Branch-Chain-Rich Diisopropyl Ether with Steric Hindrance Facilitates Stable Cycling of Lithium Batteries at − 20 °C
Corresponding Author: Shuhua Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 197
Abstract
Li metal batteries (LMBs) offer significant potential as high energy density alternatives; nevertheless, their performance is hindered by the slow desolvation process of electrolytes, particularly at low temperatures (LT), leading to low coulombic efficiency and limited cycle stability. Thus, it is essential to optimize the solvation structure thereby achieving a rapid desolvation process in LMBs at LT. Herein, we introduce branch chain-rich diisopropyl ether (DIPE) into a 2.5 M Li bis(fluorosulfonyl)imide dipropyl ether (DPE) electrolyte as a co-solvent for high-performance LMBs at − 20 °C. The incorporation of DIPE not only enhances the disorder within the electrolyte, but also induces a steric hindrance effect form DIPE’s branch chain, excluding other solvent molecules from Li+ solvation sheath. Both of these factors contribute to the weak interactions between Li+ and solvent molecules, effectively reducing the desolvation energy of the electrolyte. Consequently, Li (50 μm)||LFP (mass loading ~ 10 mg cm−2) cells in DPE/DIPE based electrolyte demonstrate stable performance over 650 cycles at − 20 °C, delivering 87.2 mAh g−1, and over 255 cycles at 25 °C with 124.8 mAh g−1. DIPE broadens the electrolyte design from molecular structure considerations, offering a promising avenue for highly stable LMBs at LT.
Highlights:
1 Branch chain-rich diisopropyl ether (DIPE) was selected as co-solvent of low-temperature electrolyte for lithium metal battery.
2 The introduction of DIPE improved the disorder of electrolyte and the branch chains from DIPE exclude other solvents from the Li+ solvent sheath, thereby achieving a rapid desolvation process.
3 The electrolyte guaranteed a uniform Li stripping and deposition during cycling at both room temperature and low temperature and ensured stable cycling performance for Li||LFP cells over 650 cycles at − 20 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
- A. Rosenman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch et al., Review on Li-sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1500212 (2015). https://doi.org/10.1002/aenm.201500212
- M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li et al., Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023). https://doi.org/10.1038/s41467-023-36853-x
- T. Ma, Y. Ni, Q. Wang, W. Zhang, S. Jin et al., Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem. Int. Ed. 134, e202207927 (2022). https://doi.org/10.1002/ange.202207927
- Y. Fang, S.L. Zhang, Z.P. Wu, D. Luan, X.W.D. Lou, A highly stable lithium metal anode enabled by Ag nanop-embedded nitrogen-doped carbon macroporous fibers. Sci. Adv. 7, eabg3626 (2021). https://doi.org/10.1126/sciadv.abg3626
- H. Duan, Y. You, G. Wang, X. Qu, J. Wen et al., Lithium-ion charged polymer channels flattening lithium metal anode. Nano-Micro Lett. 16, 78 (2024). https://doi.org/10.1007/s40820-023-01300-5
- Y. Gao, T. Rojas, K. Wang, S. Liu, D. Wang et al., Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020). https://doi.org/10.1038/s41560-020-0640-7
- T. Nishida, K. Nishikawa, M. Rosso, Y. Fukunaka, Optical observation of Li dendrite growth in ionic liquid. Electrochim. Acta 100, 333–341 (2013). https://doi.org/10.1016/j.electacta.2012.12.131
- D. Hubble, D.E. Brown, Y. Zhao, C. Fang, J. Lau et al., Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 15, 550–578 (2022). https://doi.org/10.1039/d1ee01789f
- Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
- A. Hu, F. Li, W. Chen, T. Lei, Y. Li et al., Ion transport kinetics in low-temperature lithium metal batteries. Adv. Energy Mater. 12, 2202432 (2022). https://doi.org/10.1002/aenm.202202432
- D. Chen, Y. Liu, C. Xia, Y. Han, Q. Sun et al., Polybenzimidazole functionalized electrolyte with Li-wetting and self-fluorination functionalities for practical Li metal batteries. InfoMat 4, e12247 (2022). https://doi.org/10.1002/inf2.12247
- Y. Wu, Q. Hu, H. Liang, A. Wang, H. Xu et al., Electrostatic potential as solvent descriptor to enable rational electrolyte design for lithium batteries. Adv. Energy Mater. 13, 2300259 (2023). https://doi.org/10.1002/aenm.202300259
- D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao et al., Electrolyte design for lithium metal anode-based batteries toward extreme temperature application. Adv. Sci. 8, 2101051 (2021). https://doi.org/10.1002/advs.202101051
