Integrating Electric Ambipolar Effect for High-Performance Zinc Bromide Batteries
Corresponding Author: Shaohua Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 143
Abstract
The coupling of fast redox kinetics, high-energy density, and prolonged lifespan is a permanent aspiration for aqueous rechargeable zinc batteries, but which has been severely hampered by a narrow voltage range and suboptimal compatibility between the electrolytes and electrodes. Here, we unprecedentedly introduced an electric ambipolar effect for synergistic manipulation on Zn2+ ternary-hydrated eutectic electrolyte (ZTE) enabling high-performance Zn-Br2 batteries. The electric ambipolar effect motivates strong dipole interactions among hydrated perchlorates and bipolar ligands of L-carnitine (L-CN) and sulfamide, which reorganized primary cations solvation sheath in a manner of forming Zn[(L-CN)(SA)(H2O)4]2+ configuration and dynamically restricting desolvated H2O molecules, thus ensuring a broadened electrochemical window of 2.9 V coupled with high ionic conductivity. Noticeably, L-CN affords an electrostatic shielding effect and an in situ construction of organic–inorganic interphase, endowing oriented Zn anode plating/stripping reversibly for over 2400 h. Therefore, with the synergy of electro/nucleophilicity and exceptional compatibility, the ZTE electrolyte dynamically boosts the conversion redox of Zn-Br2 batteries in terms of high specific capacity and stable cycling performance. These findings open a window for designing electrolytes with synergetic chemical stability and compatibility toward advanced zinc-ion batteries.
Highlights:
1 Electric ambipolar effect motivates strong dipole interactions reorganized primary cations solvation sheath.
2 Electrostatic shielding homogenized the distribution for nucleated Zn and facilized the orientated Zn deposition.
3 The eutectic network of Zn2+ ternary hydrated eutectic electrolytes enables highly reversible and noteworthy Br2/Br− reaction kinetics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Yang, J. Chen, X. Ji, T.P. Pollard, X. Lü et al., Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019). https://doi.org/10.1038/s41586-019-1175-6
- T. Chen, H. Banda, L. Yang, J. Li, Y. Zhang et al., High-rate, high-capacity electrochemical energy storage in hydrogen-bonded fused aromatics. Joule 7, 986–1002 (2023). https://doi.org/10.1016/j.joule.2023.03.011
- J. Zheng, D.C. Bock, T. Tang, Q. Zhao, J. Yin et al., Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nat. Energy 6, 398–406 (2021). https://doi.org/10.1038/s41560-021-00797-7
- J. Liu, C. Ye, H. Wu, M. Jaroniec, S.-Z. Qiao, 2D mesoporous zincophilic sieve for high-rate sulfur-based aqueous zinc batteries. J. Am. Chem. Soc. 145, 5384–5392 (2023). https://doi.org/10.1021/jacs.2c13540
- W. Li, H. Xu, H. Zhang, F. Wei, L. Huang et al., Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries. Nat. Commun. 14, 5235 (2023). https://doi.org/10.1038/s41467-023-40969-5
- M. Kim, S.J. Shin, J. Lee, Y. Park, Y. Kim et al., Cationic additive with a rigid solvation shell for high-performance zinc ion batteries. Angew. Chem. Int. Ed. 61, e202211589 (2022). https://doi.org/10.1002/anie.202211589
- X. Zheng, Z. Liu, J. Sun, R. Luo, K. Xu et al., Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 14, 76 (2023). https://doi.org/10.1038/s41467-022-35630-6
- S. Chen, D. Ji, Q. Chen, J. Ma, S. Hou et al., Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries. Nat. Commun. 14, 3526 (2023). https://doi.org/10.1038/s41467-023-39237-3
