MXene Hollow Spheres Supported by a C–Co Exoskeleton Grow MWCNTs for Efficient Microwave Absorption
Corresponding Author: Lei Liu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 107
Abstract
High-performance microwave absorption (MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C–Co frameworks, was prepared to develop multiwalled carbon nanotubes (MWCNTs). A high impedance and suitable morphology were guaranteed by the C–Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core–shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss (RLmin) was − 70.70 dB. At a thickness of 1.861 mm, the sample calcined at 700 °C had a RLmin of − 63.25 dB. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core–shell composite MA materials with magnetoelectric synergy.
Highlights:
1 A hollow core–shell structure was constructed with C–Co as the exoskeleton to support the MXene and multiwalled carbon nanotubes (MWCNTs) endoskeleton, with MWCNTs growing toward the center of the sphere.
2 A reflection loss of − 70.70 dB and an effective absorption bandwidth of 5.67 GHz were obtained when the thickness was only 2.04 mm. The powder filler ratio was only 15 wt%.
3 The unique hollow core–shell structure enhanced multiple reflection and scattering losses.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32, 2201129 (2022). https://doi.org/10.1002/adfm.202201129
- S. Li, X. Tang, X. Zhao, S. Lu, J. Luo et al., Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption. J. Mater. Sci. Technol. 133, 238–248 (2023). https://doi.org/10.1016/j.jmst.2022.06.018
- Y. Zhao, L. Hao, X. Zhang, S. Tan, H. Li et al., A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Sci. 2, 2100077 (2022). https://doi.org/10.1002/smsc.202100077
- T.-T. Liu, M.-Q. Cao, Y.-S. Fang, Y.-H. Zhu, M.-S. Cao, Green building materials lit up by electromagnetic absorption function: a review. J. Mater. Sci. Technol. 112, 329–344 (2022). https://doi.org/10.1016/j.jmst.2021.10.022
- R. Dilli, R. Chandra, D. Jordhana, Ultra-massive multiple input multiple output technologies for 6G wireless networks. Eng. Sci. 16, 308–318 (2021). https://doi.org/10.30919/es8d571
- S. Singh, T. Sharan, A.P. Singh, Enhancing the axial ratio bandwidth of circularly polarized open ground slot CPW-fed antenna for multiband wireless communications. Eng. Sci. 17, 274–284 (2022). https://doi.org/10.30919/es8d557
- S. Al-Zhrani, N.M. Bedaiwi, I.F. El-Ramli, A.Z. Barasheed, A. Abduldaiem et al., Underwater optical communications: a brief overview and recent developments. Eng. Sci. 16, 146–186 (2021). https://doi.org/10.30919/es8d574
- J. Xu, J. Cao, M. Guo, S. Yang, H. Yao et al., Metamaterial mechanical antenna for very low frequency wireless communication. Adv. Compos. Hybrid Mater. 4, 761–767 (2021). https://doi.org/10.1007/s42114-021-00278-1
- J. Cao, H. Yao, Y. Pang, J. Xu, C. Lan et al., Dual-band piezoelectric artificial structure for very low frequency mechanical antenna. Adv. Compos. Hybrid Mater. 5, 410–418 (2022). https://doi.org/10.1007/s42114-022-00431-4
- G. Qi, Y. Liu, L. Chen, P. Xie, D. Pan et al., Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv. Compos. Hybrid Mater. 4, 1226–1238 (2021). https://doi.org/10.1007/s42114-021-00368-0
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Microwave absorbing materials: multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1970059 (2019). https://doi.org/10.1002/adfm.201970059
- S. Zhang, Z. Jia, B. Cheng, Z. Zhao, F. Lu et al., Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv. Compos. Hybrid Mater. 5, 2440–2460 (2022). https://doi.org/10.1007/s42114-022-00458-7
- Y. Wang, L. Yao, Q. Zheng, M.-S. Cao, Graphene-wrapped multiloculated nickel ferrite: a highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 15, 6751–6760 (2022). https://doi.org/10.1007/s12274-022-4428-x
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- J. Zhou, F. Guo, J. Luo, G. Hao, G. Liu et al., Designed 3D heterostructure with 0D/1D/2D hierarchy for low-frequency microwave absorption in the S-band. J. Mater. Chem. C 10, 1470–1478 (2022). https://doi.org/10.1039/D1TC04881C
- X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
- J. Guo, S. Xi, Y. Zhang, X. Li, Z. Chen et al., Biomass-based electromagnetic wave absorption materials with unique structures: a critical review. ES Food Agrofor. 13, 900 (2023). https://doi.org/10.30919/esfaf900
- J. Ruan, Z. Chang, H. Rong, T.S. Alomar, D. Zhu et al., High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208 (2023). https://doi.org/10.1016/j.carbon.2023.118208
- Y. Huang, G. Liu, D. Liu, M. Hao, P. Xie et al., Excellent microwave absorption performance in porous Co/C nanocomposites by biomass conversion. ES Food Agrofor. 12, 888 (2023). https://doi.org/10.30919/esfaf888
- D. Lan, Y. Wang, Y. Wang, X. Zhu, H. Li et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023). https://doi.org/10.1016/j.jcis.2023.08.019
- H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu et al., PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 16, 331–340 (2021). https://doi.org/10.30919/es8d518
- R. Chandra, B. Shivamurthy, S. Gowda, M. Kumar, Flexible linear low-density polyethylene laminated aluminum and nickel foil composite tapes for electromagnetic interference shielding. Eng. Sci. 21, 777 (2022). https://doi.org/10.30919/es8d777
