Photo-Assisted Flexible Energy Storage Devices: Progress, Challenges, and Future Prospects
Corresponding Author: Min Li
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 112
Abstract
Photo-assisted flexible energy storage devices, combining photoelectric conversion and electrochemical energy storage, emerge as an innovative solution for sustainable energy systems. This review comprehensively summarizes recent advances in photo-assisted flexible energy storage technology, covering material design, working mechanisms, and practical applications. We systematically examine diverse electrode materials, such as metal oxides, metal sulfides, organic photosensitive materials, and composites, emphasizing their roles in boosting device performance. Special focus is placed on emerging technologies—including heterostructure engineering, surface modification, and intelligent control systems—that have notably enhanced energy conversion efficiency and storage capacity. The review also discusses current challenges, such as material stability, conversion efficiency, and standardization, and proposes strategic directions for future development. Recent breakthroughs in photo-assisted supercapacitors, lithium-based batteries, zinc-based batteries, and other innovative storage systems are critically assessed, offering key insights into their practical application potential in wearable electronics, self-powered sensors, and beyond. This comprehensive analysis establishes a framework for understanding the current status of photo-assisted flexible energy storage technology and guides future research toward high-performance, sustainable energy storage solutions.
Highlights:
1 This review provides a comprehensive integration of photoconversion and electrochemical storage mechanisms for flexible wearable applications.
2 It systematically classifies and compares various flexible light-assisted energy storage systems—from supercapacitors to diverse metal batteries—within a unified framework.
3 The review highlights advanced material design strategies and performance enhancement techniques specifically tailored for light-responsive energy storage, including heterojunctions, doping, and nanostructures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Wang, Y. Hu, S. Zhang, Y. Sun, Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem. Soc. Rev. 51(15), 6704–6737 (2022). https://doi.org/10.1039/D1CS01008E
- W. Ma, Y. Zhang, S. Pan, Y. Cheng, Z. Shao et al., Smart fibers for energy conversion and storage. Chem. Soc. Rev. 50(12), 7009–7061 (2021). https://doi.org/10.1039/d0cs01603a
- N. Flores-Diaz, F. De Rossi, A. Das, M. Deepa, F. Brunetti et al., Progress of photocapacitors. Chem. Rev. 123(15), 9327–9355 (2023). https://doi.org/10.1021/acs.chemrev.2c00773
- Q. Xu, J. Chen, J.R. Loh, H. Zhong, K. Zhang et al., Fiber-shaped batteries towards high performance and perspectives of corresponding integrated battery textiles. Adv. Energy Mater. 14(3), 2302536 (2024). https://doi.org/10.1002/aenm.202302536
- Z. Yang, J. Deng, H. Sun, J. Ren, S. Pan et al., Self-powered energy fiber: energy conversion in the sheath and storage in the core. Adv. Mater. 26(41), 7038–7042 (2014). https://doi.org/10.1002/adma.201401972
- G. Gao, G. Li, Y. Zhao, L. Ma, W. Huang, The structure design of flexible batteries. Matter 6(11), 3732–3746 (2023). https://doi.org/10.1016/j.matt.2023.08.021
- K. Ding, Y. Ye, J. Hu, L. Zhao, W. Jin et al., Aerophilic triphase interface tuned by carbon dots driving durable and flexible rechargeable Zn-air batteries. Nano-Micro Lett. 15(1), 28 (2023). https://doi.org/10.1007/s40820-022-00994-3
- S. Hu, M. Zhu, Semiconductor for oxygen electrocatalysis in photo-assisted rechargeable zinc-air batteries: principles, advances, and opportunities. Energy Storage Mater. 61, 102866 (2023). https://doi.org/10.1016/j.ensm.2023.102866
- X. Dong, X. Chen, X. Jiang, N. Yang, Light-assisted energy storage devices: principles, performance, and perspectives. Adv. Energy Mater. 13(38), 2301143 (2023). https://doi.org/10.1002/aenm.202301143
- T. Bai, J. Wang, H. Zhang, F. Ji, W. Song et al., Atomic Ni-catalyzed cathode and stabilized Li metal anode for high-performance Li–O2 batteries. eScience 5(1), 100310 (2025). https://doi.org/10.1016/j.esci.2024.100310
- T. Miyasaka, T.N. Murakami, The photocapacitor: an efficient self-charging capacitor for direct storage of solar energy. Appl. Phys. Lett. 85(17), 3932–3934 (2004). https://doi.org/10.1063/1.1810630
- C. An, Z. Wang, W. Xi, K. Wang, X. Liu et al., Nanoporous Cu@Cu2O hybrid arrays enable photo-assisted supercapacitor with enhanced capacities. J. Mater. Chem. A 7(26), 15691–15697 (2019). https://doi.org/10.1039/c9ta03707a
- M. Yu, X. Ren, L. Ma, Y. Wu, Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. Nat. Commun. 5, 5111 (2014). https://doi.org/10.1038/ncomms6111
- M. Yu, W.D. McCulloch, D.R. Beauchamp, Z. Huang, X. Ren et al., Aqueous lithium–iodine solar flow battery for the simultaneous conversion and storage of solar energy. J. Am. Chem. Soc. 137(26), 8332–8335 (2015). https://doi.org/10.1021/jacs.5b03626
- N. Li, Y. Wang, D. Tang, H. Zhou, Integrating a photocatalyst into a hybrid lithium–sulfur battery for direct storage of solar energy. Angew. Chem. Int. Ed. 54(32), 9271–9274 (2015). https://doi.org/10.1002/anie.201503425
- K. Wang, Z. Mo, S. Tang, M. Li, H. Yang et al., Photo-enhanced Zn–air batteries with simultaneous highly efficientin situ H for wastewater treatment. J. Mater. Chem. A 7(23), 14129–14135 (2019). https://doi.org/10.1039/c9ta04253a
- X. Liu, Y. Yuan, J. Liu, B. Liu, X. Chen et al., Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc-air battery. Nat. Commun. 10(1), 4767 (2019). https://doi.org/10.1038/s41467-019-12627-2
- Z. Li, M.-L. Li, X.-X. Wang, D.-H. Guan, W.-Q. Liu et al., In situ fabricated photo-electro-catalytic hybrid cathode for light-assisted lithium–CO2 batteries. J. Mater. Chem. A 8(29), 14799–14806 (2020). https://doi.org/10.1039/d0ta05069e
- X. Liu, S. Tao, J. Zhang, Y. Zhu, R. Ma et al., Ultrathin p–n type Cu2O/CuCoCr-layered double hydroxide heterojunction nanosheets for photo-assisted aqueous Zn–CO2 batteries. J. Mater. Chem. A 9(46), 26061–26068 (2021). https://doi.org/10.1039/D1TA07522E
- D.-H. Guan, X.-X. Wang, M.-L. Li, F. Li, L.-J. Zheng et al., Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li-CO2 battery. Angew. Chem. Int. Ed. 59(44), 19518–19524 (2020). https://doi.org/10.1002/anie.202005053
- Z. Gao, P. Liu, X. Fu, L. Xu, Y. Zuo et al., Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber electrodes. J. Mater. Chem. A 7(24), 14447–14454 (2019). https://doi.org/10.1039/C9TA04178H
- S. Pan, Z. Yang, H. Li, L. Qiu, H. Sun et al., Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J. Am. Chem. Soc. 135(29), 10622–10625 (2013). https://doi.org/10.1021/ja405012w
- X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang et al., A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater. 30(43), 1803165 (2018). https://doi.org/10.1002/adma.201803165
- S. Zhang, S. Xiao, D. Li, J. Liao, F. Ji et al., Commercial carbon cloth: an emerging substrate for practical lithium metal batteries. Energy Storage Mater. 48, 172–190 (2022). https://doi.org/10.1016/j.ensm.2022.03.014
- X. Kang, Z. Zhu, T. Zhao, W. Zhai, J. Xu et al., Hierarchically assembled counter electrode for fiber solar cell showing record power conversion efficiency. Adv. Funct. Mater. 32(51), 2207763 (2022). https://doi.org/10.1002/adfm.202207763
- H. Sun, Y. Jiang, S. Xie, Y. Zhang, J. Ren et al., Integrating photovoltaic conversion and lithium ion storage into a flexible fiber. J. Mater. Chem. A 4(20), 7601–7605 (2016). https://doi.org/10.1039/C6TA01514J
- D. Li, L. Dai, X. Ren, F. Ji, Q. Sun et al., Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. 14(1), 424–436 (2021). https://doi.org/10.1039/d0ee02919j
- X. Liu, J. Song, H. Song, H. Zhuo, W. Chen et al., Flexible photo-assisted zinc-air battery achieved by heterojunction structure between oxygen-vacancy-rich CoFe2O4 and nitrogen-doped hollow carbon spheres. J. Colloid Interface Sci. 695, 137788 (2025). https://doi.org/10.1016/j.jcis.2025.137788
- S. He, S. Gao, S. Hu, Light-assisted delocalized electron-driven g-C3N4/NSs-based cathode catalysts for high-performance rechargeable zinc-air batteries. Energy Storage Mater. 77, 104194 (2025). https://doi.org/10.1016/j.ensm.2025.104194
- A. Maitra, R. Bera, L. Halder, A. Bera, S. Paria et al., Photovoltaic and triboelectrification empowered light-weight flexible self-charging asymmetric supercapacitor cell for self-powered multifunctional electronics. Renew. Sustain. Energy Rev. 151, 111595 (2021). https://doi.org/10.1016/j.rser.2021.111595
- M.M. Momeni, F. Mohammadinejad, F. Ghasemipur, B.-K. Lee, Asymmetric photo-assisted supercapacitor and symmetric flexible supercapacitors based on CeO2-MnO2 supported on carbon cloth. J. Alloys Compd. 1029, 180761 (2025). https://doi.org/10.1016/j.jallcom.2025.180761
- J. Han, H. Guo, X. Yu, K. Lai, J. Chen et al., Band splitting under strain: a route to broad-spectrum absorption. Mater. Today Phys. 39, 101286 (2023). https://doi.org/10.1016/j.mtphys.2023.101286
- B. Rezini, T. Seddik, R. Mouacher, T.V. Vu, M. Batouche et al., Strain effects on electronic, optical properties and carriers mobility of Cs2SnI6 vacancy-ordered double perovskite: a promising photovoltaic material. Int. J. Quantum Chem. 122(21), e26977 (2022). https://doi.org/10.1002/qua.26977
- B. Wang, A. Facchetti, Mechanically flexible conductors for stretchable and wearable E-skin and E-textile devices. Adv. Mater. 31(28), 1901408 (2019). https://doi.org/10.1002/adma.201901408
- C. Wang, Y. Jing, D. Zhu, H.L. Xin, Atomic origin of chemomechanical failure of layered cathodes in all-solid-state batteries. J. Am. Chem. Soc. 146(26), 17712–17718 (2024). https://doi.org/10.1021/jacs.4c02198
- Y. Lu, K. Li, Y.-Y. Song, Z. Gao, Ultra-flexible all-in-one anti-freeze photothermally enhanced supercapacitors. Nano Res. 17(8), 7221–7229 (2024). https://doi.org/10.1007/s12274-024-6743-x
- W. Wang, J. Wang, S. Pan, Z.-J. Wang, S. Wang et al., Crafting of photothermal cobalt/sulfur doped manganese selenide for extreme-temperature-tolerant flexible zinc-air batteries. Adv. Funct. Mater. 35(31), 2425430 (2025). https://doi.org/10.1002/adfm.202425430
- S. Zhu, M. Chen, S. Wang, W. Wu, Y. Yue et al., Boosting photothermal conversion and energy storage in MXene electrodes through softened wood toward solar-enhanced flexible supercapacitor. Ind. Crops Prod. 221, 119289 (2024). https://doi.org/10.1016/j.indcrop.2024.119289
- R.B. Ahmad, A.W. Anwar, A. Ali, T. Fatima, M. Moin et al., Pressure-dependent band gap engineering with structural, electronic, mechanical, optical, and thermal properties of CsPbBr3: first-principles calculations. J. Mol. Model. 30(8), 270 (2024). https://doi.org/10.1007/s00894-024-06040-w
- Y.-Y. Li, C.-Y. Zhong, M.-X. Li, Q.-Y. Zhang, Y. Chen et al., Tuning morphology-dependent localized surface plasmon resonance in quasi-metallic tungsten oxide nanostructures for enhanced photocatalysis. J. Mater. Chem. C 9(5), 1614–1621 (2021). https://doi.org/10.1039/D0TC05333C
- P. Li, Y. Liu, Z. Wang, X. Xiao, G. Meng et al., Dry-regulated hydrogels with anisotropic mechanical performance and ionic conductivity. Chin. Chem. Lett. 33(2), 871–876 (2022). https://doi.org/10.1016/j.cclet.2021.08.010
- Y. Yu, B. Xiong, F. Zeng, R. Xu, F. Yang et al., Influences of compression on the mechanical behavior and electrochemical performances of separators for lithium ion batteries. Ind. Eng. Chem. Res. 57(50), 17142–17151 (2018). https://doi.org/10.1021/acs.iecr.8b03855
- S. Friedrich, S. Stojecevic, P. Rapp, S. Helmer, M. Bock et al., Effect of mechanical pressure on lifetime, expansion, and porosity of silicon-dominant anodes in laboratory lithium-ion cells. J. Electrochem. Soc. 171(5), 050540 (2024). https://doi.org/10.1149/1945-7111/ad36e6
- S. Feng, X. Wang, M. Wang, C. Bai, S. Cao et al., Crumpled MXene electrodes for ultrastretchable and high-area-capacitance supercapacitors. Nano Lett. 21(18), 7561–7568 (2021). https://doi.org/10.1021/acs.nanolett.1c02071
- H. Huang, H. Jia, Z. Liu, P. Gao, J. Zhao et al., Understanding of strain effects in the electrochemical reduction of CO2: using Pd nanostructures as an ideal platform. Angew. Chem. Int. Ed. 56(13), 3594–3598 (2017). https://doi.org/10.1002/anie.201612617
- A. He, L. Feng, L. Liu, J. Peng, Y. Chen et al., Design of novel egg-shaped GdVO4 photocatalyst: a unique platform for the photocatalyst and supercapacitors applications. J. Mater. Sci. Mater. Electron. 31(16), 13131–13140 (2020). https://doi.org/10.1007/s10854-020-03864-z
