MoS2 Lubricate-Toughened MXene/ANF Composites for Multifunctional Electromagnetic Interference Shielding
Corresponding Author: Guangsheng Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 36
Abstract
The design and fabrication of high toughness electromagnetic interference (EMI) shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem. Ternary MXene/ANF (aramid nanofibers)–MoS2 composite films with nacre-like layered structure here are fabricated after the introduction of MoS2 into binary MXene/ANF composite system. The introduction of MoS2 fulfills an impressive “kill three birds with one stone” improvement effect: lubrication toughening mechanical performance, reduction in secondary reflection pollution of electromagnetic wave, and improvement in the performance of photothermal conversion. After the introduction of MoS2 into binary MXene/ANF (mass ratio of 50:50), the strain to failure and tensile strength increase from 22.1 \pm 1.7% and 105.7 \pm 6.4 MPa and to 25.8 \pm 0.7% and 167.3 \pm 9.1 MPa, respectively. The toughness elevates from 13.0 \pm 4.1 to 26.3 \pm 0.8 MJ m−3 (~ 102.3%) simultaneously. And the reflection shielding effectiveness (SER) of MXene/ANF (mass ratio of 50:50) decreases ~ 10.8%. EMI shielding effectiveness (EMI SE) elevates to 41.0 dB (8.2–12.4 GHz); After the introduction of MoS2 into binary MXene/ANF (mass ratio of 60:40), the strain to failure increases from 18.3 \pm 1.9% to 28.1 \pm 0.7% (~ 53.5%), the SER decreases ~ 22.2%, and the corresponding EMI SE is 43.9 dB. The MoS2 also leads to a more efficient photothermal conversion performance (~ 45 to ~ 55 °C). Additionally, MXene/ANF–MoS2 composite films exhibit excellent electric heating performance, quick temperature elevation (15 s), excellent cycle stability (2, 2.5, and 3 V), and long-term stability (2520 s). Combining with excellent mechanical performance with high MXene content, electric heating performance, and photothermal conversion performance, EMI shielding ternary MXene/ANF–MoS2 composite films could be applied in many industrial areas. This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.
Highlights:
1 The introduction of MoS2 generates a “kill three birds with one stone” effect to the original binary MXene/ANF system: lubrication toughening mechanical performance; reduction in secondary reflection pollution of electromagnetic wave; and improvement in the performance of photothermal conversion.
2 After the introduction of MoS2 into MXene/ANF (60:40), the strain and toughness were increased by 53.5% (from 18.3% to 28.1%) and 61.7% (from 8.9 to 14.5 MJ m−3), respectively. Fortunately, the SER decreases by 22.4%, and the photothermal conversion performance was increased by 22.2% from ~ 45 to ~ 55 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Deng, D. Zhi, J. Li, T. Li, Q. Liu et al., Electromagnetic oscillation induced graphene-based aerogel microspheres with dual-chamber achieving high-performance broadband microwave absorption. Composites B 271, 111149 (2024). https://doi.org/10.1016/j.compositesb.2023.111149
- J. Li, J. Li, T. Li, Z. Xu, Y. Chen et al., Flexible and excellent electromagnetic interference shielding film with porous alternating PVA-derived carbon and graphene layers. iScience 26, 107975 (2023). https://doi.org/10.1016/j.isci.2023.107975
- X.-J. Zhang, J.-Q. Zhu, P.-G. Yin, A.-P. Guo, A.-P. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28, 1800761 (2018). https://doi.org/10.1002/adfm.201800761
- C. Liang, H. Qiu, Y. Zhang, Y. Liu, J. Gu, External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 68, 1938–1953 (2023). https://doi.org/10.1016/j.scib.2023.07.046
