni2Mo6S8 electrocatalyst for selective electrosynthesis of H2O2. Adv. Funct. Mater. 31, 2104716 (2021). https://doi.org/10.1002/adfm.202104716
- Y. Ji, Y. Liu, B.W. Zhang, Z. Xu, X. Qi et al., Morphology engineering of atomic layer defect-rich CoSe2 nanosheets for highly selective electrosynthesis of hydrogen peroxide. J. Mater. Chem. A 9, 21340–21346 (2021). https://doi.org/10.1039/D1TA05731F
- M.R. Gao, X.L. Zhang, X. Su, Y.R. Zheng, S.J. Hu et al., Strongly coupled cobalt diselenide monolayers selectively catalyze oxygen reduction to H2O2 in an acidic environment. Angew. Chem. Int. Ed. 60, 26922–26931 (2021). https://doi.org/10.1002/anie.202111075
- X. Zhao, Y. Wang, Y. Da, X. Wang, T. Wang et al., Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. Nat. Sci. Rev. 7, 1360–1366 (2020). https://doi.org/10.1093/nsr/nwaa084
- Y. Wang, Y. Zhou, Y. Feng, X.Y. Yu, Synergistic electronic and pore structure modulation in open carbon nanocages enabling efficient electrocatalytic production of H2O2 in acidic medium. Adv. Funct. Mater 32, 2110734 (2022). https://doi.org/10.1002/adfm.202110734
- X. Han, G. He, Y. He, J. Zhang, X. Zheng et al., Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 8, 1702222 (2017). https://doi.org/10.1002/aenm.201702222
- D. Yuan, Y. Dou, Z. Wu, Y. Tian et al., Atomically thin materials for next-generation rechargeable batteries. Chem. Rev. 122, 957–999 (2021). https://doi.org/10.1021/acs.chemrev.1c00636
- Z. Zhou, Y. Kong, H. Tan, Q. Huang, C. Wang et al., Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Adv. Mater. 34, 2106541 (2022). https://doi.org/10.1002/adma.202106541
- Z. Xu, J. Liang, Y. Wang, K. Dong, X. Shi et al., Enhanced electrochemical H2O2 production via two-electron oxygen reduction enabled by surface-derived amorphous oxygen-deficient TiO2-x. ACS Appl. Mater. Interfaces 13, 33182–33187 (2021). https://doi.org/10.1021/acsami.1c09871
- K. Dong, J. Liang, Y. Wang, Y. Ren, Z. Xu et al., Plasma-induced defective TiO2-x with oxygen vacancies: a high-active and robust bifunctional catalyst toward H2O2 electrosynthesis. Chem. Catal. 1, 1437–1448 (2021). https://doi.org/10.1016/j.checat.2021.10.011
- L. Yan, X. Cheng, Y. Wang, Z. Wang, L. Zheng et al., Exsolved Co3O4 with tunable oxygen vacancies for electrocatalytic H2O2 production. Mater. Today Energy 24, 100931 (2022). https://doi.org/10.1016/j.mtener.2021.100931
- R. Gao, L. Pan, Z. Li, C. Shi, Y. Yao et al., Engineering facets and oxygen vacancies over hematite single crystal for intensified electrocatalytic H2O2 production. Adv. Funct. Mater. 30, 1910539 (2020). https://doi.org/10.1002/adfm.201910539
- R.D. Ross, H. Sheng, A. Parihar, J. Huang, S. Jin, Compositionally tuned trimetallic thiospinel catalysts for enhanced electrosynthesis of hydrogen peroxide and built-in hydroxyl radical generation. ACS Catal. 11, 12643–12650 (2021). https://doi.org/10.1021/acscatal.1c03349
- C. Liu, H. Li, J. Chen, Z. Yu, Q. Ru et al., 3d Transition-metal-mediated columbite nanocatalysts for decentralized electrosynthesis of hydrogen peroxide. Small 17, 2007249 (2021). https://doi.org/10.1002/smll.202007249
- Y. Zheng, X. Xu, J. Chen, Q. Wang, Surface O2- regulation on POM electrocatalyst to achieve accurate 2e/4e-ORR control for H2O2 production and Zn-air battery assemble. Appl. Catal. B: Environ 285, 119788 (2020). https://doi.org/10.1016/j.apcatb.2020.119788
- Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn–air batteries. Nano-Micro Lett. 13, 3 (2020). https://doi.org/10.1007/s40820-020-00526-x
- Y. Tian, Z. Wu, M. Li, Q. Sun, H. Chen et al., Atomic modulation and structure design of Fe−N4 modified hollow carbon fibers with encapsulated Ni nanops for rechargeable Zn–air batteries. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202209273
- J. Masa, W. Xia, M. Muhler, W. Schuhmann, On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 54, 10102–10120 (2015). https://doi.org/10.1002/anie.201500569
- D. Deng, L. Yu, X. Chen, G. Wang, L. Jin et al., Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 371–375 (2013). https://doi.org/10.1002/anie.201204958
- J. Deng, P. Ren, D. Deng, X. Bao, Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 2100–2104 (2015). https://doi.org/10.1002/anie.201409524
- H. Shen, L. Pan, T. Thomas, J. Wang, X. Guo, Selective and continuous electrosynthesis of hydrogen peroxide on nitrogen-doped carbon supported nickel. Cell Rep. Phys. Sci. 1, 100255 (2020). https://doi.org/10.1016/j.xcrp.2020.100255
- Z. Wang, C. Zhu, H. Tan, J. Liu, L. Xu et al., Understanding the synergistic effects of cobalt single atoms and small nanops: enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries. Adv. Funct. Mater. 31, 2104735 (2021). https://doi.org/10.1002/adfm.202104735
- A. Byeon, J. Cho, J.M. Kim, K.H. Chae, H.Y. Park et al., High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts. Nanoscale Horiz. 5, 832–838 (2020). https://doi.org/10.1039/C9NH00783K
- D. Liu, K. Ni, J. Ye, J. Xie, Y. Zhu et al., Tailoring the structure of carbon nanomaterials toward high-end energy applications. Adv. Mater. 30, 1802104 (2018). https://doi.org/10.1002/adma.201802104
- L. Yang, J. Shui, L. Du, Y. Shao, J. Liu et al., Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv. Mater. 31, 1804799 (2019). https://doi.org/10.1002/adma.201804799
- J. Zhang, Z. Xia, L. Dai, Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. (2015). https://doi.org/10.1126/sciadv.1500564
- M.H.M.T. Assumpção, R.F.B. De Souza, D.C. Rascio, J.C.M. Silva, M.L. Calegaro et al., A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon 49, 2842–2851 (2011). https://doi.org/10.1016/j.carbon.2011.03.014
- B. Zhang, W. Xu, Z. Lu, J. Sun, Recent progress on carbonaceous material engineering for electrochemical hydrogen peroxide generation. Trans. Tianjin Univ. 26, 188–196 (2020). https://doi.org/10.1007/s12209-020-00240-0
- X. Liu, L.M. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016). https://doi.org/10.1038/natrevmats.2016.64
- L.M. Dai, Y.H. Xue, L.T. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115, 4823–4892 (2015). https://doi.org/10.1021/cr5003563
- C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou et al., Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28, 6845–6851 (2016). https://doi.org/10.1002/adma.201601406
- D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016). https://doi.org/10.1126/science.aad0832
- L. Li, C. Tang, Y. Zheng, B. Xia, X. Zhou et al., Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon. Adv. Energy Mater. 10, 2000789 (2020). https://doi.org/10.1002/aenm.202000789
- D. Iglesias, A. Giuliani, M. Melchionna, S. Marchesan, A. Criado et al., N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4, 106–123 (2018). https://doi.org/10.1016/j.chempr.2017.10.013
- S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund et al., Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 140, 7851–7859 (2018). https://doi.org/10.1021/jacs.8b02798
- Y. Xia, X. Zhao, C. Xia, Z.Y. Wu, P. Zhu et al., Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 4225 (2021). https://doi.org/10.1038/s41467-021-24329-9
- S. Chen, T. Luo, K. Chen, Y. Lin, J. Fu et al., Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem. Int. Ed. 60, 16607–16614 (2021). https://doi.org/10.1002/anie.202104480
- X. Xu, D. Kong, J. Liang, Y. Gao, Q. Yang et al., Bottom-up construction of microporous catalyst with identical active sites for efficient hydrogen peroxide production. Carbon 171, 931–937 (2021). https://doi.org/10.1016/j.carbon.2020.09.080
- K. Zhao, Y. Su, X. Quan, Y. Liu, S. Chen et al., Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 357, 118–126 (2018). https://doi.org/10.1016/j.jcat.2017.11.008
- G. Chen, J. Liu, Q. Li, P. Guan, X. Yu et al., A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 12, 2614–2622 (2019). https://doi.org/10.1007/s12274-019-2496-3
- Y. Xia, H. Shang, Q. Zhang, Y. Zhou, X. Hu, Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton. J. Electroanal. Chem. 840, 400–408 (2019). https://doi.org/10.1016/j.jelechem.2019.04.009
- S.Y. Wang, E. Iyyamperumal, A. Roy, Y.H. Xue, D.S. Yu et al., Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. Angew. Chem. Int. Ed. 50, 11756–11760 (2011). https://doi.org/10.1002/anie.201105204
- Q. Shi, F. Peng, S. Liao, H. Wang, H. Yu et al., Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. J. Mater. Chem. A 1, 14853–14857 (2013). https://doi.org/10.1039/C3TA12647A
- N. Jia, T. Yang, S. Shi, X. Chen, Z. An et al., N, F Co-doped carbon nanocages: an efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions. ACS Sustain. Chem. Eng. 8, 2883–2891 (2020). https://doi.org/10.1021/acssuschemeng.9b07047
- V. Perazzolo, C. Durante, R. Pilot, A. Paduano, J. Zheng et al., Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 95, 949–963 (2015). https://doi.org/10.1016/j.carbon.2015.09.002
- E. Chen, M. Bevilacqua, C. Tavagnacco, T. Montini, C.M. Yang et al., High surface area N/O co-doped carbon materials: selective electrocatalysts for O2 reduction to H2O2. Catal. Today 356, 132–140 (2019). https://doi.org/10.1016/j.cattod.2019.06.034
- M. Qin, S. Fan, L. Wang, G. Gan, X. Wang, J. Cheng, Z. Hao, X. Li, Oxygen and nitrogen co-doped ordered mesoporous carbon materials enhanced the electrochemical selectivity of O2 reduction to H2O2. J. Colloid. Interface Sci. 562, 540–549 (2020). https://doi.org/10.1016/j.jcis.2019.11.080
- Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu et al., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018). https://doi.org/10.1038/s41929-017-0017-x