- D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34, e2108856 (2022). https://doi.org/10.1002/adma.202108856
- S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34, e2110140 (2022). https://doi.org/10.1002/adma.202110140
- H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63, e202401974 (2024). https://doi.org/10.1002/anie.202401974
- C. Dai, L. Hu, X. Jin, Y. Wang, R. Wang et al., Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Sci. Adv. 8, eabo6688 (2022). https://doi.org/10.1126/sciadv.abo6688
- C. Xu, C. Lei, P. Jiang, W. Yang, W. Ma et al., Practical high-energy aqueous zinc-bromine static batteries enabled by synergistic exclusion-complexation chemistry. Joule 8, 461–481 (2024). https://doi.org/10.1016/j.joule.2023.12.023
- X. Li, N. Li, Z. Huang, Z. Chen, Y. Zhao et al., Confining aqueous Zn-Br halide redox chemistry by Ti3C2TX MXene. ACS Nano 15, 1718–1726 (2021). https://doi.org/10.1021/acsnano.0c09380
- J.H. Lee, Y. Byun, G.H. Jeong, C. Choi, J. Kwen et al., High-energy efficiency membraneless flowless Zn-Br battery: utilizing the electrochemical-chemical growth of polybromides. Adv. Mater. 31, e1904524 (2019). https://doi.org/10.1002/adma.201904524
- S. Biswas, A. Senju, R. Mohr, T. Hodson, N. Karthikeyan et al., Minimal architecture zinc–bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10, 114–120 (2017). https://doi.org/10.1039/c6ee02782b
- J. Heo, K. Shin, H.-T. Kim, A zinc-bromine battery with deep eutectic electrolytes. Adv. Sci. 9, e2204908 (2022). https://doi.org/10.1002/advs.202204908
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- X. Song, Y. Ge, H. Xu, S. Bao, L. Wang et al., Ternary eutectic electrolyte-assisted formation and dynamic breathing effect of the solid-electrolyte interphase for high-stability aqueous magnesium-ion full batteries. J. Am. Chem. Soc. 146, 7018–7028 (2024). https://doi.org/10.1021/jacs.4c00227
- H. Qiu, R. Hu, X. Du, Z. Chen, J. Zhao et al., Eutectic crystallization activates solid-state zinc-ion conduction. Angew. Chem. Int. Ed. 61, e202113086 (2022). https://doi.org/10.1002/anie.202113086
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4, 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
- J. Wu, Q. Liang, X. Yu, Q.-F. Lü, L. Ma et al., Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective. Adv. Funct. Mater. 31, 2011102 (2021). https://doi.org/10.1002/adfm.202011102
- G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001). https://doi.org/10.1021/jp003919d
- W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
- C. Zhao, Y. Gong, L. Zheng, M. Zhao, Untargeted metabolomic reveals the changes in muscle metabolites of mice during exercise recovery and the mechanisms of whey protein and whey protein hydrolysate in promoting muscle repair. Food Res. Int. 184, 114261 (2024). https://doi.org/10.1016/j.foodres.2024.114261
- L. Liu, H. Lu, C. Han, X. Chen, S. Liu et al., Salt anion amphiphilicity-activated electrolyte cosolvent selection strategy toward durable Zn metal anode. ACS Nano 17, 23065–23078 (2023). https://doi.org/10.1021/acsnano.3c08716
- F. Zhang, T. Liao, H. Peng, S. Xi, D.-C. Qi et al., Outer sphere electron transfer enabling high-voltage aqueous electrolytes. J. Am. Chem. Soc. 146, 10812–10821 (2024). https://doi.org/10.1021/jacs.4c01188
- G. Ma, L. Miao, Y. Dong, W. Yuan, X. Nie et al., Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Mater. 47, 203–210 (2022). https://doi.org/10.1016/j.ensm.2022.02.019