- B. Dai, Y. Ma, F. Dong, J. Yu, M. Ma et al., Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5, 704–754 (2022). https://doi.org/10.1007/s42114-022-00510-6
- B. Zhao, L. Liang, Z. Bai, X. Guo, R. Zhang et al., Poly(vinylidene fluoride)/Cu@Ni anchored reduced-graphene oxide composite films with folding movement to boost microwave absorption properties. ES Energy Environ. 14, 79–86 (2021). https://doi.org/10.30919/esee8c488
- X. Zhang, J. Qiao, Y. Jiang, F. Wang, X. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
- X. Li, D. Xu, D. Zhou, S. Pang, C. Du et al., Magnetic array vertically anchored on flexible carbon cloth with “magical angle” for the increased effective absorption bandwidth and improved reflection loss simultaneously. Carbon 210, 118046 (2023). https://doi.org/10.1016/j.carbon.2023.118046
- Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang et al., The recent progress of MXene-Based microwave absorption materials. Carbon 174, 484–499 (2021). https://doi.org/10.1016/j.carbon.2020.12.060
- X. Li, D. Xu, D. Zhou, S. Pang, C. Du et al., Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption. Carbon 208, 374–383 (2023). https://doi.org/10.1016/j.carbon.2023.03.054
- H. Zhang, H. Ji, G. Dai, J. Chen, J. Xu et al., Nanoarchitectonics of integrated impedance gradient MXene/PPy/polyester composite fabric for enhanced microwave absorption performances. Compos. Part A Appl. Sci. Manuf. 163, 107163 (2022). https://doi.org/10.1016/j.compositesa.2022.107163
- H. Cheng, L. Xing, Y. Zuo, Y. Pan, M. Huang et al., Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 755–765 (2022). https://doi.org/10.1007/s42114-022-00487-2
- C. Cui, R. Guo, E. Ren, H. Xiao, M. Zhou et al., MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 405, 126626 (2021). https://doi.org/10.1016/j.cej.2020.126626
- H.B. Parse, I. Patil, B. Kakade, A. Swami, Cobalt nanops encapsulated in N-doped carbon on the surface of MXene (Ti3C2) play a key role for electroreduction of oxygen. Energy Fuels 35, 17909–17918 (2021). https://doi.org/10.1021/acs.energyfuels.1c02486
- W. Luo, M. Wang, K. Wang, P. Yan, J. Huang et al., A robust hierarchical MXene/Ni/aluminosilicate glass composite for high-performance microwave absorption. Adv. Sci. 9, e2104163 (2022). https://doi.org/10.1002/advs.202104163
- S.H. Siddiki, K. Verma, B. Chakraborty, S. Das, V.K. Thakur et al., Defect dipole-induced HfO2-coated Ti3C2Tx MXene/nickel ferrite nanocomposites for enhanced microwave absorption. ACS Appl. Nano Mater. 6, 1839–1848 (2023). https://doi.org/10.1021/acsanm.2c04793
- Y.-R. Zhang, B.-C. Wang, S.-L. Gao, L.-P. Qiu, Q.-H. Zheng et al., Electrospun MXene nanosheet/polymer composites for electromagnetic shielding and microwave absorption: a review. ACS Appl. Nano Mater. 5, 12320–12342 (2022). https://doi.org/10.1021/acsanm.2c02713
- X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14, 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
- H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
- M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017). https://doi.org/10.1002/adma.201702410
- Z. Zhao, Z. Gao, D. Lan, K. Kou, MOFs-derived hollow materials for electromagnetic wave absorption: prospects and challenges. J. Mater. Sci. Mater. Electron. 32, 25631–25648 (2021). https://doi.org/10.1007/s10854-021-06069-0
- Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, e2107538 (2022). https://doi.org/10.1002/adma.202107538
- R. Peymanfar, F. Fazlalizadeh, Microwave absorption performance of ZnAl2O4. Chem. Eng. J. 402, 126089 (2020). https://doi.org/10.1016/j.cej.2020.126089
- R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
- C. Wang, X. Liu, T. Yang, D. Sridhar, H. Algadi et al., An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep. Purif. Technol. 320, 124144 (2023). https://doi.org/10.1016/j.seppur.2023.124144
- S.U. Rehman, R. Ahmed, K. Ma, S. Xu, T. Tao et al., Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng. Sci. 13, 71–78 (2021). https://doi.org/10.30919/es8d1263
- H. Xu, M. Zu, H. Cheng, D. Liu, W. Xie, A composite coating based on metal–organic framework MIL-101(Cr) synthesised by L-malic acid as mineralising agent for thermal management. Adv. Compos. Hybrid Mater. 5, 2896–2905 (2022). https://doi.org/10.1007/s42114-022-00481-8
- S.J. Rahaman, A. Samanta, M.H. Mir, B. Dutta, Metal-organic frameworks (MOFs): a promising candidate for stimuli-responsive drug delivery. ES Mater. Manuf. 19, 792 (2023). https://doi.org/10.30919/esmm5f792
- P. Bag, G. Singh, S. Singha, G. Roymahapatra, Synthesis of metal-organic frameworks (MOFs) and their biological, catalytic and energetic applications: a mini review. Eng. Sci. 13, 1–10 (2021). https://doi.org/10.30919/es8d1166
- H. Wang, J. Zhao, Z. Wang, P. Liu, Bird-nest-like multi-interfacial MXene@SiCNWs@Co/C hybrids with enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 15, 4580–4590 (2023). https://doi.org/10.1021/acsami.2c20631
- Y. Ren, X. Wang, J. Ma, Q. Zheng, L. Wang et al., Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: dimension design and morphology regulation. J. Mater. Sci. Technol. 132, 223–251 (2023). https://doi.org/10.1016/j.jmst.2022.06.013