- X. Tan, H.A. Tahini, S.C. Smith, Understanding the high activity of mildly reduced graphene oxide electrocatalysts in oxygen reduction to hydrogen peroxide. Mater. Horiz. 6, 1409–1415 (2019). https://doi.org/10.1039/C9MH00066F
- J. Zhu, X. Xiao, K. Zheng, F. Li, G. Ma et al., KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction. Carbon 153, 6–11 (2019). https://doi.org/10.1016/j.carbon.2019.07.009
- Y.L. Wang, S.S. Li, X.H. Yang, G.Y. Xu, Z.C. Zhu et al., One minute from pristine carbon to an electrocatalyst for hydrogen peroxide production. J. Mater. Chem. A 7, 21329–21337 (2019). https://doi.org/10.1039/C9TA04788C
- D. San Roman, D. Krishnamurthy, R. Garg, H. Hafiz, M. Lamparski et al., Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis. ACS Catal. 10, 1993–2008 (2020). https://doi.org/10.1021/acscatal.9b03919
- D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
- S. Chen, Z. Chen, S. Siahrostami, T.R. Kim, D. Nordlund et al., Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustain. Chem. Eng. 6, 311–317 (2017). https://doi.org/10.1021/acssuschemeng.7b02517
- Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu et al., Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 5, 6707–6712 (2015). https://doi.org/10.1021/acscatal.5b01835
- C. Xie, D. Yan, W. Chen, Y. Zou, R. Chen et al., Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Materialstoday 31, 47–68 (2019). https://doi.org/10.1016/j.mattod.2019.05.021
- Q. Wang, Y. Lei, D. Wang, Y. Li, Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12, 1–3 (2019). https://doi.org/10.1039/C8EE03781G
- Z. Wang, Q.K. Li, C. Zhang, Z. Cheng, W. Chen et al., Hydrogen peroxide generation with 100% faradaic efficiency on metal-free carbon black. ACS Catal. 11, 2454–2459 (2021). https://doi.org/10.1021/acscatal.0c04735
- Y.J. Sa, J.H. Kim, S.H. Joo, Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 58, 1100–1105 (2019). https://doi.org/10.1002/anie.201812435
- J.S. Lim, J.H. Kim, J. Woo, D.S. Baek, K. Ihm et al., Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. Chem 7, 3114–3130 (2021). https://doi.org/10.1016/j.chempr.2021.08.007
- C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv. Mater. 29, 1604103 (2017). https://doi.org/10.1002/adma.201604103
- X. Wu, C. Tang, Y. Cheng, X. Min, S.P. Jiang et al., Bifunctional catalysts for reversible oxygen evolution reaction and oxygen reduction reaction. Chem. Eur. J. 26, 3906–3929 (2020). https://doi.org/10.1002/chem.201905346
- J.Y. Zhang, C. Xia, H.F. Wang, C. Tang, Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J. Energy Chem. 67, 432–450 (2022). https://doi.org/10.1016/j.jechem.2021.10.013
- B. Huang, Y. Cui, R. Hu, J. Huang, L. Guan, Promoting the two-electron oxygen reduction reaction performance of carbon nanospheres by pore engineering. ACS Appl. Energy Mater. 4, 4620–4629 (2021). https://doi.org/10.1021/acsaem.1c00259
- Y. Jiang, Y.P. Deng, R. Liang, J. Fu, R. Gao et al., d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 11, 5858 (2020). https://doi.org/10.1038/s41467-020-19709-6
- J. Park, Y. Nabae, T. Hayakawa, M.-A. Kakimoto, Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 4, 3749–3754 (2014). https://doi.org/10.1021/cs5008206
- Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015). https://doi.org/10.1002/anie.201502396
- V. Čolić, S. Yang, Z. Révay, I.E.L. Stephens, I. Chorkendorff, Carbon catalysts for electrochemical hydrogen peroxide production in acidic media. Electrochim. Acta 272, 192–202 (2018). https://doi.org/10.1016/j.electacta.2018.03.170
- Y. Peng, B. Lu, S. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30, 1801995 (2018). https://doi.org/10.1002/adma.201801995
- B. Bayatsarmadi, Y. Zheng, A. Vasileff, S.Z. Qiao, Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 13, 1700191 (2017). https://doi.org/10.1002/smll.201700191
- Y. Deng, J. Luo, B. Chi, H. Tang, J. Li et al., Advanced atomically dispersed metal–nitrogen–carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv. Energy Mater. 11, 2101222 (2021). https://doi.org/10.1002/aenm.202101222
- Y. Zhu, J. Sokolowski, X. Song, Y. He, Y. Mei et al., Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 10, 1902844 (2019). https://doi.org/10.1002/aenm.201902844
- Y. Sun, L. Silvioli, N.R. Sahraie, W. Ju, J. Li et al., Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 141, 12372–12381 (2019). https://doi.org/10.1021/jacs.9b05576
- C. Liu, H. Li, F. Liu, J. Chen, Z. Yu et al., Intrinsic activity of metal centers in metal-nitrogen-carbon single-atom catalysts for hydrogen peroxide synthesis. J. Am. Chem. Soc. 142, 21861–21871 (2020). https://doi.org/10.1021/jacs.0c10636
- J. Zhang, H. Yang, J. Gao, S. Xi, W. Cai et al., Design of hierarchical, three-dimensional free-standing single-atom electrode for H2O2 production in acidic media. Carbon Energy 2, 276–282 (2020). https://doi.org/10.1002/cey2.33
- C. Tang, L. Chen, H. Li, L. Li, Y. Jiao et al., Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–1827 (2021). https://doi.org/10.1021/jacs.1c03135
- D. Ji, L. Fan, L. Li, S. Peng, D. Yu et al., Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 31, 1808267 (2019). https://doi.org/10.1002/adma.201808267
- Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland et al., Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9, 12496–12505 (2015). https://doi.org/10.1021/acsnano.5b05984
- Q. Zhao, Y. Wang, W.H. Lai, F. Xiao, Y. Lyu et al., Approaching a high-rate and sustainable production of hydrogen peroxide: oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 14, 5444–5456 (2021). https://doi.org/10.1039/D1EE00878A
- S. Chen, T. Luo, X. Li, K. Chen, J. Fu, Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 144, 14505–14516 (2022). https://doi.org/10.1021/jacs.2c01194
- Y. Tian, M. Li, Z. Wu, Q. Sun, D. Yuan et al., Edge-hosted atomic Co-N4 sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction. Angew. Chem. Int. Ed. 61, 202213296 (2022). https://doi.org/10.1002/anie.202213296
- L. Li, B. Huang, X. Tang, Y. Hong, W. Zhai et al., Recent developments of microenvironment engineering of single-atom catalysts for oxygen reduction toward desired activity and selectivity. Adv. Funct. Mater. 31, 2103857 (2022). https://doi.org/10.1002/adfm.202103857
- X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li, J. Zhang, Y. Han, Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
- C. Tang, Y. Jiao, B. Shi, J.N. Liu, Z. Xie et al., Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem. Int. Ed. 132, 9256–9261 (2020). https://doi.org/10.1002/ange.202003842
- Y. Wang, R. Shi, L. Shang, G.I.N. Waterhouse, J. Zhao et al., High-efficiency oxygen reduction to hydrogen peroxide catalyzed by Ni single atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem. Int. Ed. 59, 13057–13062 (2020). https://doi.org/10.1002/anie.202004841
- E. Jung, H. Shin, B.H. Lee, V. Efremov, S. Lee et al., Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020). https://doi.org/10.1038/s41563-019-0571-5
- T. Wang, X. Cao, H. Qin, L. Shang, S. Zheng et al., P-Block atomically dispersed antimony catalyst for highly efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 21237–21241 (2021). https://doi.org/10.1002/anie.202108599
- E. Zhang, L. Tao, J. An, J. Zhang, L. Meng et al., Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem. Int. Ed. 61, 202117347 (2022). https://doi.org/10.1002/anie.202117347
- Q. Yang, W. Xu, S. Gong, G. Zheng, Z. Tian et al., Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts. Nat. Commun. 11, 5478 (2020). https://doi.org/10.1038/s41467-020-19309-4
- F. Zhang, Y. Zhu, C. Tang, Y. Chen, B. Qian et al., High-efficiency electrosynthesis of hydrogen peroxide from oxygen reduction enabled by a tungsten single atom catalyst with unique terdentate N1O2 coordination. Adv. Funct. Mater. 32, 2110224 (2021). https://doi.org/10.1002/adfm.202110224
- Q. Zhang, X. Tan, N.M. Bedford, Z. Han, L. Thomsen, Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 11, 4181 (2020). https://doi.org/10.1038/s41467-020-17782-5
- B.Q. Li, C.X. Zhao, J.N. Liu, Q. Zhang, Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C Sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 31, 1808173 (2019). https://doi.org/10.1002/adma.201808173
- X. Yang, D. Xia, Y. Kang, H. Du, F. Kang et al., Unveiling the axial hydroxyl ligand on Fe-N4-C electrocatalysts and its impact on the pH-dependent oxygen reduction activities and poisoning kinetics. Adv. Sci. 7, 2000176 (2020). https://doi.org/10.1002/advs.202000176
- Y. Wang, Y.J. Tang, K. Zhou, Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 141(36), 14115–14119 (2019). https://doi.org/10.1021/jacs.9b07712
- F. Wu, C. Pan, C.T. He, Y. Han, W. Ma et al., Single-atom Co-N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 142, 16861–16867 (2020). https://doi.org/10.1021/jacs.0c07790
- H. Zhang, G. Liu, L. Shi, J. Ye, Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018). https://doi.org/10.1002/aenm.201701343
- J. Liu, X. Wan, S. Liu, X. Liu, L. Zheng, Hydrogen passivation of M-N-C (M = Fe, Co) catalysts for storage stability and ORR activity improvements. Adv. Mater. 33, 2103600 (2021). https://doi.org/10.1002/adma.202103600
- J. Yang, W. Liu, M. Xu, X. Liu, H. Qi et al., Dynamic behavior of single-atom catalysts in electrocatalysis: identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 143, 14530–14539 (2021). https://doi.org/10.1021/jacs.1c03788
- W. Zhang, W. Lai, R. Cao, Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 117, 3717–3797 (2017). https://doi.org/10.1021/acs.chemrev.6b00299