- M.V. Arularasu, P. Vinitha, V. Vetrivelan, M. Begum, A. Siddiqua, Ce Doped V2O5 nanops for dual functionality: Photocatalytic degradation of organic dye and supercapacitor applications. Mater. Res. Bull. 186, 113335 (2025). https://doi.org/10.1016/j.materresbull.2025.113335
- K. Kala, N. Padmasini, M.N. Harish, J.S. priyan, R. Siranjeevi, A sustainable and highly efficient photocatalytic and supercapacitor electrode for biogenic nickel oxide nanop infused graphene oxide. Surf. Interfaces 49, 104438 (2024). https://doi.org/10.1016/j.surfin.2024.104438
- N. Macherla, G. Dharmana, M. Nerella, T.R. Gurugubelli, R. Koutavarapu et al., Hydrothermal synthesis of Cu2O/Ti3C2 nanocomposite with sphere/sheet structures for enhanced photocatalysis and supercapacitor performance. Surf. Interface Anal. 64, 106408 (2025). https://doi.org/10.1016/j.surfin.2025.106408
- T. Iqbal, R.M. Munir, H. Farooq, S. Afsheen, A. Younas et al., Novel Fe doped NiO-based electrode material for photoactivated catalyst and supercapacitor application. J. Energy Storage 103, 114284 (2024). https://doi.org/10.1016/j.est.2024.114284
- A.C. Çelt, M. Çayirli, R.C. Özden, E. Lökçü, M. Anik, Synthesis of MoS₂/graphene hetero-film photocatalyst and Li-oxygen battery application. ChemElectroChem 12(1), e202400577 (2025). https://doi.org/10.1002/celc.202400577
- X. Wang, Q. Chen, D. Yang, Y. Li, D. Yin et al., Ag doped ZnO hollow nanosphere as a photocatalyst for enhanced performance in photo-assisted Li-O2 batteries. Surf. Interfaces 56, 105679 (2025). https://doi.org/10.1016/j.surfin.2024.105679
- M.I. Hossain, F.K. Tareq, S. Rudra, Nife co-doped TiO2 as a high-performance bifunctional photocatalyst for enhanced oxygen evolution and reduction reactions in efficient zinc-air battery systems. Electrochem. Commun. 176, 107942 (2025). https://doi.org/10.1016/j.elecom.2025.107942
- Y. Zhang, N. Xu, B. Gong, X. Ye, Y. Yang et al., A visible-light-driven CoS2/CuS@CNT-C3N4 photocatalyst for high-performance rechargeable zinc-air batteries beyond 500 mW cm–2. Chin. J. Catal. 68, 300–310 (2025). https://doi.org/10.1016/s1872-2067(24)60173-7
- C. Tomon, S. Sarawutanukul, S. Duangdangchote, A. Krittayavathananon, M. Sawangphruk, Photoactive Zn–air batteries using spinel-type cobalt oxide as a bifunctional photocatalyst at the air cathode. Chem. Commun. 55(42), 5855–5858 (2019). https://doi.org/10.1039/C9CC01876J
- X. Du, J. Hu, J. Xie, Z. Lu, K. Wang et al., Remarkable upgrade of hydrogen evolution activity up to 40.8 folds and mechanistic investigation of expediting charge transfer achieved by Bi2O3-modified TiO2 photocatalyst. Int. J. Hydrogen Energy 64, 842–852 (2024). https://doi.org/10.1016/j.ijhydene.2024.03.359
- J.H.F. Chau, C.W. Lai, B.F. Leo, J.C. Juan, K.M. Lee et al., Direct Z-scheme Cu2O/WO3/TiO2 nanocomposite as a potential supercapacitor electrode and an effective visible-light-driven photocatalyst. J. Environ. Manage. 363, 121332 (2024). https://doi.org/10.1016/j.jenvman.2024.121332
- P. Zhang, L. Zhao, Z. Wang, L. Li, N. Li et al., Efficient visible light performance of MoS2QDs/TiO2 hollow sphere photocatalysts for the degradation of dyes and antibiotics. Vacuum 219, 112695 (2024). https://doi.org/10.1016/j.vacuum.2023.112695
- S. Kizhepat, A.S. Rasal, N.R. Chodankar, G.G. Demissie, K.A. Dwivedi et al., Optimizing energy solutions: Mott-schottky engineered 1D/3D CoWO4(OH)2·H2O/MoS2 heterostructure for advanced energy storage and conversion application. Small 20(50), 2404954 (2024). https://doi.org/10.1002/smll.202404954
- J. Zimou, M. Oubakalla, N.A. Labyad, Z. Barbouch, E. Laghchim et al., Impact of defects and oxygen vacancies on the microstructural, optical, and electrochemical properties of Fe-doped CeO2 nanostructured films for supercapacitor devices. J. Energy Storage 109, 115162 (2025). https://doi.org/10.1016/j.est.2024.115162
- D. Tian, X. Gao, J. Wang, R. Sun, J. Liu et al., An optimized MnO2 photocathode by doping engineering for high capacity and stability photo-assisted zinc-ion batteries. J. Mater. Chem. A 13(27), 22057–22065 (2025). https://doi.org/10.1039/D5TA03701H
- S.B. Jaffri, K.S. Ahmad, I. Abrahams, S.M. Ibrahim, Ce-Pr-Nd]: CsPbI1.8Br 1.2: Stability enhanced light harvester in perovskite solar cells, energy storage material for batteries, and an OER/HER electro-catalyst. J. Energy Storage 67, 107566 (2023). https://doi.org/10.1016/j.est.2023.107566
- Y. Zhou, K. Le, L. Gao, H. Zhang, Y. Xu et al., Carbon coated 1 T/2H MoS2 nanosheets on carbon cloth for high-performance flexible supercapacitor with superior mechanical stability. J. Energy Storage 119, 116389 (2025). https://doi.org/10.1016/j.est.2025.116389
- C.Y. Foo, A. Sumboja, D.J.H. Tan, J. Wang, P.S. Lee, Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv. Energy Mater. 4(12), 1400236 (2014). https://doi.org/10.1002/aenm.201400236
- J. Huang, S. Han, J. Zhu, Q. Wu, H. Chen et al., Mechanically stable all flexible supercapacitors with fracture and fatigue resistance under harsh temperatures. Adv. Funct. Mater. 32(35), 2205708 (2022). https://doi.org/10.1002/adfm.202205708
- Q. Liu, J. Qiu, C. Yang, L. Zang, G. Zhang et al., Robust quasi-solid-state integrated asymmetric flexible supercapacitors with interchangeable positive and negative electrode based on all-conducting-polymer electrodes. J. Alloys Compd. 887, 161362 (2021). https://doi.org/10.1016/j.jallcom.2021.161362
- Y. Luo, W. Que, A.S. Nugraha, Y. Kang, Y. Tang et al., Mesoporous gold decorated MXene (Ti3C2Tx) flexible composite films for photo-enhanced solid-state micro-supercapacitors. J. Mater. Chem. A 13(2), 1330–1342 (2025). https://doi.org/10.1039/D4TA06043A
- S. Jessl, D. Beesley, S. Engelke, C.J. Valentine, J.C. Stallard et al., Carbon nanotube conductive additives for improved electrical and mechanical properties of flexible battery electrodes. Mater. Sci. Eng. A 735, 269–274 (2018). https://doi.org/10.1016/j.msea.2018.08.033
- S. Li, J. Cao, X. Cheng, Y. Wang, J. Cao et al., Mimosa plant leaf-inspired 180° foldable lithium-ion batteries with enhanced electrochemical-mechanical behaviors. Nano Energy 129, 110032 (2024). https://doi.org/10.1016/j.nanoen.2024.110032
- K. Amin, Q. Meng, A. Ahmad, M. Cheng, M. Zhang et al., A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries. Adv. Mater. 30(4), 1703868 (2018). https://doi.org/10.1002/adma.201703868
- H. Wu, Q. Meng, Q. Yang, M. Zhang, K. Lu et al., Large-area polyimide/SWCNT nanocable cathode for flexible lithium-ion batteries. Adv. Mater. 27(41), 6504–6510 (2015). https://doi.org/10.1002/adma.201502241
- J. Chang, H. Hu, J. Shang, R. Fang, D. Shou et al., Rational design of Li-wicking hosts for ultrafast fabrication of flexible and stable lithium metal anodes. Small 18(2), 2105308 (2022). https://doi.org/10.1002/smll.202105308
- Y. Sun, Y. Liu, Z. Wang, X. Zhao, K. Cai, Self-supporting oxygen vacancy-rich α-MnO2 nanowire/few-layer graphite/SWNT bundle composite film for high-performance flexible aqueous zinc-ion battery cathode. Chem. Eng. J. 484, 149573 (2024). https://doi.org/10.1016/j.cej.2024.149573
- T. Du, W. Lu, S. Jia, X. Zhang, F. Yang, Enhanced CO-tolerance of Rh-based catalysts by photo-assisted built-in electric field for efficient formic acid oxidation. Appl. Catal. B Environ. Energy 370, 125160 (2025). https://doi.org/10.1016/j.apcatb.2025.125160
- Y.H. Hu, A highly efficient photocatalyst: hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem. Int. Ed. 51(50), 12410–12412 (2012). https://doi.org/10.1002/anie.201206375
- Z. Ma, S. Wang, Z. Ma, J. Li, L. Zhao et al., Efficient and stable photoassisted lithium-ion battery enabled by photocathode with synergistically boosted carriers dynamics. Nano-Micro Lett. 17(1), 74 (2024). https://doi.org/10.1007/s40820-024-01570-7
- R. Katal, M. Salehi, M.H. Davood Abadi Farahani, S. Masudy-Panah, S.L. Ong et al., Preparation of a new type of black TiO2 under a vacuum atmosphere for sunlight photocatalysis. ACS Appl. Mater. Interfaces 10(41), 35316–35326 (2018). https://doi.org/10.1021/acsami.8b14680
- H. Jiao, G. Sun, Y. Wang, Z. Zhang, Z. Wang et al., Defective TiO2 hollow nanospheres as photo-electrocatalysts for photo-assisted Li-O2 batteries. Chin. Chem. Lett. 33(8), 4008–4012 (2022). https://doi.org/10.1016/j.cclet.2021.11.086
- Z. Xue, Y. Ru, Q. Li, X. Liang, Y. Ma et al., Z-scheme g-C3N4/TiO2 heterojunction for a high energy density photo-assisted Li–O2 battery. J. Mater. Chem. C 12(42), 17328–17337 (2024). https://doi.org/10.1039/D4TC01832J
- C. Shu, Y. An, Y. Liu, Y. Xu, D. Ren et al., Construction of corrosion-resistant and dendrite-free zinc anode by coating nano-ceriumoxide for highly stable zinc battery. Chem. Eng. J. 509, 161096 (2025). https://doi.org/10.1016/j.cej.2025.161096
- W. Yang, J. Wang, S. Gao, H. Zhang, H. Wang et al., Photo-assisted charging of carbon fiber paper-supported CeO2/MnO2 heterojunction and its long-lasting capacitance enhancement in dark. J. Adv. Ceram. 11(11), 1735–1750 (2022). https://doi.org/10.1007/s40145-022-0644-9
- Z. Yang, D. Zheng, X. Yue, K. Wang, Y. Hou et al., The synergy of Ni doping and oxygen vacancies over CeO2 in visible light-assisted thermal catalytic methanation reaction. Appl. Surf. Sci. 615, 156311 (2023). https://doi.org/10.1016/j.apsusc.2022.156311
- X. Lv, H. Yang, W. Meng, M. Arif, X. Feng et al., Construction of light-sensitive Cu2O/Fe2O3 heterostructures to promote photocatalytic CO2 reduction and photo-assisted charge storage. Sustain. Energy Fuels 8(21), 4992–5000 (2024). https://doi.org/10.1039/D4SE01038H
- U.J. Chavan, A.A. Yadav, Electrochemical behavior of spray deposited mixed nickel manganese oxide thin films for supercapacitor applications. J. Mater. Sci. Mater. Electron. 28(6), 4958–4964 (2017). https://doi.org/10.1007/s10854-016-6148-z
- P.M. Anjana, S.R.S. Kumar, R.B. Rakhi, Manganese cobalt oxide nanoflakes for electrochemical energy storage. J. Mater. Sci. Mater. Electron. 33(11), 8484–8492 (2022). https://doi.org/10.1007/s10854-021-06377-5
- M.Z. Iqbal, M. Shaheen, U. Aftab, Z. Ahmad, M.Y. Solangi et al., Faradically dominant pseudocapacitive manganese cobalt oxide electrode materials for hybrid supercapacitors and electrochemical water splitting. Energy Fuels 38(3), 2416–2425 (2024). https://doi.org/10.1021/acs.energyfuels.3c03444
- E. Samuel, A. Aldalbahi, M. El-Newehy, H. El-Hamshary, S.S. Yoon, Flexible and freestanding manganese/iron oxide carbon nanofibers for supercapacitor electrodes. Ceram. Int. 48(13), 18374–18383 (2022). https://doi.org/10.1016/j.ceramint.2022.03.106
- K. Li, X. Liu, T. Zheng, D. Jiang, Z. Zhou et al., Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem. Eng. J. 370, 136–147 (2019). https://doi.org/10.1016/j.cej.2019.03.190
- C. Jin, Y. Cui, G. Zhang, W. Luo, Y. Liu et al., Synthesis of copper-cobalt hybrid oxide microflowers as electrode material for supercapacitors. Chem. Eng. J. 343, 331–339 (2018). https://doi.org/10.1016/j.cej.2018.02.117
- A.L. Jadhav, S.L. Jadhav, S. Mali, C.K. Hong, A.V. Kadam, 3D marigold flowers of copper–nickel oxide composite materials as a positive electrode for high-performance hybrid supercapacitors. New J. Chem. 48(27), 12275–12287 (2024). https://doi.org/10.1039/d4nj01796j
- B. Deka Boruah, M. De Volder, Vanadium dioxide-zinc oxide stacked photocathodes for photo-rechargeable zinc-ion batteries. J. Mater. Chem. A 9(40), 23199–23205 (2021). https://doi.org/10.1039/d1ta07572a
- D. Xu, T. Xia, W. Fan, H. Bai, J. Ding et al., MOF-derived Co3O4 thin film decorated BiVO4 for enhancement of photoelectrochemical water splitting. Appl. Surf. Sci. 491, 497–504 (2019). https://doi.org/10.1016/j.apsusc.2019.06.164
- D. Yang, Y. Zhang, J. Sun, X. Zhang, Z. Gao et al., Optical field modulation for enhanced ORR and OER activity in Li–O2 batteries based on 2D porous Co3O4 nanosheets. Int. J. Hydrogen Energy 116, 23–31 (2025). https://doi.org/10.1016/j.ijhydene.2025.03.059
- Y. Zhao, X. Wang, H. Li, B. Qian, Y. Zhang et al., Synthesis of Co3O4 nanospheres for enhanced photo-assisted supercapacitor. Chem. Eng. J. 431, 133981 (2022). https://doi.org/10.1016/j.cej.2021.133981
- M.M. Momeni, H. Mohammadzadeh Aydisheh, B.-K. Lee, Effectiveness of MnO2 and V2O5 deposition on light fostered supercapacitor performance of WTiO2 nanotube: novel electrodes for photo-assisted supercapacitors. Chem. Eng. J. 450, 137941 (2022). https://doi.org/10.1016/j.cej.2022.137941
- M.-C. Liu, Y. Xu, Y.-X. Hu, Q.-Q. Yang, L.-B. Kong et al., Electrostatically charged MoS2/graphene oxide hybrid composites for excellent electrochemical energy storage devices. ACS Appl. Mater. Interfaces 10(41), 35571–35579 (2018). https://doi.org/10.1021/acsami.8b09085