- M. Li, Y. Sun, D. Feng, K. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16, 7820–7828 (2023). https://doi.org/10.1007/s12274-023-5594-1
- T. Chen, Y. Tian, Z. Guo, Y. Chen, Q. Qi et al., Design of novel RGO/2D strip-like ZIF-8/DMAOP ternary hybrid structure towards high-efficiency microwave absorption, active and passive anti-corrosion, and synergistic antibacterial performance. Nano Res. 17, 913–926 (2024). https://doi.org/10.1007/s12274-023-6168-y
- X. He, H. Peng, Z. Xiong, X. Nie, D. Wang et al., A sustainable and low-cost route to prepare magnetic p-embedded ultra-thin carbon nanosheets with broadband microwave absorption from biowastes. Carbon 198, 195–206 (2022). https://doi.org/10.1016/j.carbon.2022.07.018
- Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
- Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan et al., A mini-review of MXene porous films: preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022). https://doi.org/10.1016/j.jmst.2021.08.001
- Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang et al., The recent progress of MXene-based microwave absorption materials. Carbon 174, 484–499 (2021). https://doi.org/10.1016/j.carbon.2020.12.060
- M. Huang, L. Wang, X. Li, Z. Wu, B. Zhao et al., Magnetic interacted interaction effect in MXene skeleton: enhanced thermal-generation for electromagnetic interference shielding. Small 18, 2201587 (2022). https://doi.org/10.1002/smll.202201587
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
- L. Li, Q. Cheng, Bioinspired nanocomposite films with graphene and MXene. Giant 12, 100117 (2022). https://doi.org/10.1016/j.giant.2022.100117
- W. Ma, H. Chen, S. Hou, Z. Huang, Y. Huang et al., Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band. ACS Appl. Mater. Interfaces 11, 25369–25377 (2019). https://doi.org/10.1021/acsami.9b03406
- T. Ma, Y. Zhang, K. Ruan, H. Guo, M. He et al., Advances in 3D printing for polymer composites: a review. InfoMat (2024). https://doi.org/10.1002/inf2.12568
- S. Wan, X. Li, Y. Chen, N. Liu, S. Wang et al., Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 13, 7340 (2022). https://doi.org/10.1038/s41467-022-35226-0
- H. Wang, R. Lu, J. Yan, J. Peng, A.P. Tomsia et al., Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites. Angew. Chem. Int. Ed. 62, e202216874 (2023). https://doi.org/10.1002/anie.202216874
- P.-Z. Jiang, Z. Deng, P. Min, L. Ye, C.-Z. Qi et al., Direct ink writing of multifunctional gratings with gel-like MXene/norepinephrine ink for dynamic electromagnetic interference shielding and patterned Joule heating. Nano Res. 17, 1585–1594 (2023). https://doi.org/10.1007/s12274-023-6044-9
- X. Zhao, L.-Y. Wang, C.-Y. Tang, X.-J. Zha, Y. Liu et al., Smart Ti3C2Tx MXene fabric with fast humidity response and Joule heating for healthcare and medical therapy applications. ACS Nano 14, 8793–8805 (2020). https://doi.org/10.1021/acsnano.0c03391
- Y. Zhou, Y. Zhang, K. Ruan, H. Guo, M. He et al., MXene-based fibers: preparation, applications, and prospects. Sci. Bull. (In Press) (2024). https://doi.org/10.1016/j.scib.2024.07.009
- Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4, 2300224 (2023). https://doi.org/10.1002/adpr.202300224
- Z. Cheng, Y. Cao, R. Wang, X. Liu, F. Fan et al., Multifunctional MXene-based composite films with simultaneous terahertz/gigahertz wave shielding performance for future 6G communication. J. Mater. Chem. A 11, 5593–5605 (2023). https://doi.org/10.1039/d2ta09879b