- Z. Zou, M. Ning, Z. Lei, X. Zhuang, G. Tan et al., 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18GHz. Carbon 193, 182–194 (2022). https://doi.org/10.1016/j.carbon.2022.03.017
- L. Huang, X. Liu, R. Yu, An efficient Co/C microwave absorber with tunable co nanops derived from a ZnCo bimetallic zeolitic imidazolate framework. Part. Part. Syst. Charact. 35, 1800107 (2018). https://doi.org/10.1002/ppsc.201800107
- A. Elsonbaty, A.M. Elshaer, M. Harb, M. Soliman, S. Ebrahim et al., Novel ZIF67/Mn/MWCNTs decorated with layer double hydroxide supercapacitor electrodes. Electrochim. Acta 368, 137577 (2021). https://doi.org/10.1016/j.electacta.2020.137577
- Q. Xu, S. Chen, J. Xu, X. Duan, L. Lu et al., Facile synthesis of hierarchical MXene/ZIF-67/CNTs composite for electrochemical sensing of luteolin. J. Electroanal. Chem. 880, 114765 (2021). https://doi.org/10.1016/j.jelechem.2020.114765
- X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5, 4068–4074 (2017). https://doi.org/10.1039/C6TC05226F
- Y. Cui, F. Wu, J. Wang, Y. Wang, T. Shah et al., Three dimensional porous MXene/CNTs microspheres: preparation, characterization and microwave absorbing properties. Compos. Part A Appl. Sci. Manuf. 145, 106378 (2021). https://doi.org/10.1016/j.compositesa.2021.106378
- S.H. Siddiki, C.K. Maity, K. Verma, S. Das, S. Das et al., Influence of exfoliated boron nitride for fabrication of a lightweight wideband microwave absorbing material. ACS Appl. Eng. Mater. 1, 1566–1574 (2023). https://doi.org/10.1021/acsaenm.3c00119
- S. Yang, C. Shi, K. Qu, Z. Sun, H. Li et al., Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. Carbon Lett. 33, 2063–2074 (2023). https://doi.org/10.1007/s42823-023-00540-0
- F. Gao, Y. Liu, C. Jiao, S.M. El-Bahy, Q. Shao et al., Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance. J. Polym. Sci. 61, 2677–2687 (2023). https://doi.org/10.1002/pol.20230108
- X. Meng, Y. Li, N. AlMasoud, W. Wang, T.S. Alomar et al., Compatibilizing and toughening blends of recycled acrylonitrile-butadiene-styrene/recycled high impact polystyrene blends via styrene-butadiene-glycidyl methacrylate terpolymer. Polymer 272, 125856 (2023). https://doi.org/10.1016/j.polymer.2023.125856
- T. Li, H. Wei, Y. Zhang, T. Wan, D. Cui et al., Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr. Polym. 309, 120678 (2023). https://doi.org/10.1016/j.carbpol.2023.120678
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- J. Guo, Z. Chen, X. Xu, X. Li, H. Liu et al., Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 5, 1769–1777 (2022). https://doi.org/10.1007/s42114-022-00417-2
- R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 609, 224–234 (2022). https://doi.org/10.1016/j.jcis.2021.11.197
- M.-H. Fang, S.-Y. Wu, Y.-H. Chang, M. Narwane, B.-H. Chen et al., Mechanistic insight into the synergetic interaction of ammonia borane and water on ZIF-67-derived Co@Porous carbon for controlled generation of dihydrogen. ACS Appl. Mater. Interfaces 13, 47465–47477 (2021). https://doi.org/10.1021/acsami.1c11521
- J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7, 1281–1286 (2019). https://doi.org/10.1039/C8TA10574J
- Y. Sun, J. Xu, W. Qiao, X. Xu, W. Zhang et al., Constructing two-, zero-, and one-dimensional integrated nanostructures: an effective strategy for high microwave absorption performance. ACS Appl. Mater. Interfaces 8, 31878–31886 (2016). https://doi.org/10.1021/acsami.6b11443
- L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
- S. Hou, W. Ding, S. Liu, H. Zheng, J. Zhai et al., Fast oxidation and deep removal of As(III) by integrating metal–organic framework ZIF-67 and sulfite: performance and mechanism. Chem. Eng. J. 460, 141785 (2023). https://doi.org/10.1016/j.cej.2023.141785
- X. Xiao, W. Zhu, Z. Tan, W. Tian, Y. Guo et al., Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Compos. Part B Eng. 152, 316–323 (2018). https://doi.org/10.1016/j.compositesb.2018.08.109
- P. Musto, A. Borriello, P. Agoretti, T. Napolitano, G. Di Florio et al., Selective surface modification of syndiotactic polystyrene films: a study by Fourier transform- and confocal-Raman spectroscopy. Eur. Polym. J. 46, 1004–1015 (2010). https://doi.org/10.1016/j.eurpolymj.2010.02.011
- A. Sarycheva, T. Makaryan, K. Maleski, E. Satheeshkumar, A. Melikyan et al., Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 121, 19983–19988 (2017). https://doi.org/10.1021/acs.jpcc.7b08180
- A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. MXenes. (Jenny Stanford Publishing, New York, 2023), pp. 333–355. https://doi.org/10.1201/9781003306511-16
- S.M. Ansari, R.D. Bhor, K.R. Pai, D. Sen, S. Mazumder et al., Cobalt nanops for biomedical applications: facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl. Surf. Sci. 414, 171–187 (2017). https://doi.org/10.1016/j.apsusc.2017.03.002
- Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9, 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
- W. Feng, Y. Wang, Y. Zou, J. Chen, D. Jia et al., ZnO @ N-doped porous carbon/Co3 ZnC core–shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J. 342, 364–371 (2018). https://doi.org/10.1016/j.cej.2018.02.078