- W. Yang, S. Zhang, Q. Chen, C. Zhang, Y. Wei et al., Conversion of intercalated MoO3 to multi-heteratoms-doped MoS2 with high hydrogen evolution activity. Adv. Mater. 32(30), 2001167 (2020). https://doi.org/10.1002/adma.202001167
- K. Moradi, M. Ashrafi, A. Salimi, M.M. Melander, Hierarchical MoS2@NiFeCo-Mo(doped)-layered double hydroxide heterostructures as efficient alkaline water splitting (photo)electro-catalysts. Small 21(8), e2409097 (2025). https://doi.org/10.1002/smll.202409097
- Z. Li, C. Li, J. Chen, X. Xing, Y. Wang et al., Confined synthesis of MoS2 with rich Co-doped edges for enhanced hydrogen evolution performance. J. Energy Chem. 70, 18–26 (2022). https://doi.org/10.1016/j.jechem.2022.01.001
- B.D. Boruah, B. Wen, M. De Volder, Molybdenum disulfide-zinc oxide photocathodes for photo-rechargeable zinc-ion batteries. ACS Nano 15(10), 16616–16624 (2021). https://doi.org/10.1021/acsnano.1c06372
- S. Liang, L.-J. Zheng, L.-N. Song, X.-X. Wang, W.-B. Tu et al., Accelerated confined mass transfer of MoS2 1D nanotube in photo-assisted metal–air batteries. Adv. Mater. 36(15), 2307790 (2024). https://doi.org/10.1002/adma.202307790
- L. Bai, Q. Zheng, Y. Ren, J. Nie, B. Du, Construction of binary metal sulfide nanops to boost catalytic activity for lithium-sulfur batteries. Mater. Today Sustain. 26, 100761 (2024). https://doi.org/10.1016/j.mtsust.2024.100761
- P. Kulkarni, S.K. Nataraj, R.G. Balakrishna, D.H. Nagaraju, M.V. Reddy, Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J. Mater. Chem. A 5(42), 22040–22094 (2017). https://doi.org/10.1039/c7ta07329a
- M. Najafi, M.M. Momeni, Flexible photo-assisted supercapacitor utilizing ternary Mn-Ni-Co sulfides on titania electrodes. Chem. Eng. J. 507, 160555 (2025). https://doi.org/10.1016/j.cej.2025.160555
- S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Res. 45, 63–84 (2015). https://doi.org/10.1146/annurev-matsci-070214-020901
- C.J. Zhang, V. Nicolosi, Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 16, 102–125 (2019). https://doi.org/10.1016/j.ensm.2018.05.003
- X. Li, H. Xie, Y. Feng, Y. Qu, L. Zhai et al., All pseudocapacitive MXene-PPy//MnO2 flexible asymmetric supercapacitor. J. Mater. Sci. Mater. Electron. 34(27), 1878 (2023). https://doi.org/10.1007/s10854-023-11341-6
- X. Zhou, S. Wang, G. Ma, W. Bai, X. Guan et al., Aniline-co-pyrrole (ANPY)/MXene composites with high specific capacitance for flexible supercapacitors. J. Energy Storage 97, 112951 (2024). https://doi.org/10.1016/j.est.2024.112951
- Z. Li, C. Ma, Y. Wen, Z. Wei, X. Xing et al., Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 13(1), 196–202 (2020). https://doi.org/10.1007/s12274-019-2597-z
- N.H. Solangi, R.R. Karri, N.M. Mubarak, S.A. Mazari, A.K. Azad, Emerging 2D MXenes as next-generation materials for energy storage applications. J. Energy Storage 70, 108004 (2023). https://doi.org/10.1016/j.est.2023.108004
- Y. Qu, C. Shi, H. Cao, Y. Wang, Synthesis of Ni-MOF/Ti3C2Tx hybrid nanosheets via ultrasonific method for supercapacitor electrodes. Mater. Lett. 280, 128526 (2020). https://doi.org/10.1016/j.matlet.2020.128526
- H. Wang, L. Li, C. Zhu, S. Lin, J. Wen et al., In situ polymerized Ti3C2Tx/PDA electrode with superior areal capacitance for supercapacitors. J. Alloys Compd. 778, 858–865 (2019). https://doi.org/10.1016/j.jallcom.2018.11.172
- Q. Fu, X. Wang, N. Zhang, J. Wen, L. Li et al., Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor. J. Colloid Interface Sci. 511, 128–134 (2018). https://doi.org/10.1016/j.jcis.2017.09.104
- H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17(1), 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- H. Wang, J. Cao, Y. Zhou, X. Wang, H. Huang et al., Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance. Nano Res. 14(11), 3886–3892 (2021). https://doi.org/10.1007/s12274-021-3309-z
- J. Azadmanjiri, J. Regner, J. Sturala, Z. Sofer, Decoding niobium carbide MXene dual-functional photoactive cathode in photoenhanced hybrid zinc-ion capacitor. ACS Mater. Lett. 6(4), 1338–1346 (2024). https://doi.org/10.1021/acsmaterialslett.3c01661
- B. Deng, H. Lian, B. Xue, R. Song, S. Chen et al., Niobium-carbide MXene modified hybrid hole transport layer enabling high-performance organic solar cells over 19%. Small 19(23), 2207505 (2023). https://doi.org/10.1002/smll.202207505
- H. Aqoma, I.F. Imran, F.T.A. Wibowo, N.V. Krishna, W. Lee et al., High-efficiency solution-processed two-terminal hybrid tandem solar cells using spectrally matched inorganic and organic photoactive materials. Adv. Energy Mater. 10(37), 2001188 (2020). https://doi.org/10.1002/aenm.202001188
- L. Mao, J. Tong, S. Xiong, F. Jiang, F. Qin et al., Flexible large-area organic tandem solar cells with high defect tolerance and device yield. J. Mater. Chem. A 5(7), 3186–3192 (2017). https://doi.org/10.1039/c6ta10106b
- L. Duan, A. Uddin, Progress in stability of organic solar cells. Adv. Sci. 7(11), 1903259 (2020). https://doi.org/10.1002/advs.201903259
- H. Guo, X. Qu, B. Xing, H. Zeng, W. Kang et al., A surface-induced assembly strategy to fabricate flexible carbon nanofiber/coal-based carbon dots films as free-standing anodes for high-performance sodium-ion batteries. Appl. Surf. Sci. 660, 159999 (2024). https://doi.org/10.1016/j.apsusc.2024.159999
- H. Feng, P. Xie, S. Xue, L. Li, X. Hou et al., Synthesis of three-dimensional porous reduced graphene oxide hydrogel/carbon dots for high-performance supercapacitor. J. Electroanal. Chem. 808, 321–328 (2018). https://doi.org/10.1016/j.jelechem.2017.12.046
- L. Cui, Y. An, H. Xu, M. Jia, Y. Li et al., An all-lignin-based flexible supercapacitor based on a nitrogen-doped carbon dot functionalized graphene hydrogel. New J. Chem. 45(46), 21692–21700 (2021). https://doi.org/10.1039/d1nj04054e
- H. Wang, J. Cao, Y. Zhou, Z. Wang, Y. Zhao et al., Carbon dot-modified mesoporous carbon as a supercapacitor with enhanced light-assisted capacitance. Nanoscale 12(34), 17925–17930 (2020). https://doi.org/10.1039/D0NR05532H
- X. Gu, Z. Chen, Y. Li, J. Wu, X. Wang et al., Polyaniline/carbon dots composite as a highly efficient metal-free dual-functional photoassisted electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 13(21), 24814–24823 (2021). https://doi.org/10.1021/acsami.1c04386
- J. Yang, Y. Liu, S. Liu, L. Li, C. Zhang et al., Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. Mater. Chem. Front. 1(2), 251–268 (2017). https://doi.org/10.1039/C6QM00150E
- S. Sharma, S. Singh, N. Khare, Enhanced photosensitization of zinc oxide nanorods using polyaniline for efficient photocatalytic and photoelectrochemical water splitting. Int. J. Hydrog. Energy 41(46), 21088–21098 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.131
- S.-H. Xia, Y. Yang, R.-R. Zhang, L. Li, S. Chen et al., The p-n-type PANI/ZnS heterostructure utilizing quantum dot network to achieve low-overpotential photo-assisted lithium–oxygen battery. Rare Met. 44(6), 3784–3794 (2025). https://doi.org/10.1007/s12598-024-03134-5
- D.J. Ahirrao, A.K. Pal, V. Singh, N. Jha, Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device. J. Mater. Sci. Technol. 88, 168–182 (2021). https://doi.org/10.1016/j.jmst.2021.01.075
- V.A. Sonar, A.A. Kulkarni, P. Sonar, D.P. Dubal, Covalent organic frameworks (COFs): a new class of materials for multivalent metal-ion energy storage systems. Batter. Supercaps. 8(4), e202400537 (2025). https://doi.org/10.1002/batt.202400537
- C.-H. Wu, K.-C. Wu, C.-H. Shen, C.-W. Kung, Zirconium-based metal–organic frameworks for electrochemical energy storage. Coord. Chem. Rev. 538, 216704 (2025). https://doi.org/10.1016/j.ccr.2025.216704
- S. Wiratchan, T. Autthawong, W. Yodying, S. Surinwong, T. Konno et al., Easily accessible and tunable porous organic polymer anode from azo coupling for sustainable lithium-organic batteries. Chem. Eng. J. 466, 143090 (2023). https://doi.org/10.1016/j.cej.2023.143090
- S. Mubarak, D. Dhamodharan, P.N.P. Ghoderao, H.-S. Byun, A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord. Chem. Rev. 471, 214741 (2022). https://doi.org/10.1016/j.ccr.2022.214741
- W. Cheng, X. Zhao, H. Su, F. Tang, W. Che et al., Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4(2), 115–122 (2019). https://doi.org/10.1038/s41560-018-0308-8
- X. Lin, Z. Wu, C. Xu, Y. Ran, J. Zhang et al., MOF nanosheet enable accelerated redox kinetics and ultralow overpotential for light-assisted Li-CO2 battery. Small 21(10), 2411559 (2025). https://doi.org/10.1002/smll.202411559
- Y. Tao, X. Fan, X. Yu, K. Gong, Y. Xia et al., Metal–organic framework with dual excitation pathways as efficient bifunctional catalyst for photo-assisted Li–O2 batteries. Small 20(46), 2403683 (2024). https://doi.org/10.1002/smll.202403683
- G.H.V. Bertrand, V.K. Michaelis, T.-C. Ong, R.G. Griffin, M. Dincă, Thiophene-based covalent organic frameworks. Proc. Natl. Acad. Sci. U.S.A. 110(13), 4923–4928 (2013). https://doi.org/10.1073/pnas.1221824110
- D.-E. Lee, A. Ali, K.T. Kang, M. Danish, W.-K. Jo, Advancing the integration of covalent-organic-framework with organic, inorganic, and polymeric materials for light-assisted green H2 generation: a review of emerging trends. Mater. Sci. Eng. R. Rep. 161, 100858 (2024). https://doi.org/10.1016/j.mser.2024.100858
- X. Xu, J. Zhang, Z. Zhang, G. Lu, W. Cao et al., All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 16(1), 116 (2024). https://doi.org/10.1007/s40820-024-01343-2
- P.-H. Chang, M.C. Sil, K.S.K. Reddy, C.-H. Lin, C.-M. Chen, Polyimide-based covalent organic framework as a photocurrent enhancer for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 14(22), 25466–25477 (2022). https://doi.org/10.1021/acsami.2c04507
- I.K. Popoola, M.A. Gondal, A. Popoola, L.E. Oloore, M. Younas, Inorganic perovskite photo-assisted supercapacitor for single device energy harvesting and storage applications. J. Energy Storage 73, 108828 (2023). https://doi.org/10.1016/j.est.2023.108828
- C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O’Regan, A. Walsh et al., Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497
- Y. Choi, S. Han, B.-I. Park, Z. Xu, Q. Huang et al., Perovskite nanocomposites: synthesis, properties, and applications from renewable energy to optoelectronics. Nano Convergence 11(1), 36 (2024). https://doi.org/10.1186/s40580-024-00440-7
- A. Singh, S.S. Shah, A. Dubey, A. Ahmed, M. ud Din Rather et al., Advancements in wearable energy storage devices via fabric-based flexible supercapacitors. J. Energy Storage 109, 115183 (2025). https://doi.org/10.1016/j.est.2024.115183
- X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie et al., Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 12(10), 5376–5381 (2012). https://doi.org/10.1021/nl302761z
- U.M. Patil, J.S. Sohn, S.B. Kulkarni, S.C. Lee, H.G. Park et al., Enhanced supercapacitive performance of chemically grown cobalt–nickel hydroxides on three-dimensional graphene foam electrodes. ACS Appl. Mater. Interfaces 6(4), 2450–2458 (2014). https://doi.org/10.1021/am404863z
- N. Zhao, H. Fan, M. Zhang, J. Ma, Z. Du et al., Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors. Chem. Eng. J. 390, 124477 (2020). https://doi.org/10.1016/j.cej.2020.124477
- A. Khampunbut, S. Kheawhom, W. Limphirat, P. Pattananuwat, Facile synthesis of Ni doped BiOBr nanosheets as efficient photo-assisted charging supercapacitors. Electrochim. Acta 443, 141979 (2023). https://doi.org/10.1016/j.electacta.2023.141979
- N. Kaçar, E. Lökçü, M. Çayirli, R.C. Özden, S. Coskun et al., Synthesis of N-doped graphene photo-catalyst for photo-assisted charging of Li-ion oxygen battery. Glob. Chall. 8(1), 2300166 (2024). https://doi.org/10.1002/gch2.202300166
- Y. Liu, X. Chen, B. Mao, Y. Ying, L. Li et al., Black phosphorus quantum dots enabled photo-assisted supercapacitor with boosted volumetric charge storage capability. J. Mater. Sci. Technol. 191, 80–88 (2024). https://doi.org/10.1016/j.jmst.2023.12.036
- A. Hasanzadeh, A. Khataee, M. Zarei, S.W. Joo, Photo-assisted electrochemical abatement of trifluralin using a cathode containing a C(60)-carbon nanotubes composite. Chemosphere 199, 510–523 (2018). https://doi.org/10.1016/j.chemosphere.2018.02.061
- H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234 (2014). https://doi.org/10.1039/c4cs00126e
- Y. Chen, Y. Qiu, T. Chen, H. Wang, An s-scheme MOF-on-MXene heterostructure for enhanced photocatalytic periodate activation. ACS Nano 19(6), 6588–6600 (2025). https://doi.org/10.1021/acsnano.4c18864
