Cactus Thorn-Inspired Janus Nanofiber Membranes as a Water Diode for Light-Enhanced Diabetic Wound Healing
Corresponding Author: Yu Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 101
Abstract
Diabetic wounds present challenges in clinical management due to persistent inflammation caused by excessive exudate infiltration. Inspired by the gradient wettability of cactus thorn, this study has devised a biomimetic Janus nanofiber membrane as a water diode, which endows with gradient wettability and gradient pore size, offering sustainable unidirectional self-drainage and antibacterial properties for enhanced diabetic wound healing. The Janus membrane is fabricated by depositing a hydrophilic polyacrylonitrile/chlorin e6 layer with smaller pore sizes onto a hydrophobic poly(ε-caprolactone) with larger pore sizes, thereby generating a vertical gradient in both wettability and pore structure. The incorporation of chlorin e6 in the upper layer enables the utilization of external light energy to generate heat for evaporation and produce reactive oxygen species, achieving a high sterilization efficiency of 99%. Meanwhile, the gradient structure of the Janus membrane facilitates continuous antigravity exudate drainage at a rate of 0.95 g cm−2 h−1. This dual functionality of effective exudate drainage and sterilization significantly reduces inflammatory factors, allows the polarization of macrophages toward the M2 proliferative phenotype, enhances angiogenesis, and accelerates wound healing. Therefore, this study provides a groundbreaking bioinspired strategy for the development of advanced wound dressings tailored for diabetic wound regeneration.
Highlights:
1 Photonic-powered Janus membrane with dual-gradient architecture for efficient wound exudate drainage and evaporation.
2 Photodynamic–photothermal Janus membrane for enhanced bacterial eradication.
3 Multifunctional Janus membrane with dual drainage–sterilization functions accelerates diabetic wound healing via macrophage reprogramming and tissue regeneration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.G. Savelieff, M.A. Elafros, V. Viswanathan, T.S. Jensen, D.L. Bennett et al., The global and regional burden of diabetic peripheral neuropathy. Nat. Rev. Neurol. 21(1), 17–31 (2025). https://doi.org/10.1038/s41582-024-01041-y
- M. Edmonds, A renaissance in diabetic foot care: new evidence-based treatments. Lancet Diabetes Endocrinol. 6(11), 837–838 (2018). https://doi.org/10.1016/S2213-8587(18)30262-6
- K.A. Gallagher, J.L. Mills, D.G. Armstrong, M.S. Conte, R.S. Kirsner et al., Current status and principles for the treatment and prevention of diabetic foot ulcers in the cardiovascular patient population: a scientific statement from the American Heart Association. Circulation 149(4), e232–e253 (2024). https://doi.org/10.1161/cir.0000000000001192
- F. Bao, G. Pei, Z. Wu, H. Zhuang, Z. Zhang et al., Bioactive self-pumping composite wound dressings with micropore array modified Janus membrane for enhanced diabetic wound healing. Adv. Funct. Mater. 30(49), 2005422 (2020). https://doi.org/10.1002/adfm.202005422
- F. Wang, M. Wang, Q. He, X. Wang, P. Sun et al., Black tantalic oxide submicro-ps coating on PEEK fibers woven into fabrics as artificial ligaments with photothermal antibacterial effect and osteogenic activity for promoting ligament-bone healing. J. Mater. Sci. Technol. 133, 195–208 (2023). https://doi.org/10.1016/j.jmst.2022.05.054
- X. Wang, X. Qin, Y. Liu, Y. Fang, H. Meng et al., Plasmonic supramolecular nanozyme-based bio-cockleburs for synergistic therapy of infected diabetic wounds. Adv. Mater. 36(49), 2411194 (2024). https://doi.org/10.1002/adma.202411194
- L. Shang, Y. Yu, Y. Jiang, X. Liu, N. Sui et al., Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17(16), 15962–15977 (2023). https://doi.org/10.1021/acsnano.3c04134
