Surface/Interface Engineering for High-Resolution Micro-/Nano-Photodetectors
Corresponding Author: Wei Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 95
Abstract
Photodetectors can convert light energy into electrical signals, so are widely used in photovoltaics, photon counting, monitoring, and imaging. Photodetectors are easy to prepare high-resolution photochips because of their small size unit integration. However, these photodetector units often exhibit poor photoelectric performance due to material defects and inadequate structures, which greatly limit the functions of devices. Designing modification strategies and micro-/nanostructures can compensate for defects, adjust the bandgap, and develop novel quantum structures, which consequently optimize photovoltaic units and revolutionize optoelectronic devices. Here, this paper aims to comprehensively elaborate on the surface/interface engineering scheme of micro-/nano-photodetectors. It starts from the fundamentals of photodetectors, such as principles, types, and parameters, and describes the influence of material selection, manufacturing techniques, and post-processing. Then, we analyse in detail the great influence of surface/interface engineering on the performance of photovoltaic devices, including surface/interface modification and micro-/nanostructural design. Finally, the applications and prospects of optoelectronic devices in various fields such as miniaturization of electronic devices, robotics, and human–computer interaction are shown.
Highlights:
1 Surface/interface engineering can compensate for defects, adjust the bandgap, and develop novel quantum structures, which consequently optimize photovoltaic units and revolutionize optoelectronic devices.
2 This review comprehensively elaborates on the surface/interface engineering scheme of micro-/nano-photodetectors from principles, types, and parameters, and describes the influence of material selection and manufacturing techniques.
3 Surface/interface engineering continuously promotes the development of low-dimensional optoelectronic materials and drives the industrialization of flexible optoelectronic devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.-H. Lee, A.R. bin Mohd Yusoff, C. Lee, S.C. Yoon, Y.-Y. Noh, Toward color-selective printed organic photodetectors for high-resolution image sensors: from fundamentals to potential commercialization. Mater. Sci. Eng. R. Rep. 147, 100660 (2022). https://doi.org/10.1016/j.mser.2021.100660
- Y. Wang, Y. Fu, J. Zhao, H. Liu, L. Deng, Enhanced photoelectric responsivity of graphene/GaAs photodetector using surface plasmon resonance based on ellipse wall grating-nanowire structure. Plasmonics 19(3), 1201–1209 (2024). https://doi.org/10.1007/s11468-023-02066-7
- L. Ren, M. Wang, S. Wang, H.M. Zeeshan, Y. Zhao et al., Modified photoelectric properties of CH3NH3PbI3 via surface passivation induced by Argon ions bombardment. Thin Solid Films 685, 360–365 (2019). https://doi.org/10.1016/j.tsf.2019.06.043
- J. You, Y. Yu, K. Cai, D. Zhou, H. Zhu et al., Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection. Nano Res. 13(6), 1636–1643 (2020). https://doi.org/10.1007/s12274-020-2786-9
- D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16(2), 170–181 (2017). https://doi.org/10.1038/nmat4703
- H. Wang, Z. Li, D. Li, P. Chen, L. Pi et al., Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater. 31(30), 2103106 (2021). https://doi.org/10.1002/adfm.202103106
- C. Luo, J. Wu, X. Zhang, Q. Fu, W. Wang et al., Broadband mid-infrared photodetectors utilizing two-dimensional van der Waals heterostructures with parallel-stacked pn junctions. Nanotechnology 35(36), 365203 (2024). https://doi.org/10.1088/1361-6528/ad568e
- H. Zeng, H. Yu, B. Liu, S. Lu, X. Wei et al., Gradient-strained van der Waals heterojunctions for high-efficient photodetectors. Adv. Funct. Mater. 34(29), 2400712 (2024). https://doi.org/10.1002/adfm.202400712
- K. Jiang, Q. You, Y. Zheng, F. Fang, Z. Xie et al., Oriented epitaxial growth of mixed-dimensional van der Waals heterostructures with one-dimensional (1D) Bi2S3 nanowires and two-dimensional (2D) WS2 monolayers for performance-enhanced photodetectors. Nano Lett. 24(45), 14437–14444 (2024). https://doi.org/10.1021/acs.nanolett.4c04455
- G. Polumati, C.S.R. Kolli, M. Flores, A. Kumar, A. Sanghvi et al., Mixed-dimensional van der Waals heterostructure (2D ReS2/0D MoS2 quantum dots)-based broad spectral range with ultrahigh-responsive photodetector. ACS Appl. Mater. Interfaces 16(15), 19261–19270 (2024). https://doi.org/10.1021/acsami.4c02295
- L.K. Ono, Y. Qi, Research progress on organic–inorganic halide perovskite materials and solar cells. J. Phys. D Appl. Phys. 51(9), 093001 (2018). https://doi.org/10.1088/1361-6463/aaa727
- Y. Zhao, C. Li, J. Jiang, B. Wang, L. Shen, Sensitive and stable tin–lead hybrid perovskite photodetectors enabled by double-sided surface passivation for infrared upconversion detection. Small 16(26), 2001534 (2020). https://doi.org/10.1002/smll.202001534
- P. Berini, Surface plasmon photodetectors and their applications. Laser Photon. Rev. 8(2), 197–220 (2014). https://doi.org/10.1002/lpor.201300019
- Y. Lei, Y. Chen, R. Zhang, Y. Li, Q. Yan et al., A fabrication process for flexible single-crystal perovskite devices. Nature 583(7818), 790–795 (2020). https://doi.org/10.1038/s41586-020-2526-z
- A.-M. Arjmandi-Tash, A. Mansourian, F.R. Rahsepar, Y. Abdi, Predicting photodetector responsivity through machine learning. Adv. Theory Simul. 7(6), 2301219 (2024). https://doi.org/10.1002/adts.202301219
- X. Li, Y. Mai, C. Lan, F. Yang, P. Zhang et al., Machine learning-assisted design of high-performance perovskite photodetectors: a review. Adv. Compos. Hybrid Mater. 8(1), 27 (2024). https://doi.org/10.1007/s42114-024-01113-z
- S. Donati, Photodetectors: devices, circuits, and applications. Meas. Sci. Technol. 12(5), 653 (2001). https://doi.org/10.1088/0957-0233/12/5/703
- M. Casalino, J. Thirumalai, Light-Emitting Diodes and Photodetectors: Advances and Future Directions, IntechOpen 2021.
- J.D. Yao, Z.Q. Zheng, G.W. Yang, Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mater. Sci. 106, 100573 (2019). https://doi.org/10.1016/j.pmatsci.2019.100573
- D.A. Neamen, Semiconductor physics and devices: basic principles (McGraw-Hill higher education, New York, 2011)
- C. Bartolo-Perez, S. GhandiParsi, A. Mayet, A. Ahamed, W. Qarony et al., Controlling the photon absorption characteristics in avalanche photodetectors for high resolution biomedical imaging. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVIII. March 6–12, 2021. Online Only, USA. SPIE, (2021), pp. 5–10. https://doi.org/10.1117/12.2577805
- Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang et al., Promises and prospects of two-dimensional transistors. Nature 591(7848), 43–53 (2021). https://doi.org/10.1038/s41586-021-03339-z
- C. Dai, Y. Liu, D. Wei, Two-dimensional field-effect transistor sensors: the road toward commercialization. Chem. Rev. 122(11), 10319–10392 (2022). https://doi.org/10.1021/acs.chemrev.1c00924
- M. Shkir, M.T. Khan, I.M. Ashraf, A. Almohammedi, E. Dieguez et al., High-performance visible light photodetectors based on inorganic CZT and InCZT single crystals. Sci. Rep. 9(1), 12436 (2019). https://doi.org/10.1038/s41598-019-48621-3
- S. Yanikgonul, V. Leong, J.R. Ong, T. Hu, S.Y. Siew et al., Integrated avalanche photodetectors for visible light. Nat. Commun. 12(1), 1834 (2021). https://doi.org/10.1038/s41467-021-22046-x
- X. Chen, H. Wang, X. Wei, A wide bandwidth real-time MEMS optical power meter with high resolution and linearity. Sens. Actuat. A Phys. 339, 113506 (2022). https://doi.org/10.1016/j.sna.2022.113506
- E.P. Mukhokosi, G.V.S. Manohar, T. Nagao, S.B. Krupanidhi, K.K. Nanda, Device architecture for visible and near-infrared photodetectors based on two-dimensional SnSe2 and MoS2: a review. Micromachines 11(8), 750 (2020). https://doi.org/10.3390/mi11080750
- R.A. Kishore, S. Priya, A review on low-grade thermal energy harvesting: materials, methods and devices. Materials 11(8), 1433 (2018). https://doi.org/10.3390/ma11081433
- P. Lheritier, A. Torelló, T. Usui, Y. Nouchokgwe, A. Aravindhan et al., Large harvested energy with non-linear pyroelectric modules. Nature 609(7928), 718–721 (2022). https://doi.org/10.1038/s41586-022-05069-2
- S.B. Lang, Pyroelectricity: from ancient curiosity to modern imaging tool. Phys. Today 58(8), 31–36 (2005). https://doi.org/10.1063/1.2062916
- J.Y. Noh, G.H. Yoon, Topology optimization of piezoelectric energy harvesting devices considering static and harmonic dynamic loads. Adv. Eng. Softw. 53, 45–60 (2012). https://doi.org/10.1016/j.advengsoft.2012.07.008
- C. Canetta, A. Narayanaswamy, Sub-picowatt resolution calorimetry with a bi-material microcantilever sensor. Appl. Phys. Lett. 102(10), 103112 (2013). https://doi.org/10.1063/1.4795625
- F. Xue, L. Yang, M. Chen, J. Chen, X. Yang et al., Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect. NPG Asia Mater. 9(8), e418 (2017). https://doi.org/10.1038/am.2017.142
- C. Ma, S. Yuan, P. Cheung, K. Watanabe, T. Taniguchi et al., Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604(7905), 266–272 (2022). https://doi.org/10.1038/s41586-022-04548-w
- T. Akamatsu, T. Ideue, L. Zhou, Y. Dong, S. Kitamura et al., A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372(6537), 68–72 (2021). https://doi.org/10.1126/science.aaz9146
- C. Zhang, P. Guo, J. Zhou, Tailoring bulk photovoltaic effects in magnetic sliding ferroelectric materials. Nano Lett. 22(23), 9297–9305 (2022). https://doi.org/10.1021/acs.nanolett.2c02802
- Q. Bao, H.Y. Hoh, 2D Materials for Photonic and Optoelectronic Applications. Woodhead Publishing 2019.
- D.K. Singh, R. Pant, A.M. Chowdhury, B. Roul, K.K. Nanda et al., Defect-mediated transport in self-powered, broadband, and ultrafast photoresponse of a MoS2/AlN/Si-based photodetector. ACS Appl. Electron. Mater. 2(4), 944–953 (2020). https://doi.org/10.1021/acsaelm.0c00007
- K. Arora, N. Goel, M. Kumar, M. Kumar, Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer. ACS Photonics 5(6), 2391–2401 (2018). https://doi.org/10.1021/acsphotonics.8b00174
- Y. Zhu, K. Liu, Q. Ai, Q. Hou, X. Chen et al., A high performance self-powered ultraviolet photodetector based on a p-GaN/n-ZnMgO heterojunction. J. Mater. Chem. C 8(8), 2719–2724 (2020). https://doi.org/10.1039/c9tc06416h
- A.M. Chowdhury, R. Pant, B. Roul, D.K. Singh, K.K. Nanda et al., Double gaussian distribution of barrier heights and self-powered infrared photoresponse of InN/AlN/Si (111) heterostructure. J. Appl. Phys. 126(2), 025301 (2019). https://doi.org/10.1063/1.5100066
- B. Ouyang, H. Zhao, Z.L. Wang, Y. Yang, Dual-polarity response in self-powered ZnO NWs/Sb2Se3 film heterojunction photodetector array for optical communication. Nano Energy 68, 104312 (2020). https://doi.org/10.1016/j.nanoen.2019.104312
- X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
- T. Low, A.S. Rodin, A. Carvalho, Y. Jiang, H. Wang et al., Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90(7), 075434 (2014). https://doi.org/10.1103/physrevb.90.075434
- B. Liu, M. Köpf, A.A. Abbas, X. Wang, Q. Guo et al., Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. arXiv: 1505.07061 (2015). https://doi.org/10.48550/arXiv.1505.07061
- S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N.E. Christensen, A. Svane, Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 86(3), 035105 (2012). https://doi.org/10.1103/physrevb.86.035105
- H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu et al., Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 10(8), 707–713 (2015). https://doi.org/10.1038/nnano.2015.112
- M. Long, A. Gao, P. Wang, H. Xia, C. Ott et al., Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3(6), e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
- W.C. Tan, L. Huang, R.J. Ng, L. Wang, D.M.N. Hasan et al., A black phosphorus carbide infrared phototransistor. Adv. Mater. 30(6), 1705039 (2018). https://doi.org/10.1002/adma.201705039
- N. Youngblood, C. Chen, S.J. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9(4), 247–252 (2015). https://doi.org/10.1038/nphoton.2015.23
- M. Engel, M. Steiner, P. Avouris, Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14(11), 6414–6417 (2014). https://doi.org/10.1021/nl502928y
- H. Kim, S.Z. Uddin, D.-H. Lien, M. Yeh, N.S. Azar et al., Actively variable-spectrum optoelectronics with black phosphorus. Nature 596(7871), 232–237 (2021). https://doi.org/10.1038/s41586-021-03701-1
- B.Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang et al., Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013). https://doi.org/10.1038/ncomms2830
- S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11(6), 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
- S. Ahn, W. Chen, O. Vazquez-Mena, High resolution patterning of PbS quantum dots/graphene photodetectors with high responsivity via photolithography with a top graphene layer to protect surface ligands. Nanoscale Adv. 3(21), 6206–6212 (2021). https://doi.org/10.1039/D1NA00582K
- C.-H. Liu, Y.-C. Chang, T.B. Norris, Z. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9(4), 273–278 (2014). https://doi.org/10.1038/nnano.2014.31
- S. Cakmakyapan, P.K. Lu, A. Navabi, M. Jarrahi, Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light Sci. Appl. 7, 20 (2018). https://doi.org/10.1038/s41377-018-0020-2
- A.L. Hsu, P.K. Herring, N.M. Gabor, S. Ha, Y.C. Shin et al., Graphene-based thermopile for thermal imaging applications. Nano Lett. 15(11), 7211–7216 (2015). https://doi.org/10.1021/acs.nanolett.5b01755
- Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod et al., Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405), 82–85 (2012). https://doi.org/10.1038/nature11253
- G. Li, Y. Wang, L. Huang, W. Sun, Research progress of high-sensitivity perovskite photodetectors: a review of photodetectors: noise, structure, and materials. ACS Appl. Electron. Mater. 4(4), 1485–1505 (2022). https://doi.org/10.1021/acsaelm.1c01349
- G.H. Lee, K. Kim, Y. Kim, J. Yang, M.K. Choi, Recent advances in patterning strategies for full-color perovskite light-emitting diodes. Nano-Micro Lett. 16(1), 45 (2023). https://doi.org/10.1007/s40820-023-01254-8
- X. Ma, L. Yang, S. Zheng, Q. Dai, C. Chen et al., All-inorganic perovskite solar cells: status and future. Prog. Chem. 32(10), 1608–1632 (2020). https://doi.org/10.7536/PC200313
- B. Shi, P. Wang, J. Feng, C. Xue, G. Yang et al., Split-ring structured all-inorganic perovskite photodetector arrays for masterly internet of things. Nano-Micro Lett. 15(1), 3 (2022). https://doi.org/10.1007/s40820-022-00961-y
- X. Li, C. Liu, F. Ding, Z. Lu, P. Gao et al., Ultra-stable and sensitive ultraviolet photodetectors based on monocrystalline perovskite thin films. Adv. Funct. Mater. 33(15), 2213360 (2023). https://doi.org/10.1002/adfm.202213360
- Y. Zhang, Y. Ma, Y. Wang, X. Zhang, C. Zuo et al., Lead-free perovskite photodetectors: progress, challenges, and opportunities. Adv. Mater. 33(26), 2006691 (2021). https://doi.org/10.1002/adma.202006691
- F. Mei, D. Sun, S. Mei, J. Feng, Y. Zhou et al., Recent progress in perovskite-based photodetectors: the design of materials and structures. Advances in Physics: X 4(1), 1592709 (2019). https://doi.org/10.1080/23746149.2019.1592709
- N. Zhou, Y. Bekenstein, C.N. Eisler, D. Zhang, A.M. Schwartzberg et al., Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv. 5(5), eaav8141 (2019). https://doi.org/10.1126/sciadv.aav8141
- Y. Zhao, X. Yin, P. Li, Z. Ren, Z. Gu et al., Multifunctional perovskite photodetectors: from molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15(1), 187 (2023). https://doi.org/10.1007/s40820-023-01161-y
- Z. Gu, Y. Zhang, Y. Zhao, Q. Xu, Y. Song, From planar structures to curved optoelectronic devices: the advances of halide perovskite arrays. Matter 6(9), 2666–2696 (2023). https://doi.org/10.1016/j.matt.2023.05.007
- Z. Gu, Z. Huang, X. Hu, Y. Wang, L. Li et al., In situ inkjet printing of the perovskite single-crystal array-embedded polydimethylsiloxane film for wearable light-emitting devices. ACS Appl. Mater. Interfaces 12(19), 22157–22162 (2020). https://doi.org/10.1021/acsami.0c04131
- W. Kim, S.-K. Kim, S. Jeon, J. Ahn, B.K. Jung et al., Patterning all-inorganic halide perovskite with adjustable phase for high-resolution color filter and photodetector arrays. Adv. Funct. Mater. 32(16), 2111409 (2022). https://doi.org/10.1002/adfm.202111409