- S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable MXene films through bridging-induced densification. Science 374, 96–99 (2021). https://doi.org/10.1126/science.abg2026
- K. Gong, Y. Peng, A. Liu, S. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Composites A 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
- S. Luo, Q. Li, Y. Xue, B. Zhou, Y. Feng et al., Reinforcing and toughening bacterial cellulose/MXene films assisted by interfacial multiple cross-linking for electromagnetic interference shielding and photothermal response. J. Colloid Interface Sci. 652, 1645–1652 (2023). https://doi.org/10.1016/j.jcis.2023.08.177
- J. Xiong, R. Ding, Z. Liu, H. Zheng, P. Li et al., High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management. Chem. Eng. J. 474, 145972 (2023). https://doi.org/10.1016/j.cej.2023.145972
- C. Liu, Y. Ma, Y. Xie, J. Zou, H. Wu et al., Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 15, 4516–4526 (2023). https://doi.org/10.1021/acsami.2c20101
- J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with Joule heating performance. ACS Nano 16, 6700–6711 (2022). https://doi.org/10.1021/acsnano.2c01323
- X. Jia, Y. Li, B. Shen, W. Zheng, Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: a review. Composites B 233, 109652 (2022). https://doi.org/10.1016/j.compositesb.2022.109652
- G. Mayer, Rigid biological systems as models for synthetic composites. Science 310, 1144–1147 (2005). https://doi.org/10.1126/science.1116994
- M.A. Meyers, J. McKittrick, P.-Y. Chen, Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013). https://doi.org/10.1126/science.1220854
- J. Wang, Q. Cheng, Z. Tang, Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev. 41, 1111–1129 (2012). https://doi.org/10.1039/C1CS15106A
- J. Wang, T. Song, W. Ming, M. Yele, L. Chen et al., High MXene loading, nacre-inspired MXene/ANF electromagnetic interference shielding composite films with ultralong strain-to-failure and excellent Joule heating performance. Nano Res. 17, 2061–2069 (2024). https://doi.org/10.1007/s12274-023-6232-y
- Y. Zhang, W. Cheng, W. Tian, J. Lu, L. Song et al., Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl. Mater. Interfaces 12, 6371–6382 (2020). https://doi.org/10.1021/acsami.9b18750
- G. Xiao, J. Di, H. Li, J. Wang, Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Compos. Sci. Technol. 189, 108021 (2020). https://doi.org/10.1016/j.compscitech.2020.108021
- F. Zeng, X. Chen, G. Xiao, H. Li, S. Xia et al., A bioinspired ultratough multifunctional mica-based nanopaper with 3D aramid nanofiber framework as an electrical insulating material. ACS Nano 14, 611–619 (2020). https://doi.org/10.1021/acsnano.9b07192
- Y. Han, K. Ruan, X. He, Y. Tang, H. Guo et al., Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem. Int. Ed. 63, e202401538 (2024). https://doi.org/10.1002/anie.202401538
- S. Wan, Y. Li, J. Peng, H. Hu, Q. Cheng et al., Synergistic toughening of graphene oxide–molybdenum disulfide–thermoplastic polyurethane ternary artificial nacre. ACS Nano 9, 708–714 (2015). https://doi.org/10.1021/nn506148w
- M.-Q. Ning, M.-M. Lu, J.-B. Li, Z. Chen, Y.-K. Dou et al., Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7, 15734–15740 (2015). https://doi.org/10.1039/C5NR04670J
- J. Zhou, D. Lan, F. Zhang, Y. Cheng, Z. Jia et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band. Small 19, 2304932 (2023). https://doi.org/10.1002/smll.202304932
- Z. Liu, Y. Cui, Q. Li, Q. Zhang, B. Zhang, Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. J. Colloid Interface Sci. 607, 633–644 (2022). https://doi.org/10.1016/j.jcis.2021.09.009