- T. Zhu, C. Xia, B. Wu, J. Pan, H. Yang et al., Inbuilt photoelectric field of heterostructured cobalt/iron oxides promotes oxygen electrocatalysis for high-energy-efficiency zinc-air batteries. Appl. Catal. B Environ. Energy 357, 124315 (2024). https://doi.org/10.1016/j.apcatb.2024.124315
- T. Du, Y. Gao, Z. Liu, T. Chen, X. Zhang et al., CoO/NiFe LDH heterojunction as a photo-assisted electrocatalyst for efficient oxygen evolution reaction. Int. J. Hydrogen Energy 51, 907–915 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.040
- J. Liu, R. Shi, X. Lang, T. Wang, T. Qu et al., Construction of a novel high electrochemical performance nanosheet Co3O4@Fe2O3 bifunctional catalytic material for lithium-oxygen batteries. Electrochim. Acta 474, 143569 (2024). https://doi.org/10.1016/j.electacta.2023.143569
- L. Song, Y. Fan, H. Fan, X. Yang, K. Yan et al., Photo-assisted rechargeable metal batteries. Nano Energy 125, 109538 (2024). https://doi.org/10.1016/j.nanoen.2024.109538
- Z. Li, Z. Xu, D. Li, A. Wu, R. Ruan, A nanoporous GaN photoelectrode on patterned sapphire substrates for high-efficiency photoelectrochemical water splitting. J. Alloys Compd. 803, 748–756 (2019). https://doi.org/10.1016/j.jallcom.2019.06.234
- X. Chen, C. Chen, J. Zang, Bi2MoO6 nanoflower-like microsphere photocatalyst modified by boron doped carbon quantum dots: improving the photocatalytic degradation performance of BPA in all directions. J. Alloys Compd. 962, 171167 (2023). https://doi.org/10.1016/j.jallcom.2023.171167
- Y. Zhao, H. Li, R. Tang, X. Wang, Y. Wu et al., Photo-assisted asymmetric supercapacitors based on dual photoelectrodes for enhanced photoelectric energy storage. J. Mater. Chem. A 11(29), 15844–15854 (2023). https://doi.org/10.1039/D3TA01461D
- W. Bao, R. Wang, C. Qian, M. Li, K. Sun et al., Photoassisted high-performance lithium anode enabled by oriented crystal planes. ACS Nano 16(10), 17454–17465 (2022). https://doi.org/10.1021/acsnano.2c08684
- T. Santos Andrade, M.C. Pereira, P. Lianos, High voltage gain in photo-assisted charging of a metal-air battery. J. Electroanal. Chem. 878, 114559 (2020). https://doi.org/10.1016/j.jelechem.2020.114559
- H.M. Aydisheh, M.M. Momeni, Photoelectrodes based on selenium-polypyrrole-vanadium pentoxide nanowire films for high-performance lightweight symmetric photo-supercapacitors: a flexible photo-rechargeable electrical energy storage device. Electrochim. Acta 467, 143066 (2023). https://doi.org/10.1016/j.electacta.2023.143066
- D. Zheng, X. Sun, C. An, F. Pan, C. Qin et al., Flexible multi-layered porous CuxO/NiO (x = 1, 2) photo-assisted electrodes for hybrid supercapacitors: design and mechanism insight. Chem. Eng. J. 473, 145289 (2023). https://doi.org/10.1016/j.cej.2023.145289
- M.M. Momeni, M. Najafi, H. Farrokhpour, B.-K. Lee, Fabrication and photo/electrochemical properties of cobalt-manganese binary metal sulfides deposited on titania nanotubes: efficient and stable photoelectrodes for photo-assisted charging supercapacitors. J. Energy Storage 79, 109666 (2024). https://doi.org/10.1016/j.est.2023.109666
- M. Li, X. Wang, F. Li, L. Zheng, J. Xu et al., A bifunctional photo-assisted Li-O2 battery based on a hierarchical heterostructured cathode. Adv. Mater. 32(34), e1907098 (2020). https://doi.org/10.1002/adma.201907098
- D. Li, X. Lang, Y. Guo, Y. Wang, Y. Wang et al., A photo-assisted electrocatalyst coupled with superoxide suppression for high performance Li-O2 batteries. Nano Energy 85, 105966 (2021). https://doi.org/10.1016/j.nanoen.2021.105966
- B. Wen, Y. Huang, Z. Jiang, Y. Wang, W. Hua et al., Exciton dissociation into charge carriers in porphyrinic metal-organic frameworks for light-assisted Li-O2 batteries. Adv. Mater. 36(32), 2405440 (2024). https://doi.org/10.1002/adma.202405440
- J.-H. Wang, S. Li, Y. Chen, L.-Z. Dong, M. Liu et al., Phthalocyanine based metal–organic framework ultrathin nanosheet for efficient photocathode toward light-assisted Li–CO2 battery. Adv. Funct. Mater. 32(49), 2210259 (2022). https://doi.org/10.1002/adfm.202210259
- Y. Liu, F. Wu, Z. Hu, F. Zhang, K. Wang et al., Regulating sulfur redox kinetics by coupling photocatalysis for high-performance photo-assisted lithium-sulfur batteries. Angew. Chem. Int. Ed. 63(25), e202402624 (2024). https://doi.org/10.1002/anie.202402624
- J. Li, X. Li, X. Fan, T. Tang, M. Li et al., Holey graphene anchoring of the monodispersed nano-sulfur with covalently-grafted polyaniline for lithium sulfur batteries. Carbon 188, 155–165 (2022). https://doi.org/10.1016/j.carbon.2021.11.037
- Y.-H. Liu, J. Qu, W. Chang, C.-Y. Yang, H.-J. Liu et al., A photo-assisted reversible lithium-sulfur battery. Energy Storage Mater. 50, 334–343 (2022). https://doi.org/10.1016/j.ensm.2022.05.030
- J.-Y. Wu, Y. Wang, L.-N. Song, Y.-F. Wang, X.-X. Wang et al., Coordination defect-induced lewis pairs in metal−organic frameworks boosted sulfur kinetics for bifunctional photo-assisted Li−S batteries. Adv. Funct. Mater. 34(41), 2404211 (2024). https://doi.org/10.1002/adfm.202404211
- J.-Y. Li, X.-Y. Du, X.-X. Wang, X.-Y. Yuan, D.-H. Guan et al., Photo-assisted Li-N2 batteries with enhanced nitrogen fixation and energy conversion. Angew. Chem. Int. Ed. 63(11), e202319211 (2024). https://doi.org/10.1002/anie.202319211
- S. Hu, J. Shi, R. Yan, S. Pang, Z. Zhang et al., Flexible rechargeable photo-assisted zinc-air batteries based on photo-active pTTh bifunctional oxygen electrocatalyst. Energy Storage Mater. 65, 103139 (2024). https://doi.org/10.1016/j.ensm.2023.103139
- W. Zha, Q. Ruan, L. Ma, M. Liu, H. Lin et al., Highly stable photo-assisted zinc-ion batteries via regulated photo-induced proton transfer. Angew. Chem. Int. Ed. 63(15), e202400621 (2024). https://doi.org/10.1002/anie.202400621
- Y. Zhao, T. He, J. Li, C. Zhu, Y. Tan et al., Carbon superstructure-supported half-metallic V2O3 nanospheres for high-efficiency photorechargeable zinc ion batteries. Angew. Chem. Int. Ed. 63(38), e202408218 (2024). https://doi.org/10.1002/anie.202408218
- M. Gao, R. Wang, X. Lu, Y. Fan, Z. Guo et al., A highly reversible Sn-air battery possessing the ultra-low charging potential with the assistance of light. Angew. Chem. Int. Ed. 63(32), e202407856 (2024). https://doi.org/10.1002/anie.202407856
- R. Huang, J. Zhang, Z. Dong, H. Lin, S. Han, Reticulated TiO2-modified carbon fiber enabling as a supercapacitor electrode material for photoelectric synergistic charge storage. Energy Fuels 36(16), 9261–9271 (2022). https://doi.org/10.1021/acs.energyfuels.2c02078
- J. Hu, Y. Pan, Q. Zhang, Z. Dong, S. Han, Constructing flower-shaped NiCo2S4@CoAl-LDH heterojunction nanosheets exhibits extraordinary electrochemical behavior for a light-assisted asymmetric supercapacitor. Energy Fuels 38(7), 6459–6470 (2024). https://doi.org/10.1021/acs.energyfuels.4c00124
- J. Lv, J. Xie, A.G.A. Mohamed, X. Zhang, Y. Wang, Photoelectrochemical energy storage materials: design principles and functional devices towards direct solar to electrochemical energy storage. Chem. Soc. Rev. 51(4), 1511–1528 (2022). https://doi.org/10.1039/D1CS00859E
- Z.-D. Ni, Y.-T. Song, H.-Q. Chen, L.-Y. Lin, Uv light-assisted electropolymerization of pyrrole on TiO2 for supercapacitors: investigating the role of TiO2. Electrochim. Acta 190, 313–321 (2016). https://doi.org/10.1016/j.electacta.2015.12.217
- Y. Li, X. Li, X. Peng, X. Yang, F. Kang et al., Electrolyte additive-assembled interconnecting molecules-zinc anode interface for zinc-ion hybrid supercapacitors. Nano-Micro Lett. 17(1), 268 (2025). https://doi.org/10.1007/s40820-025-01794-1
- B. Farhadi, I. Marriam, S. Yang, H. Zhang, M. Tebyetekerwa et al., Highly efficient photovoltaic energy storage hybrid system based on ultrathin carbon electrodes designed for a portable and flexible power source. J. Power. Sources 422, 196–207 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.091
- Y. Teng, J. Wei, H. Du, M. Mojtaba, D. Li, A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring. J. Mater. Chem. A 8(23), 11695–11711 (2020). https://doi.org/10.1039/D0TA02894K
- C. Yang, X. Wang, W. Dong, I.W. Chen, Z. Wang et al., Nitrogen-doped black titania for high performance supercapacitors. Sci. China Mater. 63(7), 1227–1234 (2020). https://doi.org/10.1007/s40843-020-1303-4
- Q. Xiao, J. Zhu, C. Cheng, J. Liu, X. Zhang et al., Battery-like bismuth oxide anodes for soft-packed supercapacitors with high energy storage performance. Nanoscale 15(8), 3884–3892 (2023). https://doi.org/10.1039/D2NR07096K
- S. Wang, W. Yu, Y. Chen, J. He, Z. Zhao et al., Electrode materials from cuprous oxide and chitin nanofibrils for supercapacitors with high specific capacity. Ionics 28(4), 1947–1955 (2022). https://doi.org/10.1007/s11581-022-04445-2
- M.S. Yadav, N. Singh, S.M. Bobade, Zinc oxide nanops and activated charcoal-based nanocomposite electrode for supercapacitor application. Ionics 24(11), 3611–3630 (2018). https://doi.org/10.1007/s11581-018-2527-1
- C.J. Raj, M. Rajesh, R. Manikandan, J.Y. Sim, K.H. Yu et al., Two-dimensional planar supercapacitor based on zinc oxide/manganese oxide core/shell nano-architecture. Electrochim. Acta 247, 949–957 (2017). https://doi.org/10.1016/j.electacta.2017.07.009
- X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou et al., Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53(7), 1849–1853 (2014). https://doi.org/10.1002/anie.201307581
- L. Bai, H. Huang, S. Zhang, L. Hao, Z. Zhang et al., Photocatalysis-assisted Co3O4/g-C3N4 p–n junction all-solid-state supercapacitors: a bridge between energy storage and photocatalysis. Adv. Sci. 7(22), 2001939 (2020). https://doi.org/10.1002/advs.202001939
- M.M. Momeni, S. Navandian, H.M. Aydisheh, B.-K. Lee, Photo-assisted rechargeable supercapacitors based on nickel-cobalt-deposited tungsten-doped titania photoelectrodes: a novel self-powered supercapacitor. J. Power. Sources 557, 232588 (2023). https://doi.org/10.1016/j.jpowsour.2022.232588
- Z. Lv, Q. Zhong, Y. Bu, Controllable synthesis of Ni-Co nanosheets covered hollow box via altering the concentration of nitrate for high performance supercapacitor. Electrochim. Acta 215, 500–505 (2016). https://doi.org/10.1016/j.electacta.2016.08.070
- Y. Zhang, S. Duan, Y. Li, S. Zhang, Y. Wu et al., 2.6 V aqueous symmetric supercapacitors based on phosphorus-doped TiO2 nanotube arrays. Dalton Trans. 49(6), 1785–1793 (2020). https://doi.org/10.1039/c9dt04316k
- L. Zheng, F. Teng, X. Ye, H. Zheng, X. Fang, Photo/electrochemical applications of metal sulfide/TiO2 heterostructures. Adv. Energy Mater. 10(1), 1902355 (2020). https://doi.org/10.1002/aenm.201902355
- B. Zeng, X. Chen, C. Chen, X. Ning, W. Deng, Reduced graphene oxides loaded-ZnS/CuS heteronanostructures as high-activity visible-light-driven photocatalysts. J. Alloys Compd. 582, 774–779 (2014). https://doi.org/10.1016/j.jallcom.2013.08.121
- H. Liu, Z. Guo, X. Wang, J. Hao, J. Lian, CuS/MnS composite hexagonal nanosheet clusters: synthesis and enhanced pseudocapacitive properties. Electrochim. Acta 271, 425–432 (2018). https://doi.org/10.1016/j.electacta.2018.03.048
- S. Zhai, Z. Fan, K. Jin, M. Zhou, H. Zhao et al., Synthesis of zinc sulfide/copper sulfide/porous carbonized cotton nanocomposites for flexible supercapacitor and recyclable photocatalysis with high performance. J. Colloid Interface Sci. 575, 306–316 (2020). https://doi.org/10.1016/j.jcis.2020.04.073
- C. Cai, W. Zhou, Y. Fu, Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor. Chem. Eng. J. 418, 129275 (2021). https://doi.org/10.1016/j.cej.2021.129275
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- I. Hussain, W.U. Arifeen, S.A. Khan, S. Aftab, M.S. Javed et al., M4X3 MXenes: application in energy storage devices. Nano-Micro Lett. 16(1), 215 (2024). https://doi.org/10.1007/s40820-024-01418-0
- A.A. AbdelHamid, X. Yang, J. Yang, X. Chen, J.Y. Ying, Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy 26, 425–437 (2016). https://doi.org/10.1016/j.nanoen.2016.05.046
- A. Barai, K. Uddin, M. Dubarry, L. Somerville, A. McGordon et al., A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells. Prog. Energy Combust. Sci. 72, 1–31 (2019). https://doi.org/10.1016/j.pecs.2019.01.001
- X. Yu, G. Liu, T. Wang, H. Gong, H. Qu et al., Recent advances in the research of photo-assisted lithium-based rechargeable batteries. Chemistry 28(66), e202202104 (2022). https://doi.org/10.1002/chem.202202104
- L. Ren, F. Kong, X. Wang, Y. Song, X. Li et al., Triggering ambient polymer-based Li-O2 battery via photo-electro-thermal synergy. Nano Energy 98, 107248 (2022). https://doi.org/10.1016/j.nanoen.2022.107248
- R. Gao, L. Liu, Z. Hu, P. Zhang, X. Cao et al., The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li–O2 batteries. J. Mater. Chem. A 3(34), 17598–17605 (2015). https://doi.org/10.1039/C5TA03885E