- Y. Liang, Q. Lu, W. Wu, Z. Xu, H. Lu et al., A universal fabrication strategy for high-resolution perovskite-based photodetector arrays. Small Methods 7(9), e2300339 (2023). https://doi.org/10.1002/smtd.202300339
- B. Yang, J. Chen, Q. Shi, Z. Wang, M. Gerhard et al., High resolution mapping of two-photon excited photocurrent in perovskite microplate photodetector. J. Phys. Chem. Lett. 9(17), 5017–5022 (2018). https://doi.org/10.1021/acs.jpclett.8b02250
- R. Chen, Z. Liang, W. Feng, X. Hu, A. Hao, Solution-processed all-inorganic perovskite CsPbBr3 thin films for optoelectronic application. J. Alloys Compd. 864, 158125 (2021). https://doi.org/10.1016/j.jallcom.2020.158125
- C.-K. Lin, Q. Zhao, Y. Zhang, S. Cestellos-Blanco, Q. Kong et al., Two-step patterning of scalable all-inorganic halide perovskite arrays. ACS Nano 14(3), 3500–3508 (2020). https://doi.org/10.1021/acsnano.9b09685
- T. Wang, D. Zheng, K. Vegso, N. Mrkyvkova, P. Siffalovic et al., High-resolution and stable ruddlesden–popper quasi-2D perovskite flexible photodetectors arrays for potential applications as optical image sensor. Adv. Funct. Mater. 33(43), 2304659 (2023). https://doi.org/10.1002/adfm.202304659
- J.-W. Lee, N.-G. Park, Quasi-two-dimensional perovskite light emitting diodes for bright future. Light Sci. Appl. 10(1), 86 (2021). https://doi.org/10.1038/s41377-021-00528-3
- Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu et al., Single-nanowire spectrometers. Science 365(6457), 1017–1020 (2019). https://doi.org/10.1126/science.aax8814
- H. Sun, W. Tian, X. Wang, K. Deng, J. Xiong et al., In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control. Adv. Mater. 32(14), 1908108 (2020). https://doi.org/10.1002/adma.201908108
- Y. Zhou, C. Fei, M.A. Uddin, L. Zhao, Z. Ni et al., Self-powered perovskite photon-counting detectors. Nature 616(7958), 712–718 (2023). https://doi.org/10.1038/s41586-023-05847-6
- S. Mahato, M. Tamulewicz-Szwajkowska, S. Singh, D. Kowal, S. Bose et al., Surface-engineered methylammonium lead bromide single crystals: a platform for fluorescent security tags and photodetector applications. Adv. Opt. Mater. 12(10), 2302257 (2024). https://doi.org/10.1002/adom.202302257
- H. Ahmad, H. Rashid, M.F. Ismail, K. Thambiratnam, Fabrication and characterization of tungsten disulphide/silicon heterojunction photodetector for near infrared illumination. Optik 185, 819–826 (2019). https://doi.org/10.1016/j.ijleo.2019.03.132
- Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9(2), 111–115 (2014). https://doi.org/10.1038/nnano.2013.277
- N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H.R. Gutiérrez et al., Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23(44), 5511–5517 (2013). https://doi.org/10.1002/adfm.201300760
- N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia et al., Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 4, 5209 (2014). https://doi.org/10.1038/srep05209
- W. Zhang, M.-H. Chiu, C.-H. Chen, W. Chen, L.-J. Li et al., Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8(8), 8653–8661 (2014). https://doi.org/10.1021/nn503521c
- G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea et al., Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7(6), 363–368 (2012). https://doi.org/10.1038/nnano.2012.60
- Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin et al., Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 28(12), 2399–2407 (2016). https://doi.org/10.1002/adma.201504572
- H. Yang, S.W. Kim, M. Chhowalla, Y.H. Lee, Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13(10), 931–937 (2017). https://doi.org/10.1038/nphys4188
- X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng et al., Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9(1), 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
- J. Mu, S. Xu, SnO2 tetragonal nanonails with enhanced optical and photoelectric performances via localized surface plasmon resonance effect of Au nanops. Ceram. Int. 50(1), 692–703 (2024). https://doi.org/10.1016/j.ceramint.2023.10.147
- F. Cao, L. Liu, L. Li, Short-wave infrared photodetector. Mater. Today 62, 327–349 (2023). https://doi.org/10.1016/j.mattod.2022.11.003
- S. Qin, H. Xu, M. Liu, N. Ali, Y. Chen et al., Enhanced visible to near-infrared photodetectors made from MoS2-based mixed-dimensional structures. Appl. Surf. Sci. 585, 152594 (2022). https://doi.org/10.1016/j.apsusc.2022.152594
- R. Xing, X. Zhang, X. Fan, R. Xie, L. Wu et al., Coupling strategies of multi-physical fields in 2D materials-based photodetectors. Adv. Mater. 37(16), 2501833 (2025). https://doi.org/10.1002/adma.202501833
- C. Richard, Understanding Semiconductors: A Technical Guide for Non-Technical People. Apress 2023.
- X. Zhang, R. Yan, Z. Guo, P. Li, S. Feng, Quasimetal nanosize Te enhanced PbS nanorod photodetector with localized surface plasmon resonance effect. Phys. E Low Dimension. Syst. Nanostruct. 153, 115778 (2023). https://doi.org/10.1016/j.physe.2023.115778
- J. Jiao, Y. Zhang, L. Shi, G. Li, T. Ji et al., High responsivity of narrowband photomultiplication organic photodetector via interfacial modification. Adv. Opt. Mater. 11(12), 2203132 (2023). https://doi.org/10.1002/adom.202203132
- B. Krit, M. Fedotikova, V. Sleptsov, D.Y. Kukushkin, M.Y. Gorozheev et al., Change of photoelectric elements power characteristics by silver nanoclusters modification of receiving surface, Journal of Physics: Conference Series, IOP Publishing, 2019, p. 012024.
- R. Pant, D.K. Singh, A.M. Chowdhury, B. Roul, K.K. Nanda et al., Next-generation self-powered and ultrafast photodetectors based on III-nitride hybrid structures. APL Mater. 8(2), 020907 (2020). https://doi.org/10.1063/1.5140689
- X. Zhao, Q. Li, L. Xu, Z. Zhang, Z. Kang et al., Interface engineering in 1D ZnO-based heterostructures for photoelectrical devices. Adv. Funct. Mater. 32(11), 2106887 (2022). https://doi.org/10.1002/adfm.202106887
- Y. Xiao, K. Luo, Q. Kao, Y. Fu, W. Jiang et al., Photoelectric properties of large area WTe2 thin films prepared by pulsed laser deposition. Surf. Interfaces 44, 103670 (2024). https://doi.org/10.1016/j.surfin.2023.103670
- C. Kang, C. Zhang, L. Zhang, S. Liang, C. Geng et al., Transformation of crystalline structure and photoelectric properties in VO2/glass thin films by inserting TiO2 buffer layers. Appl. Surf. Sci. 463, 704–712 (2019). https://doi.org/10.1016/j.apsusc.2018.08.193
- X. Zhou, X. Li, L. Zhang, F. Yan, C. Wang et al., Tunable morphology and highly stable α-CsPbI3 Nano-bricks for photoelectric devices. J. Colloid Interface Sci. 616, 730–738 (2022). https://doi.org/10.1016/j.jcis.2022.02.118
- L. Deng, H. Hu, Y. Wang, C. Wu, H. He et al., Surface plasma treatment reduces oxygen vacancies defects states to control photogenerated carriers transportation for enhanced self-powered deep UV photoelectric characteristics. Appl. Surf. Sci. 604, 154459 (2022). https://doi.org/10.1016/j.apsusc.2022.154459
- J. Zeng, C.B. Nie, H.D. Zhang, P.P. Hu, K. Maaz et al., Optimized photoelectric performance of MoS2/graphene heterostructure device induced by swift heavy ion irradiation. Appl. Surf. Sci. 642, 158629 (2024). https://doi.org/10.1016/j.apsusc.2023.158629
- J. Li, Y. Ma, Y. Li, S.-S. Li, B. An et al., Interface influence on the photoelectric performance of transition metal dichalcogenide lateral heterojunctions. ACS Omega 7(43), 39187–39196 (2022). https://doi.org/10.1021/acsomega.2c05151
- Y. Reo, T. Zou, T. Choi, S. Kim, J.-Y. Go et al., Vapour-deposited high-performance tin perovskite transistors. Nat. Electron. 8(5), 403–410 (2025). https://doi.org/10.1038/s41928-025-01380-8
- H.P. Maruska, J.J. Tietjen, The preparation and properties of vapor-deposited single-crystal-line GaN. Appl. Phys. Lett. 15(10), 327–329 (1969). https://doi.org/10.1063/1.1652845
- J. Yu, L. Wang, X. Niu, L. Wang, J. Yang et al., Effect of hydrogen peroxide on photoelectric properties of high-transmittance FTO films prepared by spray pyrolysis. Surf. Coat. Technol. 361, 308–313 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.039
- N.M.S. Kaawash, D.I. Halge, V.N. Narwade, P.S. Alegaonkar, K.A. Bogle, High-performance and ultra-sensitive ultraviolet photodetector based on surface passivated α-Fe2O3 thin film. Mater. Chem. Phys. 300, 127546 (2023). https://doi.org/10.1016/j.matchemphys.2023.127546
- J. Xue, Z. Zhu, X. Xu, Y. Gu, S. Wang et al., Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett. 18(12), 7628–7634 (2018). https://doi.org/10.1021/acs.nanolett.8b03209
- C.-Y. Wu, Z. Wang, L. Liang, T. Gui, W. Zhong et al., Graphene-assisted growth of patterned perovskite films for sensitive light detector and optical image sensor application. Small 15(19), 1900730 (2019). https://doi.org/10.1002/smll.201900730
- Q. Wang, G. Zhang, H. Zhang, Y. Duan, Z. Yin et al., High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv. Funct. Mater. 31(28), 2100857 (2021). https://doi.org/10.1002/adfm.202100857
- X. Liu, L. Liu, Y. Zhang, X. Zhang, K. Lyu et al., Glutathione-sensitized SnS2 nanoflake/CdS nanorod heterojunction for enhancing cathodic protection of 304 stainless steel with remarkable photoelectric conversion performance. Appl. Surf. Sci. 637, 157835 (2023). https://doi.org/10.1016/j.apsusc.2023.157835
- Z. Wang, J. Xu, S. Shi, J. Chen, J. Xu et al., Self-powered UV photodetector of TiO2 with BaTiO3 surface modification and light-controlled logic circuits application. ACS Appl. Mater. Interfaces 15(26), 31943–31953 (2023). https://doi.org/10.1021/acsami.3c03628
- B. Yang, M. Xu, T. Zhang, J. Li, X. Chu et al., Photoelectric properties of F-doped ZnO thin films prepared by sol-combustion. Surf. Eng. 36(4), 424–428 (2020). https://doi.org/10.1080/02670844.2019.1681177
- K. Si, J. Ma, C. Lu, Y. Zhou, C. He et al., A two-dimensional MoS2/WSe2 van der Waals heterostructure for enhanced photoelectric performance. Appl. Surf. Sci. 507, 145082 (2020). https://doi.org/10.1016/j.apsusc.2019.145082
- J. Ahn, B.K. Jung, W. Kim, Y.M. Lee, J. Bang et al., Anchoring Cs4PbBr6 crystals to PbSe nanocrystals for the fabrication of UV/VIS/NIR photodetectors using halide surface chemistry. Adv. Opt. Mater. 11(3), 2201833 (2023). https://doi.org/10.1002/adom.202201833
- D. Han, G. Li, J. Wang, T. Zheng, L. Peng et al., Self-assembled composite Langmuir-Blodgett films of carbon nanotubes: an approach to enhance surface-enhanced Raman scattering and photoelectric performance. Colloids Surf. A Physicochem. Eng. Aspects 676, 132182 (2023). https://doi.org/10.1016/j.colsurfa.2023.132182
- M. Liu, J. Wen, R. Xiao, R. Tan, Y. Qin et al., Improving interface matching in MOF-on-MOF S-scheme heterojunction through π-π conjugation for boosting photoelectric response. Nano Lett. 23(11), 5358–5366 (2023). https://doi.org/10.1021/acs.nanolett.3c01650
- N. Li, C. Wang, L. Li, Z. Hao, J. Gu et al., Chemical gas sensor, surface enhanced Raman scattering and photoelectrics of composite Langmuir-Blodgett films consisting of polypeptide and dye molecules. Colloids Surf. A Physicochem. Eng. Aspects 663, 131067 (2023). https://doi.org/10.1016/j.colsurfa.2023.131067
- G. Li, P. Bian, R. Wang, Y. Li, H. Cao et al., Preparation of composite Langmuir-Blodgett films based on carbon spheres and wide applications for acid/alkaline gas sensor, surface enhanced Raman scattering and photoelectrics. Colloids Surf. A Physicochem. Eng. Aspects 654, 130148 (2022). https://doi.org/10.1016/j.colsurfa.2022.130148
- P. Sui, N. Sun, Q. Jiang, D. Luo, Q. Li et al., The construction and modulation of photoelectric functional hierarchical materials based on ionic self-assembly. Colloids Surf. A Physicochem. Eng. Aspects 565, 30–35 (2019). https://doi.org/10.1016/j.colsurfa.2018.12.054
- T. Guan, W. Chen, H. Tang, D. Li, X. Wang et al., Decoding the self-assembly plasmonic interface structure in a PbS colloidal quantum dot solid for a photodetector. ACS Nano 17(22), 23010–23019 (2023). https://doi.org/10.1021/acsnano.3c08526
- B. Son, S.-H. Shin, Z.-J. Zhao, B.-K. Ju, J.-H. Jeong et al., High-efficiency silicon nanowire array near infrared photodetectors via length control and SiOx surface passivation. Adv. Mater. Technol. 8(15), 2300131 (2023). https://doi.org/10.1002/admt.202300131
- W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng et al., High-gain phototransistors based on a CVD MoS₂ monolayer. Adv. Mater. 25(25), 3456–3461 (2013). https://doi.org/10.1002/adma.201301244
- C. Xie, C. Mak, X. Tao, F. Yan, Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 27(19), 1603886 (2017). https://doi.org/10.1002/adfm.201603886
- F. Liao, Y. Shi, Q. Dang, H. Yang, H. Huang et al., Carbon dots dominated photoelectric surface in titanium dioxide nanotube/nitrogen-doped carbon dot/gold nanocomposites for improved photoelectrochemical water splitting. J. Colloid Interface Sci. 606(Pt 2), 1274–1283 (2022). https://doi.org/10.1016/j.jcis.2021.08.131
- I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
- X. Yu, J. Guo, Y. Mao, C. Shan, F. Tian et al., Enhancing the performance of perovskite light-emitting diodes via synergistic effect of defect passivation and dielectric screening. Nano-Micro Lett. 16(1), 205 (2024). https://doi.org/10.1007/s40820-024-01405-5
- J. Lu, J.H. Lu, H. Liu, B. Liu, K.X. Chan et al., Improved photoelectrical properties of MoS2 films after laser micromachining. ACS Nano 8(6), 6334–6343 (2014). https://doi.org/10.1021/nn501821z
- D. Kufer, G. Konstantatos, Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 15(11), 7307–7313 (2015). https://doi.org/10.1021/acs.nanolett.5b02559
- C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang et al., CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells. J. Mater. Chem. A 6(17), 7903–7912 (2018). https://doi.org/10.1039/C7TA11280G
- H. Hu, C. Wu, C. He, J. Shen, Y. Cheng et al., Improved photoelectric performance with self-powered characteristics through TiO2 surface passivation in an α-Ga2O3 nanorod array deep ultraviolet photodetector. ACS Appl. Electron. Mater. 4(8), 3801–3806 (2022). https://doi.org/10.1021/acsaelm.2c00428
- B.A. Taha, A.J. Addie, A.C. Kadhim, A.S. Azzahrani, N.M. Ahmed et al., Plasmonic-enabled nanostructures for designing the next generation of silicon photodetectors: Trends, engineering and opportunities. Surf. Interfaces 48, 104334 (2024). https://doi.org/10.1016/j.surfin.2024.104334
- X. Wang, L. Tong, W. Fan, W. Yan, C. Su et al., Air-stable self-powered photodetector based on TaSe2/WS2/TaSe2 asymmetric heterojunction with surface self-passivation. J. Colloid Interface Sci. 657, 529–537 (2024). https://doi.org/10.1016/j.jcis.2023.11.172
- U. Punia, P. Prajapat, R.K. Sharma, Jayant, G. Gupta et al., Interface engineered, high photo-response of self-powered photodetector and solar cell based on PEDOT: PSS-silicon hybrid heterojunction. Next Mater. 8, 100736 (2025). https://doi.org/10.1016/j.nxmate.2025.100736
- J. Pei, X. Huang, X. Zhao, H. Lv, S. Chen et al., Hybrid solar cells of Ru-based dye complexes as interfacial modification layers: Energy level alignment and photoelectric properties improvement. Surf. Interfaces 23, 100981 (2021). https://doi.org/10.1016/j.surfin.2021.100981
- Z. Liu, Y. Zhou, Y. Ping, L. Qian, J. Li et al., Enhancement in photoelectric properties of ITO films by regulating defects and dopants with supercritical fluid treatment. Appl. Surf. Sci. 565, 150551 (2021). https://doi.org/10.1016/j.apsusc.2021.150551
- M. Yu, P. Wan, K. Tang, S. He, Q. Zhao et al., Plasmonically-boosted high-performance UV self-biased photodetector based on SiC-based low-dimensional heterojunction via Pt nanostructures deposition. Surf. Interfaces 51, 104627 (2024). https://doi.org/10.1016/j.surfin.2024.104627
- Y. Yue, S. Liu, N. Zhang, Z. Su, D. Zhu, Molecular engineering of s-triazine and its derivatives applied in surface modification strategy for enhancing photoelectric performance of all-inorganic perovskites. Chin. Chem. Lett. 33(1), 547–550 (2022). https://doi.org/10.1016/j.cclet.2021.06.066
- Z. Li, Z. Li, J. Chang, L. Chen, MXene based flexible materials for energy harvesting. Mater. Today Chem. 37, 101989 (2024). https://doi.org/10.1016/j.mtchem.2024.101989
- Y. Wang, C. Xu, Y. Zhou, J. Lee, Q. Chen et al., Interface-engineered 2D heterojunction with photoelectric dual gain: Mxene@MOF-enhanced SPR spectroscopy for direct sensing of exosomes. Small 20(23), 2308897 (2024). https://doi.org/10.1002/smll.202308897
- Y. Yang, H. Pu, X. Bei, C. Chen, M. Wang, X. Hu, Influence of Different Surface Passivation on Photoelectric Properties PbS QDs. Journal of Physics: Conference Series, IOP Publishing, 2021, p. 012018.