- Y. Wang, G.I.N. Waterhouse, L. Shang, T. Zhang, Electrocatalytic oxygen reduction to hydrogen peroxide: from homogenous to heterogenous electrocatalysis. Adv. Energy Mater. 11, 2003323 (2020). https://doi.org/10.1002/aenm.202003323
- Y.H. Wang, P.E. Schneider, Z.K. Goldsmith, B. Mondal, S. Hammes-Schiffer et al., Bronsted acid scaling relationships enable control over product selectivity from O2 reduction with a mononuclear cobalt porphyrin catalyst. ACS Cent. Sci. 5, 1024–1034 (2019). https://doi.org/10.1021/acscentsci.9b00194
- J. Zagal, M. Páez, A.A. Tanaka, J.R. dos Santos, C.A. Linkous, Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J. Electroanal. Chem. 339, 13–30 (1992). https://doi.org/10.1016/0022-0728(92)80442-7
- S. Yuan, J. Peng, Y. Zhang, D.J. Zheng, S. Bagi et al., Tuning the catalytic activity of Fe-phthalocyanine-based catalysts for the oxygen reduction reaction by ligand functionalization. ACS Catal. 12, 7278–7287 (2022). https://doi.org/10.1021/acscatal.2c00184
- T. Sawaguchi, T. Matsue, K. Itaya, I. Uchida, Electrochemical catalytic reduction of molecular oxygen by iron porphyrin ion-complex modified electrode. Electrochim. Acta 36, 703–708 (1991). https://doi.org/10.1016/0013-4686(91)85161-Y
- A. Bettelheim, T. Kuwana, Rotating-ring-disk analysis of iron tetra(N-methylpyridyl)porphyrin in electrocatalysis of oxygen. Anal. Chem. 51, 2257–2260 (1979). https://doi.org/10.1021/ac50049a046
- Y. Wang, Z. Zhang, X. Zhang, Y. Yuan, Z. Jiang et al., Theory-driven design of electrocatalysts for the two-electron oxygen reduction reaction based on dispersed metal phthalocyanines. CCS. Chem. 4, 228–236 (2022). https://doi.org/10.31635/ccschem.021.202000590
- S. Fukuzumi, L. Tahsini, Y.M. Lee, K. Ohkubo, W. Nam, Factors that control catalytic two- versus four-electron reduction of dioxygen by copper complexes. J. Am. Chem. Soc. 134, 7025–7035 (2012). https://doi.org/10.1021/ja211656g
- M. Gennari, D. Brazzolotto, J. Pecaut, M.V. Cherrier, C.J. Pollock et al., Dioxygen activation and catalytic reduction to hydrogen peroxide by a thiolate-bridged dimanganese(ii) complex with a pendant thiol. J. Am. Chem. Soc. 137, 8644–8653 (2015). https://doi.org/10.1021/jacs.5b04917
- S.L. Hooe, A.L. Rheingold, C.W. Machan, Electrocatalytic reduction of dioxygen to hydrogen peroxide by a molecular manganese complex with a bipyridine-containing schiff base ligand. J. Am. Chem. Soc. 140, 3232–3241 (2018). https://doi.org/10.1021/jacs.7b09027
- T. Wada, H. Maki, T. Imamoto, H. Yuki, Y. Miyazato, Four-electron reduction of dioxygen catalysed by dinuclear cobalt complexes bridged by bis(terpyridyl)anthracene. Chem. Commun. 49, 4394–4396 (2013). https://doi.org/10.1039/C2CC36528F
- P.T. Smith, Y. Kim, B.P. Benke, K. Kim, C.J. Chang, Supramolecular tuning enables selective oxygen reduction catalyzed by cobalt porphyrins for direct electrosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 59, 4902–4907 (2020). https://doi.org/10.1002/anie.201916131
- M. Wang, X. Dong, Z. Meng, Z. Hu, Y.G. Lin et al., An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 60, 11190–11195 (2021). https://doi.org/10.1002/anie.202100897
- E.M. Miner, T. Fukushima, D. Sheberla, L. Sun, Y. Surendranath et al., Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 7, 10942 (2016). https://doi.org/10.1038/ncomms10942
- H. Alt, Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J. Catal. 28, 8–19 (1973). https://doi.org/10.1016/0021-9517(73)90173-5
- L.Z. Peng, P. Liu, Q.Q. Cheng, W.J. Hu, Y.A. Liu et al., Highly effective electrosynthesis of hydrogen peroxide from oxygen on a redox-active cationic covalent triazine network. Chem. Commun. 54, 4433–4436 (2018). https://doi.org/10.1039/C8CC00957K
- X. Yin, L. Lin, U. Martinez, P. Zelenay, 2,2′-Dipyridylamine as heterogeneous organic molecular electrocatalyst for two-electron oxygen reduction reaction in acid media. ACS Appl. Energy Mater. 2, 7272–7278 (2019). https://doi.org/10.1021/acsaem.9b01227
- M. Warczak, M. Gryszel, M. Jakesova, V. Derek, E.D. Glowacki, Organic semiconductor perylenetetracarboxylic diimide (PTCDI) electrodes for electrocatalytic reduction of oxygen to hydrogen peroxide. Chem. Commun. 54, 1960–1963 (2018). https://doi.org/10.1039/C7CC08471D
- Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011). https://doi.org/10.1039/C0EE00558D
- E. Mitraka, M. Gryszel, M. Vagin, M.J. Jafari, A. Singh et al., Electrocatalytic production of hydrogen peroxide with poly(3,4 ethylenedioxythiophene) electrodes. Adv. Sustain. Syst. 3, 1800110 (2019). https://doi.org/10.1002/adsu.201800110
- X. Yan, D. Li, L. Zhang, X. Long, D. Yang, Tuning oxygen-containing groups of pyrene for high hydrogen peroxide production selectivity. Appl. Catal. B: Environ. 304, 120908 (2022). https://doi.org/10.1016/j.apcatb.2021.120908
- A. Wuorimaa, R. Jokela, R. Aksela, Recent developments in the stabilization of hydrogen peroxide bleaching of pulps: an overview. Nord. Pulp Pap. Res. J. 21, 435–443 (2006). https://doi.org/10.3183/npprj-2006-21-04-p435-443
- X. Yao, Q. Dong, Q. Cheng, D. Wang, Why do lithium-oxygen batteries fail: parasitic chemical reactions and their synergistic effect. Angew. Chem. Int. Ed. 55, 11344–11353 (2016). https://doi.org/10.1002/anie.201601783
- Y. Wang, R. Shi, L. Shang, L. Peng, D. Chu et al., Vertical graphene array for efficient electrocatalytic reduction of oxygen to hydrogen peroxide. Nano Energy 96, 1 (2022). https://doi.org/10.1016/j.nanoen.2022.107046
- G. Liu, W.S.Y. Wong, M. Kraft, J.W. Ager, D. Vollmer et al., Wetting-regulated gas-involving (photo)electrocatalysis: biomimetics in energy conversion. Chem. Soc. Rev. 50, 10674–10699 (2021). https://doi.org/10.1039/D1CS00258A
- P. Wang, T. Hayashi, Q. Meng, Q. Wang, H. Liu et al., Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode. Small 13, 1601250 (2017). https://doi.org/10.1002/smll.201601250
- A.M. Chaparro, Oxygen reduction limited by surface diffusion at a rotating ring-disk electrode. Electrochim. Acta 372, 137856 (2021). https://doi.org/10.1016/j.electacta.2021.137856
- Z. Qiang, J.H. Chang, C.P. Huang, Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res 36, 85–94 (2002). https://doi.org/10.1016/S0043-1354(01)00235-4
- Q. Zhao, J. An, S. Wang, Y. Qiao, C. Liao et al., Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction. ACS Appl. Mater. Interfaces 11, 35410–35419 (2019). https://doi.org/10.1021/acsami.9b09942
- H. Zhang, Y. Zhao, Y. Li, G. Li, J. Li et al., Janus electrode of asymmetric wettability for H2O2 production with highly efficient O2 utilization. ACS Appl. Energy Mater. 3, 705–714 (2019). https://doi.org/10.1021/acsaem.9b01908
- Q. Zhang, M. Zhou, G. Ren, Y. Li, Y. Li et al., Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat. Commun. 11, 1731 (2020). https://doi.org/10.1038/s41467-020-15597-y
- S. Rojas-Carbonell, K. Artyushkova, A. Serov, C. Santoro, I. Matanovic, P. Atanassov, Effect of pH on the activity of platinum group metal-free catalysts in oxygen reduction reaction. ACS Catal. 8, 3041–3053 (2018). https://doi.org/10.1021/acscatal.7b03991
- X. Zhao, Y. Liu, Origin of selective production of hydrogen peroxide by electrochemical oxygen reduction. J. Am. Chem. Soc. 143, 9423–9428 (2021). https://doi.org/10.1021/jacs.1c02186
- B.W. Noffke, Q. Li, K. Raghavachari, L.S. Li, A model for the pH-dependent selectivity of the oxygen reduction reaction electrocatalyzed by N-doped graphitic carbon. J. Am. Chem. Soc. 138, 13923–13929 (2016). https://doi.org/10.1021/jacs.6b06778
- N. Ramaswamy, S. Mukerjee, Influence of inner- and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media. J. Phys. Chem. C 115, 18015–18026 (2011). https://doi.org/10.1021/jp204680p
- K.H. Wu, D. Wang, X. Lu, X. Zhang, Z. Xie et al., Highly selective hydrogen peroxide electrosynthesis on carbon: in situ interface engineering with surfactants. Chem 6, 1443–1458 (2020). https://doi.org/10.1016/j.chempr.2020.04.002
- G.L. Chai, Z. Hou, T. Ikeda, K. Terakura, Two-electron oxygen reduction on carbon materials catalysts: mechanisms and active sites. J. Phys. Chem. C 121, 14524–14533 (2017). https://doi.org/10.1021/acs.jpcc.7b04959
- N. Ramaswamy, U. Tylus, Q. Jia, S. Mukerjee, Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J. Am. Chem. Soc. 135, 15443–15449 (2015). https://doi.org/10.1021/ja405149m
- D. Strmcnik, K. Kodama, D. van der Vliet, J. Greeley, V.R. Stamenkovic et al., The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009). https://doi.org/10.1038/nchem.330
- D. Strmcnik, M. Escudero-Escribano, K. Kodama, V.R. Stamenkovic, A. Cuesta et al., Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat. Chem. 2, 880–885 (2010). https://doi.org/10.1038/nchem.771
- X. Zhang, X. Zhao, P. Zhu, Z. Adler, Z.Y. Wu, Y. Liu, H. Wang, Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nat. Commun. 13, 2880 (2022). https://doi.org/10.1038/s41467-022-30337-0
- J.A. Zamora Zeledón, G.A. Kamat, G.T.K.K. Gunasooriya, J.K. Nørskov, M.B. Stevens et al., Probing the effects of acid electrolyte anions on electrocatalyst activity and selectivity for the oxygen reduction reaction. ChemElectroChem 8, 2467–2478 (2021). https://doi.org/10.1002/celc.202100500
- K. Holst-Olesen, M. Reda, H.A. Hansen, T. Vegge, M. Arenz, Enhanced oxygen reduction activity by selective anion adsorption on non-precious-metal catalysts. ACS Catal. 8, 7104–7112 (2018). https://doi.org/10.1021/acscatal.8b01584
- Q. Wang, Z.Y. Zhou, Y.J. Lai, Y. You, J.G. Liu et al., Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 136, 10882–10885 (2014). https://doi.org/10.1021/ja505777v