- I. Pathak, D. Acharya, K. Chhetri, P. Chandra Lohani, S. Subedi et al., Ti3C2Tx MXene embedded metal–organic framework-based porous electrospun carbon nanofibers as a freestanding electrode for supercapacitors. J. Mater. Chem. A 11, 5001–5014 (2023). https://doi.org/10.1039/D2TA09726E
- C. Li, Z. Dai, W. Liu, P. Kantichaimongkol, P. Yu et al., A self-sacrifice template strategy to synthesize Co-LDH/MXene for lithium-ion batteries. Chem. Commun. 57, 11378–11381 (2021). https://doi.org/10.1039/d1cc04492c
- L. Yang, Y. Chen, Q. Wen, H. Xu, X. Pan et al., 2D layered structure-supported imidazole-based metal-organic framework for enhancing the power generation performance of microbial fuel cells. Electrochim. Acta 428, 140959 (2022). https://doi.org/10.1016/j.electacta.2022.140959
- Q. Li, Q. Jiao, Y. Yan, H. Li, W. Zhou et al., Optimized Co–S bonds energy and confinement effect of hollow MXene@CoS2/NC for enhanced sodium storage kinetics and stability. Chem. Eng. J. 450, 137922 (2022). https://doi.org/10.1016/j.cej.2022.137922
- Z. Wang, Z. Xu, H. Huang, X. Chu, Y. Xie et al., Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors. ACS Nano 14, 4916–4924 (2020). https://doi.org/10.1021/acsnano.0c01056
- H. Hwang, S. Byun, S. Yuk, S. Kim, S.H. Song et al., High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Appl. Surf. Sci. 556, 149710 (2021). https://doi.org/10.1016/j.apsusc.2021.149710
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- X. Han, Y. Huang, L. Ding, Y. Song, T. Li et al., Ti3C2Tx MXene nanosheet/metal–organic framework composites for microwave absorption. ACS Appl. Nano Mater. 4, 691–701 (2021). https://doi.org/10.1021/acsanm.0c02983
- P.H. Fang, Cole—cole diagram and the distribution of relaxation times. J. Chem. Phys. 42, 3411–3413 (1965). https://doi.org/10.1063/1.1695743
- Y. Wang, H. Zhang, Q. Wu, S. Li, H. Gao et al., Magnetic enhanced high-efficiency electromagnetic wave absorbing MXene/Fe3O4 composite absorbers at 2–40 GHz. J. Mater. Chem. C 11, 4171–4181 (2023). https://doi.org/10.1039/D2TC05150H
- X.-X. Wang, M. Zhang, J.-C. Shu, B. Wen, W.-Q. Cao et al., Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 184, 136–145 (2021). https://doi.org/10.1016/j.carbon.2021.07.099
- C. Sun, Q. Li, Z. Jia, G. Wu, P. Yin, Hierarchically flower-like structure assembled with porous nanosheet-supported MXene for ultrathin electromagnetic wave absorption. Chem. Eng. J. 454, 140277 (2023). https://doi.org/10.1016/j.cej.2022.140277
- H. Zhao, Q. Wang, H. Ma, Y. Zhao, L. Li et al., Hollow spherical NiFe-MOF derivative and N-doped rGO composites towards the tunable wideband electromagnetic wave absorption: experimental and theoretical study. Carbon 201, 347–361 (2023). https://doi.org/10.1016/j.carbon.2022.09.039
- Z. Ding, Z. Du, Y. Liu, Q. Zhang, Z. Zhao et al., Reduced graphene oxide loaded with rich defects CoO/Co3O4 for broadband microwave absorption. Compos. Part B Eng. 249, 110403 (2023). https://doi.org/10.1016/j.compositesb.2022.110403
- Z. Liu, Y. Fan, Z. Liu, Q. Zhang, B. Zhang, Wrinkled 3D MoS2/RGO/NC composite microspheres: optimal composition and microwave absorbing properties. Compos. Part A Appl. Sci. Manuf. 161, 107119 (2022). https://doi.org/10.1016/j.compositesa.2022.107119
- Z. Jiang, H. Si, Y. Li, D. Li, H. Chen et al., Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 15, 8546–8554 (2022). https://doi.org/10.1007/s12274-022-4674-y
- S. Dong, P. Hu, X. Li, C. Hong, X. Zhang et al., NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 125588 (2020). https://doi.org/10.1016/j.cej.2020.125588
- S. Li, T. Ma, Z. Chai, Z. Zhang, M. Zhu et al., Graphene-based magnetic composite foam with hierarchically porous structure for efficient microwave absorption. Carbon 207, 105–115 (2023). https://doi.org/10.1016/j.carbon.2023.02.066
- Q. Wang, Z. Zhang, S. Shi, F. Wu, Z. Zhang et al., Highly active cobalt- and nitrogen-doped carbon derived from ZIF-67@melamine towards oxygen reduction reaction. J. Electroanal. Chem. 894, 115397 (2021). https://doi.org/10.1016/j.jelechem.2021.115397
- W. Wang, H. Zhang, Y. Zhao, J. Wang, H. Zhao et al., A novel MOF-drived self-decomposition strategy for CoO@N/C-Co/Ni-NiCo2O4 multi-heterostructure composite as high-performance electromagnetic wave absorbing materials. Chem. Eng. J. 426, 131667 (2021). https://doi.org/10.1016/j.cej.2021.131667
- H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2022). https://doi.org/10.1002/adfm.202108194
- X. Guan, Z. Yang, Y. Zhu, L. Yang, M. Zhou et al., The controllable porous structure and s-doping of hollow carbon sphere synergistically act on the microwave attenuation. Carbon 188, 1–11 (2022). https://doi.org/10.1016/j.carbon.2021.11.045
- G. Chen, L. Zhang, B. Luo, H. Wu, Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. J. Colloid Interface Sci. 607, 24–33 (2022). https://doi.org/10.1016/j.jcis.2021.08.186
- R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, S.H. Tavassoli, Morphology and medium influence on microwave characteristics of nanostructures: a review. J. Mater. Sci. 56, 17457–17477 (2021). https://doi.org/10.1007/s10853-021-06394-z
- R. Peymanfar, M. Yektaei, S. Javanshir, E. Selseleh-Zakerin, Regulating the energy band-gap, UV–Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 209, 122981 (2020). https://doi.org/10.1016/j.polymer.2020.122981