- O. Elimelech, O. Aviv, M. Oded, U. Banin, A tale of tails: thermodynamics of CdSe nanocrystal surface ligand exchange. Nano Lett. 20(9), 6396–6403 (2020). https://doi.org/10.1021/acs.nanolett.0c01913
- J. Tang, Materials Engineering for Stable and Efficient PbS Colloidal Quantum Dot Photovoltaics. University of Toronto, 2010.
- P.R. Brown, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi et al., Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8(6), 5863–5872 (2014). https://doi.org/10.1021/nn500897c
- A.T. Nomaan, A.A. Ahmed, N.M. Ahmed, M.I. Idris, M.R. Hashim et al., ZnO quantum dot based thin films as promising electron transport layer: Influence of surface-to-volume ratio on the photoelectric properties. Ceram. Int. 47(9), 12397–12409 (2021). https://doi.org/10.1016/j.ceramint.2021.01.094
- V. Shmid, V. Kuryliuk, A. Nadtochiy, O. Korotchenkov, P.-W. Li, Improving photoelectric energy conversion by structuring Si surfaces with Ge quantum dots. 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO). April 16–18, 2019. Kyiv, Ukraine. IEEE, (2019), pp. 92–96. https://doi.org/10.1109/elnano.2019.8783352
- Y. Xing, X. Sheng, H. Zhou, D. Wang, X. Chen et al., Long and well-separated TiO2 nanowire arrays decorated with Au nanops for visible-light-driven photoelectrochemical water splitting. J. Phys. Chem. C 126(4), 1966–1971 (2022). https://doi.org/10.1021/acs.jpcc.1c10081
- N.S.K. Gowthaman, J.-W. Chen, C.F. Dee, S.-P. Chai, W.S. Chang, Nanostructural dimension and oxygen vacancy synergistically induced photoactivity across high surface area monodispersed AuNPs/ZnO nanorods heterojunction. J. Alloys Compd. 920, 165836 (2022). https://doi.org/10.1016/j.jallcom.2022.165836
- F. Zhao, Y. Yi, J. Lin, Z. Yi, F. Qin et al., The better photoelectric performance of thin-film TiO2/c-Si heterojunction solar cells based on surface plasmon resonance. Results Phys. 28, 104628 (2021). https://doi.org/10.1016/j.rinp.2021.104628
- L. Peng, Y. Xie, C. Yang, Insight into the photoelectrical properties of metal adsorption on a two-dimensional organic–inorganic hybrid perovskite surface: theoretical and experimental research. RSC Adv. 12(9), 5595–5611 (2022). https://doi.org/10.1039/D1RA04557A
- B. Dong, M.E. Zaghloul, Generation and enhancement of surface acoustic waves on a highly doped p-type GaAs substrate. Nanoscale Adv. 1(9), 3537–3546 (2019). https://doi.org/10.1039/C9NA00281B
- Q. Wang, J. Zhang, C. Song, Stability and photoelectric nature of polar surfaces of ZnO: Effects of surface reconstruction. Phys. Lett. A 398, 127274 (2021). https://doi.org/10.1016/j.physleta.2021.127274
- Z. Shi, X. Lu, X. Tang, D. Wang, Z. Cong et al., Stress enhanced photoelectric response in flexible AlN single-crystalline thin films. Appl. Surf. Sci. 585, 152378 (2022). https://doi.org/10.1016/j.apsusc.2021.152378
- K. Han, L. Heng, Y. Zhang, Y. Liu, L. Jiang, Slippery surface based on photoelectric responsive nanoporous composites with optimal wettability region for droplets’ multifunctional manipulation. Adv. Sci. 6(1), 1801231 (2019). https://doi.org/10.1002/advs.201801231
- P. Zhang, H. Liu, J. Meng, G. Yang, X. Liu et al., Grooved organogel surfaces towards anisotropic sliding of water droplets. Adv. Mater. 26(19), 3131–3135 (2014). https://doi.org/10.1002/adma.201305914
- H. Ma, Y. Tian, A.-X. Jiao, M.-Y. Zhang, C. Wang et al., Research on near infrared photoelectric response and surface-enhanced Raman scatteringof urchin-like Au-Ag-Pt-Pd nanoalloy. Acta Phys. Sin. 71(10), 107401 (2022). https://doi.org/10.7498/aps.71.20212094
- Y. Zhan, Z. Wu, P. Zeng, W. Wang, Y. Jiang et al., High-performance self-powered WSe2/ReS2 photodetector enabled via surface charge transfer doping. ACS Appl. Mater. Interfaces 15(47), 55043–55054 (2023). https://doi.org/10.1021/acsami.3c10654
- W.-Y. Lee, J. Lee, H.-J. Kwon, K. Kim, H. Kang et al., High-detectivity silver telluride nanop-based near-infrared photodetectors functionalized with surface-plasmonic gold nanops. Appl. Surf. Sci. 654, 159563 (2024). https://doi.org/10.1016/j.apsusc.2024.159563
- W. Zhang, W. Wang, J. Wei, S. Xia, J. Zhang et al., Photocarrier transport reconstruction and dramatical performance enhancement in ultrawide-bandgap ε-Ga2O3 photodetectors via surface defect passivation. Mater. Today Phys. 38, 101280 (2023). https://doi.org/10.1016/j.mtphys.2023.101280
- Q. Bai, X. Huang, Y. Guo, S. Du, C. Sun et al., Gap-surface-plasmon induced polarization photoresponse for MoS2-based photodetector. Nano Res. 16(7), 10272–10278 (2023). https://doi.org/10.1007/s12274-023-5724-9
- Y. Wang, G. Niu, X. Cao, Z. Yang, Y. Dong et al., Multifunctional L-tryptophan derivative induced surface passivation for lateral perovskite photodetectors. Chem. Eng. J. 459, 141602 (2023). https://doi.org/10.1016/j.cej.2023.141602
- P.-Y. Huang, Y.-Y. Zhang, P.-C. Tsai, R.-J. Chung, Y.-T. Tsai et al., Interfacial engineering of quantum dots–metal–organic framework composite toward efficient charge transport for a short-wave infrared photodetector. Adv. Opt. Mater. 12(7), 2302062 (2024). https://doi.org/10.1002/adom.202302062
- X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9(9), 682–686 (2014). https://doi.org/10.1038/nnano.2014.167
- A. Pospischil, M.M. Furchi, T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 9(4), 257–261 (2014). https://doi.org/10.1038/nnano.2014.14
- B. Peng, G. Yu, X. Liu, B. Liu, X. Liang et al., Ultrafast charge transfer in MoS2/WSe2 p–n Heterojunction. 2D Mater. 3(2), 025020 (2016). https://doi.org/10.1088/2053-1583/3/2/025020
- L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle et al., Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311–1314 (2013). https://doi.org/10.1126/science.1235547
- W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li et al., Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8(12), 952–958 (2013). https://doi.org/10.1038/nnano.2013.219
- M. Massicotte, P. Schmidt, F. Vialla, K.G. Schädler, A. Reserbat-Plantey et al., Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11(1), 42–46 (2016). https://doi.org/10.1038/nnano.2015.227
- G. Li, D. Xie, Q. Zhang, M. Zhang, Z. Liu et al., Interface-engineered non-volatile visible-blind photodetector for in-sensor computing. Nat. Commun. 16(1), 57 (2025). https://doi.org/10.1038/s41467-024-55412-6
- Z. Ye, N. Wang, Y. Gao, Y. Cheng, L. Zan et al., High photoelectric conversion efficiency and stability of carbon-based perovskite solar cells based on sandwich-structured electronic layers. Colloids Surf. A Physicochem. Eng. Aspects 666, 131326 (2023). https://doi.org/10.1016/j.colsurfa.2023.131326
- J. Wang, P. Yang, Building efficient photoelectric properties with Si/Graphene/ZnO interface structure. Vacuum 220, 112844 (2024). https://doi.org/10.1016/j.vacuum.2023.112844
- J. Liu, B. Shi, Q. Xu, Y. Li, Y. Li et al., Textured perovskite/silicon tandem solar cells achieving over 30% efficiency promoted by 4-fluorobenzylamine hydroiodide. Nano-Micro Lett. 16(1), 189 (2024). https://doi.org/10.1007/s40820-024-01406-4
- V.V. Shpeizman, V.I. Nikolaev, A.O. Pozdnyakov, A.V. Bobyl’, R.B. Timashov et al., The effect of texturing of silicon wafer surfaces for solar photoelectric transducers on their strength properties. Tech. Phys. 65(7), 1123–1129 (2020). https://doi.org/10.1134/s1063784220070191
- I. Kulinich, A. Ivashkin, A. Guliaeva, E. Shesterikov, Investigation the dependence of the photoelectric current of an InGaAs/InAlAs photodiode on the surface geometry. 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. July 4–8, 2022. Tomsk, Russia. SPIE, (2022).: 202. https://doi.org/10.1117/12.2644939
- Y. Singh, R. Parmar, A. Srivastava, R. Yadav, K. Kumar et al., Highly responsive near-infrared Si/Sb2Se3 photodetector via surface engineering of silicon. ACS Appl. Mater. Interfaces 15(25), 30443–30454 (2023). https://doi.org/10.1021/acsami.3c04043
- G. Wang, Z. Sa, Z. Zang, P. Li, M. Wang et al., Mixed-dimensional nanowires/nanosheet heterojunction of GaSb/Bi2O2Se for self-powered near-infrared photodetection and photocommunication. Nano-Micro Lett. 17(1), 284 (2025). https://doi.org/10.1007/s40820-025-01793-2
- J. Lu, X. Zhang, S. Feng, B. Yang, M. Huang et al., Single-crystal diamond nanowires embedded with platinum nanops for high-temperature solar-blind photodetector. Nano-Micro Lett. 17(1), 220 (2025). https://doi.org/10.1007/s40820-025-01746-9
- C.-H. Jiang, C.-B. Yao, Z.-M. Wang, X. Wang, L.Y. Wang, Heterostructure MoS2@ZnO nanowires: Preparation, ultrafast nonlinear optical behavior and photoelectric functional application. Appl. Surf. Sci. 599, 153920 (2022). https://doi.org/10.1016/j.apsusc.2022.153920
- Q. Lv, X. Shen, X. Li, Y. Meng, K.M. Yu et al., On-wire design of axial periodic halide perovskite superlattices for high-performance photodetection. ACS Nano 18(27), 18022–18035 (2024). https://doi.org/10.1021/acsnano.4c05205
- Y. Guan, C. Zhang, Z. Liu, Y. Zhao, A. Ren et al., Single-crystalline perovskite p–n junction nanowire arrays for ultrasensitive photodetection. Adv. Mater. 34(35), 2203201 (2022). https://doi.org/10.1002/adma.202203201
- T. Zheng, Y. Pan, M. Yang, Z. Li, Z. Zheng et al., 2D free-standing GeS1-xSex with composition-tunable bandgap for tailored polarimetric optoelectronics. Adv. Mater. 36(28), e2313721 (2024). https://doi.org/10.1002/adma.202313721
- Q. Liu, F. Zhan, H. Luo, D. Zhai, Z. Xiao et al., Mechanism of interface engineering for ultrahigh piezo-photoelectric catalytic coupling effect of BaTiO3@TiO2 microflowers. Appl. Catal. B Environ. 318, 121817 (2022). https://doi.org/10.1016/j.apcatb.2022.121817
- D. Tordera, B. Peeters, H.B. Akkerman, A.J.J.M. van Breemen, J. Maas et al., A high-resolution thin-film fingerprint sensor using a printed organic photodetector. Adv. Mater. Technol. 4(11), 1900651 (2019). https://doi.org/10.1002/admt.201900651
- P. Venuthurumilli, P.D. Ye, X. Xu, Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 12(5), 4861–4867 (2018). https://doi.org/10.1021/acsnano.8b01660
- J. Kwon, Y.K. Hong, G. Han, I. Omkaram, W. Choi et al., Giant photoamplification in indirect-bandgap multilayer MoS2 phototransistors with local bottom-gate structures. Adv. Mater. 27(13), 2224–2230 (2015). https://doi.org/10.1002/adma.201404367
- Y.-Y. Wang, B.-J. Li, L.-J. Huang, H.-D. Cao, N.-F. Ren, Photoelectric property enhancement of Ag/FTO thin films by fabricating antireflection grating structures using ultrasonic-vibration-assisted laser irradiation. Appl. Surf. Sci. 541, 148449 (2021). https://doi.org/10.1016/j.apsusc.2020.148449
- Y. Borodaenko, A. Cherepakhin, S.O. Gurbatov, E. Modin, A.V. Shevlyagin et al., Polarized p–n junction Si photodetector enabled by direct laser-induced periodic surface structuring. Surf. Interfaces 56, 105568 (2025). https://doi.org/10.1016/j.surfin.2024.105568
- X. Duan, Y. Huang, X. Ren, W. Wang, H. Huang et al., Long wavelength multiple resonant cavities RCE photodetectors on GaAs substrates. IEEE Trans. Electron Devices 58(11), 3948–3953 (2011). https://doi.org/10.1109/TED.2011.2162958
- M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola et al., Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55μm: Fabrication and characterization. Appl. Phys. Lett. 92(25), 251104 (2008). https://doi.org/10.1063/1.2952193
- M.E. Belkin, V. Golovin, Y. Tyschuk, A.S. Sigov, Model of an active optoelectronic switchable element for integrated photonics-based optical beamforming network. 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS). IEEE (2018), pp. 1592–1593.