- E.L. Gyenge, C.W. Oloman, Influence of surfactants on the electroreduction of oxygen to hydrogen peroxide in acid and alkaline electrolytes. J. Appl. Electrochem. 31, 233–243 (2021). https://doi.org/10.1023/A:1004159102510
- J.S. Lim, Y.J. Sa, S.H. Joo, Catalyst design, measurement guidelines, and device integration for H2O2 electrosynthesis from oxygen reduction. Cell Rep. Phys. Sci. 3, 100987 (2022). https://doi.org/10.1016/j.xcrp.2022.100987
- Z. Chen, S. Chen, S. Siahrostami, P. Chakthranont, C. Hahn, Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. React. Chem. Eng. 2, 239–245 (2017). https://doi.org/10.1039/C6RE00195E
- C. Xia, Y. Xia, P. Zhu, L. Fan, H. Wang, Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019). https://doi.org/10.1126/science.aay1844
- K. Jiang, S. Back, A.J. Akey, C. Xia, Y. Hu et al., Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 10, 3997 (2019). https://doi.org/10.1038/s41467-019-11992-2
- G. Xia, Y. Lu, H. Xu, An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode. Sep. Purifi. Technol. 156, 553–560 (2015). https://doi.org/10.1016/j.seppur.2015.10.048
- J. Xu, X. Zheng, Z. Feng, Z. Lu, Z. Zhang et al., Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2020). https://doi.org/10.1038/s41893-020-00635-w
- N. Luo, G.H. Miley, R.J. Gimlin, R.L. Burton, J. Rusek et al., Hydrogen-peroxide-based fuel cells for space power systems. J. Propuls. Power 24, 583–589 (2008). https://doi.org/10.2514/1.31522
- A.E. Sanli, A. Aytaç, Response to Disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel cell. Int. J. Hydrog. Energy 36, 869–875 (2011). https://doi.org/10.1016/j.ijhydene.2010.09.038
- J. Liu, X. Wei, X. Wang, X.W. Liu, High-yield synthesis of ultrathin silica-based nanosheets and their superior catalytic activity in H2O2 decomposition. Chem. Commun. 47, 6135–6137 (2011). https://doi.org/10.1039/C1CC10280J
- L. Xu, J. Liu, P. Chen, Z. Wang, D. Tang, X. Liu, F. Meng, X. Wei, High-power aqueous Zn-H2O2 batteries for multiple applications. Cell Rep. Phys. Sci. 1, 100027 (2020). https://doi.org/10.1016/j.xcrp.2020.100027
- C.J. McDonnell-Worth, D.R. MacFarlane, Progress towards direct hydrogen peroxide fuel cells (DHPFCs) as an energy storage concept. Aust. J. Chem. 71, 781–788 (2018). https://doi.org/10.1071/CH18328
- L. An, T.S. Zhao, X.L. Zhou, X.H. Yan, C.Y. Jung, A low-cost, high-performance zinc–hydrogen peroxide fuel cell. J. Power Sources 275, 831–834 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.076
References
J.M. Campos-Martin, G. Blanco-Brieva, J.L. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006). https://doi.org/10.1002/anie.200503779
Z. Chen, J. Wu, Z. Chen, H. Yang, K. Zou et al., Entropy enhanced perovskite oxide ceramic for efficient electrochemical reduction of oxygen to hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202200086 (2022). https://doi.org/10.1002/anie.202200086
I. Yamanaka, T. Murayama, Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem. Int. Ed. 47, 1900–1902 (2008). https://doi.org/10.1002/anie.200704431
J. Tang, T. Zhao, D. Solanki, X. Miao, W. Zhou et al., Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering. Joule 5, 1432–1461 (2021). https://doi.org/10.1016/j.joule.2021.04.012
L. An, T. Zhao, X. Yan, X. Zhou, P. Tan, The dual role of hydrogen peroxide in fuel cells. Sci. Bull. 60, 55–64 (2015). https://doi.org/10.1007/s11434-014-0694-7
S. Fukuzumi, Artificial photosynthesis for production of hydrogen peroxide and its fuel cells. Biochim. Biophys. Acta 1857, 604–611 (2016). https://doi.org/10.1016/j.bbabio.2015.08.012
K. Lee, J. Lim, M.J. Lee, K. Ryu, H. Lee et al., Structure-controlled graphene electrocatalysts for high-performance H2O2 production. Energy Environ. Sci. 15, 2858–2866 (2022). https://doi.org/10.1039/D2EE00548D
S. Ranganathan, V. Sieber, Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis—a review. Catalysts 8, 379 (2018). https://doi.org/10.3390/catal8090379
S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida et al., Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013). https://doi.org/10.1038/nmat3795
Y. Feng, Q. Shao, B. Huang, J. Zhang, X. Huang, Surface engineering at the interface of core/shell nanops promotes hydrogen peroxide generation. Nat. Sci. Rev. 5, 895–906 (2018). https://doi.org/10.1093/nsr/nwy065
H. Yin, Y. Dou, S. Chen, Z. Zhu, P. Liu et al., 2D electrocatalysts for converting earth-abundant simple molecules into value-added commodity chemicals: recent progress and perspectives. Adv. Mater. 32, 1904870 (2019). https://doi.org/10.1002/adma.201904870
E. Jung, H. Shin, W. Hooch Antink, Y.E. Sung, T. Hyeon, Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design. ACS Energy Lett. 5, 1881–1892 (2020). https://doi.org/10.1021/acsenergylett.0c00812
Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
X. Zhang, Y. Xia, C. Xia, H. Wang, Insights into practical-scale electrochemical H2O2 synthesis. Trends in Chem. 2, 942–953 (2020). https://doi.org/10.1016/j.trechm.2020.07.007
S.C. Perry, S. Mavrikis, L. Wang, C. Ponce de León, Future perspectives for the advancement of electrochemical hydrogen peroxide production. Curr. Opin. Electrochem 30, 100792 (2021). https://doi.org/10.1016/j.coelec.2021.100792
X. Shi, S. Back, T.M. Gill, S. Siahrostami, X. Zheng, Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem 7, 38–63 (2020). https://doi.org/10.1016/j.chempr.2020.09.013
Y.Y. Jiang, P.J. Ni, C.X. Chen, Y.Z. Lu, P. Yang, B. Kong, A. Fisher, X. Wang, Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 8, 1801909 (2018). https://doi.org/10.1002/aenm.201801909
X. Yang, Y. Zeng, W. Alnoush, Y. Hou, D. Higgins, G. Wu, Tuning two-electron oxygen-reduction pathways for H2O2 electrosynthesis via engineering atomically dispersed single metal site catalysts. Adv. Mater. 9, 2107954 (2022). https://doi.org/10.1002/adma.202107954
Y. Sun, L. Han, P. Strasser, A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 49, 6605–6631 (2020). https://doi.org/10.1039/D0CS00458H
S.C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber, L. Wang, C. Ponce de León, F.C. Walsh, Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019). https://doi.org/10.1038/s41570-019-0110-6
C. Xia, J.Y. Kim, H. Wang, Recommended practice to report selectivity in electrochemical synthesis of H2O2. Nat. Catal. 3, 605–607 (2020). https://doi.org/10.1038/s41929-020-0486-1
M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). https://doi.org/10.1038/nature11115
Q. Zhao, Z. Yan, C. Chen, J. Chen, Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117, 10121–10211 (2017). https://doi.org/10.1021/acs.chemrev.7b00051
X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang et al., Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5, 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
E. Davari, D.G. Ivey, Bifunctional electrocatalysts for Zn–air batteries. Sustain. Energy Fuels 2, 39–67 (2018). https://doi.org/10.1039/C7SE00413C
M.M. Montemore, M.A. van Spronsen, R.J. Madix, C.M. Friend, O2 Activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 118, 2816–2862 (2018). https://doi.org/10.1021/acs.chemrev.7b00217
A.K. Fajrial, A.G. Saputro, M.K. Agusta, F. Rusydi, A. Nugraha, H.K. Dipojono, First principles study of oxygen molecule interaction with the graphitic active sites of a boron-doped pyrolyzed Fe-N-C catalyst. Phys. Chem. Chem. Phys. 19, 23497–23504 (2017). https://doi.org/10.1039/C7CP02390A
S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić, R. Frydendal et al., Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018). https://doi.org/10.1021/acscatal.8b00217
A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
J. Zhang, H. Zhang, M.J. Cheng, Q. Lu, Tailoring the electrochemical production of H2O2: strategies for the rational design of high-performance electrocatalysts. Small 16, 1902845 (2019). https://doi.org/10.1002/smll.201902845
W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Earth-abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 55, 2650–2676 (2016). https://doi.org/10.1002/anie.201504830
H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
J.J. Gao, H.B. Yang, X. Huang, S.F. Hung, W.Z. Cai et al., Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 6, 658–674 (2020). https://doi.org/10.1016/j.chempr.2019.12.008
T.M. Gill, X. Zheng, Comparing methods for quantifying electrochemically accumulated H2O2. Chem. Mater. 32, 6285–6294 (2020). https://doi.org/10.1021/acs.chemmater.0c02010
H. Sheng, E.D. Hermes, X. Yang, D. Ying, A.N. Janes et al., Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 9, 8433–8442 (2019). https://doi.org/10.1021/acscatal.9b02546
G.F. Han, F. Li, W. Zou, M. Karamad, J.P. Jeon et al., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 11, 2209 (2020). https://doi.org/10.1038/s41467-020-15782-z
S. Siahrostami, S.J. Villegas, A.H. Bagherzadeh Mostaghimi, S. Back, A.B. Farimani et al., A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 10, 7495–7511 (2020). https://doi.org/10.1021/acscatal.0c01641
R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang et al., A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput. Mater. 5, 78 (2019). https://doi.org/10.1038/s41524-019-0210-3
M.T.M. Koper, Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710 (2013). https://doi.org/10.1039/C3SC50205H
M. Busch, N.B. Halck, U.I. Kramm, S. Siahrostami, P. Krtil et al., Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29, 126–135 (2016). https://doi.org/10.1016/j.nanoen.2016.04.011
X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen et al., Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: the power of single-atom catalysts. ACS Catal. 9, 11042–11054 (2019). https://doi.org/10.1021/acscatal.9b02778