- E. Shirzaei Sani, C. Xu, C. Wang, Y. Song, J. Min et al., A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9(12), eadf7388 (2023). https://doi.org/10.1126/sciadv.adf7388
- L. Zhou, Z. Hu, F. Liu, H. Meng, W. Guo et al., Electrospun self-pumping dressing with gastrodin for immunomodulation and rapid healing of diabetic wounds. Chem. Eng. J. 495, 153424 (2024). https://doi.org/10.1016/j.cej.2024.153424
- Z. Qiu, Y. Gao, D. Qi, M. Wu, Z. Mao et al., Thermo-responsive trilayered fibrous dressing with liquid gate for dynamical exudate regulation and wound moisture balance. Adv. Funct. Mater. 34(17), 2311997 (2024). https://doi.org/10.1002/adfm.202311997
- R. Dong, Y. Li, M. Chen, P. Xiao, Y. Wu et al., In situ electrospinning of aggregation-induced emission nanofibrous dressing for wound healing. Small Methods 6(5), e2101247 (2022). https://doi.org/10.1002/smtd.202101247
- W. Sun, C. Mu, X. Zhang, H. Shi, Q. Yan et al., Mussel-inspired polysaccharide-based sponges for hemostasis and bacteria infected wound healing. Carbohydr. Polym. 295, 119868 (2022). https://doi.org/10.1016/j.carbpol.2022.119868
- H. Cui, M. Liu, W. Yu, Y. Cao, H. Zhou et al., Copper peroxide-loaded gelatin sponges for wound dressings with antimicrobial and accelerating healing properties. ACS Appl. Mater. Interfaces 13(23), 26800–26807 (2021). https://doi.org/10.1021/acsami.1c07409
- J. Yang, Z. Huang, J. Tan, J. Pan, S. Chen et al., Copper ion/Gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality. Bioact. Mater. 32, 260–276 (2024). https://doi.org/10.1016/j.bioactmat.2023.10.005
- S. Deng, Y. Huang, E. Hu, L.-J. Ning, R. Xie et al., Chitosan/silk fibroin nanofibers-based hierarchical sponges accelerate infected diabetic wound healing via a HClO self-producing cascade catalytic reaction. Carbohydr. Polym. 321, 121340 (2023). https://doi.org/10.1016/j.carbpol.2023.121340
- J. Lan, L. Shi, W. Xiao, X. Zhang, S. Wang, A rapid self-pumping organohydrogel dressing with hydrophilic fractal microchannels to promote burn wound healing. Adv. Mater. 35(38), 2301765 (2023). https://doi.org/10.1002/adma.202301765
- S. Liu, Y. Zhao, M. Li, L. Nie, Q. Wei et al., Bioactive wound dressing based on decellularized tendon and GelMA with incorporation of PDA-loaded asiaticoside nanops for scarless wound healing. Chem. Eng. J. 466, 143016 (2023). https://doi.org/10.1016/j.cej.2023.143016
- D. Ailincai, S. Cibotaru, A. Anisiei, C.G. Coman, A.S. Pasca et al., Mesoporous chitosan nanofibers loaded with norfloxacin and coated with phenylboronic acid perform as bioabsorbable active dressings to accelerate the healing of burn wounds. Carbohydr. Polym. 318, 121135 (2023). https://doi.org/10.1016/j.carbpol.2023.121135
- M. Prakash, D. Quéré, J.W.M. Bush, Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science 320(5878), 931–934 (2008). https://doi.org/10.1126/science.1156023
- Y. Choi, K. Baek, H. So, 3D-printing-assisted fabrication of hierarchically structured biomimetic surfaces with dual-wettability for water harvesting. Sci. Rep. 13(1), 10691 (2023). https://doi.org/10.1038/s41598-023-37461-x
- S. Zhang, M. Chi, J. Mo, T. Liu, Y. Liu et al., Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat. Commun. 13(1), 4168 (2022). https://doi.org/10.1038/s41467-022-31987-w
- J. Wang, J. Ye, Z. Li, X. Li, Y. Luo et al., An integrated Janus bioelectronic bandage for unidirectional pumping and monitoring of wound exudate. Nano Lett. 25(13), 5156–5164 (2025). https://doi.org/10.1021/acs.nanolett.4c06147
- X. Zhang, N. Yu, Q. Ren, S. Niu, L. Zhu et al., Janus nanofiber membranes with photothermal-enhanced biofluid drainage and sterilization for diabetic wounds. Adv. Funct. Mater. 34(24), 2315020 (2024). https://doi.org/10.1002/adfm.202315020