- N. Wu, B. Zhao, X. Chen, C. Hou, M. Huang et al., Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2Tx MXene hetero-structure for potential microwave absorption. Adv. Compos. Hybrid Mater. 5, 1548–1556 (2022). https://doi.org/10.1007/s42114-022-00490-7
- B. Luo, X. Li, P. Liu, M. Cui, G. Zhou et al., Self-assembled NIR-responsive MoS2@quaternized chitosan/nanocellulose composite paper for recyclable antibacteria. J. Hazard. Mater. 434, 128896 (2022). https://doi.org/10.1016/j.jhazmat.2022.128896
- L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
- J. Zhou, S. Wang, J. Zhang, Y. Wang, H. Deng et al., Enhancing bioinspired aramid nanofiber networks by interfacial hydrogen bonds for multiprotection under an extreme environment. ACS Nano 17, 3620–3631 (2023). https://doi.org/10.1021/acsnano.2c10460
- L. Huang, G. Xiao, Y. Wang, H. Li, Y. Zhou et al., Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano-Micro Lett. 14, 168 (2022). https://doi.org/10.1007/s40820-022-00919-0
- Q. Cheng, M. Wu, M. Li, L. Jiang, Z. Tang, Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew. Chem. Int. Ed. 52, 3750–3755 (2013). https://doi.org/10.1002/anie.201210166
- H. Zhao, Y. Yue, Y. Zhang, L. Li, L. Guo, Ternary artificial nacre reinforced by ultrathin amorphous alumina with exceptional mechanical properties. Adv. Mater. 28, 2037–2042 (2016). https://doi.org/10.1002/adma.201505511
- S.-J. Wang, D.-S. Li, L. Jiang, Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv. Mater. Interfaces 6, 1900961 (2019). https://doi.org/10.1002/admi.201900961
- C. Weng, T. Xing, H. Jin, G. Wang, Z. Dai et al., Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Composites A 135, 105927 (2020). https://doi.org/10.1016/j.compositesa.2020.105927
- Y. Chen, J. Li, T. Li, L. Zhang, F. Meng, Recent advances in graphene-based films for electromagnetic interference shielding: review and future prospects. Carbon 180, 163–184 (2021). https://doi.org/10.1016/j.carbon.2021.04.091
- C. Wen, B. Zhao, Y. Liu, C. Xu, Y. Wu et al., Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 33, 2214223 (2023). https://doi.org/10.1002/adfm.202214223
- B. Zhao, Z. Ma, Y. Sun, Y. Han, J. Gu, Flexible and robust Ti3C2Tx /(ANF@FeNi) composite films with outstanding electromagnetic interference shielding and electrothermal conversion performances. Small Struct. 3, 2200162 (2022). https://doi.org/10.1002/sstr.202200162
- Yang, J., Wang, H., Zhang, Y. et al. Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding. Nano-Micro Lett. 16, 31 (2024). https://doi.org/10.1007/s40820-023-01246-8
- F. Pan, Y. Shi, Y. Yang, H. Guo, L. Li et al., Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 36, 2311135 (2024). https://doi.org/10.1002/adma.202311135
- H. Geng, X. Zhang, W. Xie, P. Zhao, G. Wang et al., Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J. Colloid Interface Sci. 609, 33–42 (2022). https://doi.org/10.1016/j.jcis.2021.11.192
- H. Zhao, T. Gao, J. Yun, L. Chen, Robust liquid metal reinforced cellulose nanofiber/MXene composite film with Janus structure for electromagnetic interference shielding and electro-/photothermal conversion applications. J. Mater. Sci. Technol. 191, 23–32 (2024). https://doi.org/10.1016/j.jmst.2023.12.035
References
W. Deng, D. Zhi, J. Li, T. Li, Q. Liu et al., Electromagnetic oscillation induced graphene-based aerogel microspheres with dual-chamber achieving high-performance broadband microwave absorption. Composites B 271, 111149 (2024). https://doi.org/10.1016/j.compositesb.2023.111149