Y. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst et al., Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ. Sci. 12, 250–260 (2019). https://doi.org/10.1039/C8EE02694G
X. Du, J. Huang, J. Zhang, Y. Yan, C. Wu et al., Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem. Int. Ed. 58, 4484–4502 (2019). https://doi.org/10.1002/anie.201810104
M. Kuang, P. Han, L. Huang, N. Cao, L. Qian et al., Electronic Tuning of Co, Ni-based nanostructured (hydr)oxides for aqueous electrocatalysis. Adv. Funct. Mater. 28, 1804886 (2018). https://doi.org/10.1002/adfm.201804886
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). https://doi.org/10.1039/C4CS00470A
T. Ricciardulli, S. Gorthy, J.S. Adams, C. Thompson, A.M. Karim et al., Effect of Pd coordination and isolation on the catalytic reduction of O2 to H2O2 over PdAu bimetallic nanops. J. Am. Chem. Soc. 143, 5545–5464 (2021). https://doi.org/10.1021/jacs.1c00539
J. Gao, B. Liu, Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Mater. Lett. 2, 1008–1024 (2020). https://doi.org/10.1021/acsmaterialslett.0c00189
J.S. Jirkovsky, M. Halasa, D.J. Schiffrin, Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanops. Phys. Chem. Chem. Phys. 12, 8042–8052 (2010). https://doi.org/10.1039/C002416C
D.C. Ford, A.U. Nilekar, Y. Xu, M. Mavrikakis, Partial and complete reduction of O2 by hydrogen on transition metal surfaces. Surf. Sci. 604, 1565–1575 (2010). https://doi.org/10.1016/j.susc.2010.05.026
R.R. Adžić, A.V. Tripković, N.M. Marković, Structural effects in electrocatalysis: oxidation of formic acid and oxygen reduction on single-crystal electrodes and the effects of foreign metal adatoms. J. Electroanal. Chem. 150, 79–88 (1983). https://doi.org/10.1016/S0022-0728(83)80192-2
Q. Chang, P. Zhang, A.H.B. Mostaghimi, X. Zhao, S.R. Denny, Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 11, 2178 (2020). https://doi.org/10.1038/s41467-020-15843-3
C.H. Choi, H.C. Kwon, S. Yook, H. Shin, H. Kim et al., Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 118, 30063–30070 (2014). https://doi.org/10.1021/jp5113894
Y.L. Wang, S. Gurses, N. Felvey, A. Boubnov, S.S. Mao et al., In situ deposition of Pd during oxygen reduction yields highly selective and active electrocatalysts for direct H2O2 production. ACS Catal. 9, 8453–8463 (2019). https://doi.org/10.1021/acscatal.9b01758
S. Yang, Y.J. Tak, J. Kim, A. Soon, H. Lee, Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 7, 1301–1307 (2017). https://doi.org/10.1021/acscatal.6b02899
E. Pizzutilo, O. Kasian, C.H. Choi, S. Cherevko, G.J. Hutchings et al., Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanops: From fundamentals to continuous production. Chem. Phys. Lett. 683, 436–442 (2017). https://doi.org/10.1016/j.cplett.2017.01.071
H. Li, P. Wen, D.S. Itanze, Z.D. Hood, S. Adhikari et al., Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nat. Commun. 11, 3928 (2020). https://doi.org/10.1038/s41467-020-17584-9
C. Yang, S. Bai, Z. Yu, Y. Feng, B. Huang et al., A newly-explored Pd-based nanocrystal for the pH-universal electrosynthesis of H2O2. Nano Energy 89, 106480 (2021). https://doi.org/10.1016/j.nanoen.2021.106480
I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. 53, 102–121 (2014). https://doi.org/10.1002/anie.201306588
H. Yang, S. Kumar, S. Zou, Electroreduction of O2 on uniform arrays of Pt nanops. J. Electroanal. Chem. 688, 180–188 (2013). https://doi.org/10.1016/j.jelechem.2012.08.030
M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanops: p size effect on oxygen reduction reaction activity. Nano Lett. 11, 3714–3719 (2011). https://doi.org/10.1021/nl2017459
E. Fabbri, S. Taylor, A. Rabis, P. Levecque, O. Conrad et al., The effect of platinum nanop distribution on oxygen electroreduction activity and selectivity. ChemCatChem 6, 1410–1418 (2014). https://doi.org/10.1002/cctc.201300987
S. Taylor, E. Fabbri, P. Levecque, T.J. Schmidt, O. Conrad, The effect of platinum loading and surface morphology on oxygen reduction activity. Electrocatalysis 7, 287–296 (2016). https://doi.org/10.1007/s12678-016-0304-3
G.V. Fortunato, E. Pizzutilo, A.M. Mingers, O. Kasian, S. Cherevko et al., Impact of palladium loading and interp distance on the selectivity for the oxygen reduction reaction toward hydrogen peroxide. J. Phys. Chem. C 122, 15878–15885 (2018). https://doi.org/10.1021/acs.jpcc.8b04262
C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
J.M. Thomas, R. Raja, D.W. Lewis, Single-site heterogeneous catalysts. Angew. Chem. Int. Ed. 44, 6456–6482 (2005). https://doi.org/10.1002/anie.200462473
J. Liu, Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2016). https://doi.org/10.1021/acscatal.6b01534
S. Shin, J. Kim, S. Park, H. Kim, T. Sung et al., Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. Chem. Commun. 55, 6389-6392 (2019). https://doi.org/10.1039/C9CC01593K
M. Ledendecker, E. Pizzutilo, G. Malta, G.V. Fortunato, K.J.J. Mayrhofer et al., Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis. ACS Catal. 10, 5928–5938 (2020). https://doi.org/10.1021/acscatal.0c01305
J.H. Kim, D. Shin, J. Lee, D.S. Baek, T.J. Shin et al., A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano 14, 1990–2001 (2020). https://doi.org/10.1021/acsnano.9b08494
S.K. Sahoo, Y. Ye, S. Lee, J. Park, H. Lee et al., Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions. ACS Energy Lett. 4, 126–132 (2018). https://doi.org/10.1021/acsenergylett.8b01942
R. Shen, W. Chen, Q. Peng, S. Lu, L. Zheng et al., High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 5, 2099–2110 (2019). https://doi.org/10.1016/j.chempr.2019.04.024
R.T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020). https://doi.org/10.1021/acs.chemrev.0c00078
A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida et al., Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014). https://doi.org/10.1021/jacs.9b05576
R.M. Félix-Navarro, M. Beltrán-Gastélum, E.A. Reynoso-Soto, F. Paraguay-Delgado, G. Alonso-Nuñez, Bimetallic Pt–Au nanops supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction. Renew. Energy 87, 31–41 (2016). https://doi.org/10.1016/j.renene.2015.09.060
X. Zhao, H. Yang, J. Xu, T. Cheng, Y. Li, Bimetallic PdAu nanoframes for electrochemical H2O2 production in acids. ACS Mater. Lett. 3, 996–1002 (2021). https://doi.org/10.1021/acsmaterialslett.1c00263
Z. Zheng, Y.H. Ng, D.W. Wang, R. Amal, Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 28, 9949–9955 (2016). https://doi.org/10.1002/adma.201603662
W. Qian, S. Xu, X. Zhang, C. Li, W. Yang, C.R. Bowen, Y. Yang, Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 (2021). https://doi.org/10.1007/s40820-021-00681-9
J. Huang, J. Chen, C. Fu, P. Cai, Y. Li et al., 2D Hybrid of Ni-LDH chips on carbon nanosheets as cathode of zinc-air battery for electrocatalytic conversion of O2 into H2O2. Chemsuschem 13, 1496–1503 (2019). https://doi.org/10.1002/cssc.201902429
H. Sheng, A.N. Janes, R.D. Ross, D. Kaiman, J. Huang et al., Stable and selective electrosynthesis of hydrogen peroxide and the electro-fenton process on CoSe2 polymorph catalysts. Energy Environ. Sci. 13, 4189–4203 (2020). https://doi.org/10.1039/D0EE01925A
J. Liang, Y. Wang, Q. Liu, Y. Luo, T. Li et al., Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. J. Mater. Chem. A 9, 6117–6122 (2021). https://doi.org/10.1039/D0TA12008A
F. Xia, B. Li, Y. Liu, Y. Liu, S. Gao, K. Lu et al., Carbon free and noble metal free Ni2Mo6S8 electrocatalyst for selective electrosynthesis of H2O2. Adv. Funct. Mater. 31, 2104716 (2021). https://doi.org/10.1002/adfm.202104716
Y. Ji, Y. Liu, B.W. Zhang, Z. Xu, X. Qi et al., Morphology engineering of atomic layer defect-rich CoSe2 nanosheets for highly selective electrosynthesis of hydrogen peroxide. J. Mater. Chem. A 9, 21340–21346 (2021). https://doi.org/10.1039/D1TA05731F
M.R. Gao, X.L. Zhang, X. Su, Y.R. Zheng, S.J. Hu et al., Strongly coupled cobalt diselenide monolayers selectively catalyze oxygen reduction to H2O2 in an acidic environment. Angew. Chem. Int. Ed. 60, 26922–26931 (2021). https://doi.org/10.1002/anie.202111075
X. Zhao, Y. Wang, Y. Da, X. Wang, T. Wang et al., Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. Nat. Sci. Rev. 7, 1360–1366 (2020). https://doi.org/10.1093/nsr/nwaa084
Y. Wang, Y. Zhou, Y. Feng, X.Y. Yu, Synergistic electronic and pore structure modulation in open carbon nanocages enabling efficient electrocatalytic production of H2O2 in acidic medium. Adv. Funct. Mater 32, 2110734 (2022). https://doi.org/10.1002/adfm.202110734
X. Han, G. He, Y. He, J. Zhang, X. Zheng et al., Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 8, 1702222 (2017). https://doi.org/10.1002/aenm.201702222
D. Yuan, Y. Dou, Z. Wu, Y. Tian et al., Atomically thin materials for next-generation rechargeable batteries. Chem. Rev. 122, 957–999 (2021). https://doi.org/10.1021/acs.chemrev.1c00636
Z. Zhou, Y. Kong, H. Tan, Q. Huang, C. Wang et al., Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Adv. Mater. 34, 2106541 (2022). https://doi.org/10.1002/adma.202106541
Z. Xu, J. Liang, Y. Wang, K. Dong, X. Shi et al., Enhanced electrochemical H2O2 production via two-electron oxygen reduction enabled by surface-derived amorphous oxygen-deficient TiO2-x. ACS Appl. Mater. Interfaces 13, 33182–33187 (2021). https://doi.org/10.1021/acsami.1c09871
K. Dong, J. Liang, Y. Wang, Y. Ren, Z. Xu et al., Plasma-induced defective TiO2-x with oxygen vacancies: a high-active and robust bifunctional catalyst toward H2O2 electrosynthesis. Chem. Catal. 1, 1437–1448 (2021). https://doi.org/10.1016/j.checat.2021.10.011