- M. Belkin, A. Alyoshin, D. Fofanov, Microwave photonics characterization and application of long-wavelength vcsels in atypical regimes, 2-nd International Conference on Photonics Research, InterPhotonics-2019, Antalya, Turkey, 2019.
- Z. Li, H. Dong, Z. Wu, J. Shen, D. Xu et al., Novel pn type porous Ag2O/Bi5O7I heterojunction for Uv–Vis-NIR activated high efficient photocatalytic degradation of bisphenol A: Photoelectric properties and degradation mechanism. Appl. Surface Sci. 529, 147162 (2020). https://doi.org/10.1016/j.apsusc.2020.147162
- Z. Zhang, Y. Lin, F. Liu, Preparation and photoelectric properties of Bi2WO6-CdS hybrid nanocrystals. Colloids Surf. A Physicochem. Eng. Aspects 611, 125883 (2021). https://doi.org/10.1016/j.colsurfa.2020.125883
- W. Ma, Q. Sun, M. Sun, L. Bai, Y. Liu et al., Structural Evolution-Enabled BiFeO3 modulated by strontium doping with enhanced magnetic and photoelectric performance. Appl. Surf. Sci. 571, 151130 (2022). https://doi.org/10.1016/j.apsusc.2021.151130
- S. Zhu, H.S. Chu, G.Q. Lo, P. Bai, D.L. Kwong, Waveguide-integrated near-infrared detector with self-assembled metal silicide nanops embedded in a silicon p-n junction. Appl. Phys. Lett. 100(6), 061109 (2012). https://doi.org/10.1063/1.3683546
- A. Sobhani, M.W. Knight, Y. Wang, B. Zheng, N.S. King et al., Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013). https://doi.org/10.1038/ncomms2642
- M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Photodetection with active optical antennas. Science 332(6030), 702–704 (2011). https://doi.org/10.1126/science.1203056
- H. Elabd, W.F. Kosonocky, PtSi infrared Schottky-barrier detectors with optical cavity. RCA Rev. 43, 567–695 (1982)
- M. Zumuukhorol, S. Boldbaatar, Z. Khurelbaatar, J.-Y. Baek, K.-H. Shim et al., Enhancing the performance of surface-textured Ge Schottky photodetectors using the electroless chemical etching method. Mater. Sci. Semicond. Process. 169, 107907 (2024). https://doi.org/10.1016/j.mssp.2023.107907
- L. Wang, Y. Pan, J.-L. Xing, J.-B. Mao, Y.-J. Ba et al., Surface state induced filterless SWIR narrow-band Si photodetector. IEEE Electron Device Lett. 44(7), 1148–1151 (2023). https://doi.org/10.1109/LED.2023.3282432
- M. Xu, Z. Xu, Z. Sun, W. Chen, L. Wang et al., Surface engineering in SnO2/Si for high-performance broadband photodetectors. ACS Appl. Mater. Interfaces 15(2), 3664–3672 (2023). https://doi.org/10.1021/acsami.2c20073
- D. Liu, Z. Chen, Z. Huang, Q. Wu, Y. Song et al., In situ surface modification enables high stability and optoelectrical performance for a self-powered photodetector. Adv. Opt. Mater. 11(22), 2300940 (2023). https://doi.org/10.1002/adom.202300940
- J.-Y. Li, T.-C. Wei, P.-H. Hsiao, T.-Y. Wu, C.-Y. Chen, Mediation of interface dipoles on SiOx/Si nanowire based inorganic/organic hybrid photodetectors with enhanced wavelength-selective sensing performances. Adv. Mater. Interfaces 10(6), 2201983 (2023). https://doi.org/10.1002/admi.202201983
- K. Ding, C. Wang, Y. Ding, P. Cao, S. Li et al., Broadband optical absorption copper surface fabricated by femtosecond laser for sensitivity enhancement of thermoelectric photodetector. Opt. Laser Technol. 168, 109942 (2024). https://doi.org/10.1016/j.optlastec.2023.109942
- H. Seo, H.J. Eun, A.Y. Lee, H.K. Lee, J.H. Kim et al., Colloidal InSb quantum dots for 1500 nm SWIR photodetector with antioxidation of surface. Adv. Sci. 11(4), 2306439 (2024). https://doi.org/10.1002/advs.202306439
- K. Ling, K. Li, W. Li, W. Zhang, Z. Wang et al., Enhancing the performance of ZnGa2O4 metal-semiconductor-metal ultraviolet solar-blind photodetectors by surface fluorine plasma sensitization. J. Alloys Compd. 969, 172036 (2023). https://doi.org/10.1016/j.jallcom.2023.172036
- C. Lin, P. Wan, B. Yang, D. Shi, C. Kan et al., Plasmon-enhanced photoresponse and stability of a CsPbBr3 microwire/GaN heterojunction photodetector with surface-modified Ag nanops. J. Mater. Chem. C 11(38), 12968–12980 (2023). https://doi.org/10.1039/d3tc02240d
- P. Qiao, K. Liu, B. Dai, B. Liu, W. Zhang et al., Ultraviolet responsivity enhancement for diamond photodetectors via localized surface plasmon resonance in Indium nanoislands. Diam. Relat. Mater. 136, 109943 (2023). https://doi.org/10.1016/j.diamond.2023.109943
- S.A. Abdulgafar, M.A. Ibrahem, Y.M. Hassan, Near-infrared photodetector based on the surface modification of porous silicon with silver nanops. Opt. Mater. 147, 114601 (2024). https://doi.org/10.1016/j.optmat.2023.114601
- Y. Wu, X. Fu, K. Zhang, Z. Tao, Y. Fan et al., A strategy of high-sensitivity solar-blind photodetector for fabricating graphene surface modification ZnGa2O4/Ga2O3 core-shell structure nanowire networks. Ceram. Int. 49(11), 18248–18254 (2023). https://doi.org/10.1016/j.ceramint.2023.02.196
- X. Hu, B. Chen, C. Huang, H. Qiu, N. Gao et al., Rhodium-embedded UV photodetectors based on localized surface plasmon resonance on AlN/GaN. Nanoscale 15(22), 9684–9690 (2023). https://doi.org/10.1039/D3NR00358B
- R. Fu, X. Jiang, Y. Wang, B. Li, J. Ma et al., A high responsivity UV - visible dual band photodetector based on SnO2 microwires with RhB surface sensitization. J. Alloys Compd. 978, 173533 (2024). https://doi.org/10.1016/j.jallcom.2024.173533
- Z. Zhou, H. Lin, X. Pan, C. Tan, D. Zhou et al., Surface plasmon enhanced InAs-based mid-wavelength infrared photodetector. Appl. Phys. Lett. 122(9), 091105 (2023). https://doi.org/10.1063/5.0140370
- W. Liu, B. Shi, Z.X. Li, H. Qiu, B. Wang et al., High performance surface plasmon enhanced ZnO-Pt @ AlN core shell UV photodetector synthesized by magnetron sputtering. Mater. Des. 237, 112542 (2024). https://doi.org/10.1016/j.matdes.2023.112542
- A.S. Razeen, D. Kotekar-Patil, E.X. Tang, G. Yuan, J. Ong et al., Enhanced near-UV responsivity of AlGaN/GaN HEMT based photodetectors by nanohole etching of barrier surface. Mater. Sci. Semicond. Process. 173, 108115 (2024). https://doi.org/10.1016/j.mssp.2024.108115
- J. Tao, G. Zeng, X. Li, Y. Gu, W. Liu et al., Surface plasmon assisted high-performance photodetectors based on hybrid TiO2@GaOxNy-Ag heterostructure. J. Semicond. 44(7), 072806 (2023). https://doi.org/10.1088/1674-4926/44/7/072806
- P. Gui, Y. Sun, L. Yang, Z. Xia, S. Wang et al., Surface microstructure engineering in MAPbBr3 microsheets for performance-enhanced photodetectors. ACS Appl. Mater. Interfaces 15(51), 59955–59963 (2023). https://doi.org/10.1021/acsami.3c15029
- D. Kim, J. Chae, S.-B. Hong, J. Kim, G. Kwon et al., High performance broadband photodetector in two-dimensional metal dichalcogenides mediated by topologically protected surface state. Appl. Surf. Sci. 643, 158666 (2024). https://doi.org/10.1016/j.apsusc.2023.158666
- N.M.S. Kaawash, D.I. Halge, V.N. Narwade, P.M. Khanzode, M.Y.H. Thabit et al., Unconventional enhancement of UV photodetection in surface-passivated TiO2 thin film photodetectors. ACS Appl. Eng. Mater. 1(12), 3368–3378 (2023). https://doi.org/10.1021/acsaenm.3c00620
- M.K. Singh, R. Mishra, R. Prakash, J. Yi, J. Heo et al., Large-area metal surface plasmon–polymer coupled nanocomposite thin film at air–liquid interface for low voltage operated high-performance photodetector. Prog. Org. Coat. 174, 107231 (2023). https://doi.org/10.1016/j.porgcoat.2022.107231
- W. Qarony, A. Mayet, E. Ponizovskaya-Devine, S. Ghandiparsi, C. Bartolo-Perez et al., Achieving higher photoabsorption than group III-V semiconductors in ultrafast thin silicon photodetectors with integrated photon-trapping surface structures. Adv. Photonics Nexus 2(5), 056001 (2023). https://doi.org/10.1117/1.APN.2.5.056001
- J. Li, D. Yang, G. He, D. Guo, J. Li et al., Suppressing dark current of air-processed perovskite photodetectors via manipulation of interface engineering with 2-ethyl-1-hexylamine. Org. Electron. 127, 106998 (2024). https://doi.org/10.1016/j.orgel.2024.106998
- M. Sun, L. Kang, Z. Jiao, G. Yuan, Q. Huang et al., Enhancement performance of vapor-deposition processed perovskite photodetectors enabled by manipulation of interface engineering. Org. Electron. 116, 106773 (2023). https://doi.org/10.1016/j.orgel.2023.106773
- Y. Ren, G. Li, H. An, S.-G. Wei, C.-Y. Xing et al., Interface engineering SnS2/MXene Nb2C self-powered photodetectors with high responsivity and detectivity. Appl. Surf. Sci. 637, 157863 (2023). https://doi.org/10.1016/j.apsusc.2023.157863
- Y. Yang, Y. Liu, J. Zhou, C. Guo, D. Liu et al., Dual interface modification using potassium aspartic acid to realize low dark current, high-speed nonfullerene photodetectors. J. Phys. Chem. Lett. 15(10), 2675–2681 (2024). https://doi.org/10.1021/acs.jpclett.4c00367
- X. Luo, Z. Huang, Z. Zhong, H. Quan, F. Peng et al., Improving performance of organic photodetectors by using TCNQ doped copper thiocyanate as the anode interfacial layer. Adv. Opt. Mater. 12(7), 2301929 (2024). https://doi.org/10.1002/adom.202301929
- A.-C. Chang, Y.-S. Wu, W.-C. Chen, Y.-H. Weng, B.-H. Lin et al., Modulating the photoresponsivity of perovskite photodetectors through interfacial engineering of self-assembled monolayers. Adv. Opt. Mater. 12(5), 2301789 (2024). https://doi.org/10.1002/adom.202301789
- C.-Y. Sung, W.-C. Chen, C.-L. Liu, B.-H. Lin, Y.-C. Lin et al., Ultrafast quasi-2D/3D perovskite photodetectors conferred using interfacial engineering of self-assembled monolayers. Adv. Opt. Mater. 12(18), 2303241 (2024). https://doi.org/10.1002/adom.202303241
- M. Liu, Q. Yao, S. Li, Y. Qin, S.Y. Jeong et al., Interfacial engineering for photomultiplication type organic photodetectors with signal-noise-ratio over 89 000. Adv. Opt. Mater. 12(16), 2303216 (2024). https://doi.org/10.1002/adom.202303216
- Y. Wang, J. Li, K. Shi, W. Wang, F. Tan, Enhanced performance of all-inorganic lead halide perovskite/MoS2 heterojunction photodetectors by achieving interfacial carrier separation. Phys. Status Solidi A 221(4), 2300549 (2024). https://doi.org/10.1002/pssa.202300549
- Y. Zhao, S. Jiao, S. Yang, D. Wang, S. Gao et al., Achieving low cost and high performance flexible CsPbIBr2 perovskite photodetectors arrays with imaging system via dual interfacial optimization and structural design. Adv. Opt. Mater. 12(17), 2400019 (2024). https://doi.org/10.1002/adom.202400019
- H. Fang, X. Xie, K. Jing, S. Liu, A. Chen et al., A flexible dual-mode photodetector for human-machine collaborative IR imaging. Nano-Micro Lett. 17(1), 229 (2025). https://doi.org/10.1007/s40820-025-01758-5
- D.-M. Geum, S. Kim, S.K. Kim, S. Kang, J. Kyhm et al., Monolithic integration of visible GaAs and near-infrared InGaAs for multicolor photodetectors by using high-throughput epitaxial lift-off toward high-resolution imaging systems. Sci. Rep. 9(1), 18661 (2019). https://doi.org/10.1038/s41598-019-55159-x
- Y. Chen, M. Nazhamaiti, H. Xu, Y. Meng, T. Zhou et al., All-analog photoelectronic chip for high-speed vision tasks. Nature 623(7985), 48–57 (2023). https://doi.org/10.1038/s41586-023-06558-8
- E. Zarei, R. Ojani, Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. J. Solid State Electrochem. 21(2), 305–336 (2017). https://doi.org/10.1007/s10008-016-3385-2
- Y. Kuang, T. Yamada, K. Domen, Surface and interface engineering for photoelectrochemical water oxidation. Joule 1(2), 290–305 (2017). https://doi.org/10.1016/j.joule.2017.08.004
- A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15, 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
- J. Vanderspikken, Q. Liu, Z. Liu, T. Vandermeeren, T. Cardeynaels et al., Tuning electronic and morphological properties for high-performance wavelength-selective organic near-infrared cavity photodetectors. Adv. Funct. Mater. 32(9), 2108146 (2022). https://doi.org/10.1002/adfm.202108146
- X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon et al., High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948), 1665–1667 (2009). https://doi.org/10.1126/science.1176706
- B. Siegmund, A. Mischok, J. Benduhn, O. Zeika, S. Ullbrich et al., Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 8, 15421 (2017). https://doi.org/10.1038/ncomms15421
- J. Kublitski, Enhancing sub-bandgap external quantum efficiency by photomultiplication in narrowband organic near-infrared photodetectors. Organic Semiconductor Devices for Light Detection, Springer 2022, pp. 151–169. https://doi.org/10.1007/978-3-030-94464-3_6
- S. Wang, X. Song, J. Xu, J. Wang, L. Yu, Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. Mater. Horiz. 12(4), 1106–1132 (2025). https://doi.org/10.1039/D4MH01466A
- L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
- V.C. Coffey, Vision accomplished: the bionic eye. Opt. Photonics News 28(4), 24 (2017). https://doi.org/10.1364/opn.28.4.000024
References
S.-H. Lee, A.R. bin Mohd Yusoff, C. Lee, S.C. Yoon, Y.-Y. Noh, Toward color-selective printed organic photodetectors for high-resolution image sensors: from fundamentals to potential commercialization. Mater. Sci. Eng. R. Rep. 147, 100660 (2022). https://doi.org/10.1016/j.mser.2021.100660
Y. Wang, Y. Fu, J. Zhao, H. Liu, L. Deng, Enhanced photoelectric responsivity of graphene/GaAs photodetector using surface plasmon resonance based on ellipse wall grating-nanowire structure. Plasmonics 19(3), 1201–1209 (2024). https://doi.org/10.1007/s11468-023-02066-7
L. Ren, M. Wang, S. Wang, H.M. Zeeshan, Y. Zhao et al., Modified photoelectric properties of CH3NH3PbI3 via surface passivation induced by Argon ions bombardment. Thin Solid Films 685, 360–365 (2019). https://doi.org/10.1016/j.tsf.2019.06.043
J. You, Y. Yu, K. Cai, D. Zhou, H. Zhu et al., Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection. Nano Res. 13(6), 1636–1643 (2020). https://doi.org/10.1007/s12274-020-2786-9
D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16(2), 170–181 (2017). https://doi.org/10.1038/nmat4703
H. Wang, Z. Li, D. Li, P. Chen, L. Pi et al., Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater. 31(30), 2103106 (2021). https://doi.org/10.1002/adfm.202103106
C. Luo, J. Wu, X. Zhang, Q. Fu, W. Wang et al., Broadband mid-infrared photodetectors utilizing two-dimensional van der Waals heterostructures with parallel-stacked pn junctions. Nanotechnology 35(36), 365203 (2024). https://doi.org/10.1088/1361-6528/ad568e
H. Zeng, H. Yu, B. Liu, S. Lu, X. Wei et al., Gradient-strained van der Waals heterojunctions for high-efficient photodetectors. Adv. Funct. Mater. 34(29), 2400712 (2024). https://doi.org/10.1002/adfm.202400712