- X. Chai, H. Zhang, Q. Pan, J. Bian, Z. Chen et al., 3D ordered urchin-like TiO2@Fe2O3 arrays photoanode for efficient photoelectrochemical water splitting. Appl. Surf. Sci. 470, 668–676 (2019). https://doi.org/10.1016/j.apsusc.2018.11.184
- X.-Y. Yang, X.-L. Feng, X. Jin, M.-Z. Shao, B.-L. Yan et al., An illumination-assisted flexible self-powered energy system based on a Li–O2 battery. Angew. Chem. Int. Ed. 58(46), 16411–16415 (2019). https://doi.org/10.1002/anie.201907805
- D. Liu, X. Zhang, Y.-J. Wang, S. Song, L. Cui et al., A new perspective of lanthanide metal–organic frameworks: tailoring Dy-BTC nanospheres for rechargeable Li–O2 batteries. Nanoscale 12(17), 9524–9532 (2020). https://doi.org/10.1039/D0NR00866D
- Y. Gu, Y.-N. Wu, L. Li, W. Chen, F. Li et al., Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem. Int. Ed. 56(49), 15658–15662 (2017). https://doi.org/10.1002/anie.201709738
- K. Ikigaki, K. Okada, Y. Tokudome, T. Toyao, P. Falcaro et al., MOF-on-MOF: oriented growth of multiple layered thin films of metal–organic frameworks. Angew. Chem. Int. Ed. 58(21), 6886–6890 (2019). https://doi.org/10.1002/anie.201901707
- R. Shimoni, Z. Shi, S. Binyamin, Y. Yang, I. Liberman et al., Electrostatic secondary-sphere interactions that facilitate rapid and selective electrocatalytic CO2 reduction in a Fe-porphyrin-based metal–organic framework. Angew. Chem. Int. Ed. 61(32), e202206085 (2022). https://doi.org/10.1002/anie.202206085
- F. Leng, H. Liu, M. Ding, Q.-P. Lin, H.-L. Jiang, Boosting photocatalytic hydrogen production of porphyrinic MOFs: the metal location in metalloporphyrin matters. ACS Catal. 8(5), 4583–4590 (2018). https://doi.org/10.1021/acscatal.8b00764
- W.-J. Xu, B.-X. Huang, G. Li, F. Yang, W. Lin et al., Donor–acceptor mixed-naphthalene diimide-porphyrin MOF for boosting photocatalytic oxidative coupling of amines. ACS Catal. 13(8), 5723–5732 (2023). https://doi.org/10.1021/acscatal.3c00284
- X. Li, H. Wang, Z. Chen, H.-S. Xu, W. Yu et al., Covalent-organic-framework-based Li–CO2 batteries. Adv. Mater. 31(48), 1905879 (2019). https://doi.org/10.1002/adma.201905879
- Y. Xu, C. Jiang, H. Gong, H. Xue, B. Gao et al., Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries. Nano Res. 15(5), 4100–4107 (2022). https://doi.org/10.1007/s12274-021-4052-1
- M. Mushtaq, X.-W. Guo, J.-P. Bi, Z.-X. Wang, H.-J. Yu, Polymer electrolyte with composite cathode for solid-state Li–CO2 battery. Rare Met. 37(6), 520–526 (2018). https://doi.org/10.1007/s12598-018-1044-8
- C. Wang, Y. Shang, Y. Lu, L. Qu, H. Yao et al., Photoinduced homogeneous RuO2 nanops on TiO2 nanowire arrays: a high-performance cathode toward flexible Li–CO2 batteries. J. Power. Sources 475, 228703 (2020). https://doi.org/10.1016/j.jpowsour.2020.228703
- X. Cai, J. Xie, X. Guo, X. Zheng, Y. Liu et al., Suppressing polysulfide shuttle in lithium-sulfur batteries using CNTs/C3N4/S cathodes. Mater. Today Commun. 35, 106138 (2023). https://doi.org/10.1016/j.mtcomm.2023.106138
- L. Wang, Q. Yang, K. Li, M. Wei, Q. Wang et al., Defects-rich TiO2(B) in situ grown on carbon fiber cloth as self-standing electrode for high-loading lithium–sulfur batteries. Mater. Lett. 357, 135668 (2024). https://doi.org/10.1016/j.matlet.2023.135668
- D.L. Zhao, F. Feng, L. Shen, Z. Huang, Q. Zhao et al., Engineering metal–organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chem. Eng. J. 454, 140447 (2023). https://doi.org/10.1016/j.cej.2022.140447
- W. Fan, X. Wang, X. Zhang, X. Liu, Y. Wang et al., Fine-tuning the pore environment of the microporous Cu-MOF for high propylene storage and efficient separation of light hydrocarbons. ACS Cent. Sci. 5(7), 1261–1268 (2019). https://doi.org/10.1021/acscentsci.9b00423
- J. Pan, Z. Chen, J. Zhou, Q. Luo, Mof-derived MOF(Fe)/FeSx photocatalyst with enhanced photocatalytic activity for tetracycline degradation. Inorg. Chem. Commun. 159, 111754 (2024). https://doi.org/10.1016/j.inoche.2023.111754
- L.J. Small, S.E. Henkelis, D.X. Rademacher, M.E. Schindelholz, J.L. Krumhansl et al., Near-zero power MOF-based sensors for NO2 detection. Adv. Funct. Mater. 30(50), 2006598 (2020). https://doi.org/10.1002/adfm.202006598
- I. Abánades Lázaro, C.J.R. Wells, R.S. Forgan, Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew. Chem. Int. Ed. 59(13), 5211–5217 (2020). https://doi.org/10.1002/anie.201915848
- W. Xu, L.-H. Wang, Y. Chen, Y. Liu, Flexible carbon membrane supercapacitor based on γ-cyclodextrin-MOF. Mater. Today Chem. 24, 100896 (2022). https://doi.org/10.1016/j.mtchem.2022.100896
- J.-W. Wang, T.-L. Meng, Y.-X. Ma, L. Lei, J. Li et al., Fabrication of Ni-MOFs/MWCNTs by in situ growth for high-performance supercapacitor electrode materials. J. Mater. Sci. Mater. Electron. 34(28), 1920 (2023). https://doi.org/10.1007/s10854-023-11286-w
- F. Bu, I. Shakir, Y. Xu, 3D graphene composites for efficient electrochemical energy storage. Adv. Mater. Interfaces 5(15), 1800468 (2018). https://doi.org/10.1002/admi.201800468
- P.-F. Wang, X. He, Z.-C. Lv, H. Song, X. Song et al., Light-driven polymer-based all-solid-state lithium-sulfur battery operating at room temperature. Adv. Funct. Mater. 33(5), 2211074 (2023). https://doi.org/10.1002/adfm.202211074
- J. Li, K. Zhang, Y. Zhao, C. Wang, L. Wang et al., High-efficiency and stable Li−CO2 battery enabled by carbon nanotube/carbon nitride heterostructured photocathode. Angew. Chem. Int. Ed. 61(4), e202114612 (2022). https://doi.org/10.1002/anie.202114612
- G. Zhou, E. Paek, G.S. Hwang, A. Manthiram, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6(1), 7760 (2015). https://doi.org/10.1038/ncomms8760
- F. Zhao, K. Yang, Y. Liu, J. Li, C. Li et al., Developing a multifunctional cathode for photoassisted lithium–sulfur battery. Adv. Sci. 11(35), 2402978 (2024). https://doi.org/10.1002/advs.202402978
- J.-L. Ma, D. Bao, M.-M. Shi, J.-M. Yan, X.-B. Zhang, Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2(4), 525–532 (2017). https://doi.org/10.1016/j.chempr.2017.03.016
- Y. Yang, N. Zhang, Z. Zou, X. Yi, J. Liu, Atomic layer deposited Ru/Mo2C heterostructure for efficient nitrogen reduction and nitrogen evolution in Li-N2 battery. Chem. Eng. J. 435, 135148 (2022). https://doi.org/10.1016/j.cej.2022.135148
- F. Meng, J. Qin, X. Xiong, X. Li, R. Hu, Understanding the reversible reactions of Li-N2 battery catalyzed with SnO2. Energy. Environ. Mater. 6(1), e12298 (2023). https://doi.org/10.1002/eem2.12298
- J. Xie, H. Dong, X. Cao, Y. Li, Computational insights into nitrogen reduction reaction catalyzed by transition metal doped graphene: comparative investigations. Mater. Chem. Phys. 243, 122622 (2020). https://doi.org/10.1016/j.matchemphys.2020.122622
- W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
- G. Dong, W. Ho, C. Wang, Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 3(46), 23435–23441 (2015). https://doi.org/10.1039/C5TA06540B
- J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler et al., Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017). https://doi.org/10.1002/adma.201604685
- S. Chen, C. Peng, D. Zhu, C. Zhi, Bifunctionally electrocatalytic bromine redox reaction by single-atom catalysts for high-performance zinc batteries. Adv. Mater. 36(46), 2409810 (2024). https://doi.org/10.1002/adma.202409810
- X. Fan, J. Liu, Z. Song, X. Han, Y. Deng et al., Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries. Nano Energy 56, 454–462 (2019). https://doi.org/10.1016/j.nanoen.2018.11.057
- Y. Zhang, Y.-P. Deng, J. Wang, Y. Jiang, G. Cui et al., Recent progress on flexible Zn-air batteries. Energy Storage Mater. 35, 538–549 (2021). https://doi.org/10.1016/j.ensm.2020.09.008
- N. Yan, X. Gao, Photo-assisted rechargeable metal batteries for energy conversion and storage. Energy. Environ. Mater. 5(2), 439–451 (2022). https://doi.org/10.1002/eem2.12182
- Z. Fang, Y. Zhang, X. Hu, X. Fu, L. Dai et al., Tactile UV- and solar-light multi-sensing rechargeable batteries with smart self-conditioned charge and discharge. Angew. Chem. Int. Ed. 58(27), 9248–9253 (2019). https://doi.org/10.1002/anie.201903805
- W. Liu, Y. Yang, X. Hu, Q. Zhang, C. Wang et al., Light-assisted Li–O2 batteries with lowered bias voltages by redox mediators. Small 18(27), 2200334 (2022). https://doi.org/10.1002/smll.202200334
- C. Lin, J. Wang, H. He, X. Liu, F. Qiu et al., Self-charged dual-photoelectrode vanadium–iron energy storage battery. Adv. Energy Mater. 14(2), 2303126 (2024). https://doi.org/10.1002/aenm.202303126
- F. Chen, B.-Q. Zhao, K. Huang, X.-F. Ma, H.-Y. Li et al., Dual-defect engineering strategy enables high-durability rechargeable magnesium-metal batteries. Nano-Micro Lett. 16(1), 184 (2024). https://doi.org/10.1007/s40820-024-01410-8
- X. Fu, F. He, J. Gao, X. Yan, Q. Chang et al., Directly growing graphdiyne nanoarray cathode to integrate an intelligent solid Mg-moisture battery. J. Am. Chem. Soc. 145(5), 2759–2764 (2023). https://doi.org/10.1021/jacs.2c11409
- H. Yang, Z. Jin, G. Wang, D. Liu, K. Fan, Light-assisted synthesis MoSx as a noble metal free cocatalyst formed heterojunction CdS/Co3O4 photocatalyst for visible light harvesting and spatial charge separation. Dalton Trans. 47(20), 6973–6985 (2018). https://doi.org/10.1039/C8DT01142G
- T. Godet-Bar, J.C. Leprêtre, P. Poizot, F. Massuyeau, E. Faulques et al., Light assisted rechargeable batteries: a proof of concept with bodipy derivatives acting as a combined photosensitizer and electrical storage unit. J. Mater. Chem. A 5(5), 1902–1905 (2017). https://doi.org/10.1039/C6TA10177A
- X. Li, X. Niu, P. Fu, Y. Song, E. Zhang et al., Macrocycle-on-COF photocatalyst constructed by in-situ linker exchange for efficient photocatalytic CO2 cycloaddition. Appl. Catal. B Environ. Energy 350, 123943 (2024). https://doi.org/10.1016/j.apcatb.2024.123943
- P. Lv, S.-C. Chen, C. Xu, B. Peng, Photo-assisted deposited titanium dioxide for all-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13.6%. Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0018868
- Y. Zhu, Y. Wei, P. Li, S. Liu, J. Zhang et al., Type-II heterojunction photocathode for CO2 reduction and light-assisted metal–CO2 batteries. J. Mater. Chem. A 12(9), 5133–5144 (2024). https://doi.org/10.1039/D3TA07450A
References
Z. Wang, Y. Hu, S. Zhang, Y. Sun, Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem. Soc. Rev. 51(15), 6704–6737 (2022). https://doi.org/10.1039/D1CS01008E
W. Ma, Y. Zhang, S. Pan, Y. Cheng, Z. Shao et al., Smart fibers for energy conversion and storage. Chem. Soc. Rev. 50(12), 7009–7061 (2021). https://doi.org/10.1039/d0cs01603a
N. Flores-Diaz, F. De Rossi, A. Das, M. Deepa, F. Brunetti et al., Progress of photocapacitors. Chem. Rev. 123(15), 9327–9355 (2023). https://doi.org/10.1021/acs.chemrev.2c00773
Q. Xu, J. Chen, J.R. Loh, H. Zhong, K. Zhang et al., Fiber-shaped batteries towards high performance and perspectives of corresponding integrated battery textiles. Adv. Energy Mater. 14(3), 2302536 (2024). https://doi.org/10.1002/aenm.202302536
Z. Yang, J. Deng, H. Sun, J. Ren, S. Pan et al., Self-powered energy fiber: energy conversion in the sheath and storage in the core. Adv. Mater. 26(41), 7038–7042 (2014). https://doi.org/10.1002/adma.201401972
G. Gao, G. Li, Y. Zhao, L. Ma, W. Huang, The structure design of flexible batteries. Matter 6(11), 3732–3746 (2023). https://doi.org/10.1016/j.matt.2023.08.021
K. Ding, Y. Ye, J. Hu, L. Zhao, W. Jin et al., Aerophilic triphase interface tuned by carbon dots driving durable and flexible rechargeable Zn-air batteries. Nano-Micro Lett. 15(1), 28 (2023). https://doi.org/10.1007/s40820-022-00994-3
S. Hu, M. Zhu, Semiconductor for oxygen electrocatalysis in photo-assisted rechargeable zinc-air batteries: principles, advances, and opportunities. Energy Storage Mater. 61, 102866 (2023). https://doi.org/10.1016/j.ensm.2023.102866
X. Dong, X. Chen, X. Jiang, N. Yang, Light-assisted energy storage devices: principles, performance, and perspectives. Adv. Energy Mater. 13(38), 2301143 (2023). https://doi.org/10.1002/aenm.202301143
T. Bai, J. Wang, H. Zhang, F. Ji, W. Song et al., Atomic Ni-catalyzed cathode and stabilized Li metal anode for high-performance Li–O2 batteries. eScience 5(1), 100310 (2025). https://doi.org/10.1016/j.esci.2024.100310
T. Miyasaka, T.N. Murakami, The photocapacitor: an efficient self-charging capacitor for direct storage of solar energy. Appl. Phys. Lett. 85(17), 3932–3934 (2004). https://doi.org/10.1063/1.1810630
C. An, Z. Wang, W. Xi, K. Wang, X. Liu et al., Nanoporous Cu@Cu2O hybrid arrays enable photo-assisted supercapacitor with enhanced capacities. J. Mater. Chem. A 7(26), 15691–15697 (2019). https://doi.org/10.1039/c9ta03707a