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, e2106195 (2022). https://doi.org/10.1002/adma.202106195
- R. Peymanfar, E. Selseleh-Zakerin, A. Ahmadi, Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4). J. Alloy. Compd. 867, 159039 (2021). https://doi.org/10.1016/j.jallcom.2021.159039
- R. Peymanfar, A. Ahmadi, E. Selseleh-Zakerin, Evaluation of the size and medium effects on the microwave absorbing, magnetic, electromagnetic shielding, and optical properties using CuCo2S4 nanops. J. Alloy. Compd. 848, 156453 (2020). https://doi.org/10.1016/j.jallcom.2020.156453
- Y. Guo, H. Liu, D. Wang, Z.M. El-Bahy, J.T. Althakafy et al., Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Res. 15, 6841–6850 (2022). https://doi.org/10.1007/s12274-022-4533-x
References
J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32, 2201129 (2022). https://doi.org/10.1002/adfm.202201129
S. Li, X. Tang, X. Zhao, S. Lu, J. Luo et al., Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption. J. Mater. Sci. Technol. 133, 238–248 (2023). https://doi.org/10.1016/j.jmst.2022.06.018
Y. Zhao, L. Hao, X. Zhang, S. Tan, H. Li et al., A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Sci. 2, 2100077 (2022). https://doi.org/10.1002/smsc.202100077
T.-T. Liu, M.-Q. Cao, Y.-S. Fang, Y.-H. Zhu, M.-S. Cao, Green building materials lit up by electromagnetic absorption function: a review. J. Mater. Sci. Technol. 112, 329–344 (2022). https://doi.org/10.1016/j.jmst.2021.10.022
R. Dilli, R. Chandra, D. Jordhana, Ultra-massive multiple input multiple output technologies for 6G wireless networks. Eng. Sci. 16, 308–318 (2021). https://doi.org/10.30919/es8d571
S. Singh, T. Sharan, A.P. Singh, Enhancing the axial ratio bandwidth of circularly polarized open ground slot CPW-fed antenna for multiband wireless communications. Eng. Sci. 17, 274–284 (2022). https://doi.org/10.30919/es8d557
S. Al-Zhrani, N.M. Bedaiwi, I.F. El-Ramli, A.Z. Barasheed, A. Abduldaiem et al., Underwater optical communications: a brief overview and recent developments. Eng. Sci. 16, 146–186 (2021). https://doi.org/10.30919/es8d574
J. Xu, J. Cao, M. Guo, S. Yang, H. Yao et al., Metamaterial mechanical antenna for very low frequency wireless communication. Adv. Compos. Hybrid Mater. 4, 761–767 (2021). https://doi.org/10.1007/s42114-021-00278-1
J. Cao, H. Yao, Y. Pang, J. Xu, C. Lan et al., Dual-band piezoelectric artificial structure for very low frequency mechanical antenna. Adv. Compos. Hybrid Mater. 5, 410–418 (2022). https://doi.org/10.1007/s42114-022-00431-4
G. Qi, Y. Liu, L. Chen, P. Xie, D. Pan et al., Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv. Compos. Hybrid Mater. 4, 1226–1238 (2021). https://doi.org/10.1007/s42114-021-00368-0
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Microwave absorbing materials: multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1970059 (2019). https://doi.org/10.1002/adfm.201970059
S. Zhang, Z. Jia, B. Cheng, Z. Zhao, F. Lu et al., Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv. Compos. Hybrid Mater. 5, 2440–2460 (2022). https://doi.org/10.1007/s42114-022-00458-7
Y. Wang, L. Yao, Q. Zheng, M.-S. Cao, Graphene-wrapped multiloculated nickel ferrite: a highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 15, 6751–6760 (2022). https://doi.org/10.1007/s12274-022-4428-x
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
J. Zhou, F. Guo, J. Luo, G. Hao, G. Liu et al., Designed 3D heterostructure with 0D/1D/2D hierarchy for low-frequency microwave absorption in the S-band. J. Mater. Chem. C 10, 1470–1478 (2022). https://doi.org/10.1039/D1TC04881C
X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
J. Guo, S. Xi, Y. Zhang, X. Li, Z. Chen et al., Biomass-based electromagnetic wave absorption materials with unique structures: a critical review. ES Food Agrofor. 13, 900 (2023). https://doi.org/10.30919/esfaf900
J. Ruan, Z. Chang, H. Rong, T.S. Alomar, D. Zhu et al., High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208 (2023). https://doi.org/10.1016/j.carbon.2023.118208
Y. Huang, G. Liu, D. Liu, M. Hao, P. Xie et al., Excellent microwave absorption performance in porous Co/C nanocomposites by biomass conversion. ES Food Agrofor. 12, 888 (2023). https://doi.org/10.30919/esfaf888
D. Lan, Y. Wang, Y. Wang, X. Zhu, H. Li et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023). https://doi.org/10.1016/j.jcis.2023.08.019
H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu et al., PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 16, 331–340 (2021). https://doi.org/10.30919/es8d518
R. Chandra, B. Shivamurthy, S. Gowda, M. Kumar, Flexible linear low-density polyethylene laminated aluminum and nickel foil composite tapes for electromagnetic interference shielding. Eng. Sci. 21, 777 (2022). https://doi.org/10.30919/es8d777
B. Dai, Y. Ma, F. Dong, J. Yu, M. Ma et al., Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5, 704–754 (2022). https://doi.org/10.1007/s42114-022-00510-6
B. Zhao, L. Liang, Z. Bai, X. Guo, R. Zhang et al., Poly(vinylidene fluoride)/Cu@Ni anchored reduced-graphene oxide composite films with folding movement to boost microwave absorption properties. ES Energy Environ. 14, 79–86 (2021). https://doi.org/10.30919/esee8c488