K. Jiang, Q. You, Y. Zheng, F. Fang, Z. Xie et al., Oriented epitaxial growth of mixed-dimensional van der Waals heterostructures with one-dimensional (1D) Bi2S3 nanowires and two-dimensional (2D) WS2 monolayers for performance-enhanced photodetectors. Nano Lett. 24(45), 14437–14444 (2024). https://doi.org/10.1021/acs.nanolett.4c04455
G. Polumati, C.S.R. Kolli, M. Flores, A. Kumar, A. Sanghvi et al., Mixed-dimensional van der Waals heterostructure (2D ReS2/0D MoS2 quantum dots)-based broad spectral range with ultrahigh-responsive photodetector. ACS Appl. Mater. Interfaces 16(15), 19261–19270 (2024). https://doi.org/10.1021/acsami.4c02295
L.K. Ono, Y. Qi, Research progress on organic–inorganic halide perovskite materials and solar cells. J. Phys. D Appl. Phys. 51(9), 093001 (2018). https://doi.org/10.1088/1361-6463/aaa727
Y. Zhao, C. Li, J. Jiang, B. Wang, L. Shen, Sensitive and stable tin–lead hybrid perovskite photodetectors enabled by double-sided surface passivation for infrared upconversion detection. Small 16(26), 2001534 (2020). https://doi.org/10.1002/smll.202001534
P. Berini, Surface plasmon photodetectors and their applications. Laser Photon. Rev. 8(2), 197–220 (2014). https://doi.org/10.1002/lpor.201300019
Y. Lei, Y. Chen, R. Zhang, Y. Li, Q. Yan et al., A fabrication process for flexible single-crystal perovskite devices. Nature 583(7818), 790–795 (2020). https://doi.org/10.1038/s41586-020-2526-z
A.-M. Arjmandi-Tash, A. Mansourian, F.R. Rahsepar, Y. Abdi, Predicting photodetector responsivity through machine learning. Adv. Theory Simul. 7(6), 2301219 (2024). https://doi.org/10.1002/adts.202301219
X. Li, Y. Mai, C. Lan, F. Yang, P. Zhang et al., Machine learning-assisted design of high-performance perovskite photodetectors: a review. Adv. Compos. Hybrid Mater. 8(1), 27 (2024). https://doi.org/10.1007/s42114-024-01113-z
S. Donati, Photodetectors: devices, circuits, and applications. Meas. Sci. Technol. 12(5), 653 (2001). https://doi.org/10.1088/0957-0233/12/5/703
M. Casalino, J. Thirumalai, Light-Emitting Diodes and Photodetectors: Advances and Future Directions, IntechOpen 2021.
J.D. Yao, Z.Q. Zheng, G.W. Yang, Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mater. Sci. 106, 100573 (2019). https://doi.org/10.1016/j.pmatsci.2019.100573
D.A. Neamen, Semiconductor physics and devices: basic principles (McGraw-Hill higher education, New York, 2011)
C. Bartolo-Perez, S. GhandiParsi, A. Mayet, A. Ahamed, W. Qarony et al., Controlling the photon absorption characteristics in avalanche photodetectors for high resolution biomedical imaging. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVIII. March 6–12, 2021. Online Only, USA. SPIE, (2021), pp. 5–10. https://doi.org/10.1117/12.2577805
Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang et al., Promises and prospects of two-dimensional transistors. Nature 591(7848), 43–53 (2021). https://doi.org/10.1038/s41586-021-03339-z
C. Dai, Y. Liu, D. Wei, Two-dimensional field-effect transistor sensors: the road toward commercialization. Chem. Rev. 122(11), 10319–10392 (2022). https://doi.org/10.1021/acs.chemrev.1c00924
M. Shkir, M.T. Khan, I.M. Ashraf, A. Almohammedi, E. Dieguez et al., High-performance visible light photodetectors based on inorganic CZT and InCZT single crystals. Sci. Rep. 9(1), 12436 (2019). https://doi.org/10.1038/s41598-019-48621-3
S. Yanikgonul, V. Leong, J.R. Ong, T. Hu, S.Y. Siew et al., Integrated avalanche photodetectors for visible light. Nat. Commun. 12(1), 1834 (2021). https://doi.org/10.1038/s41467-021-22046-x
X. Chen, H. Wang, X. Wei, A wide bandwidth real-time MEMS optical power meter with high resolution and linearity. Sens. Actuat. A Phys. 339, 113506 (2022). https://doi.org/10.1016/j.sna.2022.113506
E.P. Mukhokosi, G.V.S. Manohar, T. Nagao, S.B. Krupanidhi, K.K. Nanda, Device architecture for visible and near-infrared photodetectors based on two-dimensional SnSe2 and MoS2: a review. Micromachines 11(8), 750 (2020). https://doi.org/10.3390/mi11080750
R.A. Kishore, S. Priya, A review on low-grade thermal energy harvesting: materials, methods and devices. Materials 11(8), 1433 (2018). https://doi.org/10.3390/ma11081433
P. Lheritier, A. Torelló, T. Usui, Y. Nouchokgwe, A. Aravindhan et al., Large harvested energy with non-linear pyroelectric modules. Nature 609(7928), 718–721 (2022). https://doi.org/10.1038/s41586-022-05069-2
S.B. Lang, Pyroelectricity: from ancient curiosity to modern imaging tool. Phys. Today 58(8), 31–36 (2005). https://doi.org/10.1063/1.2062916
J.Y. Noh, G.H. Yoon, Topology optimization of piezoelectric energy harvesting devices considering static and harmonic dynamic loads. Adv. Eng. Softw. 53, 45–60 (2012). https://doi.org/10.1016/j.advengsoft.2012.07.008
C. Canetta, A. Narayanaswamy, Sub-picowatt resolution calorimetry with a bi-material microcantilever sensor. Appl. Phys. Lett. 102(10), 103112 (2013). https://doi.org/10.1063/1.4795625
F. Xue, L. Yang, M. Chen, J. Chen, X. Yang et al., Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect. NPG Asia Mater. 9(8), e418 (2017). https://doi.org/10.1038/am.2017.142
C. Ma, S. Yuan, P. Cheung, K. Watanabe, T. Taniguchi et al., Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604(7905), 266–272 (2022). https://doi.org/10.1038/s41586-022-04548-w
T. Akamatsu, T. Ideue, L. Zhou, Y. Dong, S. Kitamura et al., A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372(6537), 68–72 (2021). https://doi.org/10.1126/science.aaz9146
C. Zhang, P. Guo, J. Zhou, Tailoring bulk photovoltaic effects in magnetic sliding ferroelectric materials. Nano Lett. 22(23), 9297–9305 (2022). https://doi.org/10.1021/acs.nanolett.2c02802
Q. Bao, H.Y. Hoh, 2D Materials for Photonic and Optoelectronic Applications. Woodhead Publishing 2019.
D.K. Singh, R. Pant, A.M. Chowdhury, B. Roul, K.K. Nanda et al., Defect-mediated transport in self-powered, broadband, and ultrafast photoresponse of a MoS2/AlN/Si-based photodetector. ACS Appl. Electron. Mater. 2(4), 944–953 (2020). https://doi.org/10.1021/acsaelm.0c00007
K. Arora, N. Goel, M. Kumar, M. Kumar, Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer. ACS Photonics 5(6), 2391–2401 (2018). https://doi.org/10.1021/acsphotonics.8b00174
Y. Zhu, K. Liu, Q. Ai, Q. Hou, X. Chen et al., A high performance self-powered ultraviolet photodetector based on a p-GaN/n-ZnMgO heterojunction. J. Mater. Chem. C 8(8), 2719–2724 (2020). https://doi.org/10.1039/c9tc06416h
A.M. Chowdhury, R. Pant, B. Roul, D.K. Singh, K.K. Nanda et al., Double gaussian distribution of barrier heights and self-powered infrared photoresponse of InN/AlN/Si (111) heterostructure. J. Appl. Phys. 126(2), 025301 (2019). https://doi.org/10.1063/1.5100066
B. Ouyang, H. Zhao, Z.L. Wang, Y. Yang, Dual-polarity response in self-powered ZnO NWs/Sb2Se3 film heterojunction photodetector array for optical communication. Nano Energy 68, 104312 (2020). https://doi.org/10.1016/j.nanoen.2019.104312
X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
T. Low, A.S. Rodin, A. Carvalho, Y. Jiang, H. Wang et al., Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90(7), 075434 (2014). https://doi.org/10.1103/physrevb.90.075434
B. Liu, M. Köpf, A.A. Abbas, X. Wang, Q. Guo et al., Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. arXiv: 1505.07061 (2015). https://doi.org/10.48550/arXiv.1505.07061
S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N.E. Christensen, A. Svane, Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 86(3), 035105 (2012). https://doi.org/10.1103/physrevb.86.035105
H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu et al., Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 10(8), 707–713 (2015). https://doi.org/10.1038/nnano.2015.112
M. Long, A. Gao, P. Wang, H. Xia, C. Ott et al., Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3(6), e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
W.C. Tan, L. Huang, R.J. Ng, L. Wang, D.M.N. Hasan et al., A black phosphorus carbide infrared phototransistor. Adv. Mater. 30(6), 1705039 (2018). https://doi.org/10.1002/adma.201705039
N. Youngblood, C. Chen, S.J. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9(4), 247–252 (2015). https://doi.org/10.1038/nphoton.2015.23
M. Engel, M. Steiner, P. Avouris, Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14(11), 6414–6417 (2014). https://doi.org/10.1021/nl502928y
H. Kim, S.Z. Uddin, D.-H. Lien, M. Yeh, N.S. Azar et al., Actively variable-spectrum optoelectronics with black phosphorus. Nature 596(7871), 232–237 (2021). https://doi.org/10.1038/s41586-021-03701-1
B.Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang et al., Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013). https://doi.org/10.1038/ncomms2830
S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11(6), 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
S. Ahn, W. Chen, O. Vazquez-Mena, High resolution patterning of PbS quantum dots/graphene photodetectors with high responsivity via photolithography with a top graphene layer to protect surface ligands. Nanoscale Adv. 3(21), 6206–6212 (2021). https://doi.org/10.1039/D1NA00582K
C.-H. Liu, Y.-C. Chang, T.B. Norris, Z. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9(4), 273–278 (2014). https://doi.org/10.1038/nnano.2014.31
S. Cakmakyapan, P.K. Lu, A. Navabi, M. Jarrahi, Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light Sci. Appl. 7, 20 (2018). https://doi.org/10.1038/s41377-018-0020-2
A.L. Hsu, P.K. Herring, N.M. Gabor, S. Ha, Y.C. Shin et al., Graphene-based thermopile for thermal imaging applications. Nano Lett. 15(11), 7211–7216 (2015). https://doi.org/10.1021/acs.nanolett.5b01755
Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod et al., Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405), 82–85 (2012). https://doi.org/10.1038/nature11253
G. Li, Y. Wang, L. Huang, W. Sun, Research progress of high-sensitivity perovskite photodetectors: a review of photodetectors: noise, structure, and materials. ACS Appl. Electron. Mater. 4(4), 1485–1505 (2022). https://doi.org/10.1021/acsaelm.1c01349
G.H. Lee, K. Kim, Y. Kim, J. Yang, M.K. Choi, Recent advances in patterning strategies for full-color perovskite light-emitting diodes. Nano-Micro Lett. 16(1), 45 (2023). https://doi.org/10.1007/s40820-023-01254-8
X. Ma, L. Yang, S. Zheng, Q. Dai, C. Chen et al., All-inorganic perovskite solar cells: status and future. Prog. Chem. 32(10), 1608–1632 (2020). https://doi.org/10.7536/PC200313
B. Shi, P. Wang, J. Feng, C. Xue, G. Yang et al., Split-ring structured all-inorganic perovskite photodetector arrays for masterly internet of things. Nano-Micro Lett. 15(1), 3 (2022). https://doi.org/10.1007/s40820-022-00961-y
X. Li, C. Liu, F. Ding, Z. Lu, P. Gao et al., Ultra-stable and sensitive ultraviolet photodetectors based on monocrystalline perovskite thin films. Adv. Funct. Mater. 33(15), 2213360 (2023). https://doi.org/10.1002/adfm.202213360
Y. Zhang, Y. Ma, Y. Wang, X. Zhang, C. Zuo et al., Lead-free perovskite photodetectors: progress, challenges, and opportunities. Adv. Mater. 33(26), 2006691 (2021). https://doi.org/10.1002/adma.202006691
F. Mei, D. Sun, S. Mei, J. Feng, Y. Zhou et al., Recent progress in perovskite-based photodetectors: the design of materials and structures. Advances in Physics: X 4(1), 1592709 (2019). https://doi.org/10.1080/23746149.2019.1592709
N. Zhou, Y. Bekenstein, C.N. Eisler, D. Zhang, A.M. Schwartzberg et al., Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv. 5(5), eaav8141 (2019). https://doi.org/10.1126/sciadv.aav8141
Y. Zhao, X. Yin, P. Li, Z. Ren, Z. Gu et al., Multifunctional perovskite photodetectors: from molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15(1), 187 (2023). https://doi.org/10.1007/s40820-023-01161-y
Z. Gu, Y. Zhang, Y. Zhao, Q. Xu, Y. Song, From planar structures to curved optoelectronic devices: the advances of halide perovskite arrays. Matter 6(9), 2666–2696 (2023). https://doi.org/10.1016/j.matt.2023.05.007
Z. Gu, Z. Huang, X. Hu, Y. Wang, L. Li et al., In situ inkjet printing of the perovskite single-crystal array-embedded polydimethylsiloxane film for wearable light-emitting devices. ACS Appl. Mater. Interfaces 12(19), 22157–22162 (2020). https://doi.org/10.1021/acsami.0c04131
W. Kim, S.-K. Kim, S. Jeon, J. Ahn, B.K. Jung et al., Patterning all-inorganic halide perovskite with adjustable phase for high-resolution color filter and photodetector arrays. Adv. Funct. Mater. 32(16), 2111409 (2022). https://doi.org/10.1002/adfm.202111409
Y. Liang, Q. Lu, W. Wu, Z. Xu, H. Lu et al., A universal fabrication strategy for high-resolution perovskite-based photodetector arrays. Small Methods 7(9), e2300339 (2023). https://doi.org/10.1002/smtd.202300339
B. Yang, J. Chen, Q. Shi, Z. Wang, M. Gerhard et al., High resolution mapping of two-photon excited photocurrent in perovskite microplate photodetector. J. Phys. Chem. Lett. 9(17), 5017–5022 (2018). https://doi.org/10.1021/acs.jpclett.8b02250
R. Chen, Z. Liang, W. Feng, X. Hu, A. Hao, Solution-processed all-inorganic perovskite CsPbBr3 thin films for optoelectronic application. J. Alloys Compd. 864, 158125 (2021). https://doi.org/10.1016/j.jallcom.2020.158125
C.-K. Lin, Q. Zhao, Y. Zhang, S. Cestellos-Blanco, Q. Kong et al., Two-step patterning of scalable all-inorganic halide perovskite arrays. ACS Nano 14(3), 3500–3508 (2020). https://doi.org/10.1021/acsnano.9b09685
T. Wang, D. Zheng, K. Vegso, N. Mrkyvkova, P. Siffalovic et al., High-resolution and stable ruddlesden–popper quasi-2D perovskite flexible photodetectors arrays for potential applications as optical image sensor. Adv. Funct. Mater. 33(43), 2304659 (2023). https://doi.org/10.1002/adfm.202304659
J.-W. Lee, N.-G. Park, Quasi-two-dimensional perovskite light emitting diodes for bright future. Light Sci. Appl. 10(1), 86 (2021). https://doi.org/10.1038/s41377-021-00528-3
Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu et al., Single-nanowire spectrometers. Science 365(6457), 1017–1020 (2019). https://doi.org/10.1126/science.aax8814
H. Sun, W. Tian, X. Wang, K. Deng, J. Xiong et al., In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control. Adv. Mater. 32(14), 1908108 (2020). https://doi.org/10.1002/adma.201908108
Y. Zhou, C. Fei, M.A. Uddin, L. Zhao, Z. Ni et al., Self-powered perovskite photon-counting detectors. Nature 616(7958), 712–718 (2023). https://doi.org/10.1038/s41586-023-05847-6