- W. Xiao, X. Wan, L. Shi, M. Ye, Y. Zhang et al., A viscous-biofluid self-pumping organohydrogel dressing to accelerate diabetic wound healing. Adv. Mater. 36(25), e2401539 (2024). https://doi.org/10.1002/adma.202401539
- Y. Wang, Q. Zhang, Z. Liu, C. Jin, Y. Rao et al., Janus fibrous dressing with controllable nitric oxide-releasing and unidirectional exudate transport activities for bacteria-infected burn wound therapy. Adv. Funct. Mater. 2025, 2503992 (2025). https://doi.org/10.1002/adfm.202503992
- Y. Cheng, J. Wang, X. Lu, C. Wang, An all-nanofibrous Janus textile with directional perspiration for triboelectric nanogenerator and self-powered e-skin sensor. Nano Energy 117, 108852 (2023). https://doi.org/10.1016/j.nanoen.2023.108852
- Y. Liang, S. Kim, P. Kallem, H. Choi, Capillary effect in Janus electrospun nanofiber membrane for oil/water emulsion separation. Chemosphere 221, 479–485 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.048
- J. Wu, H. Zhou, H. Wang, H. Shao, G. Yan et al., Novel water harvesting fibrous membranes with directional water transport capability. Adv. Mater. Interfaces 6(5), 1801529 (2019). https://doi.org/10.1002/admi.201801529
- J.-A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin et al., Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537(7619), 179–184 (2016). https://doi.org/10.1038/nature19344
- S. Feng, S. Wang, Y. Tao, W. Shang, S. Deng et al., Radial wettable gradient of hot surface to control droplets movement in directions. Sci. Rep. 5, 10067 (2015). https://doi.org/10.1038/srep10067
- Y. Lin, Z. Hu, M. Zhang, T. Xu, S. Feng et al., Magnetically induced low adhesive direction of nano/micropillar arrays for microdroplet transport. Adv. Funct. Mater. 28(49), 1800163 (2018). https://doi.org/10.1002/adfm.201800163
- N. Yu, P. Qiu, Q. Ren, M. Wen, P. Geng et al., Transforming a sword into a knife: persistent phototoxicity inhibition and alternative therapeutical activation of highly-photosensitive phytochlorin. ACS Nano 15(12), 19793–19805 (2021). https://doi.org/10.1021/acsnano.1c07241
- Y. Xue, L. Zhang, J. Chen, D. Ma, Y. Zhang et al., An “all-in-one” therapeutic platform for programmed antibiosis, immunoregulation and neuroangiogenesis to accelerate diabetic wound healing. Biomaterials 321, 123293 (2025). https://doi.org/10.1016/j.biomaterials.2025.123293
- Y. Song, V.A. Milichko, Z. Ding, W. Li, B. Kang et al., Double cross-linked hydrogel for intra-articular injection as modality for macrophages metabolic reprogramming and therapy of rheumatoid arthritis. Adv. Funct. Mater. 2502880 (2025). https://doi.org/10.1002/adfm.202502880
- Y. Qian, C. Xu, W. Xiong, N. Jiang, Y. Zheng et al., Dual cross-linked organic-inorganic hybrid hydrogels accelerate diabetic skin wound healing. Chem. Eng. J. 417, 129335 (2021). https://doi.org/10.1016/j.cej.2021.129335
- J. Jasti, H. Zhong, V. Panwar, V. Jarmale, J. Miyata et al., Histopathology based AI model predicts anti-angiogenic therapy response in renal cancer clinical trial. Nat. Commun. 16(1), 2610 (2025). https://doi.org/10.1038/s41467-025-57717-6
References
M.G. Savelieff, M.A. Elafros, V. Viswanathan, T.S. Jensen, D.L. Bennett et al., The global and regional burden of diabetic peripheral neuropathy. Nat. Rev. Neurol. 21(1), 17–31 (2025). https://doi.org/10.1038/s41582-024-01041-y
M. Edmonds, A renaissance in diabetic foot care: new evidence-based treatments. Lancet Diabetes Endocrinol. 6(11), 837–838 (2018). https://doi.org/10.1016/S2213-8587(18)30262-6
K.A. Gallagher, J.L. Mills, D.G. Armstrong, M.S. Conte, R.S. Kirsner et al., Current status and principles for the treatment and prevention of diabetic foot ulcers in the cardiovascular patient population: a scientific statement from the American Heart Association. Circulation 149(4), e232–e253 (2024). https://doi.org/10.1161/cir.0000000000001192