- G. Cai, J. Holoubek, M. Li, H. Gao, Y. Yin et al., Solvent selection criteria for temperature-resilient lithium–sulfur batteries. Proc. Natl. Acad. Sci. U.S.A. 119, e2200392119 (2022). https://doi.org/10.1073/pnas.2200392119
- C. Fu, L. Xu, F.W. Aquino, A.V. Cresce, M. Gobet et al., Correlating Li+-solvation structure and its electrochemical reaction kinetics with sulfur in subnano confinement. J. Phys. Chem. Lett. 9, 1739–1745 (2018). https://doi.org/10.1021/acs.jpclett.8b00567
- X. Zhang, A. Wang, X. Liu, J. Luo, Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res. 52, 3223–3232 (2019). https://doi.org/10.1021/acs.accounts.9b00437
- X. Liu, A. Mariani, H. Adenusi, S. Passerini, Locally concentrated ionic liquid electrolytes for lithium-metal batteries. Angew. Chem. Int. Ed. 62, e202219318 (2023). https://doi.org/10.1002/anie.202219318
- K. Chen, X. Shen, L. Luo, H. Chen, R. Cao et al., Correlating the solvating power of solvents with the strength of ion-dipole interaction in electrolytes of lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202312373 (2023). https://doi.org/10.1002/anie.202312373
- L. Luo, K. Chen, H. Chen, H. Li, R. Cao et al., Enabling ultralow-temperature (−70 °C) lithium-ion batteries: advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent. Adv. Mater. 36, 2308881 (2023). https://doi.org/10.1002/adma.202308881
- S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16, 35 (2024). https://doi.org/10.1007/s40820-023-01245-9
- X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
- J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee et al., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019). https://doi.org/10.1039/c8ee02601g
- P. Xiao, X. Yun, Y. Chen, X. Guo, P. Gao et al., Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem. Soc. Rev. 52, 5255–5316 (2023). https://doi.org/10.1039/d3cs00151b
- R. Xu, J.F. Ding, X.X. Ma, C. Yan, Y.X. Yao et al., Designing and demystifying the lithium metal interface toward highly reversible batteries. Adv. Mater. 33, 2105962 (2021). https://doi.org/10.1002/adma.202105962
- L.L. Jiang, C. Yan, Y.X. Yao, W. Cai, J.Q. Huang et al., Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem. Int. Ed. 60, 3402–3406 (2021). https://doi.org/10.1002/anie.202009738
- C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, eaal4263 (2017). https://doi.org/10.1126/science.aal4263
- Y. Zhao, T. Zhou, T. Ashirov, M.E. Kazzi, C. Cancellieri et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022). https://doi.org/10.1038/s41467-022-29199-3
- X. Liu, A. Mariani, T. Diemant, X. Dong, P.-H. Su et al., Locally concentrated ionic liquid electrolytes enabling low-temperature lithium metal batteries. Angew. Chem. Int. Ed. 62, e202305840 (2023). https://doi.org/10.1002/anie.202305840
- L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009). https://doi.org/10.1002/jcc.21224
- G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001). https://doi.org/10.1021/jp003919d
- W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996). https://doi.org/10.1021/ja9621760
- M. Gogoi, M. Borkotoky, S. Borchetia, P. Chowdhury, S. Mahanta et al., Black tea bioactives as inhibitors of multiple targets of SARS-CoV-2 (3CLpro, PLpro and RdRp): a virtual screening and molecular dynamic simulation study. J. Biomol. Struct. Dyn. 40, 7143–7166 (2022). https://doi.org/10.1080/07391102.2021.1897679
- Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x
- F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005). https://doi.org/10.1039/b508541a
- F. Weigend, Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006). https://doi.org/10.1039/b515623h
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009). https://doi.org/10.1021/jp810292n
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
- E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen et al., Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010). https://doi.org/10.1021/ja100936w
- Y. Sun, C.J. Radke, B.D. McCloskey, J.M. Prausnitz, Wetting behavior of four polar organic solvents containing one of three lithium salts on a lithium-ion-battery separator. J. Colloid Interface Sci. 529, 582–587 (2018). https://doi.org/10.1016/j.jcis.2018.06.044
- Z. Li, H. Rao, R. Atwi, B.M. Sivakumar, B. Gwalani et al., Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat. Commun. 14, 868 (2023). https://doi.org/10.1038/s41467-023-36647-1
- Y. Huang, R. Li, S. Weng, H. Zhang, C. Zhu et al., Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ. Sci. 15, 4349–4361 (2022). https://doi.org/10.1039/d2ee01756c
- S.C. Kim, J. Wang, R. Xu, P. Zhang, Y. Chen et al., High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8, 814–826 (2023). https://doi.org/10.1038/s41560-023-01280-1