S. Mahato, M. Tamulewicz-Szwajkowska, S. Singh, D. Kowal, S. Bose et al., Surface-engineered methylammonium lead bromide single crystals: a platform for fluorescent security tags and photodetector applications. Adv. Opt. Mater. 12(10), 2302257 (2024). https://doi.org/10.1002/adom.202302257
H. Ahmad, H. Rashid, M.F. Ismail, K. Thambiratnam, Fabrication and characterization of tungsten disulphide/silicon heterojunction photodetector for near infrared illumination. Optik 185, 819–826 (2019). https://doi.org/10.1016/j.ijleo.2019.03.132
Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9(2), 111–115 (2014). https://doi.org/10.1038/nnano.2013.277
N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H.R. Gutiérrez et al., Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23(44), 5511–5517 (2013). https://doi.org/10.1002/adfm.201300760
N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia et al., Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 4, 5209 (2014). https://doi.org/10.1038/srep05209
W. Zhang, M.-H. Chiu, C.-H. Chen, W. Chen, L.-J. Li et al., Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8(8), 8653–8661 (2014). https://doi.org/10.1021/nn503521c
G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea et al., Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7(6), 363–368 (2012). https://doi.org/10.1038/nnano.2012.60
Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin et al., Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 28(12), 2399–2407 (2016). https://doi.org/10.1002/adma.201504572
H. Yang, S.W. Kim, M. Chhowalla, Y.H. Lee, Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13(10), 931–937 (2017). https://doi.org/10.1038/nphys4188
X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng et al., Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9(1), 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
J. Mu, S. Xu, SnO2 tetragonal nanonails with enhanced optical and photoelectric performances via localized surface plasmon resonance effect of Au nanops. Ceram. Int. 50(1), 692–703 (2024). https://doi.org/10.1016/j.ceramint.2023.10.147
F. Cao, L. Liu, L. Li, Short-wave infrared photodetector. Mater. Today 62, 327–349 (2023). https://doi.org/10.1016/j.mattod.2022.11.003
S. Qin, H. Xu, M. Liu, N. Ali, Y. Chen et al., Enhanced visible to near-infrared photodetectors made from MoS2-based mixed-dimensional structures. Appl. Surf. Sci. 585, 152594 (2022). https://doi.org/10.1016/j.apsusc.2022.152594
R. Xing, X. Zhang, X. Fan, R. Xie, L. Wu et al., Coupling strategies of multi-physical fields in 2D materials-based photodetectors. Adv. Mater. 37(16), 2501833 (2025). https://doi.org/10.1002/adma.202501833
C. Richard, Understanding Semiconductors: A Technical Guide for Non-Technical People. Apress 2023.
X. Zhang, R. Yan, Z. Guo, P. Li, S. Feng, Quasimetal nanosize Te enhanced PbS nanorod photodetector with localized surface plasmon resonance effect. Phys. E Low Dimension. Syst. Nanostruct. 153, 115778 (2023). https://doi.org/10.1016/j.physe.2023.115778
J. Jiao, Y. Zhang, L. Shi, G. Li, T. Ji et al., High responsivity of narrowband photomultiplication organic photodetector via interfacial modification. Adv. Opt. Mater. 11(12), 2203132 (2023). https://doi.org/10.1002/adom.202203132
B. Krit, M. Fedotikova, V. Sleptsov, D.Y. Kukushkin, M.Y. Gorozheev et al., Change of photoelectric elements power characteristics by silver nanoclusters modification of receiving surface, Journal of Physics: Conference Series, IOP Publishing, 2019, p. 012024.
R. Pant, D.K. Singh, A.M. Chowdhury, B. Roul, K.K. Nanda et al., Next-generation self-powered and ultrafast photodetectors based on III-nitride hybrid structures. APL Mater. 8(2), 020907 (2020). https://doi.org/10.1063/1.5140689
X. Zhao, Q. Li, L. Xu, Z. Zhang, Z. Kang et al., Interface engineering in 1D ZnO-based heterostructures for photoelectrical devices. Adv. Funct. Mater. 32(11), 2106887 (2022). https://doi.org/10.1002/adfm.202106887
Y. Xiao, K. Luo, Q. Kao, Y. Fu, W. Jiang et al., Photoelectric properties of large area WTe2 thin films prepared by pulsed laser deposition. Surf. Interfaces 44, 103670 (2024). https://doi.org/10.1016/j.surfin.2023.103670
C. Kang, C. Zhang, L. Zhang, S. Liang, C. Geng et al., Transformation of crystalline structure and photoelectric properties in VO2/glass thin films by inserting TiO2 buffer layers. Appl. Surf. Sci. 463, 704–712 (2019). https://doi.org/10.1016/j.apsusc.2018.08.193
X. Zhou, X. Li, L. Zhang, F. Yan, C. Wang et al., Tunable morphology and highly stable α-CsPbI3 Nano-bricks for photoelectric devices. J. Colloid Interface Sci. 616, 730–738 (2022). https://doi.org/10.1016/j.jcis.2022.02.118
L. Deng, H. Hu, Y. Wang, C. Wu, H. He et al., Surface plasma treatment reduces oxygen vacancies defects states to control photogenerated carriers transportation for enhanced self-powered deep UV photoelectric characteristics. Appl. Surf. Sci. 604, 154459 (2022). https://doi.org/10.1016/j.apsusc.2022.154459
J. Zeng, C.B. Nie, H.D. Zhang, P.P. Hu, K. Maaz et al., Optimized photoelectric performance of MoS2/graphene heterostructure device induced by swift heavy ion irradiation. Appl. Surf. Sci. 642, 158629 (2024). https://doi.org/10.1016/j.apsusc.2023.158629
J. Li, Y. Ma, Y. Li, S.-S. Li, B. An et al., Interface influence on the photoelectric performance of transition metal dichalcogenide lateral heterojunctions. ACS Omega 7(43), 39187–39196 (2022). https://doi.org/10.1021/acsomega.2c05151
Y. Reo, T. Zou, T. Choi, S. Kim, J.-Y. Go et al., Vapour-deposited high-performance tin perovskite transistors. Nat. Electron. 8(5), 403–410 (2025). https://doi.org/10.1038/s41928-025-01380-8
H.P. Maruska, J.J. Tietjen, The preparation and properties of vapor-deposited single-crystal-line GaN. Appl. Phys. Lett. 15(10), 327–329 (1969). https://doi.org/10.1063/1.1652845
J. Yu, L. Wang, X. Niu, L. Wang, J. Yang et al., Effect of hydrogen peroxide on photoelectric properties of high-transmittance FTO films prepared by spray pyrolysis. Surf. Coat. Technol. 361, 308–313 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.039
N.M.S. Kaawash, D.I. Halge, V.N. Narwade, P.S. Alegaonkar, K.A. Bogle, High-performance and ultra-sensitive ultraviolet photodetector based on surface passivated α-Fe2O3 thin film. Mater. Chem. Phys. 300, 127546 (2023). https://doi.org/10.1016/j.matchemphys.2023.127546
J. Xue, Z. Zhu, X. Xu, Y. Gu, S. Wang et al., Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett. 18(12), 7628–7634 (2018). https://doi.org/10.1021/acs.nanolett.8b03209
C.-Y. Wu, Z. Wang, L. Liang, T. Gui, W. Zhong et al., Graphene-assisted growth of patterned perovskite films for sensitive light detector and optical image sensor application. Small 15(19), 1900730 (2019). https://doi.org/10.1002/smll.201900730
Q. Wang, G. Zhang, H. Zhang, Y. Duan, Z. Yin et al., High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv. Funct. Mater. 31(28), 2100857 (2021). https://doi.org/10.1002/adfm.202100857
X. Liu, L. Liu, Y. Zhang, X. Zhang, K. Lyu et al., Glutathione-sensitized SnS2 nanoflake/CdS nanorod heterojunction for enhancing cathodic protection of 304 stainless steel with remarkable photoelectric conversion performance. Appl. Surf. Sci. 637, 157835 (2023). https://doi.org/10.1016/j.apsusc.2023.157835
Z. Wang, J. Xu, S. Shi, J. Chen, J. Xu et al., Self-powered UV photodetector of TiO2 with BaTiO3 surface modification and light-controlled logic circuits application. ACS Appl. Mater. Interfaces 15(26), 31943–31953 (2023). https://doi.org/10.1021/acsami.3c03628
B. Yang, M. Xu, T. Zhang, J. Li, X. Chu et al., Photoelectric properties of F-doped ZnO thin films prepared by sol-combustion. Surf. Eng. 36(4), 424–428 (2020). https://doi.org/10.1080/02670844.2019.1681177
K. Si, J. Ma, C. Lu, Y. Zhou, C. He et al., A two-dimensional MoS2/WSe2 van der Waals heterostructure for enhanced photoelectric performance. Appl. Surf. Sci. 507, 145082 (2020). https://doi.org/10.1016/j.apsusc.2019.145082
J. Ahn, B.K. Jung, W. Kim, Y.M. Lee, J. Bang et al., Anchoring Cs4PbBr6 crystals to PbSe nanocrystals for the fabrication of UV/VIS/NIR photodetectors using halide surface chemistry. Adv. Opt. Mater. 11(3), 2201833 (2023). https://doi.org/10.1002/adom.202201833
D. Han, G. Li, J. Wang, T. Zheng, L. Peng et al., Self-assembled composite Langmuir-Blodgett films of carbon nanotubes: an approach to enhance surface-enhanced Raman scattering and photoelectric performance. Colloids Surf. A Physicochem. Eng. Aspects 676, 132182 (2023). https://doi.org/10.1016/j.colsurfa.2023.132182
M. Liu, J. Wen, R. Xiao, R. Tan, Y. Qin et al., Improving interface matching in MOF-on-MOF S-scheme heterojunction through π-π conjugation for boosting photoelectric response. Nano Lett. 23(11), 5358–5366 (2023). https://doi.org/10.1021/acs.nanolett.3c01650
N. Li, C. Wang, L. Li, Z. Hao, J. Gu et al., Chemical gas sensor, surface enhanced Raman scattering and photoelectrics of composite Langmuir-Blodgett films consisting of polypeptide and dye molecules. Colloids Surf. A Physicochem. Eng. Aspects 663, 131067 (2023). https://doi.org/10.1016/j.colsurfa.2023.131067
G. Li, P. Bian, R. Wang, Y. Li, H. Cao et al., Preparation of composite Langmuir-Blodgett films based on carbon spheres and wide applications for acid/alkaline gas sensor, surface enhanced Raman scattering and photoelectrics. Colloids Surf. A Physicochem. Eng. Aspects 654, 130148 (2022). https://doi.org/10.1016/j.colsurfa.2022.130148
P. Sui, N. Sun, Q. Jiang, D. Luo, Q. Li et al., The construction and modulation of photoelectric functional hierarchical materials based on ionic self-assembly. Colloids Surf. A Physicochem. Eng. Aspects 565, 30–35 (2019). https://doi.org/10.1016/j.colsurfa.2018.12.054
T. Guan, W. Chen, H. Tang, D. Li, X. Wang et al., Decoding the self-assembly plasmonic interface structure in a PbS colloidal quantum dot solid for a photodetector. ACS Nano 17(22), 23010–23019 (2023). https://doi.org/10.1021/acsnano.3c08526
B. Son, S.-H. Shin, Z.-J. Zhao, B.-K. Ju, J.-H. Jeong et al., High-efficiency silicon nanowire array near infrared photodetectors via length control and SiOx surface passivation. Adv. Mater. Technol. 8(15), 2300131 (2023). https://doi.org/10.1002/admt.202300131
W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng et al., High-gain phototransistors based on a CVD MoS₂ monolayer. Adv. Mater. 25(25), 3456–3461 (2013). https://doi.org/10.1002/adma.201301244
C. Xie, C. Mak, X. Tao, F. Yan, Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 27(19), 1603886 (2017). https://doi.org/10.1002/adfm.201603886
F. Liao, Y. Shi, Q. Dang, H. Yang, H. Huang et al., Carbon dots dominated photoelectric surface in titanium dioxide nanotube/nitrogen-doped carbon dot/gold nanocomposites for improved photoelectrochemical water splitting. J. Colloid Interface Sci. 606(Pt 2), 1274–1283 (2022). https://doi.org/10.1016/j.jcis.2021.08.131
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
X. Yu, J. Guo, Y. Mao, C. Shan, F. Tian et al., Enhancing the performance of perovskite light-emitting diodes via synergistic effect of defect passivation and dielectric screening. Nano-Micro Lett. 16(1), 205 (2024). https://doi.org/10.1007/s40820-024-01405-5
J. Lu, J.H. Lu, H. Liu, B. Liu, K.X. Chan et al., Improved photoelectrical properties of MoS2 films after laser micromachining. ACS Nano 8(6), 6334–6343 (2014). https://doi.org/10.1021/nn501821z
D. Kufer, G. Konstantatos, Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 15(11), 7307–7313 (2015). https://doi.org/10.1021/acs.nanolett.5b02559
C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang et al., CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells. J. Mater. Chem. A 6(17), 7903–7912 (2018). https://doi.org/10.1039/C7TA11280G
H. Hu, C. Wu, C. He, J. Shen, Y. Cheng et al., Improved photoelectric performance with self-powered characteristics through TiO2 surface passivation in an α-Ga2O3 nanorod array deep ultraviolet photodetector. ACS Appl. Electron. Mater. 4(8), 3801–3806 (2022). https://doi.org/10.1021/acsaelm.2c00428
B.A. Taha, A.J. Addie, A.C. Kadhim, A.S. Azzahrani, N.M. Ahmed et al., Plasmonic-enabled nanostructures for designing the next generation of silicon photodetectors: Trends, engineering and opportunities. Surf. Interfaces 48, 104334 (2024). https://doi.org/10.1016/j.surfin.2024.104334
X. Wang, L. Tong, W. Fan, W. Yan, C. Su et al., Air-stable self-powered photodetector based on TaSe2/WS2/TaSe2 asymmetric heterojunction with surface self-passivation. J. Colloid Interface Sci. 657, 529–537 (2024). https://doi.org/10.1016/j.jcis.2023.11.172
U. Punia, P. Prajapat, R.K. Sharma, Jayant, G. Gupta et al., Interface engineered, high photo-response of self-powered photodetector and solar cell based on PEDOT: PSS-silicon hybrid heterojunction. Next Mater. 8, 100736 (2025). https://doi.org/10.1016/j.nxmate.2025.100736
J. Pei, X. Huang, X. Zhao, H. Lv, S. Chen et al., Hybrid solar cells of Ru-based dye complexes as interfacial modification layers: Energy level alignment and photoelectric properties improvement. Surf. Interfaces 23, 100981 (2021). https://doi.org/10.1016/j.surfin.2021.100981
Z. Liu, Y. Zhou, Y. Ping, L. Qian, J. Li et al., Enhancement in photoelectric properties of ITO films by regulating defects and dopants with supercritical fluid treatment. Appl. Surf. Sci. 565, 150551 (2021). https://doi.org/10.1016/j.apsusc.2021.150551
M. Yu, P. Wan, K. Tang, S. He, Q. Zhao et al., Plasmonically-boosted high-performance UV self-biased photodetector based on SiC-based low-dimensional heterojunction via Pt nanostructures deposition. Surf. Interfaces 51, 104627 (2024). https://doi.org/10.1016/j.surfin.2024.104627
Y. Yue, S. Liu, N. Zhang, Z. Su, D. Zhu, Molecular engineering of s-triazine and its derivatives applied in surface modification strategy for enhancing photoelectric performance of all-inorganic perovskites. Chin. Chem. Lett. 33(1), 547–550 (2022). https://doi.org/10.1016/j.cclet.2021.06.066
Z. Li, Z. Li, J. Chang, L. Chen, MXene based flexible materials for energy harvesting. Mater. Today Chem. 37, 101989 (2024). https://doi.org/10.1016/j.mtchem.2024.101989
Y. Wang, C. Xu, Y. Zhou, J. Lee, Q. Chen et al., Interface-engineered 2D heterojunction with photoelectric dual gain: Mxene@MOF-enhanced SPR spectroscopy for direct sensing of exosomes. Small 20(23), 2308897 (2024). https://doi.org/10.1002/smll.202308897
Y. Yang, H. Pu, X. Bei, C. Chen, M. Wang, X. Hu, Influence of Different Surface Passivation on Photoelectric Properties PbS QDs. Journal of Physics: Conference Series, IOP Publishing, 2021, p. 012018.