L. Yan, X. Cheng, Y. Wang, Z. Wang, L. Zheng et al., Exsolved Co3O4 with tunable oxygen vacancies for electrocatalytic H2O2 production. Mater. Today Energy 24, 100931 (2022). https://doi.org/10.1016/j.mtener.2021.100931
R. Gao, L. Pan, Z. Li, C. Shi, Y. Yao et al., Engineering facets and oxygen vacancies over hematite single crystal for intensified electrocatalytic H2O2 production. Adv. Funct. Mater. 30, 1910539 (2020). https://doi.org/10.1002/adfm.201910539
R.D. Ross, H. Sheng, A. Parihar, J. Huang, S. Jin, Compositionally tuned trimetallic thiospinel catalysts for enhanced electrosynthesis of hydrogen peroxide and built-in hydroxyl radical generation. ACS Catal. 11, 12643–12650 (2021). https://doi.org/10.1021/acscatal.1c03349
C. Liu, H. Li, J. Chen, Z. Yu, Q. Ru et al., 3d Transition-metal-mediated columbite nanocatalysts for decentralized electrosynthesis of hydrogen peroxide. Small 17, 2007249 (2021). https://doi.org/10.1002/smll.202007249
Y. Zheng, X. Xu, J. Chen, Q. Wang, Surface O2- regulation on POM electrocatalyst to achieve accurate 2e/4e-ORR control for H2O2 production and Zn-air battery assemble. Appl. Catal. B: Environ 285, 119788 (2020). https://doi.org/10.1016/j.apcatb.2020.119788
Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn–air batteries. Nano-Micro Lett. 13, 3 (2020). https://doi.org/10.1007/s40820-020-00526-x
Y. Tian, Z. Wu, M. Li, Q. Sun, H. Chen et al., Atomic modulation and structure design of Fe−N4 modified hollow carbon fibers with encapsulated Ni nanops for rechargeable Zn–air batteries. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202209273
J. Masa, W. Xia, M. Muhler, W. Schuhmann, On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 54, 10102–10120 (2015). https://doi.org/10.1002/anie.201500569
D. Deng, L. Yu, X. Chen, G. Wang, L. Jin et al., Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 371–375 (2013). https://doi.org/10.1002/anie.201204958
J. Deng, P. Ren, D. Deng, X. Bao, Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 2100–2104 (2015). https://doi.org/10.1002/anie.201409524
H. Shen, L. Pan, T. Thomas, J. Wang, X. Guo, Selective and continuous electrosynthesis of hydrogen peroxide on nitrogen-doped carbon supported nickel. Cell Rep. Phys. Sci. 1, 100255 (2020). https://doi.org/10.1016/j.xcrp.2020.100255
Z. Wang, C. Zhu, H. Tan, J. Liu, L. Xu et al., Understanding the synergistic effects of cobalt single atoms and small nanops: enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries. Adv. Funct. Mater. 31, 2104735 (2021). https://doi.org/10.1002/adfm.202104735
A. Byeon, J. Cho, J.M. Kim, K.H. Chae, H.Y. Park et al., High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts. Nanoscale Horiz. 5, 832–838 (2020). https://doi.org/10.1039/C9NH00783K
D. Liu, K. Ni, J. Ye, J. Xie, Y. Zhu et al., Tailoring the structure of carbon nanomaterials toward high-end energy applications. Adv. Mater. 30, 1802104 (2018). https://doi.org/10.1002/adma.201802104
L. Yang, J. Shui, L. Du, Y. Shao, J. Liu et al., Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv. Mater. 31, 1804799 (2019). https://doi.org/10.1002/adma.201804799
J. Zhang, Z. Xia, L. Dai, Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. (2015). https://doi.org/10.1126/sciadv.1500564
M.H.M.T. Assumpção, R.F.B. De Souza, D.C. Rascio, J.C.M. Silva, M.L. Calegaro et al., A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon 49, 2842–2851 (2011). https://doi.org/10.1016/j.carbon.2011.03.014
B. Zhang, W. Xu, Z. Lu, J. Sun, Recent progress on carbonaceous material engineering for electrochemical hydrogen peroxide generation. Trans. Tianjin Univ. 26, 188–196 (2020). https://doi.org/10.1007/s12209-020-00240-0
X. Liu, L.M. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016). https://doi.org/10.1038/natrevmats.2016.64
L.M. Dai, Y.H. Xue, L.T. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115, 4823–4892 (2015). https://doi.org/10.1021/cr5003563
C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou et al., Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28, 6845–6851 (2016). https://doi.org/10.1002/adma.201601406
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016). https://doi.org/10.1126/science.aad0832
L. Li, C. Tang, Y. Zheng, B. Xia, X. Zhou et al., Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon. Adv. Energy Mater. 10, 2000789 (2020). https://doi.org/10.1002/aenm.202000789
D. Iglesias, A. Giuliani, M. Melchionna, S. Marchesan, A. Criado et al., N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4, 106–123 (2018). https://doi.org/10.1016/j.chempr.2017.10.013
S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund et al., Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 140, 7851–7859 (2018). https://doi.org/10.1021/jacs.8b02798
Y. Xia, X. Zhao, C. Xia, Z.Y. Wu, P. Zhu et al., Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 4225 (2021). https://doi.org/10.1038/s41467-021-24329-9
S. Chen, T. Luo, K. Chen, Y. Lin, J. Fu et al., Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem. Int. Ed. 60, 16607–16614 (2021). https://doi.org/10.1002/anie.202104480
X. Xu, D. Kong, J. Liang, Y. Gao, Q. Yang et al., Bottom-up construction of microporous catalyst with identical active sites for efficient hydrogen peroxide production. Carbon 171, 931–937 (2021). https://doi.org/10.1016/j.carbon.2020.09.080
K. Zhao, Y. Su, X. Quan, Y. Liu, S. Chen et al., Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 357, 118–126 (2018). https://doi.org/10.1016/j.jcat.2017.11.008
G. Chen, J. Liu, Q. Li, P. Guan, X. Yu et al., A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 12, 2614–2622 (2019). https://doi.org/10.1007/s12274-019-2496-3
Y. Xia, H. Shang, Q. Zhang, Y. Zhou, X. Hu, Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton. J. Electroanal. Chem. 840, 400–408 (2019). https://doi.org/10.1016/j.jelechem.2019.04.009
S.Y. Wang, E. Iyyamperumal, A. Roy, Y.H. Xue, D.S. Yu et al., Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. Angew. Chem. Int. Ed. 50, 11756–11760 (2011). https://doi.org/10.1002/anie.201105204
Q. Shi, F. Peng, S. Liao, H. Wang, H. Yu et al., Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. J. Mater. Chem. A 1, 14853–14857 (2013). https://doi.org/10.1039/C3TA12647A
N. Jia, T. Yang, S. Shi, X. Chen, Z. An et al., N, F Co-doped carbon nanocages: an efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions. ACS Sustain. Chem. Eng. 8, 2883–2891 (2020). https://doi.org/10.1021/acssuschemeng.9b07047
V. Perazzolo, C. Durante, R. Pilot, A. Paduano, J. Zheng et al., Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 95, 949–963 (2015). https://doi.org/10.1016/j.carbon.2015.09.002
E. Chen, M. Bevilacqua, C. Tavagnacco, T. Montini, C.M. Yang et al., High surface area N/O co-doped carbon materials: selective electrocatalysts for O2 reduction to H2O2. Catal. Today 356, 132–140 (2019). https://doi.org/10.1016/j.cattod.2019.06.034
M. Qin, S. Fan, L. Wang, G. Gan, X. Wang, J. Cheng, Z. Hao, X. Li, Oxygen and nitrogen co-doped ordered mesoporous carbon materials enhanced the electrochemical selectivity of O2 reduction to H2O2. J. Colloid. Interface Sci. 562, 540–549 (2020). https://doi.org/10.1016/j.jcis.2019.11.080
Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu et al., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018). https://doi.org/10.1038/s41929-017-0017-x
X. Tan, H.A. Tahini, S.C. Smith, Understanding the high activity of mildly reduced graphene oxide electrocatalysts in oxygen reduction to hydrogen peroxide. Mater. Horiz. 6, 1409–1415 (2019). https://doi.org/10.1039/C9MH00066F
J. Zhu, X. Xiao, K. Zheng, F. Li, G. Ma et al., KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction. Carbon 153, 6–11 (2019). https://doi.org/10.1016/j.carbon.2019.07.009
Y.L. Wang, S.S. Li, X.H. Yang, G.Y. Xu, Z.C. Zhu et al., One minute from pristine carbon to an electrocatalyst for hydrogen peroxide production. J. Mater. Chem. A 7, 21329–21337 (2019). https://doi.org/10.1039/C9TA04788C
D. San Roman, D. Krishnamurthy, R. Garg, H. Hafiz, M. Lamparski et al., Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis. ACS Catal. 10, 1993–2008 (2020). https://doi.org/10.1021/acscatal.9b03919
D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
S. Chen, Z. Chen, S. Siahrostami, T.R. Kim, D. Nordlund et al., Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustain. Chem. Eng. 6, 311–317 (2017). https://doi.org/10.1021/acssuschemeng.7b02517
Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu et al., Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 5, 6707–6712 (2015). https://doi.org/10.1021/acscatal.5b01835
C. Xie, D. Yan, W. Chen, Y. Zou, R. Chen et al., Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Materialstoday 31, 47–68 (2019). https://doi.org/10.1016/j.mattod.2019.05.021
Q. Wang, Y. Lei, D. Wang, Y. Li, Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12, 1–3 (2019). https://doi.org/10.1039/C8EE03781G
Z. Wang, Q.K. Li, C. Zhang, Z. Cheng, W. Chen et al., Hydrogen peroxide generation with 100% faradaic efficiency on metal-free carbon black. ACS Catal. 11, 2454–2459 (2021). https://doi.org/10.1021/acscatal.0c04735
Y.J. Sa, J.H. Kim, S.H. Joo, Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 58, 1100–1105 (2019). https://doi.org/10.1002/anie.201812435
J.S. Lim, J.H. Kim, J. Woo, D.S. Baek, K. Ihm et al., Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. Chem 7, 3114–3130 (2021). https://doi.org/10.1016/j.chempr.2021.08.007
C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv. Mater. 29, 1604103 (2017). https://doi.org/10.1002/adma.201604103