J. Li, J. Li, T. Li, Z. Xu, Y. Chen et al., Flexible and excellent electromagnetic interference shielding film with porous alternating PVA-derived carbon and graphene layers. iScience 26, 107975 (2023). https://doi.org/10.1016/j.isci.2023.107975
X.-J. Zhang, J.-Q. Zhu, P.-G. Yin, A.-P. Guo, A.-P. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28, 1800761 (2018). https://doi.org/10.1002/adfm.201800761
C. Liang, H. Qiu, Y. Zhang, Y. Liu, J. Gu, External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 68, 1938–1953 (2023). https://doi.org/10.1016/j.scib.2023.07.046
M. Li, Y. Sun, D. Feng, K. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16, 7820–7828 (2023). https://doi.org/10.1007/s12274-023-5594-1
T. Chen, Y. Tian, Z. Guo, Y. Chen, Q. Qi et al., Design of novel RGO/2D strip-like ZIF-8/DMAOP ternary hybrid structure towards high-efficiency microwave absorption, active and passive anti-corrosion, and synergistic antibacterial performance. Nano Res. 17, 913–926 (2024). https://doi.org/10.1007/s12274-023-6168-y
X. He, H. Peng, Z. Xiong, X. Nie, D. Wang et al., A sustainable and low-cost route to prepare magnetic p-embedded ultra-thin carbon nanosheets with broadband microwave absorption from biowastes. Carbon 198, 195–206 (2022). https://doi.org/10.1016/j.carbon.2022.07.018
Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan et al., A mini-review of MXene porous films: preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022). https://doi.org/10.1016/j.jmst.2021.08.001
Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang et al., The recent progress of MXene-based microwave absorption materials. Carbon 174, 484–499 (2021). https://doi.org/10.1016/j.carbon.2020.12.060
M. Huang, L. Wang, X. Li, Z. Wu, B. Zhao et al., Magnetic interacted interaction effect in MXene skeleton: enhanced thermal-generation for electromagnetic interference shielding. Small 18, 2201587 (2022). https://doi.org/10.1002/smll.202201587
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
L. Li, Q. Cheng, Bioinspired nanocomposite films with graphene and MXene. Giant 12, 100117 (2022). https://doi.org/10.1016/j.giant.2022.100117
W. Ma, H. Chen, S. Hou, Z. Huang, Y. Huang et al., Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band. ACS Appl. Mater. Interfaces 11, 25369–25377 (2019). https://doi.org/10.1021/acsami.9b03406
T. Ma, Y. Zhang, K. Ruan, H. Guo, M. He et al., Advances in 3D printing for polymer composites: a review. InfoMat (2024). https://doi.org/10.1002/inf2.12568
S. Wan, X. Li, Y. Chen, N. Liu, S. Wang et al., Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 13, 7340 (2022). https://doi.org/10.1038/s41467-022-35226-0
H. Wang, R. Lu, J. Yan, J. Peng, A.P. Tomsia et al., Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites. Angew. Chem. Int. Ed. 62, e202216874 (2023). https://doi.org/10.1002/anie.202216874
P.-Z. Jiang, Z. Deng, P. Min, L. Ye, C.-Z. Qi et al., Direct ink writing of multifunctional gratings with gel-like MXene/norepinephrine ink for dynamic electromagnetic interference shielding and patterned Joule heating. Nano Res. 17, 1585–1594 (2023). https://doi.org/10.1007/s12274-023-6044-9
X. Zhao, L.-Y. Wang, C.-Y. Tang, X.-J. Zha, Y. Liu et al., Smart Ti3C2Tx MXene fabric with fast humidity response and Joule heating for healthcare and medical therapy applications. ACS Nano 14, 8793–8805 (2020). https://doi.org/10.1021/acsnano.0c03391
Y. Zhou, Y. Zhang, K. Ruan, H. Guo, M. He et al., MXene-based fibers: preparation, applications, and prospects. Sci. Bull. (In Press) (2024). https://doi.org/10.1016/j.scib.2024.07.009
Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4, 2300224 (2023). https://doi.org/10.1002/adpr.202300224
Z. Cheng, Y. Cao, R. Wang, X. Liu, F. Fan et al., Multifunctional MXene-based composite films with simultaneous terahertz/gigahertz wave shielding performance for future 6G communication. J. Mater. Chem. A 11, 5593–5605 (2023). https://doi.org/10.1039/d2ta09879b
S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable MXene films through bridging-induced densification. Science 374, 96–99 (2021). https://doi.org/10.1126/science.abg2026
K. Gong, Y. Peng, A. Liu, S. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Composites A 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
S. Luo, Q. Li, Y. Xue, B. Zhou, Y. Feng et al., Reinforcing and toughening bacterial cellulose/MXene films assisted by interfacial multiple cross-linking for electromagnetic interference shielding and photothermal response. J. Colloid Interface Sci. 652, 1645–1652 (2023). https://doi.org/10.1016/j.jcis.2023.08.177
J. Xiong, R. Ding, Z. Liu, H. Zheng, P. Li et al., High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management. Chem. Eng. J. 474, 145972 (2023). https://doi.org/10.1016/j.cej.2023.145972
C. Liu, Y. Ma, Y. Xie, J. Zou, H. Wu et al., Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 15, 4516–4526 (2023). https://doi.org/10.1021/acsami.2c20101
J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with Joule heating performance. ACS Nano 16, 6700–6711 (2022). https://doi.org/10.1021/acsnano.2c01323
X. Jia, Y. Li, B. Shen, W. Zheng, Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: a review. Composites B 233, 109652 (2022). https://doi.org/10.1016/j.compositesb.2022.109652
G. Mayer, Rigid biological systems as models for synthetic composites. Science 310, 1144–1147 (2005). https://doi.org/10.1126/science.1116994
M.A. Meyers, J. McKittrick, P.-Y. Chen, Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013). https://doi.org/10.1126/science.1220854
J. Wang, Q. Cheng, Z. Tang, Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev. 41, 1111–1129 (2012). https://doi.org/10.1039/C1CS15106A
J. Wang, T. Song, W. Ming, M. Yele, L. Chen et al., High MXene loading, nacre-inspired MXene/ANF electromagnetic interference shielding composite films with ultralong strain-to-failure and excellent Joule heating performance. Nano Res. 17, 2061–2069 (2024). https://doi.org/10.1007/s12274-023-6232-y
Y. Zhang, W. Cheng, W. Tian, J. Lu, L. Song et al., Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl. Mater. Interfaces 12, 6371–6382 (2020). https://doi.org/10.1021/acsami.9b18750
G. Xiao, J. Di, H. Li, J. Wang, Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Compos. Sci. Technol. 189, 108021 (2020). https://doi.org/10.1016/j.compscitech.2020.108021
F. Zeng, X. Chen, G. Xiao, H. Li, S. Xia et al., A bioinspired ultratough multifunctional mica-based nanopaper with 3D aramid nanofiber framework as an electrical insulating material. ACS Nano 14, 611–619 (2020). https://doi.org/10.1021/acsnano.9b07192
Y. Han, K. Ruan, X. He, Y. Tang, H. Guo et al., Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem. Int. Ed. 63, e202401538 (2024). https://doi.org/10.1002/anie.202401538
S. Wan, Y. Li, J. Peng, H. Hu, Q. Cheng et al., Synergistic toughening of graphene oxide–molybdenum disulfide–thermoplastic polyurethane ternary artificial nacre. ACS Nano 9, 708–714 (2015). https://doi.org/10.1021/nn506148w
M.-Q. Ning, M.-M. Lu, J.-B. Li, Z. Chen, Y.-K. Dou et al., Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7, 15734–15740 (2015). https://doi.org/10.1039/C5NR04670J