F. Bao, G. Pei, Z. Wu, H. Zhuang, Z. Zhang et al., Bioactive self-pumping composite wound dressings with micropore array modified Janus membrane for enhanced diabetic wound healing. Adv. Funct. Mater. 30(49), 2005422 (2020). https://doi.org/10.1002/adfm.202005422
F. Wang, M. Wang, Q. He, X. Wang, P. Sun et al., Black tantalic oxide submicro-ps coating on PEEK fibers woven into fabrics as artificial ligaments with photothermal antibacterial effect and osteogenic activity for promoting ligament-bone healing. J. Mater. Sci. Technol. 133, 195–208 (2023). https://doi.org/10.1016/j.jmst.2022.05.054
X. Wang, X. Qin, Y. Liu, Y. Fang, H. Meng et al., Plasmonic supramolecular nanozyme-based bio-cockleburs for synergistic therapy of infected diabetic wounds. Adv. Mater. 36(49), 2411194 (2024). https://doi.org/10.1002/adma.202411194
L. Shang, Y. Yu, Y. Jiang, X. Liu, N. Sui et al., Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17(16), 15962–15977 (2023). https://doi.org/10.1021/acsnano.3c04134
E. Shirzaei Sani, C. Xu, C. Wang, Y. Song, J. Min et al., A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9(12), eadf7388 (2023). https://doi.org/10.1126/sciadv.adf7388
L. Zhou, Z. Hu, F. Liu, H. Meng, W. Guo et al., Electrospun self-pumping dressing with gastrodin for immunomodulation and rapid healing of diabetic wounds. Chem. Eng. J. 495, 153424 (2024). https://doi.org/10.1016/j.cej.2024.153424
Z. Qiu, Y. Gao, D. Qi, M. Wu, Z. Mao et al., Thermo-responsive trilayered fibrous dressing with liquid gate for dynamical exudate regulation and wound moisture balance. Adv. Funct. Mater. 34(17), 2311997 (2024). https://doi.org/10.1002/adfm.202311997
R. Dong, Y. Li, M. Chen, P. Xiao, Y. Wu et al., In situ electrospinning of aggregation-induced emission nanofibrous dressing for wound healing. Small Methods 6(5), e2101247 (2022). https://doi.org/10.1002/smtd.202101247
W. Sun, C. Mu, X. Zhang, H. Shi, Q. Yan et al., Mussel-inspired polysaccharide-based sponges for hemostasis and bacteria infected wound healing. Carbohydr. Polym. 295, 119868 (2022). https://doi.org/10.1016/j.carbpol.2022.119868
H. Cui, M. Liu, W. Yu, Y. Cao, H. Zhou et al., Copper peroxide-loaded gelatin sponges for wound dressings with antimicrobial and accelerating healing properties. ACS Appl. Mater. Interfaces 13(23), 26800–26807 (2021). https://doi.org/10.1021/acsami.1c07409
J. Yang, Z. Huang, J. Tan, J. Pan, S. Chen et al., Copper ion/Gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality. Bioact. Mater. 32, 260–276 (2024). https://doi.org/10.1016/j.bioactmat.2023.10.005
S. Deng, Y. Huang, E. Hu, L.-J. Ning, R. Xie et al., Chitosan/silk fibroin nanofibers-based hierarchical sponges accelerate infected diabetic wound healing via a HClO self-producing cascade catalytic reaction. Carbohydr. Polym. 321, 121340 (2023). https://doi.org/10.1016/j.carbpol.2023.121340
J. Lan, L. Shi, W. Xiao, X. Zhang, S. Wang, A rapid self-pumping organohydrogel dressing with hydrophilic fractal microchannels to promote burn wound healing. Adv. Mater. 35(38), 2301765 (2023). https://doi.org/10.1002/adma.202301765
S. Liu, Y. Zhao, M. Li, L. Nie, Q. Wei et al., Bioactive wound dressing based on decellularized tendon and GelMA with incorporation of PDA-loaded asiaticoside nanops for scarless wound healing. Chem. Eng. J. 466, 143016 (2023). https://doi.org/10.1016/j.cej.2023.143016
D. Ailincai, S. Cibotaru, A. Anisiei, C.G. Coman, A.S. Pasca et al., Mesoporous chitosan nanofibers loaded with norfloxacin and coated with phenylboronic acid perform as bioabsorbable active dressings to accelerate the healing of burn wounds. Carbohydr. Polym. 318, 121135 (2023). https://doi.org/10.1016/j.carbpol.2023.121135
M. Prakash, D. Quéré, J.W.M. Bush, Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science 320(5878), 931–934 (2008). https://doi.org/10.1126/science.1156023