X. Wu, C. Tang, Y. Cheng, X. Min, S.P. Jiang et al., Bifunctional catalysts for reversible oxygen evolution reaction and oxygen reduction reaction. Chem. Eur. J. 26, 3906–3929 (2020). https://doi.org/10.1002/chem.201905346
J.Y. Zhang, C. Xia, H.F. Wang, C. Tang, Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J. Energy Chem. 67, 432–450 (2022). https://doi.org/10.1016/j.jechem.2021.10.013
B. Huang, Y. Cui, R. Hu, J. Huang, L. Guan, Promoting the two-electron oxygen reduction reaction performance of carbon nanospheres by pore engineering. ACS Appl. Energy Mater. 4, 4620–4629 (2021). https://doi.org/10.1021/acsaem.1c00259
Y. Jiang, Y.P. Deng, R. Liang, J. Fu, R. Gao et al., d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 11, 5858 (2020). https://doi.org/10.1038/s41467-020-19709-6
J. Park, Y. Nabae, T. Hayakawa, M.-A. Kakimoto, Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 4, 3749–3754 (2014). https://doi.org/10.1021/cs5008206
Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015). https://doi.org/10.1002/anie.201502396
V. Čolić, S. Yang, Z. Révay, I.E.L. Stephens, I. Chorkendorff, Carbon catalysts for electrochemical hydrogen peroxide production in acidic media. Electrochim. Acta 272, 192–202 (2018). https://doi.org/10.1016/j.electacta.2018.03.170
Y. Peng, B. Lu, S. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30, 1801995 (2018). https://doi.org/10.1002/adma.201801995
B. Bayatsarmadi, Y. Zheng, A. Vasileff, S.Z. Qiao, Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 13, 1700191 (2017). https://doi.org/10.1002/smll.201700191
Y. Deng, J. Luo, B. Chi, H. Tang, J. Li et al., Advanced atomically dispersed metal–nitrogen–carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv. Energy Mater. 11, 2101222 (2021). https://doi.org/10.1002/aenm.202101222
Y. Zhu, J. Sokolowski, X. Song, Y. He, Y. Mei et al., Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 10, 1902844 (2019). https://doi.org/10.1002/aenm.201902844
Y. Sun, L. Silvioli, N.R. Sahraie, W. Ju, J. Li et al., Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 141, 12372–12381 (2019). https://doi.org/10.1021/jacs.9b05576
C. Liu, H. Li, F. Liu, J. Chen, Z. Yu et al., Intrinsic activity of metal centers in metal-nitrogen-carbon single-atom catalysts for hydrogen peroxide synthesis. J. Am. Chem. Soc. 142, 21861–21871 (2020). https://doi.org/10.1021/jacs.0c10636
J. Zhang, H. Yang, J. Gao, S. Xi, W. Cai et al., Design of hierarchical, three-dimensional free-standing single-atom electrode for H2O2 production in acidic media. Carbon Energy 2, 276–282 (2020). https://doi.org/10.1002/cey2.33
C. Tang, L. Chen, H. Li, L. Li, Y. Jiao et al., Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–1827 (2021). https://doi.org/10.1021/jacs.1c03135
D. Ji, L. Fan, L. Li, S. Peng, D. Yu et al., Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 31, 1808267 (2019). https://doi.org/10.1002/adma.201808267
Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland et al., Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9, 12496–12505 (2015). https://doi.org/10.1021/acsnano.5b05984
Q. Zhao, Y. Wang, W.H. Lai, F. Xiao, Y. Lyu et al., Approaching a high-rate and sustainable production of hydrogen peroxide: oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 14, 5444–5456 (2021). https://doi.org/10.1039/D1EE00878A
S. Chen, T. Luo, X. Li, K. Chen, J. Fu, Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 144, 14505–14516 (2022). https://doi.org/10.1021/jacs.2c01194
Y. Tian, M. Li, Z. Wu, Q. Sun, D. Yuan et al., Edge-hosted atomic Co-N4 sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction. Angew. Chem. Int. Ed. 61, 202213296 (2022). https://doi.org/10.1002/anie.202213296
L. Li, B. Huang, X. Tang, Y. Hong, W. Zhai et al., Recent developments of microenvironment engineering of single-atom catalysts for oxygen reduction toward desired activity and selectivity. Adv. Funct. Mater. 31, 2103857 (2022). https://doi.org/10.1002/adfm.202103857
X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li, J. Zhang, Y. Han, Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
C. Tang, Y. Jiao, B. Shi, J.N. Liu, Z. Xie et al., Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem. Int. Ed. 132, 9256–9261 (2020). https://doi.org/10.1002/ange.202003842
Y. Wang, R. Shi, L. Shang, G.I.N. Waterhouse, J. Zhao et al., High-efficiency oxygen reduction to hydrogen peroxide catalyzed by Ni single atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem. Int. Ed. 59, 13057–13062 (2020). https://doi.org/10.1002/anie.202004841
E. Jung, H. Shin, B.H. Lee, V. Efremov, S. Lee et al., Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020). https://doi.org/10.1038/s41563-019-0571-5
T. Wang, X. Cao, H. Qin, L. Shang, S. Zheng et al., P-Block atomically dispersed antimony catalyst for highly efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 21237–21241 (2021). https://doi.org/10.1002/anie.202108599
E. Zhang, L. Tao, J. An, J. Zhang, L. Meng et al., Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem. Int. Ed. 61, 202117347 (2022). https://doi.org/10.1002/anie.202117347
Q. Yang, W. Xu, S. Gong, G. Zheng, Z. Tian et al., Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts. Nat. Commun. 11, 5478 (2020). https://doi.org/10.1038/s41467-020-19309-4
F. Zhang, Y. Zhu, C. Tang, Y. Chen, B. Qian et al., High-efficiency electrosynthesis of hydrogen peroxide from oxygen reduction enabled by a tungsten single atom catalyst with unique terdentate N1O2 coordination. Adv. Funct. Mater. 32, 2110224 (2021). https://doi.org/10.1002/adfm.202110224
Q. Zhang, X. Tan, N.M. Bedford, Z. Han, L. Thomsen, Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 11, 4181 (2020). https://doi.org/10.1038/s41467-020-17782-5
B.Q. Li, C.X. Zhao, J.N. Liu, Q. Zhang, Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C Sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 31, 1808173 (2019). https://doi.org/10.1002/adma.201808173
X. Yang, D. Xia, Y. Kang, H. Du, F. Kang et al., Unveiling the axial hydroxyl ligand on Fe-N4-C electrocatalysts and its impact on the pH-dependent oxygen reduction activities and poisoning kinetics. Adv. Sci. 7, 2000176 (2020). https://doi.org/10.1002/advs.202000176
Y. Wang, Y.J. Tang, K. Zhou, Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 141(36), 14115–14119 (2019). https://doi.org/10.1021/jacs.9b07712
F. Wu, C. Pan, C.T. He, Y. Han, W. Ma et al., Single-atom Co-N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 142, 16861–16867 (2020). https://doi.org/10.1021/jacs.0c07790
H. Zhang, G. Liu, L. Shi, J. Ye, Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018). https://doi.org/10.1002/aenm.201701343
J. Liu, X. Wan, S. Liu, X. Liu, L. Zheng, Hydrogen passivation of M-N-C (M = Fe, Co) catalysts for storage stability and ORR activity improvements. Adv. Mater. 33, 2103600 (2021). https://doi.org/10.1002/adma.202103600
J. Yang, W. Liu, M. Xu, X. Liu, H. Qi et al., Dynamic behavior of single-atom catalysts in electrocatalysis: identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 143, 14530–14539 (2021). https://doi.org/10.1021/jacs.1c03788
W. Zhang, W. Lai, R. Cao, Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 117, 3717–3797 (2017). https://doi.org/10.1021/acs.chemrev.6b00299
Y. Wang, G.I.N. Waterhouse, L. Shang, T. Zhang, Electrocatalytic oxygen reduction to hydrogen peroxide: from homogenous to heterogenous electrocatalysis. Adv. Energy Mater. 11, 2003323 (2020). https://doi.org/10.1002/aenm.202003323
Y.H. Wang, P.E. Schneider, Z.K. Goldsmith, B. Mondal, S. Hammes-Schiffer et al., Bronsted acid scaling relationships enable control over product selectivity from O2 reduction with a mononuclear cobalt porphyrin catalyst. ACS Cent. Sci. 5, 1024–1034 (2019). https://doi.org/10.1021/acscentsci.9b00194
J. Zagal, M. Páez, A.A. Tanaka, J.R. dos Santos, C.A. Linkous, Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J. Electroanal. Chem. 339, 13–30 (1992). https://doi.org/10.1016/0022-0728(92)80442-7
S. Yuan, J. Peng, Y. Zhang, D.J. Zheng, S. Bagi et al., Tuning the catalytic activity of Fe-phthalocyanine-based catalysts for the oxygen reduction reaction by ligand functionalization. ACS Catal. 12, 7278–7287 (2022). https://doi.org/10.1021/acscatal.2c00184
T. Sawaguchi, T. Matsue, K. Itaya, I. Uchida, Electrochemical catalytic reduction of molecular oxygen by iron porphyrin ion-complex modified electrode. Electrochim. Acta 36, 703–708 (1991). https://doi.org/10.1016/0013-4686(91)85161-Y
A. Bettelheim, T. Kuwana, Rotating-ring-disk analysis of iron tetra(N-methylpyridyl)porphyrin in electrocatalysis of oxygen. Anal. Chem. 51, 2257–2260 (1979). https://doi.org/10.1021/ac50049a046
Y. Wang, Z. Zhang, X. Zhang, Y. Yuan, Z. Jiang et al., Theory-driven design of electrocatalysts for the two-electron oxygen reduction reaction based on dispersed metal phthalocyanines. CCS. Chem. 4, 228–236 (2022). https://doi.org/10.31635/ccschem.021.202000590
S. Fukuzumi, L. Tahsini, Y.M. Lee, K. Ohkubo, W. Nam, Factors that control catalytic two- versus four-electron reduction of dioxygen by copper complexes. J. Am. Chem. Soc. 134, 7025–7035 (2012). https://doi.org/10.1021/ja211656g
M. Gennari, D. Brazzolotto, J. Pecaut, M.V. Cherrier, C.J. Pollock et al., Dioxygen activation and catalytic reduction to hydrogen peroxide by a thiolate-bridged dimanganese(ii) complex with a pendant thiol. J. Am. Chem. Soc. 137, 8644–8653 (2015). https://doi.org/10.1021/jacs.5b04917
S.L. Hooe, A.L. Rheingold, C.W. Machan, Electrocatalytic reduction of dioxygen to hydrogen peroxide by a molecular manganese complex with a bipyridine-containing schiff base ligand. J. Am. Chem. Soc. 140, 3232–3241 (2018). https://doi.org/10.1021/jacs.7b09027