J. Zhou, D. Lan, F. Zhang, Y. Cheng, Z. Jia et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band. Small 19, 2304932 (2023). https://doi.org/10.1002/smll.202304932
Z. Liu, Y. Cui, Q. Li, Q. Zhang, B. Zhang, Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. J. Colloid Interface Sci. 607, 633–644 (2022). https://doi.org/10.1016/j.jcis.2021.09.009
N. Wu, B. Zhao, X. Chen, C. Hou, M. Huang et al., Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2Tx MXene hetero-structure for potential microwave absorption. Adv. Compos. Hybrid Mater. 5, 1548–1556 (2022). https://doi.org/10.1007/s42114-022-00490-7
B. Luo, X. Li, P. Liu, M. Cui, G. Zhou et al., Self-assembled NIR-responsive MoS2@quaternized chitosan/nanocellulose composite paper for recyclable antibacteria. J. Hazard. Mater. 434, 128896 (2022). https://doi.org/10.1016/j.jhazmat.2022.128896
L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
J. Zhou, S. Wang, J. Zhang, Y. Wang, H. Deng et al., Enhancing bioinspired aramid nanofiber networks by interfacial hydrogen bonds for multiprotection under an extreme environment. ACS Nano 17, 3620–3631 (2023). https://doi.org/10.1021/acsnano.2c10460
L. Huang, G. Xiao, Y. Wang, H. Li, Y. Zhou et al., Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano-Micro Lett. 14, 168 (2022). https://doi.org/10.1007/s40820-022-00919-0
Q. Cheng, M. Wu, M. Li, L. Jiang, Z. Tang, Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew. Chem. Int. Ed. 52, 3750–3755 (2013). https://doi.org/10.1002/anie.201210166
H. Zhao, Y. Yue, Y. Zhang, L. Li, L. Guo, Ternary artificial nacre reinforced by ultrathin amorphous alumina with exceptional mechanical properties. Adv. Mater. 28, 2037–2042 (2016). https://doi.org/10.1002/adma.201505511
S.-J. Wang, D.-S. Li, L. Jiang, Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv. Mater. Interfaces 6, 1900961 (2019). https://doi.org/10.1002/admi.201900961
C. Weng, T. Xing, H. Jin, G. Wang, Z. Dai et al., Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Composites A 135, 105927 (2020). https://doi.org/10.1016/j.compositesa.2020.105927
Y. Chen, J. Li, T. Li, L. Zhang, F. Meng, Recent advances in graphene-based films for electromagnetic interference shielding: review and future prospects. Carbon 180, 163–184 (2021). https://doi.org/10.1016/j.carbon.2021.04.091
C. Wen, B. Zhao, Y. Liu, C. Xu, Y. Wu et al., Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 33, 2214223 (2023). https://doi.org/10.1002/adfm.202214223
B. Zhao, Z. Ma, Y. Sun, Y. Han, J. Gu, Flexible and robust Ti3C2Tx /(ANF@FeNi) composite films with outstanding electromagnetic interference shielding and electrothermal conversion performances. Small Struct. 3, 2200162 (2022). https://doi.org/10.1002/sstr.202200162
Yang, J., Wang, H., Zhang, Y. et al. Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding. Nano-Micro Lett. 16, 31 (2024). https://doi.org/10.1007/s40820-023-01246-8
F. Pan, Y. Shi, Y. Yang, H. Guo, L. Li et al., Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 36, 2311135 (2024). https://doi.org/10.1002/adma.202311135
H. Geng, X. Zhang, W. Xie, P. Zhao, G. Wang et al., Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J. Colloid Interface Sci. 609, 33–42 (2022). https://doi.org/10.1016/j.jcis.2021.11.192
H. Zhao, T. Gao, J. Yun, L. Chen, Robust liquid metal reinforced cellulose nanofiber/MXene composite film with Janus structure for electromagnetic interference shielding and electro-/photothermal conversion applications. J. Mater. Sci. Technol. 191, 23–32 (2024). https://doi.org/10.1016/j.jmst.2023.12.035