- B.D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018). https://doi.org/10.1002/aenm.201702097
- H. Li, F. Zhang, W. Wei, X. Zhao, H. Dong et al., Promoting air stability of Li anode via an artificial organic/inorganic hybrid layer for dendrite-free lithium batteries. Adv. Energy Mater. 13, 2301023 (2023). https://doi.org/10.1002/aenm.202301023
- S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia et al., Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv. Mater. 30, 1706375 (2018). https://doi.org/10.1002/adma.201706375
- P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016). https://doi.org/10.1039/c6ee01674j
- X. Fan, X. Ji, L. Chen, J. Chen, T. Deng et al., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019). https://doi.org/10.1038/s41560-019-0474-3
- O. Borodin, M. Olguin, P. Ganesh, P.R.C. Kent, J.L. Allen et al., Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry. Phys. Chem. Chem. Phys. 18, 164–175 (2016). https://doi.org/10.1039/c5cp05121e
- Z. Miao, Q. Liu, W. Wei, X. Zhao, M. Du et al., Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy 97, 107145 (2022). https://doi.org/10.1016/j.nanoen.2022.107145
References
J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
A. Rosenman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch et al., Review on Li-sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1500212 (2015). https://doi.org/10.1002/aenm.201500212
M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li et al., Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023). https://doi.org/10.1038/s41467-023-36853-x
T. Ma, Y. Ni, Q. Wang, W. Zhang, S. Jin et al., Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem. Int. Ed. 134, e202207927 (2022). https://doi.org/10.1002/ange.202207927
Y. Fang, S.L. Zhang, Z.P. Wu, D. Luan, X.W.D. Lou, A highly stable lithium metal anode enabled by Ag nanop-embedded nitrogen-doped carbon macroporous fibers. Sci. Adv. 7, eabg3626 (2021). https://doi.org/10.1126/sciadv.abg3626
H. Duan, Y. You, G. Wang, X. Qu, J. Wen et al., Lithium-ion charged polymer channels flattening lithium metal anode. Nano-Micro Lett. 16, 78 (2024). https://doi.org/10.1007/s40820-023-01300-5
Y. Gao, T. Rojas, K. Wang, S. Liu, D. Wang et al., Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020). https://doi.org/10.1038/s41560-020-0640-7
T. Nishida, K. Nishikawa, M. Rosso, Y. Fukunaka, Optical observation of Li dendrite growth in ionic liquid. Electrochim. Acta 100, 333–341 (2013). https://doi.org/10.1016/j.electacta.2012.12.131
D. Hubble, D.E. Brown, Y. Zhao, C. Fang, J. Lau et al., Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 15, 550–578 (2022). https://doi.org/10.1039/d1ee01789f
Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
A. Hu, F. Li, W. Chen, T. Lei, Y. Li et al., Ion transport kinetics in low-temperature lithium metal batteries. Adv. Energy Mater. 12, 2202432 (2022). https://doi.org/10.1002/aenm.202202432
D. Chen, Y. Liu, C. Xia, Y. Han, Q. Sun et al., Polybenzimidazole functionalized electrolyte with Li-wetting and self-fluorination functionalities for practical Li metal batteries. InfoMat 4, e12247 (2022). https://doi.org/10.1002/inf2.12247
Y. Wu, Q. Hu, H. Liang, A. Wang, H. Xu et al., Electrostatic potential as solvent descriptor to enable rational electrolyte design for lithium batteries. Adv. Energy Mater. 13, 2300259 (2023). https://doi.org/10.1002/aenm.202300259
D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao et al., Electrolyte design for lithium metal anode-based batteries toward extreme temperature application. Adv. Sci. 8, 2101051 (2021). https://doi.org/10.1002/advs.202101051
G. Cai, J. Holoubek, M. Li, H. Gao, Y. Yin et al., Solvent selection criteria for temperature-resilient lithium–sulfur batteries. Proc. Natl. Acad. Sci. U.S.A. 119, e2200392119 (2022). https://doi.org/10.1073/pnas.2200392119
C. Fu, L. Xu, F.W. Aquino, A.V. Cresce, M. Gobet et al., Correlating Li+-solvation structure and its electrochemical reaction kinetics with sulfur in subnano confinement. J. Phys. Chem. Lett. 9, 1739–1745 (2018). https://doi.org/10.1021/acs.jpclett.8b00567
X. Zhang, A. Wang, X. Liu, J. Luo, Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res. 52, 3223–3232 (2019). https://doi.org/10.1021/acs.accounts.9b00437
X. Liu, A. Mariani, H. Adenusi, S. Passerini, Locally concentrated ionic liquid electrolytes for lithium-metal batteries. Angew. Chem. Int. Ed. 62, e202219318 (2023). https://doi.org/10.1002/anie.202219318
K. Chen, X. Shen, L. Luo, H. Chen, R. Cao et al., Correlating the solvating power of solvents with the strength of ion-dipole interaction in electrolytes of lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202312373 (2023). https://doi.org/10.1002/anie.202312373