M. Yu, X. Ren, L. Ma, Y. Wu, Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. Nat. Commun. 5, 5111 (2014). https://doi.org/10.1038/ncomms6111
M. Yu, W.D. McCulloch, D.R. Beauchamp, Z. Huang, X. Ren et al., Aqueous lithium–iodine solar flow battery for the simultaneous conversion and storage of solar energy. J. Am. Chem. Soc. 137(26), 8332–8335 (2015). https://doi.org/10.1021/jacs.5b03626
N. Li, Y. Wang, D. Tang, H. Zhou, Integrating a photocatalyst into a hybrid lithium–sulfur battery for direct storage of solar energy. Angew. Chem. Int. Ed. 54(32), 9271–9274 (2015). https://doi.org/10.1002/anie.201503425
K. Wang, Z. Mo, S. Tang, M. Li, H. Yang et al., Photo-enhanced Zn–air batteries with simultaneous highly efficientin situ H for wastewater treatment. J. Mater. Chem. A 7(23), 14129–14135 (2019). https://doi.org/10.1039/c9ta04253a
X. Liu, Y. Yuan, J. Liu, B. Liu, X. Chen et al., Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc-air battery. Nat. Commun. 10(1), 4767 (2019). https://doi.org/10.1038/s41467-019-12627-2
Z. Li, M.-L. Li, X.-X. Wang, D.-H. Guan, W.-Q. Liu et al., In situ fabricated photo-electro-catalytic hybrid cathode for light-assisted lithium–CO2 batteries. J. Mater. Chem. A 8(29), 14799–14806 (2020). https://doi.org/10.1039/d0ta05069e
X. Liu, S. Tao, J. Zhang, Y. Zhu, R. Ma et al., Ultrathin p–n type Cu2O/CuCoCr-layered double hydroxide heterojunction nanosheets for photo-assisted aqueous Zn–CO2 batteries. J. Mater. Chem. A 9(46), 26061–26068 (2021). https://doi.org/10.1039/D1TA07522E
D.-H. Guan, X.-X. Wang, M.-L. Li, F. Li, L.-J. Zheng et al., Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li-CO2 battery. Angew. Chem. Int. Ed. 59(44), 19518–19524 (2020). https://doi.org/10.1002/anie.202005053
Z. Gao, P. Liu, X. Fu, L. Xu, Y. Zuo et al., Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber electrodes. J. Mater. Chem. A 7(24), 14447–14454 (2019). https://doi.org/10.1039/C9TA04178H
S. Pan, Z. Yang, H. Li, L. Qiu, H. Sun et al., Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J. Am. Chem. Soc. 135(29), 10622–10625 (2013). https://doi.org/10.1021/ja405012w
X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang et al., A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater. 30(43), 1803165 (2018). https://doi.org/10.1002/adma.201803165
S. Zhang, S. Xiao, D. Li, J. Liao, F. Ji et al., Commercial carbon cloth: an emerging substrate for practical lithium metal batteries. Energy Storage Mater. 48, 172–190 (2022). https://doi.org/10.1016/j.ensm.2022.03.014
X. Kang, Z. Zhu, T. Zhao, W. Zhai, J. Xu et al., Hierarchically assembled counter electrode for fiber solar cell showing record power conversion efficiency. Adv. Funct. Mater. 32(51), 2207763 (2022). https://doi.org/10.1002/adfm.202207763
H. Sun, Y. Jiang, S. Xie, Y. Zhang, J. Ren et al., Integrating photovoltaic conversion and lithium ion storage into a flexible fiber. J. Mater. Chem. A 4(20), 7601–7605 (2016). https://doi.org/10.1039/C6TA01514J
D. Li, L. Dai, X. Ren, F. Ji, Q. Sun et al., Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. 14(1), 424–436 (2021). https://doi.org/10.1039/d0ee02919j
X. Liu, J. Song, H. Song, H. Zhuo, W. Chen et al., Flexible photo-assisted zinc-air battery achieved by heterojunction structure between oxygen-vacancy-rich CoFe2O4 and nitrogen-doped hollow carbon spheres. J. Colloid Interface Sci. 695, 137788 (2025). https://doi.org/10.1016/j.jcis.2025.137788
S. He, S. Gao, S. Hu, Light-assisted delocalized electron-driven g-C3N4/NSs-based cathode catalysts for high-performance rechargeable zinc-air batteries. Energy Storage Mater. 77, 104194 (2025). https://doi.org/10.1016/j.ensm.2025.104194
A. Maitra, R. Bera, L. Halder, A. Bera, S. Paria et al., Photovoltaic and triboelectrification empowered light-weight flexible self-charging asymmetric supercapacitor cell for self-powered multifunctional electronics. Renew. Sustain. Energy Rev. 151, 111595 (2021). https://doi.org/10.1016/j.rser.2021.111595
M.M. Momeni, F. Mohammadinejad, F. Ghasemipur, B.-K. Lee, Asymmetric photo-assisted supercapacitor and symmetric flexible supercapacitors based on CeO2-MnO2 supported on carbon cloth. J. Alloys Compd. 1029, 180761 (2025). https://doi.org/10.1016/j.jallcom.2025.180761
J. Han, H. Guo, X. Yu, K. Lai, J. Chen et al., Band splitting under strain: a route to broad-spectrum absorption. Mater. Today Phys. 39, 101286 (2023). https://doi.org/10.1016/j.mtphys.2023.101286
B. Rezini, T. Seddik, R. Mouacher, T.V. Vu, M. Batouche et al., Strain effects on electronic, optical properties and carriers mobility of Cs2SnI6 vacancy-ordered double perovskite: a promising photovoltaic material. Int. J. Quantum Chem. 122(21), e26977 (2022). https://doi.org/10.1002/qua.26977
B. Wang, A. Facchetti, Mechanically flexible conductors for stretchable and wearable E-skin and E-textile devices. Adv. Mater. 31(28), 1901408 (2019). https://doi.org/10.1002/adma.201901408
C. Wang, Y. Jing, D. Zhu, H.L. Xin, Atomic origin of chemomechanical failure of layered cathodes in all-solid-state batteries. J. Am. Chem. Soc. 146(26), 17712–17718 (2024). https://doi.org/10.1021/jacs.4c02198
Y. Lu, K. Li, Y.-Y. Song, Z. Gao, Ultra-flexible all-in-one anti-freeze photothermally enhanced supercapacitors. Nano Res. 17(8), 7221–7229 (2024). https://doi.org/10.1007/s12274-024-6743-x
W. Wang, J. Wang, S. Pan, Z.-J. Wang, S. Wang et al., Crafting of photothermal cobalt/sulfur doped manganese selenide for extreme-temperature-tolerant flexible zinc-air batteries. Adv. Funct. Mater. 35(31), 2425430 (2025). https://doi.org/10.1002/adfm.202425430
S. Zhu, M. Chen, S. Wang, W. Wu, Y. Yue et al., Boosting photothermal conversion and energy storage in MXene electrodes through softened wood toward solar-enhanced flexible supercapacitor. Ind. Crops Prod. 221, 119289 (2024). https://doi.org/10.1016/j.indcrop.2024.119289
R.B. Ahmad, A.W. Anwar, A. Ali, T. Fatima, M. Moin et al., Pressure-dependent band gap engineering with structural, electronic, mechanical, optical, and thermal properties of CsPbBr3: first-principles calculations. J. Mol. Model. 30(8), 270 (2024). https://doi.org/10.1007/s00894-024-06040-w
Y.-Y. Li, C.-Y. Zhong, M.-X. Li, Q.-Y. Zhang, Y. Chen et al., Tuning morphology-dependent localized surface plasmon resonance in quasi-metallic tungsten oxide nanostructures for enhanced photocatalysis. J. Mater. Chem. C 9(5), 1614–1621 (2021). https://doi.org/10.1039/D0TC05333C
P. Li, Y. Liu, Z. Wang, X. Xiao, G. Meng et al., Dry-regulated hydrogels with anisotropic mechanical performance and ionic conductivity. Chin. Chem. Lett. 33(2), 871–876 (2022). https://doi.org/10.1016/j.cclet.2021.08.010
Y. Yu, B. Xiong, F. Zeng, R. Xu, F. Yang et al., Influences of compression on the mechanical behavior and electrochemical performances of separators for lithium ion batteries. Ind. Eng. Chem. Res. 57(50), 17142–17151 (2018). https://doi.org/10.1021/acs.iecr.8b03855
S. Friedrich, S. Stojecevic, P. Rapp, S. Helmer, M. Bock et al., Effect of mechanical pressure on lifetime, expansion, and porosity of silicon-dominant anodes in laboratory lithium-ion cells. J. Electrochem. Soc. 171(5), 050540 (2024). https://doi.org/10.1149/1945-7111/ad36e6
S. Feng, X. Wang, M. Wang, C. Bai, S. Cao et al., Crumpled MXene electrodes for ultrastretchable and high-area-capacitance supercapacitors. Nano Lett. 21(18), 7561–7568 (2021). https://doi.org/10.1021/acs.nanolett.1c02071
H. Huang, H. Jia, Z. Liu, P. Gao, J. Zhao et al., Understanding of strain effects in the electrochemical reduction of CO2: using Pd nanostructures as an ideal platform. Angew. Chem. Int. Ed. 56(13), 3594–3598 (2017). https://doi.org/10.1002/anie.201612617
A. He, L. Feng, L. Liu, J. Peng, Y. Chen et al., Design of novel egg-shaped GdVO4 photocatalyst: a unique platform for the photocatalyst and supercapacitors applications. J. Mater. Sci. Mater. Electron. 31(16), 13131–13140 (2020). https://doi.org/10.1007/s10854-020-03864-z
M.V. Arularasu, P. Vinitha, V. Vetrivelan, M. Begum, A. Siddiqua, Ce Doped V2O5 nanops for dual functionality: Photocatalytic degradation of organic dye and supercapacitor applications. Mater. Res. Bull. 186, 113335 (2025). https://doi.org/10.1016/j.materresbull.2025.113335
K. Kala, N. Padmasini, M.N. Harish, J.S. priyan, R. Siranjeevi, A sustainable and highly efficient photocatalytic and supercapacitor electrode for biogenic nickel oxide nanop infused graphene oxide. Surf. Interfaces 49, 104438 (2024). https://doi.org/10.1016/j.surfin.2024.104438
N. Macherla, G. Dharmana, M. Nerella, T.R. Gurugubelli, R. Koutavarapu et al., Hydrothermal synthesis of Cu2O/Ti3C2 nanocomposite with sphere/sheet structures for enhanced photocatalysis and supercapacitor performance. Surf. Interface Anal. 64, 106408 (2025). https://doi.org/10.1016/j.surfin.2025.106408
T. Iqbal, R.M. Munir, H. Farooq, S. Afsheen, A. Younas et al., Novel Fe doped NiO-based electrode material for photoactivated catalyst and supercapacitor application. J. Energy Storage 103, 114284 (2024). https://doi.org/10.1016/j.est.2024.114284
A.C. Çelt, M. Çayirli, R.C. Özden, E. Lökçü, M. Anik, Synthesis of MoS₂/graphene hetero-film photocatalyst and Li-oxygen battery application. ChemElectroChem 12(1), e202400577 (2025). https://doi.org/10.1002/celc.202400577
X. Wang, Q. Chen, D. Yang, Y. Li, D. Yin et al., Ag doped ZnO hollow nanosphere as a photocatalyst for enhanced performance in photo-assisted Li-O2 batteries. Surf. Interfaces 56, 105679 (2025). https://doi.org/10.1016/j.surfin.2024.105679
M.I. Hossain, F.K. Tareq, S. Rudra, Nife co-doped TiO2 as a high-performance bifunctional photocatalyst for enhanced oxygen evolution and reduction reactions in efficient zinc-air battery systems. Electrochem. Commun. 176, 107942 (2025). https://doi.org/10.1016/j.elecom.2025.107942
Y. Zhang, N. Xu, B. Gong, X. Ye, Y. Yang et al., A visible-light-driven CoS2/CuS@CNT-C3N4 photocatalyst for high-performance rechargeable zinc-air batteries beyond 500 mW cm–2. Chin. J. Catal. 68, 300–310 (2025). https://doi.org/10.1016/s1872-2067(24)60173-7
C. Tomon, S. Sarawutanukul, S. Duangdangchote, A. Krittayavathananon, M. Sawangphruk, Photoactive Zn–air batteries using spinel-type cobalt oxide as a bifunctional photocatalyst at the air cathode. Chem. Commun. 55(42), 5855–5858 (2019). https://doi.org/10.1039/C9CC01876J
X. Du, J. Hu, J. Xie, Z. Lu, K. Wang et al., Remarkable upgrade of hydrogen evolution activity up to 40.8 folds and mechanistic investigation of expediting charge transfer achieved by Bi2O3-modified TiO2 photocatalyst. Int. J. Hydrogen Energy 64, 842–852 (2024). https://doi.org/10.1016/j.ijhydene.2024.03.359
J.H.F. Chau, C.W. Lai, B.F. Leo, J.C. Juan, K.M. Lee et al., Direct Z-scheme Cu2O/WO3/TiO2 nanocomposite as a potential supercapacitor electrode and an effective visible-light-driven photocatalyst. J. Environ. Manage. 363, 121332 (2024). https://doi.org/10.1016/j.jenvman.2024.121332
P. Zhang, L. Zhao, Z. Wang, L. Li, N. Li et al., Efficient visible light performance of MoS2QDs/TiO2 hollow sphere photocatalysts for the degradation of dyes and antibiotics. Vacuum 219, 112695 (2024). https://doi.org/10.1016/j.vacuum.2023.112695
S. Kizhepat, A.S. Rasal, N.R. Chodankar, G.G. Demissie, K.A. Dwivedi et al., Optimizing energy solutions: Mott-schottky engineered 1D/3D CoWO4(OH)2·H2O/MoS2 heterostructure for advanced energy storage and conversion application. Small 20(50), 2404954 (2024). https://doi.org/10.1002/smll.202404954
J. Zimou, M. Oubakalla, N.A. Labyad, Z. Barbouch, E. Laghchim et al., Impact of defects and oxygen vacancies on the microstructural, optical, and electrochemical properties of Fe-doped CeO2 nanostructured films for supercapacitor devices. J. Energy Storage 109, 115162 (2025). https://doi.org/10.1016/j.est.2024.115162
D. Tian, X. Gao, J. Wang, R. Sun, J. Liu et al., An optimized MnO2 photocathode by doping engineering for high capacity and stability photo-assisted zinc-ion batteries. J. Mater. Chem. A 13(27), 22057–22065 (2025). https://doi.org/10.1039/D5TA03701H
S.B. Jaffri, K.S. Ahmad, I. Abrahams, S.M. Ibrahim, Ce-Pr-Nd]: CsPbI1.8Br 1.2: Stability enhanced light harvester in perovskite solar cells, energy storage material for batteries, and an OER/HER electro-catalyst. J. Energy Storage 67, 107566 (2023). https://doi.org/10.1016/j.est.2023.107566
Y. Zhou, K. Le, L. Gao, H. Zhang, Y. Xu et al., Carbon coated 1 T/2H MoS2 nanosheets on carbon cloth for high-performance flexible supercapacitor with superior mechanical stability. J. Energy Storage 119, 116389 (2025). https://doi.org/10.1016/j.est.2025.116389