Y. Choi, K. Baek, H. So, 3D-printing-assisted fabrication of hierarchically structured biomimetic surfaces with dual-wettability for water harvesting. Sci. Rep. 13(1), 10691 (2023). https://doi.org/10.1038/s41598-023-37461-x
S. Zhang, M. Chi, J. Mo, T. Liu, Y. Liu et al., Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat. Commun. 13(1), 4168 (2022). https://doi.org/10.1038/s41467-022-31987-w
J. Wang, J. Ye, Z. Li, X. Li, Y. Luo et al., An integrated Janus bioelectronic bandage for unidirectional pumping and monitoring of wound exudate. Nano Lett. 25(13), 5156–5164 (2025). https://doi.org/10.1021/acs.nanolett.4c06147
X. Zhang, N. Yu, Q. Ren, S. Niu, L. Zhu et al., Janus nanofiber membranes with photothermal-enhanced biofluid drainage and sterilization for diabetic wounds. Adv. Funct. Mater. 34(24), 2315020 (2024). https://doi.org/10.1002/adfm.202315020
W. Xiao, X. Wan, L. Shi, M. Ye, Y. Zhang et al., A viscous-biofluid self-pumping organohydrogel dressing to accelerate diabetic wound healing. Adv. Mater. 36(25), e2401539 (2024). https://doi.org/10.1002/adma.202401539
Y. Wang, Q. Zhang, Z. Liu, C. Jin, Y. Rao et al., Janus fibrous dressing with controllable nitric oxide-releasing and unidirectional exudate transport activities for bacteria-infected burn wound therapy. Adv. Funct. Mater. 2025, 2503992 (2025). https://doi.org/10.1002/adfm.202503992
Y. Cheng, J. Wang, X. Lu, C. Wang, An all-nanofibrous Janus textile with directional perspiration for triboelectric nanogenerator and self-powered e-skin sensor. Nano Energy 117, 108852 (2023). https://doi.org/10.1016/j.nanoen.2023.108852
Y. Liang, S. Kim, P. Kallem, H. Choi, Capillary effect in Janus electrospun nanofiber membrane for oil/water emulsion separation. Chemosphere 221, 479–485 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.048
J. Wu, H. Zhou, H. Wang, H. Shao, G. Yan et al., Novel water harvesting fibrous membranes with directional water transport capability. Adv. Mater. Interfaces 6(5), 1801529 (2019). https://doi.org/10.1002/admi.201801529
J.-A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin et al., Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537(7619), 179–184 (2016). https://doi.org/10.1038/nature19344
S. Feng, S. Wang, Y. Tao, W. Shang, S. Deng et al., Radial wettable gradient of hot surface to control droplets movement in directions. Sci. Rep. 5, 10067 (2015). https://doi.org/10.1038/srep10067
Y. Lin, Z. Hu, M. Zhang, T. Xu, S. Feng et al., Magnetically induced low adhesive direction of nano/micropillar arrays for microdroplet transport. Adv. Funct. Mater. 28(49), 1800163 (2018). https://doi.org/10.1002/adfm.201800163
N. Yu, P. Qiu, Q. Ren, M. Wen, P. Geng et al., Transforming a sword into a knife: persistent phototoxicity inhibition and alternative therapeutical activation of highly-photosensitive phytochlorin. ACS Nano 15(12), 19793–19805 (2021). https://doi.org/10.1021/acsnano.1c07241
Y. Xue, L. Zhang, J. Chen, D. Ma, Y. Zhang et al., An “all-in-one” therapeutic platform for programmed antibiosis, immunoregulation and neuroangiogenesis to accelerate diabetic wound healing. Biomaterials 321, 123293 (2025). https://doi.org/10.1016/j.biomaterials.2025.123293
Y. Song, V.A. Milichko, Z. Ding, W. Li, B. Kang et al., Double cross-linked hydrogel for intra-articular injection as modality for macrophages metabolic reprogramming and therapy of rheumatoid arthritis. Adv. Funct. Mater. 2502880 (2025). https://doi.org/10.1002/adfm.202502880
Y. Qian, C. Xu, W. Xiong, N. Jiang, Y. Zheng et al., Dual cross-linked organic-inorganic hybrid hydrogels accelerate diabetic skin wound healing. Chem. Eng. J. 417, 129335 (2021). https://doi.org/10.1016/j.cej.2021.129335
J. Jasti, H. Zhong, V. Panwar, V. Jarmale, J. Miyata et al., Histopathology based AI model predicts anti-angiogenic therapy response in renal cancer clinical trial. Nat. Commun. 16(1), 2610 (2025). https://doi.org/10.1038/s41467-025-57717-6