- M. Qiu, P. Sun, K. Han, Z. Pang, J. Du et al., Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at -80 °C. Nat. Commun. 14, 601 (2023). https://doi.org/10.1038/s41467-023-36198-5
- W. Li, H. Xu, H. Zhang, F. Wei, T. Zhang et al., Designing ternary hydrated eutectic electrolyte capable of four-electron conversion for advanced Zn–I2 full batteries. Energy Environ. Sci. 16, 4502–4510 (2023). https://doi.org/10.1039/d3ee01567j
- C. Chang, S. Hu, T. Li, F. Zeng, D. Wang et al., A robust gradient solid electrolyte interphase enables fast Zn dissolution and deposition dynamics. Energy Environ. Sci. 17, 680–694 (2024). https://doi.org/10.1039/d3ee03422d
- X. Liao, S. Chen, J. Chen, Y. Li, W. Wang et al., Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries. Proc. Natl. Acad. Sci. U.S.A. 121, e2317796121 (2024). https://doi.org/10.1073/pnas.2317796121
- H. Lu, J. Hu, X. Wei, K. Zhang, X. Xiao et al., A recyclable biomass electrolyte towards green zinc-ion batteries. Nat. Commun. 14, 4435 (2023). https://doi.org/10.1038/s41467-023-40178-0
- M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, e202215552 (2023). https://doi.org/10.1002/anie.202215552
- P. Xiong, Y. Kang, N. Yao, X. Chen, H. Mao et al., Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 8, 1613–1625 (2023). https://doi.org/10.1021/acsenergylett.3c00154
- X. Zhao, Y. Wang, C. Huang, Y. Gao, M. Huang et al., Tetraphenylporphyrin-based chelating ligand additive as a molecular sieving interfacial barrier toward durable aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62, e202312193 (2023). https://doi.org/10.1002/anie.202312193
- J. Zheng, B. Zhang, X. Chen, W. Hao, J. Yao et al., Critical solvation structures arrested active molecules for reversible Zn electrochemistry. Nano-Micro Lett. 16, 145 (2024). https://doi.org/10.1007/s40820-024-01361-0
- W. Xu, J. Li, X. Liao, L. Zhang, X. Zhang et al., Fluoride-rich, organic-inorganic gradient interphase enabled by sacrificial solvation shells for reversible zinc metal batteries. J. Am. Chem. Soc. 145, 22456–22465 (2023). https://doi.org/10.1021/jacs.3c06523
- H. Yu, D. Chen, X. Ni, P. Qing, C. Yan et al., Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energy Environ. Sci. 16, 2684–2695 (2023). https://doi.org/10.1039/d3ee00982c
- D. Xu, B. Chen, X. Ren, C. Han, Z. Chang et al., Selectively etching-off the highly reactive (002) Zn facet enables highly efficient aqueous zinc-metal batteries. Energy Environ. Sci. 17, 642–654 (2024). https://doi.org/10.1039/d3ee02522e
- S.J. Yoo, B. Evanko, X. Wang, M. Romelczyk, A. Taylor et al., Fundamentally addressing bromine storage through reversible solid-state confinement in porous carbon electrodes: design of a high-performance dual-redox electrochemical capacitor. J. Am. Chem. Soc. 139, 9985–9993 (2017). https://doi.org/10.1021/jacs.7b04603
References
C. Yang, J. Chen, X. Ji, T.P. Pollard, X. Lü et al., Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019). https://doi.org/10.1038/s41586-019-1175-6
T. Chen, H. Banda, L. Yang, J. Li, Y. Zhang et al., High-rate, high-capacity electrochemical energy storage in hydrogen-bonded fused aromatics. Joule 7, 986–1002 (2023). https://doi.org/10.1016/j.joule.2023.03.011
J. Zheng, D.C. Bock, T. Tang, Q. Zhao, J. Yin et al., Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nat. Energy 6, 398–406 (2021). https://doi.org/10.1038/s41560-021-00797-7
J. Liu, C. Ye, H. Wu, M. Jaroniec, S.-Z. Qiao, 2D mesoporous zincophilic sieve for high-rate sulfur-based aqueous zinc batteries. J. Am. Chem. Soc. 145, 5384–5392 (2023). https://doi.org/10.1021/jacs.2c13540