L. Luo, K. Chen, H. Chen, H. Li, R. Cao et al., Enabling ultralow-temperature (−70 °C) lithium-ion batteries: advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent. Adv. Mater. 36, 2308881 (2023). https://doi.org/10.1002/adma.202308881
S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16, 35 (2024). https://doi.org/10.1007/s40820-023-01245-9
X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee et al., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019). https://doi.org/10.1039/c8ee02601g
P. Xiao, X. Yun, Y. Chen, X. Guo, P. Gao et al., Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem. Soc. Rev. 52, 5255–5316 (2023). https://doi.org/10.1039/d3cs00151b
R. Xu, J.F. Ding, X.X. Ma, C. Yan, Y.X. Yao et al., Designing and demystifying the lithium metal interface toward highly reversible batteries. Adv. Mater. 33, 2105962 (2021). https://doi.org/10.1002/adma.202105962
L.L. Jiang, C. Yan, Y.X. Yao, W. Cai, J.Q. Huang et al., Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem. Int. Ed. 60, 3402–3406 (2021). https://doi.org/10.1002/anie.202009738
C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, eaal4263 (2017). https://doi.org/10.1126/science.aal4263
Y. Zhao, T. Zhou, T. Ashirov, M.E. Kazzi, C. Cancellieri et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022). https://doi.org/10.1038/s41467-022-29199-3
X. Liu, A. Mariani, T. Diemant, X. Dong, P.-H. Su et al., Locally concentrated ionic liquid electrolytes enabling low-temperature lithium metal batteries. Angew. Chem. Int. Ed. 62, e202305840 (2023). https://doi.org/10.1002/anie.202305840
L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009). https://doi.org/10.1002/jcc.21224
G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001). https://doi.org/10.1021/jp003919d
W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996). https://doi.org/10.1021/ja9621760
M. Gogoi, M. Borkotoky, S. Borchetia, P. Chowdhury, S. Mahanta et al., Black tea bioactives as inhibitors of multiple targets of SARS-CoV-2 (3CLpro, PLpro and RdRp): a virtual screening and molecular dynamic simulation study. J. Biomol. Struct. Dyn. 40, 7143–7166 (2022). https://doi.org/10.1080/07391102.2021.1897679
Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x
F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005). https://doi.org/10.1039/b508541a
F. Weigend, Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006). https://doi.org/10.1039/b515623h
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009). https://doi.org/10.1021/jp810292n
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen et al., Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010). https://doi.org/10.1021/ja100936w
Y. Sun, C.J. Radke, B.D. McCloskey, J.M. Prausnitz, Wetting behavior of four polar organic solvents containing one of three lithium salts on a lithium-ion-battery separator. J. Colloid Interface Sci. 529, 582–587 (2018). https://doi.org/10.1016/j.jcis.2018.06.044
Z. Li, H. Rao, R. Atwi, B.M. Sivakumar, B. Gwalani et al., Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat. Commun. 14, 868 (2023). https://doi.org/10.1038/s41467-023-36647-1
Y. Huang, R. Li, S. Weng, H. Zhang, C. Zhu et al., Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ. Sci. 15, 4349–4361 (2022). https://doi.org/10.1039/d2ee01756c
S.C. Kim, J. Wang, R. Xu, P. Zhang, Y. Chen et al., High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8, 814–826 (2023). https://doi.org/10.1038/s41560-023-01280-1
B.D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018). https://doi.org/10.1002/aenm.201702097
H. Li, F. Zhang, W. Wei, X. Zhao, H. Dong et al., Promoting air stability of Li anode via an artificial organic/inorganic hybrid layer for dendrite-free lithium batteries. Adv. Energy Mater. 13, 2301023 (2023). https://doi.org/10.1002/aenm.202301023
S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia et al., Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv. Mater. 30, 1706375 (2018). https://doi.org/10.1002/adma.201706375
P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016). https://doi.org/10.1039/c6ee01674j
X. Fan, X. Ji, L. Chen, J. Chen, T. Deng et al., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019). https://doi.org/10.1038/s41560-019-0474-3
O. Borodin, M. Olguin, P. Ganesh, P.R.C. Kent, J.L. Allen et al., Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry. Phys. Chem. Chem. Phys. 18, 164–175 (2016). https://doi.org/10.1039/c5cp05121e
Z. Miao, Q. Liu, W. Wei, X. Zhao, M. Du et al., Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy 97, 107145 (2022). https://doi.org/10.1016/j.nanoen.2022.107145