X. Zhang, J. Qiao, Y. Jiang, F. Wang, X. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
X. Li, D. Xu, D. Zhou, S. Pang, C. Du et al., Magnetic array vertically anchored on flexible carbon cloth with “magical angle” for the increased effective absorption bandwidth and improved reflection loss simultaneously. Carbon 210, 118046 (2023). https://doi.org/10.1016/j.carbon.2023.118046
Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang et al., The recent progress of MXene-Based microwave absorption materials. Carbon 174, 484–499 (2021). https://doi.org/10.1016/j.carbon.2020.12.060
X. Li, D. Xu, D. Zhou, S. Pang, C. Du et al., Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption. Carbon 208, 374–383 (2023). https://doi.org/10.1016/j.carbon.2023.03.054
H. Zhang, H. Ji, G. Dai, J. Chen, J. Xu et al., Nanoarchitectonics of integrated impedance gradient MXene/PPy/polyester composite fabric for enhanced microwave absorption performances. Compos. Part A Appl. Sci. Manuf. 163, 107163 (2022). https://doi.org/10.1016/j.compositesa.2022.107163
H. Cheng, L. Xing, Y. Zuo, Y. Pan, M. Huang et al., Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 755–765 (2022). https://doi.org/10.1007/s42114-022-00487-2
C. Cui, R. Guo, E. Ren, H. Xiao, M. Zhou et al., MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 405, 126626 (2021). https://doi.org/10.1016/j.cej.2020.126626
H.B. Parse, I. Patil, B. Kakade, A. Swami, Cobalt nanops encapsulated in N-doped carbon on the surface of MXene (Ti3C2) play a key role for electroreduction of oxygen. Energy Fuels 35, 17909–17918 (2021). https://doi.org/10.1021/acs.energyfuels.1c02486
W. Luo, M. Wang, K. Wang, P. Yan, J. Huang et al., A robust hierarchical MXene/Ni/aluminosilicate glass composite for high-performance microwave absorption. Adv. Sci. 9, e2104163 (2022). https://doi.org/10.1002/advs.202104163
S.H. Siddiki, K. Verma, B. Chakraborty, S. Das, V.K. Thakur et al., Defect dipole-induced HfO2-coated Ti3C2Tx MXene/nickel ferrite nanocomposites for enhanced microwave absorption. ACS Appl. Nano Mater. 6, 1839–1848 (2023). https://doi.org/10.1021/acsanm.2c04793
Y.-R. Zhang, B.-C. Wang, S.-L. Gao, L.-P. Qiu, Q.-H. Zheng et al., Electrospun MXene nanosheet/polymer composites for electromagnetic shielding and microwave absorption: a review. ACS Appl. Nano Mater. 5, 12320–12342 (2022). https://doi.org/10.1021/acsanm.2c02713
X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14, 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017). https://doi.org/10.1002/adma.201702410
Z. Zhao, Z. Gao, D. Lan, K. Kou, MOFs-derived hollow materials for electromagnetic wave absorption: prospects and challenges. J. Mater. Sci. Mater. Electron. 32, 25631–25648 (2021). https://doi.org/10.1007/s10854-021-06069-0
Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, e2107538 (2022). https://doi.org/10.1002/adma.202107538
R. Peymanfar, F. Fazlalizadeh, Microwave absorption performance of ZnAl2O4. Chem. Eng. J. 402, 126089 (2020). https://doi.org/10.1016/j.cej.2020.126089
R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
C. Wang, X. Liu, T. Yang, D. Sridhar, H. Algadi et al., An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep. Purif. Technol. 320, 124144 (2023). https://doi.org/10.1016/j.seppur.2023.124144
S.U. Rehman, R. Ahmed, K. Ma, S. Xu, T. Tao et al., Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng. Sci. 13, 71–78 (2021). https://doi.org/10.30919/es8d1263
H. Xu, M. Zu, H. Cheng, D. Liu, W. Xie, A composite coating based on metal–organic framework MIL-101(Cr) synthesised by L-malic acid as mineralising agent for thermal management. Adv. Compos. Hybrid Mater. 5, 2896–2905 (2022). https://doi.org/10.1007/s42114-022-00481-8
S.J. Rahaman, A. Samanta, M.H. Mir, B. Dutta, Metal-organic frameworks (MOFs): a promising candidate for stimuli-responsive drug delivery. ES Mater. Manuf. 19, 792 (2023). https://doi.org/10.30919/esmm5f792
P. Bag, G. Singh, S. Singha, G. Roymahapatra, Synthesis of metal-organic frameworks (MOFs) and their biological, catalytic and energetic applications: a mini review. Eng. Sci. 13, 1–10 (2021). https://doi.org/10.30919/es8d1166
H. Wang, J. Zhao, Z. Wang, P. Liu, Bird-nest-like multi-interfacial MXene@SiCNWs@Co/C hybrids with enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 15, 4580–4590 (2023). https://doi.org/10.1021/acsami.2c20631
Y. Ren, X. Wang, J. Ma, Q. Zheng, L. Wang et al., Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: dimension design and morphology regulation. J. Mater. Sci. Technol. 132, 223–251 (2023). https://doi.org/10.1016/j.jmst.2022.06.013
Z. Zou, M. Ning, Z. Lei, X. Zhuang, G. Tan et al., 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18GHz. Carbon 193, 182–194 (2022). https://doi.org/10.1016/j.carbon.2022.03.017
L. Huang, X. Liu, R. Yu, An efficient Co/C microwave absorber with tunable co nanops derived from a ZnCo bimetallic zeolitic imidazolate framework. Part. Part. Syst. Charact. 35, 1800107 (2018). https://doi.org/10.1002/ppsc.201800107
A. Elsonbaty, A.M. Elshaer, M. Harb, M. Soliman, S. Ebrahim et al., Novel ZIF67/Mn/MWCNTs decorated with layer double hydroxide supercapacitor electrodes. Electrochim. Acta 368, 137577 (2021). https://doi.org/10.1016/j.electacta.2020.137577