W. Li, H. Xu, H. Zhang, F. Wei, L. Huang et al., Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries. Nat. Commun. 14, 5235 (2023). https://doi.org/10.1038/s41467-023-40969-5
M. Kim, S.J. Shin, J. Lee, Y. Park, Y. Kim et al., Cationic additive with a rigid solvation shell for high-performance zinc ion batteries. Angew. Chem. Int. Ed. 61, e202211589 (2022). https://doi.org/10.1002/anie.202211589
X. Zheng, Z. Liu, J. Sun, R. Luo, K. Xu et al., Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 14, 76 (2023). https://doi.org/10.1038/s41467-022-35630-6
S. Chen, D. Ji, Q. Chen, J. Ma, S. Hou et al., Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries. Nat. Commun. 14, 3526 (2023). https://doi.org/10.1038/s41467-023-39237-3
D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34, e2108856 (2022). https://doi.org/10.1002/adma.202108856
S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34, e2110140 (2022). https://doi.org/10.1002/adma.202110140
H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63, e202401974 (2024). https://doi.org/10.1002/anie.202401974
C. Dai, L. Hu, X. Jin, Y. Wang, R. Wang et al., Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Sci. Adv. 8, eabo6688 (2022). https://doi.org/10.1126/sciadv.abo6688
C. Xu, C. Lei, P. Jiang, W. Yang, W. Ma et al., Practical high-energy aqueous zinc-bromine static batteries enabled by synergistic exclusion-complexation chemistry. Joule 8, 461–481 (2024). https://doi.org/10.1016/j.joule.2023.12.023
X. Li, N. Li, Z. Huang, Z. Chen, Y. Zhao et al., Confining aqueous Zn-Br halide redox chemistry by Ti3C2TX MXene. ACS Nano 15, 1718–1726 (2021). https://doi.org/10.1021/acsnano.0c09380
J.H. Lee, Y. Byun, G.H. Jeong, C. Choi, J. Kwen et al., High-energy efficiency membraneless flowless Zn-Br battery: utilizing the electrochemical-chemical growth of polybromides. Adv. Mater. 31, e1904524 (2019). https://doi.org/10.1002/adma.201904524
S. Biswas, A. Senju, R. Mohr, T. Hodson, N. Karthikeyan et al., Minimal architecture zinc–bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10, 114–120 (2017). https://doi.org/10.1039/c6ee02782b
J. Heo, K. Shin, H.-T. Kim, A zinc-bromine battery with deep eutectic electrolytes. Adv. Sci. 9, e2204908 (2022). https://doi.org/10.1002/advs.202204908
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
X. Song, Y. Ge, H. Xu, S. Bao, L. Wang et al., Ternary eutectic electrolyte-assisted formation and dynamic breathing effect of the solid-electrolyte interphase for high-stability aqueous magnesium-ion full batteries. J. Am. Chem. Soc. 146, 7018–7028 (2024). https://doi.org/10.1021/jacs.4c00227
H. Qiu, R. Hu, X. Du, Z. Chen, J. Zhao et al., Eutectic crystallization activates solid-state zinc-ion conduction. Angew. Chem. Int. Ed. 61, e202113086 (2022). https://doi.org/10.1002/anie.202113086
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4, 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
J. Wu, Q. Liang, X. Yu, Q.-F. Lü, L. Ma et al., Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective. Adv. Funct. Mater. 31, 2011102 (2021). https://doi.org/10.1002/adfm.202011102
G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001). https://doi.org/10.1021/jp003919d
W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
C. Zhao, Y. Gong, L. Zheng, M. Zhao, Untargeted metabolomic reveals the changes in muscle metabolites of mice during exercise recovery and the mechanisms of whey protein and whey protein hydrolysate in promoting muscle repair. Food Res. Int. 184, 114261 (2024). https://doi.org/10.1016/j.foodres.2024.114261