C.Y. Foo, A. Sumboja, D.J.H. Tan, J. Wang, P.S. Lee, Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv. Energy Mater. 4(12), 1400236 (2014). https://doi.org/10.1002/aenm.201400236
J. Huang, S. Han, J. Zhu, Q. Wu, H. Chen et al., Mechanically stable all flexible supercapacitors with fracture and fatigue resistance under harsh temperatures. Adv. Funct. Mater. 32(35), 2205708 (2022). https://doi.org/10.1002/adfm.202205708
Q. Liu, J. Qiu, C. Yang, L. Zang, G. Zhang et al., Robust quasi-solid-state integrated asymmetric flexible supercapacitors with interchangeable positive and negative electrode based on all-conducting-polymer electrodes. J. Alloys Compd. 887, 161362 (2021). https://doi.org/10.1016/j.jallcom.2021.161362
Y. Luo, W. Que, A.S. Nugraha, Y. Kang, Y. Tang et al., Mesoporous gold decorated MXene (Ti3C2Tx) flexible composite films for photo-enhanced solid-state micro-supercapacitors. J. Mater. Chem. A 13(2), 1330–1342 (2025). https://doi.org/10.1039/D4TA06043A
S. Jessl, D. Beesley, S. Engelke, C.J. Valentine, J.C. Stallard et al., Carbon nanotube conductive additives for improved electrical and mechanical properties of flexible battery electrodes. Mater. Sci. Eng. A 735, 269–274 (2018). https://doi.org/10.1016/j.msea.2018.08.033
S. Li, J. Cao, X. Cheng, Y. Wang, J. Cao et al., Mimosa plant leaf-inspired 180° foldable lithium-ion batteries with enhanced electrochemical-mechanical behaviors. Nano Energy 129, 110032 (2024). https://doi.org/10.1016/j.nanoen.2024.110032
K. Amin, Q. Meng, A. Ahmad, M. Cheng, M. Zhang et al., A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries. Adv. Mater. 30(4), 1703868 (2018). https://doi.org/10.1002/adma.201703868
H. Wu, Q. Meng, Q. Yang, M. Zhang, K. Lu et al., Large-area polyimide/SWCNT nanocable cathode for flexible lithium-ion batteries. Adv. Mater. 27(41), 6504–6510 (2015). https://doi.org/10.1002/adma.201502241
J. Chang, H. Hu, J. Shang, R. Fang, D. Shou et al., Rational design of Li-wicking hosts for ultrafast fabrication of flexible and stable lithium metal anodes. Small 18(2), 2105308 (2022). https://doi.org/10.1002/smll.202105308
Y. Sun, Y. Liu, Z. Wang, X. Zhao, K. Cai, Self-supporting oxygen vacancy-rich α-MnO2 nanowire/few-layer graphite/SWNT bundle composite film for high-performance flexible aqueous zinc-ion battery cathode. Chem. Eng. J. 484, 149573 (2024). https://doi.org/10.1016/j.cej.2024.149573
T. Du, W. Lu, S. Jia, X. Zhang, F. Yang, Enhanced CO-tolerance of Rh-based catalysts by photo-assisted built-in electric field for efficient formic acid oxidation. Appl. Catal. B Environ. Energy 370, 125160 (2025). https://doi.org/10.1016/j.apcatb.2025.125160
Y.H. Hu, A highly efficient photocatalyst: hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem. Int. Ed. 51(50), 12410–12412 (2012). https://doi.org/10.1002/anie.201206375
Z. Ma, S. Wang, Z. Ma, J. Li, L. Zhao et al., Efficient and stable photoassisted lithium-ion battery enabled by photocathode with synergistically boosted carriers dynamics. Nano-Micro Lett. 17(1), 74 (2024). https://doi.org/10.1007/s40820-024-01570-7
R. Katal, M. Salehi, M.H. Davood Abadi Farahani, S. Masudy-Panah, S.L. Ong et al., Preparation of a new type of black TiO2 under a vacuum atmosphere for sunlight photocatalysis. ACS Appl. Mater. Interfaces 10(41), 35316–35326 (2018). https://doi.org/10.1021/acsami.8b14680
H. Jiao, G. Sun, Y. Wang, Z. Zhang, Z. Wang et al., Defective TiO2 hollow nanospheres as photo-electrocatalysts for photo-assisted Li-O2 batteries. Chin. Chem. Lett. 33(8), 4008–4012 (2022). https://doi.org/10.1016/j.cclet.2021.11.086
Z. Xue, Y. Ru, Q. Li, X. Liang, Y. Ma et al., Z-scheme g-C3N4/TiO2 heterojunction for a high energy density photo-assisted Li–O2 battery. J. Mater. Chem. C 12(42), 17328–17337 (2024). https://doi.org/10.1039/D4TC01832J
C. Shu, Y. An, Y. Liu, Y. Xu, D. Ren et al., Construction of corrosion-resistant and dendrite-free zinc anode by coating nano-ceriumoxide for highly stable zinc battery. Chem. Eng. J. 509, 161096 (2025). https://doi.org/10.1016/j.cej.2025.161096
W. Yang, J. Wang, S. Gao, H. Zhang, H. Wang et al., Photo-assisted charging of carbon fiber paper-supported CeO2/MnO2 heterojunction and its long-lasting capacitance enhancement in dark. J. Adv. Ceram. 11(11), 1735–1750 (2022). https://doi.org/10.1007/s40145-022-0644-9
Z. Yang, D. Zheng, X. Yue, K. Wang, Y. Hou et al., The synergy of Ni doping and oxygen vacancies over CeO2 in visible light-assisted thermal catalytic methanation reaction. Appl. Surf. Sci. 615, 156311 (2023). https://doi.org/10.1016/j.apsusc.2022.156311
X. Lv, H. Yang, W. Meng, M. Arif, X. Feng et al., Construction of light-sensitive Cu2O/Fe2O3 heterostructures to promote photocatalytic CO2 reduction and photo-assisted charge storage. Sustain. Energy Fuels 8(21), 4992–5000 (2024). https://doi.org/10.1039/D4SE01038H
U.J. Chavan, A.A. Yadav, Electrochemical behavior of spray deposited mixed nickel manganese oxide thin films for supercapacitor applications. J. Mater. Sci. Mater. Electron. 28(6), 4958–4964 (2017). https://doi.org/10.1007/s10854-016-6148-z
P.M. Anjana, S.R.S. Kumar, R.B. Rakhi, Manganese cobalt oxide nanoflakes for electrochemical energy storage. J. Mater. Sci. Mater. Electron. 33(11), 8484–8492 (2022). https://doi.org/10.1007/s10854-021-06377-5
M.Z. Iqbal, M. Shaheen, U. Aftab, Z. Ahmad, M.Y. Solangi et al., Faradically dominant pseudocapacitive manganese cobalt oxide electrode materials for hybrid supercapacitors and electrochemical water splitting. Energy Fuels 38(3), 2416–2425 (2024). https://doi.org/10.1021/acs.energyfuels.3c03444
E. Samuel, A. Aldalbahi, M. El-Newehy, H. El-Hamshary, S.S. Yoon, Flexible and freestanding manganese/iron oxide carbon nanofibers for supercapacitor electrodes. Ceram. Int. 48(13), 18374–18383 (2022). https://doi.org/10.1016/j.ceramint.2022.03.106
K. Li, X. Liu, T. Zheng, D. Jiang, Z. Zhou et al., Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem. Eng. J. 370, 136–147 (2019). https://doi.org/10.1016/j.cej.2019.03.190
C. Jin, Y. Cui, G. Zhang, W. Luo, Y. Liu et al., Synthesis of copper-cobalt hybrid oxide microflowers as electrode material for supercapacitors. Chem. Eng. J. 343, 331–339 (2018). https://doi.org/10.1016/j.cej.2018.02.117
A.L. Jadhav, S.L. Jadhav, S. Mali, C.K. Hong, A.V. Kadam, 3D marigold flowers of copper–nickel oxide composite materials as a positive electrode for high-performance hybrid supercapacitors. New J. Chem. 48(27), 12275–12287 (2024). https://doi.org/10.1039/d4nj01796j
B. Deka Boruah, M. De Volder, Vanadium dioxide-zinc oxide stacked photocathodes for photo-rechargeable zinc-ion batteries. J. Mater. Chem. A 9(40), 23199–23205 (2021). https://doi.org/10.1039/d1ta07572a
D. Xu, T. Xia, W. Fan, H. Bai, J. Ding et al., MOF-derived Co3O4 thin film decorated BiVO4 for enhancement of photoelectrochemical water splitting. Appl. Surf. Sci. 491, 497–504 (2019). https://doi.org/10.1016/j.apsusc.2019.06.164
D. Yang, Y. Zhang, J. Sun, X. Zhang, Z. Gao et al., Optical field modulation for enhanced ORR and OER activity in Li–O2 batteries based on 2D porous Co3O4 nanosheets. Int. J. Hydrogen Energy 116, 23–31 (2025). https://doi.org/10.1016/j.ijhydene.2025.03.059
Y. Zhao, X. Wang, H. Li, B. Qian, Y. Zhang et al., Synthesis of Co3O4 nanospheres for enhanced photo-assisted supercapacitor. Chem. Eng. J. 431, 133981 (2022). https://doi.org/10.1016/j.cej.2021.133981
M.M. Momeni, H. Mohammadzadeh Aydisheh, B.-K. Lee, Effectiveness of MnO2 and V2O5 deposition on light fostered supercapacitor performance of WTiO2 nanotube: novel electrodes for photo-assisted supercapacitors. Chem. Eng. J. 450, 137941 (2022). https://doi.org/10.1016/j.cej.2022.137941
M.-C. Liu, Y. Xu, Y.-X. Hu, Q.-Q. Yang, L.-B. Kong et al., Electrostatically charged MoS2/graphene oxide hybrid composites for excellent electrochemical energy storage devices. ACS Appl. Mater. Interfaces 10(41), 35571–35579 (2018). https://doi.org/10.1021/acsami.8b09085
W. Yang, S. Zhang, Q. Chen, C. Zhang, Y. Wei et al., Conversion of intercalated MoO3 to multi-heteratoms-doped MoS2 with high hydrogen evolution activity. Adv. Mater. 32(30), 2001167 (2020). https://doi.org/10.1002/adma.202001167
K. Moradi, M. Ashrafi, A. Salimi, M.M. Melander, Hierarchical MoS2@NiFeCo-Mo(doped)-layered double hydroxide heterostructures as efficient alkaline water splitting (photo)electro-catalysts. Small 21(8), e2409097 (2025). https://doi.org/10.1002/smll.202409097
Z. Li, C. Li, J. Chen, X. Xing, Y. Wang et al., Confined synthesis of MoS2 with rich Co-doped edges for enhanced hydrogen evolution performance. J. Energy Chem. 70, 18–26 (2022). https://doi.org/10.1016/j.jechem.2022.01.001
B.D. Boruah, B. Wen, M. De Volder, Molybdenum disulfide-zinc oxide photocathodes for photo-rechargeable zinc-ion batteries. ACS Nano 15(10), 16616–16624 (2021). https://doi.org/10.1021/acsnano.1c06372
S. Liang, L.-J. Zheng, L.-N. Song, X.-X. Wang, W.-B. Tu et al., Accelerated confined mass transfer of MoS2 1D nanotube in photo-assisted metal–air batteries. Adv. Mater. 36(15), 2307790 (2024). https://doi.org/10.1002/adma.202307790
L. Bai, Q. Zheng, Y. Ren, J. Nie, B. Du, Construction of binary metal sulfide nanops to boost catalytic activity for lithium-sulfur batteries. Mater. Today Sustain. 26, 100761 (2024). https://doi.org/10.1016/j.mtsust.2024.100761
P. Kulkarni, S.K. Nataraj, R.G. Balakrishna, D.H. Nagaraju, M.V. Reddy, Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J. Mater. Chem. A 5(42), 22040–22094 (2017). https://doi.org/10.1039/c7ta07329a
M. Najafi, M.M. Momeni, Flexible photo-assisted supercapacitor utilizing ternary Mn-Ni-Co sulfides on titania electrodes. Chem. Eng. J. 507, 160555 (2025). https://doi.org/10.1016/j.cej.2025.160555
S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Res. 45, 63–84 (2015). https://doi.org/10.1146/annurev-matsci-070214-020901
C.J. Zhang, V. Nicolosi, Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 16, 102–125 (2019). https://doi.org/10.1016/j.ensm.2018.05.003
X. Li, H. Xie, Y. Feng, Y. Qu, L. Zhai et al., All pseudocapacitive MXene-PPy//MnO2 flexible asymmetric supercapacitor. J. Mater. Sci. Mater. Electron. 34(27), 1878 (2023). https://doi.org/10.1007/s10854-023-11341-6
X. Zhou, S. Wang, G. Ma, W. Bai, X. Guan et al., Aniline-co-pyrrole (ANPY)/MXene composites with high specific capacitance for flexible supercapacitors. J. Energy Storage 97, 112951 (2024). https://doi.org/10.1016/j.est.2024.112951
Z. Li, C. Ma, Y. Wen, Z. Wei, X. Xing et al., Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 13(1), 196–202 (2020). https://doi.org/10.1007/s12274-019-2597-z
N.H. Solangi, R.R. Karri, N.M. Mubarak, S.A. Mazari, A.K. Azad, Emerging 2D MXenes as next-generation materials for energy storage applications. J. Energy Storage 70, 108004 (2023). https://doi.org/10.1016/j.est.2023.108004
Y. Qu, C. Shi, H. Cao, Y. Wang, Synthesis of Ni-MOF/Ti3C2Tx hybrid nanosheets via ultrasonific method for supercapacitor electrodes. Mater. Lett. 280, 128526 (2020). https://doi.org/10.1016/j.matlet.2020.128526
H. Wang, L. Li, C. Zhu, S. Lin, J. Wen et al., In situ polymerized Ti3C2Tx/PDA electrode with superior areal capacitance for supercapacitors. J. Alloys Compd. 778, 858–865 (2019). https://doi.org/10.1016/j.jallcom.2018.11.172
Q. Fu, X. Wang, N. Zhang, J. Wen, L. Li et al., Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor. J. Colloid Interface Sci. 511, 128–134 (2018). https://doi.org/10.1016/j.jcis.2017.09.104
H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17(1), 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
H. Wang, J. Cao, Y. Zhou, X. Wang, H. Huang et al., Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance. Nano Res. 14(11), 3886–3892 (2021). https://doi.org/10.1007/s12274-021-3309-z
J. Azadmanjiri, J. Regner, J. Sturala, Z. Sofer, Decoding niobium carbide MXene dual-functional photoactive cathode in photoenhanced hybrid zinc-ion capacitor. ACS Mater. Lett. 6(4), 1338–1346 (2024). https://doi.org/10.1021/acsmaterialslett.3c01661
B. Deng, H. Lian, B. Xue, R. Song, S. Chen et al., Niobium-carbide MXene modified hybrid hole transport layer enabling high-performance organic solar cells over 19%. Small 19(23), 2207505 (2023). https://doi.org/10.1002/smll.202207505
H. Aqoma, I.F. Imran, F.T.A. Wibowo, N.V. Krishna, W. Lee et al., High-efficiency solution-processed two-terminal hybrid tandem solar cells using spectrally matched inorganic and organic photoactive materials. Adv. Energy Mater. 10(37), 2001188 (2020). https://doi.org/10.1002/aenm.202001188
L. Mao, J. Tong, S. Xiong, F. Jiang, F. Qin et al., Flexible large-area organic tandem solar cells with high defect tolerance and device yield. J. Mater. Chem. A 5(7), 3186–3192 (2017). https://doi.org/10.1039/c6ta10106b