O. Elimelech, O. Aviv, M. Oded, U. Banin, A tale of tails: thermodynamics of CdSe nanocrystal surface ligand exchange. Nano Lett. 20(9), 6396–6403 (2020). https://doi.org/10.1021/acs.nanolett.0c01913
J. Tang, Materials Engineering for Stable and Efficient PbS Colloidal Quantum Dot Photovoltaics. University of Toronto, 2010.
P.R. Brown, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi et al., Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8(6), 5863–5872 (2014). https://doi.org/10.1021/nn500897c
A.T. Nomaan, A.A. Ahmed, N.M. Ahmed, M.I. Idris, M.R. Hashim et al., ZnO quantum dot based thin films as promising electron transport layer: Influence of surface-to-volume ratio on the photoelectric properties. Ceram. Int. 47(9), 12397–12409 (2021). https://doi.org/10.1016/j.ceramint.2021.01.094
V. Shmid, V. Kuryliuk, A. Nadtochiy, O. Korotchenkov, P.-W. Li, Improving photoelectric energy conversion by structuring Si surfaces with Ge quantum dots. 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO). April 16–18, 2019. Kyiv, Ukraine. IEEE, (2019), pp. 92–96. https://doi.org/10.1109/elnano.2019.8783352
Y. Xing, X. Sheng, H. Zhou, D. Wang, X. Chen et al., Long and well-separated TiO2 nanowire arrays decorated with Au nanops for visible-light-driven photoelectrochemical water splitting. J. Phys. Chem. C 126(4), 1966–1971 (2022). https://doi.org/10.1021/acs.jpcc.1c10081
N.S.K. Gowthaman, J.-W. Chen, C.F. Dee, S.-P. Chai, W.S. Chang, Nanostructural dimension and oxygen vacancy synergistically induced photoactivity across high surface area monodispersed AuNPs/ZnO nanorods heterojunction. J. Alloys Compd. 920, 165836 (2022). https://doi.org/10.1016/j.jallcom.2022.165836
F. Zhao, Y. Yi, J. Lin, Z. Yi, F. Qin et al., The better photoelectric performance of thin-film TiO2/c-Si heterojunction solar cells based on surface plasmon resonance. Results Phys. 28, 104628 (2021). https://doi.org/10.1016/j.rinp.2021.104628
L. Peng, Y. Xie, C. Yang, Insight into the photoelectrical properties of metal adsorption on a two-dimensional organic–inorganic hybrid perovskite surface: theoretical and experimental research. RSC Adv. 12(9), 5595–5611 (2022). https://doi.org/10.1039/D1RA04557A
B. Dong, M.E. Zaghloul, Generation and enhancement of surface acoustic waves on a highly doped p-type GaAs substrate. Nanoscale Adv. 1(9), 3537–3546 (2019). https://doi.org/10.1039/C9NA00281B
Q. Wang, J. Zhang, C. Song, Stability and photoelectric nature of polar surfaces of ZnO: Effects of surface reconstruction. Phys. Lett. A 398, 127274 (2021). https://doi.org/10.1016/j.physleta.2021.127274
Z. Shi, X. Lu, X. Tang, D. Wang, Z. Cong et al., Stress enhanced photoelectric response in flexible AlN single-crystalline thin films. Appl. Surf. Sci. 585, 152378 (2022). https://doi.org/10.1016/j.apsusc.2021.152378
K. Han, L. Heng, Y. Zhang, Y. Liu, L. Jiang, Slippery surface based on photoelectric responsive nanoporous composites with optimal wettability region for droplets’ multifunctional manipulation. Adv. Sci. 6(1), 1801231 (2019). https://doi.org/10.1002/advs.201801231
P. Zhang, H. Liu, J. Meng, G. Yang, X. Liu et al., Grooved organogel surfaces towards anisotropic sliding of water droplets. Adv. Mater. 26(19), 3131–3135 (2014). https://doi.org/10.1002/adma.201305914
H. Ma, Y. Tian, A.-X. Jiao, M.-Y. Zhang, C. Wang et al., Research on near infrared photoelectric response and surface-enhanced Raman scatteringof urchin-like Au-Ag-Pt-Pd nanoalloy. Acta Phys. Sin. 71(10), 107401 (2022). https://doi.org/10.7498/aps.71.20212094
Y. Zhan, Z. Wu, P. Zeng, W. Wang, Y. Jiang et al., High-performance self-powered WSe2/ReS2 photodetector enabled via surface charge transfer doping. ACS Appl. Mater. Interfaces 15(47), 55043–55054 (2023). https://doi.org/10.1021/acsami.3c10654
W.-Y. Lee, J. Lee, H.-J. Kwon, K. Kim, H. Kang et al., High-detectivity silver telluride nanop-based near-infrared photodetectors functionalized with surface-plasmonic gold nanops. Appl. Surf. Sci. 654, 159563 (2024). https://doi.org/10.1016/j.apsusc.2024.159563
W. Zhang, W. Wang, J. Wei, S. Xia, J. Zhang et al., Photocarrier transport reconstruction and dramatical performance enhancement in ultrawide-bandgap ε-Ga2O3 photodetectors via surface defect passivation. Mater. Today Phys. 38, 101280 (2023). https://doi.org/10.1016/j.mtphys.2023.101280
Q. Bai, X. Huang, Y. Guo, S. Du, C. Sun et al., Gap-surface-plasmon induced polarization photoresponse for MoS2-based photodetector. Nano Res. 16(7), 10272–10278 (2023). https://doi.org/10.1007/s12274-023-5724-9
Y. Wang, G. Niu, X. Cao, Z. Yang, Y. Dong et al., Multifunctional L-tryptophan derivative induced surface passivation for lateral perovskite photodetectors. Chem. Eng. J. 459, 141602 (2023). https://doi.org/10.1016/j.cej.2023.141602
P.-Y. Huang, Y.-Y. Zhang, P.-C. Tsai, R.-J. Chung, Y.-T. Tsai et al., Interfacial engineering of quantum dots–metal–organic framework composite toward efficient charge transport for a short-wave infrared photodetector. Adv. Opt. Mater. 12(7), 2302062 (2024). https://doi.org/10.1002/adom.202302062
X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9(9), 682–686 (2014). https://doi.org/10.1038/nnano.2014.167
A. Pospischil, M.M. Furchi, T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 9(4), 257–261 (2014). https://doi.org/10.1038/nnano.2014.14
B. Peng, G. Yu, X. Liu, B. Liu, X. Liang et al., Ultrafast charge transfer in MoS2/WSe2 p–n Heterojunction. 2D Mater. 3(2), 025020 (2016). https://doi.org/10.1088/2053-1583/3/2/025020
L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle et al., Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311–1314 (2013). https://doi.org/10.1126/science.1235547
W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li et al., Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8(12), 952–958 (2013). https://doi.org/10.1038/nnano.2013.219
M. Massicotte, P. Schmidt, F. Vialla, K.G. Schädler, A. Reserbat-Plantey et al., Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11(1), 42–46 (2016). https://doi.org/10.1038/nnano.2015.227
G. Li, D. Xie, Q. Zhang, M. Zhang, Z. Liu et al., Interface-engineered non-volatile visible-blind photodetector for in-sensor computing. Nat. Commun. 16(1), 57 (2025). https://doi.org/10.1038/s41467-024-55412-6
Z. Ye, N. Wang, Y. Gao, Y. Cheng, L. Zan et al., High photoelectric conversion efficiency and stability of carbon-based perovskite solar cells based on sandwich-structured electronic layers. Colloids Surf. A Physicochem. Eng. Aspects 666, 131326 (2023). https://doi.org/10.1016/j.colsurfa.2023.131326
J. Wang, P. Yang, Building efficient photoelectric properties with Si/Graphene/ZnO interface structure. Vacuum 220, 112844 (2024). https://doi.org/10.1016/j.vacuum.2023.112844
J. Liu, B. Shi, Q. Xu, Y. Li, Y. Li et al., Textured perovskite/silicon tandem solar cells achieving over 30% efficiency promoted by 4-fluorobenzylamine hydroiodide. Nano-Micro Lett. 16(1), 189 (2024). https://doi.org/10.1007/s40820-024-01406-4
V.V. Shpeizman, V.I. Nikolaev, A.O. Pozdnyakov, A.V. Bobyl’, R.B. Timashov et al., The effect of texturing of silicon wafer surfaces for solar photoelectric transducers on their strength properties. Tech. Phys. 65(7), 1123–1129 (2020). https://doi.org/10.1134/s1063784220070191
I. Kulinich, A. Ivashkin, A. Guliaeva, E. Shesterikov, Investigation the dependence of the photoelectric current of an InGaAs/InAlAs photodiode on the surface geometry. 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. July 4–8, 2022. Tomsk, Russia. SPIE, (2022).: 202. https://doi.org/10.1117/12.2644939
Y. Singh, R. Parmar, A. Srivastava, R. Yadav, K. Kumar et al., Highly responsive near-infrared Si/Sb2Se3 photodetector via surface engineering of silicon. ACS Appl. Mater. Interfaces 15(25), 30443–30454 (2023). https://doi.org/10.1021/acsami.3c04043
G. Wang, Z. Sa, Z. Zang, P. Li, M. Wang et al., Mixed-dimensional nanowires/nanosheet heterojunction of GaSb/Bi2O2Se for self-powered near-infrared photodetection and photocommunication. Nano-Micro Lett. 17(1), 284 (2025). https://doi.org/10.1007/s40820-025-01793-2
J. Lu, X. Zhang, S. Feng, B. Yang, M. Huang et al., Single-crystal diamond nanowires embedded with platinum nanops for high-temperature solar-blind photodetector. Nano-Micro Lett. 17(1), 220 (2025). https://doi.org/10.1007/s40820-025-01746-9
C.-H. Jiang, C.-B. Yao, Z.-M. Wang, X. Wang, L.Y. Wang, Heterostructure MoS2@ZnO nanowires: Preparation, ultrafast nonlinear optical behavior and photoelectric functional application. Appl. Surf. Sci. 599, 153920 (2022). https://doi.org/10.1016/j.apsusc.2022.153920
Q. Lv, X. Shen, X. Li, Y. Meng, K.M. Yu et al., On-wire design of axial periodic halide perovskite superlattices for high-performance photodetection. ACS Nano 18(27), 18022–18035 (2024). https://doi.org/10.1021/acsnano.4c05205
Y. Guan, C. Zhang, Z. Liu, Y. Zhao, A. Ren et al., Single-crystalline perovskite p–n junction nanowire arrays for ultrasensitive photodetection. Adv. Mater. 34(35), 2203201 (2022). https://doi.org/10.1002/adma.202203201
T. Zheng, Y. Pan, M. Yang, Z. Li, Z. Zheng et al., 2D free-standing GeS1-xSex with composition-tunable bandgap for tailored polarimetric optoelectronics. Adv. Mater. 36(28), e2313721 (2024). https://doi.org/10.1002/adma.202313721
Q. Liu, F. Zhan, H. Luo, D. Zhai, Z. Xiao et al., Mechanism of interface engineering for ultrahigh piezo-photoelectric catalytic coupling effect of BaTiO3@TiO2 microflowers. Appl. Catal. B Environ. 318, 121817 (2022). https://doi.org/10.1016/j.apcatb.2022.121817
D. Tordera, B. Peeters, H.B. Akkerman, A.J.J.M. van Breemen, J. Maas et al., A high-resolution thin-film fingerprint sensor using a printed organic photodetector. Adv. Mater. Technol. 4(11), 1900651 (2019). https://doi.org/10.1002/admt.201900651
P. Venuthurumilli, P.D. Ye, X. Xu, Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 12(5), 4861–4867 (2018). https://doi.org/10.1021/acsnano.8b01660
J. Kwon, Y.K. Hong, G. Han, I. Omkaram, W. Choi et al., Giant photoamplification in indirect-bandgap multilayer MoS2 phototransistors with local bottom-gate structures. Adv. Mater. 27(13), 2224–2230 (2015). https://doi.org/10.1002/adma.201404367
Y.-Y. Wang, B.-J. Li, L.-J. Huang, H.-D. Cao, N.-F. Ren, Photoelectric property enhancement of Ag/FTO thin films by fabricating antireflection grating structures using ultrasonic-vibration-assisted laser irradiation. Appl. Surf. Sci. 541, 148449 (2021). https://doi.org/10.1016/j.apsusc.2020.148449
Y. Borodaenko, A. Cherepakhin, S.O. Gurbatov, E. Modin, A.V. Shevlyagin et al., Polarized p–n junction Si photodetector enabled by direct laser-induced periodic surface structuring. Surf. Interfaces 56, 105568 (2025). https://doi.org/10.1016/j.surfin.2024.105568
X. Duan, Y. Huang, X. Ren, W. Wang, H. Huang et al., Long wavelength multiple resonant cavities RCE photodetectors on GaAs substrates. IEEE Trans. Electron Devices 58(11), 3948–3953 (2011). https://doi.org/10.1109/TED.2011.2162958
M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola et al., Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55μm: Fabrication and characterization. Appl. Phys. Lett. 92(25), 251104 (2008). https://doi.org/10.1063/1.2952193
M.E. Belkin, V. Golovin, Y. Tyschuk, A.S. Sigov, Model of an active optoelectronic switchable element for integrated photonics-based optical beamforming network. 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS). IEEE (2018), pp. 1592–1593.