Q. Xu, S. Chen, J. Xu, X. Duan, L. Lu et al., Facile synthesis of hierarchical MXene/ZIF-67/CNTs composite for electrochemical sensing of luteolin. J. Electroanal. Chem. 880, 114765 (2021). https://doi.org/10.1016/j.jelechem.2020.114765
X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5, 4068–4074 (2017). https://doi.org/10.1039/C6TC05226F
Y. Cui, F. Wu, J. Wang, Y. Wang, T. Shah et al., Three dimensional porous MXene/CNTs microspheres: preparation, characterization and microwave absorbing properties. Compos. Part A Appl. Sci. Manuf. 145, 106378 (2021). https://doi.org/10.1016/j.compositesa.2021.106378
S.H. Siddiki, C.K. Maity, K. Verma, S. Das, S. Das et al., Influence of exfoliated boron nitride for fabrication of a lightweight wideband microwave absorbing material. ACS Appl. Eng. Mater. 1, 1566–1574 (2023). https://doi.org/10.1021/acsaenm.3c00119
S. Yang, C. Shi, K. Qu, Z. Sun, H. Li et al., Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. Carbon Lett. 33, 2063–2074 (2023). https://doi.org/10.1007/s42823-023-00540-0
F. Gao, Y. Liu, C. Jiao, S.M. El-Bahy, Q. Shao et al., Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance. J. Polym. Sci. 61, 2677–2687 (2023). https://doi.org/10.1002/pol.20230108
X. Meng, Y. Li, N. AlMasoud, W. Wang, T.S. Alomar et al., Compatibilizing and toughening blends of recycled acrylonitrile-butadiene-styrene/recycled high impact polystyrene blends via styrene-butadiene-glycidyl methacrylate terpolymer. Polymer 272, 125856 (2023). https://doi.org/10.1016/j.polymer.2023.125856
T. Li, H. Wei, Y. Zhang, T. Wan, D. Cui et al., Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr. Polym. 309, 120678 (2023). https://doi.org/10.1016/j.carbpol.2023.120678
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
J. Guo, Z. Chen, X. Xu, X. Li, H. Liu et al., Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 5, 1769–1777 (2022). https://doi.org/10.1007/s42114-022-00417-2
R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 609, 224–234 (2022). https://doi.org/10.1016/j.jcis.2021.11.197
M.-H. Fang, S.-Y. Wu, Y.-H. Chang, M. Narwane, B.-H. Chen et al., Mechanistic insight into the synergetic interaction of ammonia borane and water on ZIF-67-derived Co@Porous carbon for controlled generation of dihydrogen. ACS Appl. Mater. Interfaces 13, 47465–47477 (2021). https://doi.org/10.1021/acsami.1c11521
J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7, 1281–1286 (2019). https://doi.org/10.1039/C8TA10574J
Y. Sun, J. Xu, W. Qiao, X. Xu, W. Zhang et al., Constructing two-, zero-, and one-dimensional integrated nanostructures: an effective strategy for high microwave absorption performance. ACS Appl. Mater. Interfaces 8, 31878–31886 (2016). https://doi.org/10.1021/acsami.6b11443
L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
S. Hou, W. Ding, S. Liu, H. Zheng, J. Zhai et al., Fast oxidation and deep removal of As(III) by integrating metal–organic framework ZIF-67 and sulfite: performance and mechanism. Chem. Eng. J. 460, 141785 (2023). https://doi.org/10.1016/j.cej.2023.141785
X. Xiao, W. Zhu, Z. Tan, W. Tian, Y. Guo et al., Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Compos. Part B Eng. 152, 316–323 (2018). https://doi.org/10.1016/j.compositesb.2018.08.109
P. Musto, A. Borriello, P. Agoretti, T. Napolitano, G. Di Florio et al., Selective surface modification of syndiotactic polystyrene films: a study by Fourier transform- and confocal-Raman spectroscopy. Eur. Polym. J. 46, 1004–1015 (2010). https://doi.org/10.1016/j.eurpolymj.2010.02.011
A. Sarycheva, T. Makaryan, K. Maleski, E. Satheeshkumar, A. Melikyan et al., Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 121, 19983–19988 (2017). https://doi.org/10.1021/acs.jpcc.7b08180
A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. MXenes. (Jenny Stanford Publishing, New York, 2023), pp. 333–355. https://doi.org/10.1201/9781003306511-16
S.M. Ansari, R.D. Bhor, K.R. Pai, D. Sen, S. Mazumder et al., Cobalt nanops for biomedical applications: facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl. Surf. Sci. 414, 171–187 (2017). https://doi.org/10.1016/j.apsusc.2017.03.002
Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9, 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
W. Feng, Y. Wang, Y. Zou, J. Chen, D. Jia et al., ZnO @ N-doped porous carbon/Co3 ZnC core–shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J. 342, 364–371 (2018). https://doi.org/10.1016/j.cej.2018.02.078
I. Pathak, D. Acharya, K. Chhetri, P. Chandra Lohani, S. Subedi et al., Ti3C2Tx MXene embedded metal–organic framework-based porous electrospun carbon nanofibers as a freestanding electrode for supercapacitors. J. Mater. Chem. A 11, 5001–5014 (2023). https://doi.org/10.1039/D2TA09726E
C. Li, Z. Dai, W. Liu, P. Kantichaimongkol, P. Yu et al., A self-sacrifice template strategy to synthesize Co-LDH/MXene for lithium-ion batteries. Chem. Commun. 57, 11378–11381 (2021). https://doi.org/10.1039/d1cc04492c
L. Yang, Y. Chen, Q. Wen, H. Xu, X. Pan et al., 2D layered structure-supported imidazole-based metal-organic framework for enhancing the power generation performance of microbial fuel cells. Electrochim. Acta 428, 140959 (2022). https://doi.org/10.1016/j.electacta.2022.140959