L. Liu, H. Lu, C. Han, X. Chen, S. Liu et al., Salt anion amphiphilicity-activated electrolyte cosolvent selection strategy toward durable Zn metal anode. ACS Nano 17, 23065–23078 (2023). https://doi.org/10.1021/acsnano.3c08716
F. Zhang, T. Liao, H. Peng, S. Xi, D.-C. Qi et al., Outer sphere electron transfer enabling high-voltage aqueous electrolytes. J. Am. Chem. Soc. 146, 10812–10821 (2024). https://doi.org/10.1021/jacs.4c01188
G. Ma, L. Miao, Y. Dong, W. Yuan, X. Nie et al., Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Mater. 47, 203–210 (2022). https://doi.org/10.1016/j.ensm.2022.02.019
M. Qiu, P. Sun, K. Han, Z. Pang, J. Du et al., Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at -80 °C. Nat. Commun. 14, 601 (2023). https://doi.org/10.1038/s41467-023-36198-5
W. Li, H. Xu, H. Zhang, F. Wei, T. Zhang et al., Designing ternary hydrated eutectic electrolyte capable of four-electron conversion for advanced Zn–I2 full batteries. Energy Environ. Sci. 16, 4502–4510 (2023). https://doi.org/10.1039/d3ee01567j
C. Chang, S. Hu, T. Li, F. Zeng, D. Wang et al., A robust gradient solid electrolyte interphase enables fast Zn dissolution and deposition dynamics. Energy Environ. Sci. 17, 680–694 (2024). https://doi.org/10.1039/d3ee03422d
X. Liao, S. Chen, J. Chen, Y. Li, W. Wang et al., Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries. Proc. Natl. Acad. Sci. U.S.A. 121, e2317796121 (2024). https://doi.org/10.1073/pnas.2317796121
H. Lu, J. Hu, X. Wei, K. Zhang, X. Xiao et al., A recyclable biomass electrolyte towards green zinc-ion batteries. Nat. Commun. 14, 4435 (2023). https://doi.org/10.1038/s41467-023-40178-0
M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, e202215552 (2023). https://doi.org/10.1002/anie.202215552
P. Xiong, Y. Kang, N. Yao, X. Chen, H. Mao et al., Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 8, 1613–1625 (2023). https://doi.org/10.1021/acsenergylett.3c00154
X. Zhao, Y. Wang, C. Huang, Y. Gao, M. Huang et al., Tetraphenylporphyrin-based chelating ligand additive as a molecular sieving interfacial barrier toward durable aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62, e202312193 (2023). https://doi.org/10.1002/anie.202312193
J. Zheng, B. Zhang, X. Chen, W. Hao, J. Yao et al., Critical solvation structures arrested active molecules for reversible Zn electrochemistry. Nano-Micro Lett. 16, 145 (2024). https://doi.org/10.1007/s40820-024-01361-0
W. Xu, J. Li, X. Liao, L. Zhang, X. Zhang et al., Fluoride-rich, organic-inorganic gradient interphase enabled by sacrificial solvation shells for reversible zinc metal batteries. J. Am. Chem. Soc. 145, 22456–22465 (2023). https://doi.org/10.1021/jacs.3c06523
H. Yu, D. Chen, X. Ni, P. Qing, C. Yan et al., Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energy Environ. Sci. 16, 2684–2695 (2023). https://doi.org/10.1039/d3ee00982c
D. Xu, B. Chen, X. Ren, C. Han, Z. Chang et al., Selectively etching-off the highly reactive (002) Zn facet enables highly efficient aqueous zinc-metal batteries. Energy Environ. Sci. 17, 642–654 (2024). https://doi.org/10.1039/d3ee02522e
S.J. Yoo, B. Evanko, X. Wang, M. Romelczyk, A. Taylor et al., Fundamentally addressing bromine storage through reversible solid-state confinement in porous carbon electrodes: design of a high-performance dual-redox electrochemical capacitor. J. Am. Chem. Soc. 139, 9985–9993 (2017). https://doi.org/10.1021/jacs.7b04603