M. Belkin, A. Alyoshin, D. Fofanov, Microwave photonics characterization and application of long-wavelength vcsels in atypical regimes, 2-nd International Conference on Photonics Research, InterPhotonics-2019, Antalya, Turkey, 2019.
Z. Li, H. Dong, Z. Wu, J. Shen, D. Xu et al., Novel pn type porous Ag2O/Bi5O7I heterojunction for Uv–Vis-NIR activated high efficient photocatalytic degradation of bisphenol A: Photoelectric properties and degradation mechanism. Appl. Surface Sci. 529, 147162 (2020). https://doi.org/10.1016/j.apsusc.2020.147162
Z. Zhang, Y. Lin, F. Liu, Preparation and photoelectric properties of Bi2WO6-CdS hybrid nanocrystals. Colloids Surf. A Physicochem. Eng. Aspects 611, 125883 (2021). https://doi.org/10.1016/j.colsurfa.2020.125883
W. Ma, Q. Sun, M. Sun, L. Bai, Y. Liu et al., Structural Evolution-Enabled BiFeO3 modulated by strontium doping with enhanced magnetic and photoelectric performance. Appl. Surf. Sci. 571, 151130 (2022). https://doi.org/10.1016/j.apsusc.2021.151130
S. Zhu, H.S. Chu, G.Q. Lo, P. Bai, D.L. Kwong, Waveguide-integrated near-infrared detector with self-assembled metal silicide nanops embedded in a silicon p-n junction. Appl. Phys. Lett. 100(6), 061109 (2012). https://doi.org/10.1063/1.3683546
A. Sobhani, M.W. Knight, Y. Wang, B. Zheng, N.S. King et al., Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013). https://doi.org/10.1038/ncomms2642
M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Photodetection with active optical antennas. Science 332(6030), 702–704 (2011). https://doi.org/10.1126/science.1203056
H. Elabd, W.F. Kosonocky, PtSi infrared Schottky-barrier detectors with optical cavity. RCA Rev. 43, 567–695 (1982)
M. Zumuukhorol, S. Boldbaatar, Z. Khurelbaatar, J.-Y. Baek, K.-H. Shim et al., Enhancing the performance of surface-textured Ge Schottky photodetectors using the electroless chemical etching method. Mater. Sci. Semicond. Process. 169, 107907 (2024). https://doi.org/10.1016/j.mssp.2023.107907
L. Wang, Y. Pan, J.-L. Xing, J.-B. Mao, Y.-J. Ba et al., Surface state induced filterless SWIR narrow-band Si photodetector. IEEE Electron Device Lett. 44(7), 1148–1151 (2023). https://doi.org/10.1109/LED.2023.3282432
M. Xu, Z. Xu, Z. Sun, W. Chen, L. Wang et al., Surface engineering in SnO2/Si for high-performance broadband photodetectors. ACS Appl. Mater. Interfaces 15(2), 3664–3672 (2023). https://doi.org/10.1021/acsami.2c20073
D. Liu, Z. Chen, Z. Huang, Q. Wu, Y. Song et al., In situ surface modification enables high stability and optoelectrical performance for a self-powered photodetector. Adv. Opt. Mater. 11(22), 2300940 (2023). https://doi.org/10.1002/adom.202300940
J.-Y. Li, T.-C. Wei, P.-H. Hsiao, T.-Y. Wu, C.-Y. Chen, Mediation of interface dipoles on SiOx/Si nanowire based inorganic/organic hybrid photodetectors with enhanced wavelength-selective sensing performances. Adv. Mater. Interfaces 10(6), 2201983 (2023). https://doi.org/10.1002/admi.202201983
K. Ding, C. Wang, Y. Ding, P. Cao, S. Li et al., Broadband optical absorption copper surface fabricated by femtosecond laser for sensitivity enhancement of thermoelectric photodetector. Opt. Laser Technol. 168, 109942 (2024). https://doi.org/10.1016/j.optlastec.2023.109942
H. Seo, H.J. Eun, A.Y. Lee, H.K. Lee, J.H. Kim et al., Colloidal InSb quantum dots for 1500 nm SWIR photodetector with antioxidation of surface. Adv. Sci. 11(4), 2306439 (2024). https://doi.org/10.1002/advs.202306439
K. Ling, K. Li, W. Li, W. Zhang, Z. Wang et al., Enhancing the performance of ZnGa2O4 metal-semiconductor-metal ultraviolet solar-blind photodetectors by surface fluorine plasma sensitization. J. Alloys Compd. 969, 172036 (2023). https://doi.org/10.1016/j.jallcom.2023.172036
C. Lin, P. Wan, B. Yang, D. Shi, C. Kan et al., Plasmon-enhanced photoresponse and stability of a CsPbBr3 microwire/GaN heterojunction photodetector with surface-modified Ag nanops. J. Mater. Chem. C 11(38), 12968–12980 (2023). https://doi.org/10.1039/d3tc02240d
P. Qiao, K. Liu, B. Dai, B. Liu, W. Zhang et al., Ultraviolet responsivity enhancement for diamond photodetectors via localized surface plasmon resonance in Indium nanoislands. Diam. Relat. Mater. 136, 109943 (2023). https://doi.org/10.1016/j.diamond.2023.109943
S.A. Abdulgafar, M.A. Ibrahem, Y.M. Hassan, Near-infrared photodetector based on the surface modification of porous silicon with silver nanops. Opt. Mater. 147, 114601 (2024). https://doi.org/10.1016/j.optmat.2023.114601
Y. Wu, X. Fu, K. Zhang, Z. Tao, Y. Fan et al., A strategy of high-sensitivity solar-blind photodetector for fabricating graphene surface modification ZnGa2O4/Ga2O3 core-shell structure nanowire networks. Ceram. Int. 49(11), 18248–18254 (2023). https://doi.org/10.1016/j.ceramint.2023.02.196
X. Hu, B. Chen, C. Huang, H. Qiu, N. Gao et al., Rhodium-embedded UV photodetectors based on localized surface plasmon resonance on AlN/GaN. Nanoscale 15(22), 9684–9690 (2023). https://doi.org/10.1039/D3NR00358B
R. Fu, X. Jiang, Y. Wang, B. Li, J. Ma et al., A high responsivity UV - visible dual band photodetector based on SnO2 microwires with RhB surface sensitization. J. Alloys Compd. 978, 173533 (2024). https://doi.org/10.1016/j.jallcom.2024.173533
Z. Zhou, H. Lin, X. Pan, C. Tan, D. Zhou et al., Surface plasmon enhanced InAs-based mid-wavelength infrared photodetector. Appl. Phys. Lett. 122(9), 091105 (2023). https://doi.org/10.1063/5.0140370
W. Liu, B. Shi, Z.X. Li, H. Qiu, B. Wang et al., High performance surface plasmon enhanced ZnO-Pt @ AlN core shell UV photodetector synthesized by magnetron sputtering. Mater. Des. 237, 112542 (2024). https://doi.org/10.1016/j.matdes.2023.112542
A.S. Razeen, D. Kotekar-Patil, E.X. Tang, G. Yuan, J. Ong et al., Enhanced near-UV responsivity of AlGaN/GaN HEMT based photodetectors by nanohole etching of barrier surface. Mater. Sci. Semicond. Process. 173, 108115 (2024). https://doi.org/10.1016/j.mssp.2024.108115
J. Tao, G. Zeng, X. Li, Y. Gu, W. Liu et al., Surface plasmon assisted high-performance photodetectors based on hybrid TiO2@GaOxNy-Ag heterostructure. J. Semicond. 44(7), 072806 (2023). https://doi.org/10.1088/1674-4926/44/7/072806
P. Gui, Y. Sun, L. Yang, Z. Xia, S. Wang et al., Surface microstructure engineering in MAPbBr3 microsheets for performance-enhanced photodetectors. ACS Appl. Mater. Interfaces 15(51), 59955–59963 (2023). https://doi.org/10.1021/acsami.3c15029
D. Kim, J. Chae, S.-B. Hong, J. Kim, G. Kwon et al., High performance broadband photodetector in two-dimensional metal dichalcogenides mediated by topologically protected surface state. Appl. Surf. Sci. 643, 158666 (2024). https://doi.org/10.1016/j.apsusc.2023.158666
N.M.S. Kaawash, D.I. Halge, V.N. Narwade, P.M. Khanzode, M.Y.H. Thabit et al., Unconventional enhancement of UV photodetection in surface-passivated TiO2 thin film photodetectors. ACS Appl. Eng. Mater. 1(12), 3368–3378 (2023). https://doi.org/10.1021/acsaenm.3c00620
M.K. Singh, R. Mishra, R. Prakash, J. Yi, J. Heo et al., Large-area metal surface plasmon–polymer coupled nanocomposite thin film at air–liquid interface for low voltage operated high-performance photodetector. Prog. Org. Coat. 174, 107231 (2023). https://doi.org/10.1016/j.porgcoat.2022.107231
W. Qarony, A. Mayet, E. Ponizovskaya-Devine, S. Ghandiparsi, C. Bartolo-Perez et al., Achieving higher photoabsorption than group III-V semiconductors in ultrafast thin silicon photodetectors with integrated photon-trapping surface structures. Adv. Photonics Nexus 2(5), 056001 (2023). https://doi.org/10.1117/1.APN.2.5.056001
J. Li, D. Yang, G. He, D. Guo, J. Li et al., Suppressing dark current of air-processed perovskite photodetectors via manipulation of interface engineering with 2-ethyl-1-hexylamine. Org. Electron. 127, 106998 (2024). https://doi.org/10.1016/j.orgel.2024.106998
M. Sun, L. Kang, Z. Jiao, G. Yuan, Q. Huang et al., Enhancement performance of vapor-deposition processed perovskite photodetectors enabled by manipulation of interface engineering. Org. Electron. 116, 106773 (2023). https://doi.org/10.1016/j.orgel.2023.106773
Y. Ren, G. Li, H. An, S.-G. Wei, C.-Y. Xing et al., Interface engineering SnS2/MXene Nb2C self-powered photodetectors with high responsivity and detectivity. Appl. Surf. Sci. 637, 157863 (2023). https://doi.org/10.1016/j.apsusc.2023.157863
Y. Yang, Y. Liu, J. Zhou, C. Guo, D. Liu et al., Dual interface modification using potassium aspartic acid to realize low dark current, high-speed nonfullerene photodetectors. J. Phys. Chem. Lett. 15(10), 2675–2681 (2024). https://doi.org/10.1021/acs.jpclett.4c00367
X. Luo, Z. Huang, Z. Zhong, H. Quan, F. Peng et al., Improving performance of organic photodetectors by using TCNQ doped copper thiocyanate as the anode interfacial layer. Adv. Opt. Mater. 12(7), 2301929 (2024). https://doi.org/10.1002/adom.202301929
A.-C. Chang, Y.-S. Wu, W.-C. Chen, Y.-H. Weng, B.-H. Lin et al., Modulating the photoresponsivity of perovskite photodetectors through interfacial engineering of self-assembled monolayers. Adv. Opt. Mater. 12(5), 2301789 (2024). https://doi.org/10.1002/adom.202301789
C.-Y. Sung, W.-C. Chen, C.-L. Liu, B.-H. Lin, Y.-C. Lin et al., Ultrafast quasi-2D/3D perovskite photodetectors conferred using interfacial engineering of self-assembled monolayers. Adv. Opt. Mater. 12(18), 2303241 (2024). https://doi.org/10.1002/adom.202303241
M. Liu, Q. Yao, S. Li, Y. Qin, S.Y. Jeong et al., Interfacial engineering for photomultiplication type organic photodetectors with signal-noise-ratio over 89 000. Adv. Opt. Mater. 12(16), 2303216 (2024). https://doi.org/10.1002/adom.202303216
Y. Wang, J. Li, K. Shi, W. Wang, F. Tan, Enhanced performance of all-inorganic lead halide perovskite/MoS2 heterojunction photodetectors by achieving interfacial carrier separation. Phys. Status Solidi A 221(4), 2300549 (2024). https://doi.org/10.1002/pssa.202300549
Y. Zhao, S. Jiao, S. Yang, D. Wang, S. Gao et al., Achieving low cost and high performance flexible CsPbIBr2 perovskite photodetectors arrays with imaging system via dual interfacial optimization and structural design. Adv. Opt. Mater. 12(17), 2400019 (2024). https://doi.org/10.1002/adom.202400019
H. Fang, X. Xie, K. Jing, S. Liu, A. Chen et al., A flexible dual-mode photodetector for human-machine collaborative IR imaging. Nano-Micro Lett. 17(1), 229 (2025). https://doi.org/10.1007/s40820-025-01758-5
D.-M. Geum, S. Kim, S.K. Kim, S. Kang, J. Kyhm et al., Monolithic integration of visible GaAs and near-infrared InGaAs for multicolor photodetectors by using high-throughput epitaxial lift-off toward high-resolution imaging systems. Sci. Rep. 9(1), 18661 (2019). https://doi.org/10.1038/s41598-019-55159-x
Y. Chen, M. Nazhamaiti, H. Xu, Y. Meng, T. Zhou et al., All-analog photoelectronic chip for high-speed vision tasks. Nature 623(7985), 48–57 (2023). https://doi.org/10.1038/s41586-023-06558-8
E. Zarei, R. Ojani, Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. J. Solid State Electrochem. 21(2), 305–336 (2017). https://doi.org/10.1007/s10008-016-3385-2
Y. Kuang, T. Yamada, K. Domen, Surface and interface engineering for photoelectrochemical water oxidation. Joule 1(2), 290–305 (2017). https://doi.org/10.1016/j.joule.2017.08.004
A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15, 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
J. Vanderspikken, Q. Liu, Z. Liu, T. Vandermeeren, T. Cardeynaels et al., Tuning electronic and morphological properties for high-performance wavelength-selective organic near-infrared cavity photodetectors. Adv. Funct. Mater. 32(9), 2108146 (2022). https://doi.org/10.1002/adfm.202108146
X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon et al., High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948), 1665–1667 (2009). https://doi.org/10.1126/science.1176706
B. Siegmund, A. Mischok, J. Benduhn, O. Zeika, S. Ullbrich et al., Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 8, 15421 (2017). https://doi.org/10.1038/ncomms15421
J. Kublitski, Enhancing sub-bandgap external quantum efficiency by photomultiplication in narrowband organic near-infrared photodetectors. Organic Semiconductor Devices for Light Detection, Springer 2022, pp. 151–169. https://doi.org/10.1007/978-3-030-94464-3_6
S. Wang, X. Song, J. Xu, J. Wang, L. Yu, Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. Mater. Horiz. 12(4), 1106–1132 (2025). https://doi.org/10.1039/D4MH01466A
L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
V.C. Coffey, Vision accomplished: the bionic eye. Opt. Photonics News 28(4), 24 (2017). https://doi.org/10.1364/opn.28.4.000024