T. Wada, H. Maki, T. Imamoto, H. Yuki, Y. Miyazato, Four-electron reduction of dioxygen catalysed by dinuclear cobalt complexes bridged by bis(terpyridyl)anthracene. Chem. Commun. 49, 4394–4396 (2013). https://doi.org/10.1039/C2CC36528F
P.T. Smith, Y. Kim, B.P. Benke, K. Kim, C.J. Chang, Supramolecular tuning enables selective oxygen reduction catalyzed by cobalt porphyrins for direct electrosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 59, 4902–4907 (2020). https://doi.org/10.1002/anie.201916131
M. Wang, X. Dong, Z. Meng, Z. Hu, Y.G. Lin et al., An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 60, 11190–11195 (2021). https://doi.org/10.1002/anie.202100897
E.M. Miner, T. Fukushima, D. Sheberla, L. Sun, Y. Surendranath et al., Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 7, 10942 (2016). https://doi.org/10.1038/ncomms10942
H. Alt, Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J. Catal. 28, 8–19 (1973). https://doi.org/10.1016/0021-9517(73)90173-5
L.Z. Peng, P. Liu, Q.Q. Cheng, W.J. Hu, Y.A. Liu et al., Highly effective electrosynthesis of hydrogen peroxide from oxygen on a redox-active cationic covalent triazine network. Chem. Commun. 54, 4433–4436 (2018). https://doi.org/10.1039/C8CC00957K
X. Yin, L. Lin, U. Martinez, P. Zelenay, 2,2′-Dipyridylamine as heterogeneous organic molecular electrocatalyst for two-electron oxygen reduction reaction in acid media. ACS Appl. Energy Mater. 2, 7272–7278 (2019). https://doi.org/10.1021/acsaem.9b01227
M. Warczak, M. Gryszel, M. Jakesova, V. Derek, E.D. Glowacki, Organic semiconductor perylenetetracarboxylic diimide (PTCDI) electrodes for electrocatalytic reduction of oxygen to hydrogen peroxide. Chem. Commun. 54, 1960–1963 (2018). https://doi.org/10.1039/C7CC08471D
Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011). https://doi.org/10.1039/C0EE00558D
E. Mitraka, M. Gryszel, M. Vagin, M.J. Jafari, A. Singh et al., Electrocatalytic production of hydrogen peroxide with poly(3,4 ethylenedioxythiophene) electrodes. Adv. Sustain. Syst. 3, 1800110 (2019). https://doi.org/10.1002/adsu.201800110
X. Yan, D. Li, L. Zhang, X. Long, D. Yang, Tuning oxygen-containing groups of pyrene for high hydrogen peroxide production selectivity. Appl. Catal. B: Environ. 304, 120908 (2022). https://doi.org/10.1016/j.apcatb.2021.120908
A. Wuorimaa, R. Jokela, R. Aksela, Recent developments in the stabilization of hydrogen peroxide bleaching of pulps: an overview. Nord. Pulp Pap. Res. J. 21, 435–443 (2006). https://doi.org/10.3183/npprj-2006-21-04-p435-443
X. Yao, Q. Dong, Q. Cheng, D. Wang, Why do lithium-oxygen batteries fail: parasitic chemical reactions and their synergistic effect. Angew. Chem. Int. Ed. 55, 11344–11353 (2016). https://doi.org/10.1002/anie.201601783
Y. Wang, R. Shi, L. Shang, L. Peng, D. Chu et al., Vertical graphene array for efficient electrocatalytic reduction of oxygen to hydrogen peroxide. Nano Energy 96, 1 (2022). https://doi.org/10.1016/j.nanoen.2022.107046
G. Liu, W.S.Y. Wong, M. Kraft, J.W. Ager, D. Vollmer et al., Wetting-regulated gas-involving (photo)electrocatalysis: biomimetics in energy conversion. Chem. Soc. Rev. 50, 10674–10699 (2021). https://doi.org/10.1039/D1CS00258A
P. Wang, T. Hayashi, Q. Meng, Q. Wang, H. Liu et al., Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode. Small 13, 1601250 (2017). https://doi.org/10.1002/smll.201601250
A.M. Chaparro, Oxygen reduction limited by surface diffusion at a rotating ring-disk electrode. Electrochim. Acta 372, 137856 (2021). https://doi.org/10.1016/j.electacta.2021.137856
Z. Qiang, J.H. Chang, C.P. Huang, Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res 36, 85–94 (2002). https://doi.org/10.1016/S0043-1354(01)00235-4
Q. Zhao, J. An, S. Wang, Y. Qiao, C. Liao et al., Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction. ACS Appl. Mater. Interfaces 11, 35410–35419 (2019). https://doi.org/10.1021/acsami.9b09942
H. Zhang, Y. Zhao, Y. Li, G. Li, J. Li et al., Janus electrode of asymmetric wettability for H2O2 production with highly efficient O2 utilization. ACS Appl. Energy Mater. 3, 705–714 (2019). https://doi.org/10.1021/acsaem.9b01908
Q. Zhang, M. Zhou, G. Ren, Y. Li, Y. Li et al., Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat. Commun. 11, 1731 (2020). https://doi.org/10.1038/s41467-020-15597-y
S. Rojas-Carbonell, K. Artyushkova, A. Serov, C. Santoro, I. Matanovic, P. Atanassov, Effect of pH on the activity of platinum group metal-free catalysts in oxygen reduction reaction. ACS Catal. 8, 3041–3053 (2018). https://doi.org/10.1021/acscatal.7b03991
X. Zhao, Y. Liu, Origin of selective production of hydrogen peroxide by electrochemical oxygen reduction. J. Am. Chem. Soc. 143, 9423–9428 (2021). https://doi.org/10.1021/jacs.1c02186
B.W. Noffke, Q. Li, K. Raghavachari, L.S. Li, A model for the pH-dependent selectivity of the oxygen reduction reaction electrocatalyzed by N-doped graphitic carbon. J. Am. Chem. Soc. 138, 13923–13929 (2016). https://doi.org/10.1021/jacs.6b06778
N. Ramaswamy, S. Mukerjee, Influence of inner- and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media. J. Phys. Chem. C 115, 18015–18026 (2011). https://doi.org/10.1021/jp204680p
K.H. Wu, D. Wang, X. Lu, X. Zhang, Z. Xie et al., Highly selective hydrogen peroxide electrosynthesis on carbon: in situ interface engineering with surfactants. Chem 6, 1443–1458 (2020). https://doi.org/10.1016/j.chempr.2020.04.002
G.L. Chai, Z. Hou, T. Ikeda, K. Terakura, Two-electron oxygen reduction on carbon materials catalysts: mechanisms and active sites. J. Phys. Chem. C 121, 14524–14533 (2017). https://doi.org/10.1021/acs.jpcc.7b04959
N. Ramaswamy, U. Tylus, Q. Jia, S. Mukerjee, Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J. Am. Chem. Soc. 135, 15443–15449 (2015). https://doi.org/10.1021/ja405149m
D. Strmcnik, K. Kodama, D. van der Vliet, J. Greeley, V.R. Stamenkovic et al., The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009). https://doi.org/10.1038/nchem.330
D. Strmcnik, M. Escudero-Escribano, K. Kodama, V.R. Stamenkovic, A. Cuesta et al., Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat. Chem. 2, 880–885 (2010). https://doi.org/10.1038/nchem.771
X. Zhang, X. Zhao, P. Zhu, Z. Adler, Z.Y. Wu, Y. Liu, H. Wang, Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nat. Commun. 13, 2880 (2022). https://doi.org/10.1038/s41467-022-30337-0
J.A. Zamora Zeledón, G.A. Kamat, G.T.K.K. Gunasooriya, J.K. Nørskov, M.B. Stevens et al., Probing the effects of acid electrolyte anions on electrocatalyst activity and selectivity for the oxygen reduction reaction. ChemElectroChem 8, 2467–2478 (2021). https://doi.org/10.1002/celc.202100500
K. Holst-Olesen, M. Reda, H.A. Hansen, T. Vegge, M. Arenz, Enhanced oxygen reduction activity by selective anion adsorption on non-precious-metal catalysts. ACS Catal. 8, 7104–7112 (2018). https://doi.org/10.1021/acscatal.8b01584
Q. Wang, Z.Y. Zhou, Y.J. Lai, Y. You, J.G. Liu et al., Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 136, 10882–10885 (2014). https://doi.org/10.1021/ja505777v
E.L. Gyenge, C.W. Oloman, Influence of surfactants on the electroreduction of oxygen to hydrogen peroxide in acid and alkaline electrolytes. J. Appl. Electrochem. 31, 233–243 (2021). https://doi.org/10.1023/A:1004159102510
J.S. Lim, Y.J. Sa, S.H. Joo, Catalyst design, measurement guidelines, and device integration for H2O2 electrosynthesis from oxygen reduction. Cell Rep. Phys. Sci. 3, 100987 (2022). https://doi.org/10.1016/j.xcrp.2022.100987
Z. Chen, S. Chen, S. Siahrostami, P. Chakthranont, C. Hahn, Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. React. Chem. Eng. 2, 239–245 (2017). https://doi.org/10.1039/C6RE00195E
C. Xia, Y. Xia, P. Zhu, L. Fan, H. Wang, Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019). https://doi.org/10.1126/science.aay1844
K. Jiang, S. Back, A.J. Akey, C. Xia, Y. Hu et al., Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 10, 3997 (2019). https://doi.org/10.1038/s41467-019-11992-2
G. Xia, Y. Lu, H. Xu, An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode. Sep. Purifi. Technol. 156, 553–560 (2015). https://doi.org/10.1016/j.seppur.2015.10.048
J. Xu, X. Zheng, Z. Feng, Z. Lu, Z. Zhang et al., Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2020). https://doi.org/10.1038/s41893-020-00635-w
N. Luo, G.H. Miley, R.J. Gimlin, R.L. Burton, J. Rusek et al., Hydrogen-peroxide-based fuel cells for space power systems. J. Propuls. Power 24, 583–589 (2008). https://doi.org/10.2514/1.31522
A.E. Sanli, A. Aytaç, Response to Disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel cell. Int. J. Hydrog. Energy 36, 869–875 (2011). https://doi.org/10.1016/j.ijhydene.2010.09.038
J. Liu, X. Wei, X. Wang, X.W. Liu, High-yield synthesis of ultrathin silica-based nanosheets and their superior catalytic activity in H2O2 decomposition. Chem. Commun. 47, 6135–6137 (2011). https://doi.org/10.1039/C1CC10280J
L. Xu, J. Liu, P. Chen, Z. Wang, D. Tang, X. Liu, F. Meng, X. Wei, High-power aqueous Zn-H2O2 batteries for multiple applications. Cell Rep. Phys. Sci. 1, 100027 (2020). https://doi.org/10.1016/j.xcrp.2020.100027
C.J. McDonnell-Worth, D.R. MacFarlane, Progress towards direct hydrogen peroxide fuel cells (DHPFCs) as an energy storage concept. Aust. J. Chem. 71, 781–788 (2018). https://doi.org/10.1071/CH18328
L. An, T.S. Zhao, X.L. Zhou, X.H. Yan, C.Y. Jung, A low-cost, high-performance zinc–hydrogen peroxide fuel cell. J. Power Sources 275, 831–834 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.076