Q. Li, Q. Jiao, Y. Yan, H. Li, W. Zhou et al., Optimized Co–S bonds energy and confinement effect of hollow MXene@CoS2/NC for enhanced sodium storage kinetics and stability. Chem. Eng. J. 450, 137922 (2022). https://doi.org/10.1016/j.cej.2022.137922
Z. Wang, Z. Xu, H. Huang, X. Chu, Y. Xie et al., Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors. ACS Nano 14, 4916–4924 (2020). https://doi.org/10.1021/acsnano.0c01056
H. Hwang, S. Byun, S. Yuk, S. Kim, S.H. Song et al., High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Appl. Surf. Sci. 556, 149710 (2021). https://doi.org/10.1016/j.apsusc.2021.149710
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
X. Han, Y. Huang, L. Ding, Y. Song, T. Li et al., Ti3C2Tx MXene nanosheet/metal–organic framework composites for microwave absorption. ACS Appl. Nano Mater. 4, 691–701 (2021). https://doi.org/10.1021/acsanm.0c02983
P.H. Fang, Cole—cole diagram and the distribution of relaxation times. J. Chem. Phys. 42, 3411–3413 (1965). https://doi.org/10.1063/1.1695743
Y. Wang, H. Zhang, Q. Wu, S. Li, H. Gao et al., Magnetic enhanced high-efficiency electromagnetic wave absorbing MXene/Fe3O4 composite absorbers at 2–40 GHz. J. Mater. Chem. C 11, 4171–4181 (2023). https://doi.org/10.1039/D2TC05150H
X.-X. Wang, M. Zhang, J.-C. Shu, B. Wen, W.-Q. Cao et al., Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 184, 136–145 (2021). https://doi.org/10.1016/j.carbon.2021.07.099
C. Sun, Q. Li, Z. Jia, G. Wu, P. Yin, Hierarchically flower-like structure assembled with porous nanosheet-supported MXene for ultrathin electromagnetic wave absorption. Chem. Eng. J. 454, 140277 (2023). https://doi.org/10.1016/j.cej.2022.140277
H. Zhao, Q. Wang, H. Ma, Y. Zhao, L. Li et al., Hollow spherical NiFe-MOF derivative and N-doped rGO composites towards the tunable wideband electromagnetic wave absorption: experimental and theoretical study. Carbon 201, 347–361 (2023). https://doi.org/10.1016/j.carbon.2022.09.039
Z. Ding, Z. Du, Y. Liu, Q. Zhang, Z. Zhao et al., Reduced graphene oxide loaded with rich defects CoO/Co3O4 for broadband microwave absorption. Compos. Part B Eng. 249, 110403 (2023). https://doi.org/10.1016/j.compositesb.2022.110403
Z. Liu, Y. Fan, Z. Liu, Q. Zhang, B. Zhang, Wrinkled 3D MoS2/RGO/NC composite microspheres: optimal composition and microwave absorbing properties. Compos. Part A Appl. Sci. Manuf. 161, 107119 (2022). https://doi.org/10.1016/j.compositesa.2022.107119
Z. Jiang, H. Si, Y. Li, D. Li, H. Chen et al., Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 15, 8546–8554 (2022). https://doi.org/10.1007/s12274-022-4674-y
S. Dong, P. Hu, X. Li, C. Hong, X. Zhang et al., NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 125588 (2020). https://doi.org/10.1016/j.cej.2020.125588
S. Li, T. Ma, Z. Chai, Z. Zhang, M. Zhu et al., Graphene-based magnetic composite foam with hierarchically porous structure for efficient microwave absorption. Carbon 207, 105–115 (2023). https://doi.org/10.1016/j.carbon.2023.02.066
Q. Wang, Z. Zhang, S. Shi, F. Wu, Z. Zhang et al., Highly active cobalt- and nitrogen-doped carbon derived from ZIF-67@melamine towards oxygen reduction reaction. J. Electroanal. Chem. 894, 115397 (2021). https://doi.org/10.1016/j.jelechem.2021.115397
W. Wang, H. Zhang, Y. Zhao, J. Wang, H. Zhao et al., A novel MOF-drived self-decomposition strategy for CoO@N/C-Co/Ni-NiCo2O4 multi-heterostructure composite as high-performance electromagnetic wave absorbing materials. Chem. Eng. J. 426, 131667 (2021). https://doi.org/10.1016/j.cej.2021.131667
H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2022). https://doi.org/10.1002/adfm.202108194
X. Guan, Z. Yang, Y. Zhu, L. Yang, M. Zhou et al., The controllable porous structure and s-doping of hollow carbon sphere synergistically act on the microwave attenuation. Carbon 188, 1–11 (2022). https://doi.org/10.1016/j.carbon.2021.11.045
G. Chen, L. Zhang, B. Luo, H. Wu, Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. J. Colloid Interface Sci. 607, 24–33 (2022). https://doi.org/10.1016/j.jcis.2021.08.186
R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, S.H. Tavassoli, Morphology and medium influence on microwave characteristics of nanostructures: a review. J. Mater. Sci. 56, 17457–17477 (2021). https://doi.org/10.1007/s10853-021-06394-z
R. Peymanfar, M. Yektaei, S. Javanshir, E. Selseleh-Zakerin, Regulating the energy band-gap, UV–Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 209, 122981 (2020). https://doi.org/10.1016/j.polymer.2020.122981
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, e2106195 (2022). https://doi.org/10.1002/adma.202106195
R. Peymanfar, E. Selseleh-Zakerin, A. Ahmadi, Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4). J. Alloy. Compd. 867, 159039 (2021). https://doi.org/10.1016/j.jallcom.2021.159039
R. Peymanfar, A. Ahmadi, E. Selseleh-Zakerin, Evaluation of the size and medium effects on the microwave absorbing, magnetic, electromagnetic shielding, and optical properties using CuCo2S4 nanops. J. Alloy. Compd. 848, 156453 (2020). https://doi.org/10.1016/j.jallcom.2020.156453
Y. Guo, H. Liu, D. Wang, Z.M. El-Bahy, J.T. Althakafy et al., Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Res. 15, 6841–6850 (2022). https://doi.org/10.1007/s12274-022-4533-x