L. Duan, A. Uddin, Progress in stability of organic solar cells. Adv. Sci. 7(11), 1903259 (2020). https://doi.org/10.1002/advs.201903259
H. Guo, X. Qu, B. Xing, H. Zeng, W. Kang et al., A surface-induced assembly strategy to fabricate flexible carbon nanofiber/coal-based carbon dots films as free-standing anodes for high-performance sodium-ion batteries. Appl. Surf. Sci. 660, 159999 (2024). https://doi.org/10.1016/j.apsusc.2024.159999
H. Feng, P. Xie, S. Xue, L. Li, X. Hou et al., Synthesis of three-dimensional porous reduced graphene oxide hydrogel/carbon dots for high-performance supercapacitor. J. Electroanal. Chem. 808, 321–328 (2018). https://doi.org/10.1016/j.jelechem.2017.12.046
L. Cui, Y. An, H. Xu, M. Jia, Y. Li et al., An all-lignin-based flexible supercapacitor based on a nitrogen-doped carbon dot functionalized graphene hydrogel. New J. Chem. 45(46), 21692–21700 (2021). https://doi.org/10.1039/d1nj04054e
H. Wang, J. Cao, Y. Zhou, Z. Wang, Y. Zhao et al., Carbon dot-modified mesoporous carbon as a supercapacitor with enhanced light-assisted capacitance. Nanoscale 12(34), 17925–17930 (2020). https://doi.org/10.1039/D0NR05532H
X. Gu, Z. Chen, Y. Li, J. Wu, X. Wang et al., Polyaniline/carbon dots composite as a highly efficient metal-free dual-functional photoassisted electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 13(21), 24814–24823 (2021). https://doi.org/10.1021/acsami.1c04386
J. Yang, Y. Liu, S. Liu, L. Li, C. Zhang et al., Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. Mater. Chem. Front. 1(2), 251–268 (2017). https://doi.org/10.1039/C6QM00150E
S. Sharma, S. Singh, N. Khare, Enhanced photosensitization of zinc oxide nanorods using polyaniline for efficient photocatalytic and photoelectrochemical water splitting. Int. J. Hydrog. Energy 41(46), 21088–21098 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.131
S.-H. Xia, Y. Yang, R.-R. Zhang, L. Li, S. Chen et al., The p-n-type PANI/ZnS heterostructure utilizing quantum dot network to achieve low-overpotential photo-assisted lithium–oxygen battery. Rare Met. 44(6), 3784–3794 (2025). https://doi.org/10.1007/s12598-024-03134-5
D.J. Ahirrao, A.K. Pal, V. Singh, N. Jha, Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device. J. Mater. Sci. Technol. 88, 168–182 (2021). https://doi.org/10.1016/j.jmst.2021.01.075
V.A. Sonar, A.A. Kulkarni, P. Sonar, D.P. Dubal, Covalent organic frameworks (COFs): a new class of materials for multivalent metal-ion energy storage systems. Batter. Supercaps. 8(4), e202400537 (2025). https://doi.org/10.1002/batt.202400537
C.-H. Wu, K.-C. Wu, C.-H. Shen, C.-W. Kung, Zirconium-based metal–organic frameworks for electrochemical energy storage. Coord. Chem. Rev. 538, 216704 (2025). https://doi.org/10.1016/j.ccr.2025.216704
S. Wiratchan, T. Autthawong, W. Yodying, S. Surinwong, T. Konno et al., Easily accessible and tunable porous organic polymer anode from azo coupling for sustainable lithium-organic batteries. Chem. Eng. J. 466, 143090 (2023). https://doi.org/10.1016/j.cej.2023.143090
S. Mubarak, D. Dhamodharan, P.N.P. Ghoderao, H.-S. Byun, A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord. Chem. Rev. 471, 214741 (2022). https://doi.org/10.1016/j.ccr.2022.214741
W. Cheng, X. Zhao, H. Su, F. Tang, W. Che et al., Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4(2), 115–122 (2019). https://doi.org/10.1038/s41560-018-0308-8
X. Lin, Z. Wu, C. Xu, Y. Ran, J. Zhang et al., MOF nanosheet enable accelerated redox kinetics and ultralow overpotential for light-assisted Li-CO2 battery. Small 21(10), 2411559 (2025). https://doi.org/10.1002/smll.202411559
Y. Tao, X. Fan, X. Yu, K. Gong, Y. Xia et al., Metal–organic framework with dual excitation pathways as efficient bifunctional catalyst for photo-assisted Li–O2 batteries. Small 20(46), 2403683 (2024). https://doi.org/10.1002/smll.202403683
G.H.V. Bertrand, V.K. Michaelis, T.-C. Ong, R.G. Griffin, M. Dincă, Thiophene-based covalent organic frameworks. Proc. Natl. Acad. Sci. U.S.A. 110(13), 4923–4928 (2013). https://doi.org/10.1073/pnas.1221824110
D.-E. Lee, A. Ali, K.T. Kang, M. Danish, W.-K. Jo, Advancing the integration of covalent-organic-framework with organic, inorganic, and polymeric materials for light-assisted green H2 generation: a review of emerging trends. Mater. Sci. Eng. R. Rep. 161, 100858 (2024). https://doi.org/10.1016/j.mser.2024.100858
X. Xu, J. Zhang, Z. Zhang, G. Lu, W. Cao et al., All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 16(1), 116 (2024). https://doi.org/10.1007/s40820-024-01343-2
P.-H. Chang, M.C. Sil, K.S.K. Reddy, C.-H. Lin, C.-M. Chen, Polyimide-based covalent organic framework as a photocurrent enhancer for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 14(22), 25466–25477 (2022). https://doi.org/10.1021/acsami.2c04507
I.K. Popoola, M.A. Gondal, A. Popoola, L.E. Oloore, M. Younas, Inorganic perovskite photo-assisted supercapacitor for single device energy harvesting and storage applications. J. Energy Storage 73, 108828 (2023). https://doi.org/10.1016/j.est.2023.108828
C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O’Regan, A. Walsh et al., Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497
Y. Choi, S. Han, B.-I. Park, Z. Xu, Q. Huang et al., Perovskite nanocomposites: synthesis, properties, and applications from renewable energy to optoelectronics. Nano Convergence 11(1), 36 (2024). https://doi.org/10.1186/s40580-024-00440-7
A. Singh, S.S. Shah, A. Dubey, A. Ahmed, M. ud Din Rather et al., Advancements in wearable energy storage devices via fabric-based flexible supercapacitors. J. Energy Storage 109, 115183 (2025). https://doi.org/10.1016/j.est.2024.115183
X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie et al., Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 12(10), 5376–5381 (2012). https://doi.org/10.1021/nl302761z
U.M. Patil, J.S. Sohn, S.B. Kulkarni, S.C. Lee, H.G. Park et al., Enhanced supercapacitive performance of chemically grown cobalt–nickel hydroxides on three-dimensional graphene foam electrodes. ACS Appl. Mater. Interfaces 6(4), 2450–2458 (2014). https://doi.org/10.1021/am404863z
N. Zhao, H. Fan, M. Zhang, J. Ma, Z. Du et al., Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors. Chem. Eng. J. 390, 124477 (2020). https://doi.org/10.1016/j.cej.2020.124477
A. Khampunbut, S. Kheawhom, W. Limphirat, P. Pattananuwat, Facile synthesis of Ni doped BiOBr nanosheets as efficient photo-assisted charging supercapacitors. Electrochim. Acta 443, 141979 (2023). https://doi.org/10.1016/j.electacta.2023.141979
N. Kaçar, E. Lökçü, M. Çayirli, R.C. Özden, S. Coskun et al., Synthesis of N-doped graphene photo-catalyst for photo-assisted charging of Li-ion oxygen battery. Glob. Chall. 8(1), 2300166 (2024). https://doi.org/10.1002/gch2.202300166
Y. Liu, X. Chen, B. Mao, Y. Ying, L. Li et al., Black phosphorus quantum dots enabled photo-assisted supercapacitor with boosted volumetric charge storage capability. J. Mater. Sci. Technol. 191, 80–88 (2024). https://doi.org/10.1016/j.jmst.2023.12.036
A. Hasanzadeh, A. Khataee, M. Zarei, S.W. Joo, Photo-assisted electrochemical abatement of trifluralin using a cathode containing a C(60)-carbon nanotubes composite. Chemosphere 199, 510–523 (2018). https://doi.org/10.1016/j.chemosphere.2018.02.061
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234 (2014). https://doi.org/10.1039/c4cs00126e
Y. Chen, Y. Qiu, T. Chen, H. Wang, An s-scheme MOF-on-MXene heterostructure for enhanced photocatalytic periodate activation. ACS Nano 19(6), 6588–6600 (2025). https://doi.org/10.1021/acsnano.4c18864
T. Zhu, C. Xia, B. Wu, J. Pan, H. Yang et al., Inbuilt photoelectric field of heterostructured cobalt/iron oxides promotes oxygen electrocatalysis for high-energy-efficiency zinc-air batteries. Appl. Catal. B Environ. Energy 357, 124315 (2024). https://doi.org/10.1016/j.apcatb.2024.124315
T. Du, Y. Gao, Z. Liu, T. Chen, X. Zhang et al., CoO/NiFe LDH heterojunction as a photo-assisted electrocatalyst for efficient oxygen evolution reaction. Int. J. Hydrogen Energy 51, 907–915 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.040
J. Liu, R. Shi, X. Lang, T. Wang, T. Qu et al., Construction of a novel high electrochemical performance nanosheet Co3O4@Fe2O3 bifunctional catalytic material for lithium-oxygen batteries. Electrochim. Acta 474, 143569 (2024). https://doi.org/10.1016/j.electacta.2023.143569
L. Song, Y. Fan, H. Fan, X. Yang, K. Yan et al., Photo-assisted rechargeable metal batteries. Nano Energy 125, 109538 (2024). https://doi.org/10.1016/j.nanoen.2024.109538
Z. Li, Z. Xu, D. Li, A. Wu, R. Ruan, A nanoporous GaN photoelectrode on patterned sapphire substrates for high-efficiency photoelectrochemical water splitting. J. Alloys Compd. 803, 748–756 (2019). https://doi.org/10.1016/j.jallcom.2019.06.234
X. Chen, C. Chen, J. Zang, Bi2MoO6 nanoflower-like microsphere photocatalyst modified by boron doped carbon quantum dots: improving the photocatalytic degradation performance of BPA in all directions. J. Alloys Compd. 962, 171167 (2023). https://doi.org/10.1016/j.jallcom.2023.171167
Y. Zhao, H. Li, R. Tang, X. Wang, Y. Wu et al., Photo-assisted asymmetric supercapacitors based on dual photoelectrodes for enhanced photoelectric energy storage. J. Mater. Chem. A 11(29), 15844–15854 (2023). https://doi.org/10.1039/D3TA01461D
W. Bao, R. Wang, C. Qian, M. Li, K. Sun et al., Photoassisted high-performance lithium anode enabled by oriented crystal planes. ACS Nano 16(10), 17454–17465 (2022). https://doi.org/10.1021/acsnano.2c08684
T. Santos Andrade, M.C. Pereira, P. Lianos, High voltage gain in photo-assisted charging of a metal-air battery. J. Electroanal. Chem. 878, 114559 (2020). https://doi.org/10.1016/j.jelechem.2020.114559
H.M. Aydisheh, M.M. Momeni, Photoelectrodes based on selenium-polypyrrole-vanadium pentoxide nanowire films for high-performance lightweight symmetric photo-supercapacitors: a flexible photo-rechargeable electrical energy storage device. Electrochim. Acta 467, 143066 (2023). https://doi.org/10.1016/j.electacta.2023.143066
D. Zheng, X. Sun, C. An, F. Pan, C. Qin et al., Flexible multi-layered porous CuxO/NiO (x = 1, 2) photo-assisted electrodes for hybrid supercapacitors: design and mechanism insight. Chem. Eng. J. 473, 145289 (2023). https://doi.org/10.1016/j.cej.2023.145289
M.M. Momeni, M. Najafi, H. Farrokhpour, B.-K. Lee, Fabrication and photo/electrochemical properties of cobalt-manganese binary metal sulfides deposited on titania nanotubes: efficient and stable photoelectrodes for photo-assisted charging supercapacitors. J. Energy Storage 79, 109666 (2024). https://doi.org/10.1016/j.est.2023.109666
M. Li, X. Wang, F. Li, L. Zheng, J. Xu et al., A bifunctional photo-assisted Li-O2 battery based on a hierarchical heterostructured cathode. Adv. Mater. 32(34), e1907098 (2020). https://doi.org/10.1002/adma.201907098
D. Li, X. Lang, Y. Guo, Y. Wang, Y. Wang et al., A photo-assisted electrocatalyst coupled with superoxide suppression for high performance Li-O2 batteries. Nano Energy 85, 105966 (2021). https://doi.org/10.1016/j.nanoen.2021.105966
B. Wen, Y. Huang, Z. Jiang, Y. Wang, W. Hua et al., Exciton dissociation into charge carriers in porphyrinic metal-organic frameworks for light-assisted Li-O2 batteries. Adv. Mater. 36(32), 2405440 (2024). https://doi.org/10.1002/adma.202405440
J.-H. Wang, S. Li, Y. Chen, L.-Z. Dong, M. Liu et al., Phthalocyanine based metal–organic framework ultrathin nanosheet for efficient photocathode toward light-assisted Li–CO2 battery. Adv. Funct. Mater. 32(49), 2210259 (2022). https://doi.org/10.1002/adfm.202210259
Y. Liu, F. Wu, Z. Hu, F. Zhang, K. Wang et al., Regulating sulfur redox kinetics by coupling photocatalysis for high-performance photo-assisted lithium-sulfur batteries. Angew. Chem. Int. Ed. 63(25), e202402624 (2024). https://doi.org/10.1002/anie.202402624
J. Li, X. Li, X. Fan, T. Tang, M. Li et al., Holey graphene anchoring of the monodispersed nano-sulfur with covalently-grafted polyaniline for lithium sulfur batteries. Carbon 188, 155–165 (2022). https://doi.org/10.1016/j.carbon.2021.11.037
Y.-H. Liu, J. Qu, W. Chang, C.-Y. Yang, H.-J. Liu et al., A photo-assisted reversible lithium-sulfur battery. Energy Storage Mater. 50, 334–343 (2022). https://doi.org/10.1016/j.ensm.2022.05.030
J.-Y. Wu, Y. Wang, L.-N. Song, Y.-F. Wang, X.-X. Wang et al., Coordination defect-induced lewis pairs in metal−organic frameworks boosted sulfur kinetics for bifunctional photo-assisted Li−S batteries. Adv. Funct. Mater. 34(41), 2404211 (2024). https://doi.org/10.1002/adfm.202404211
J.-Y. Li, X.-Y. Du, X.-X. Wang, X.-Y. Yuan, D.-H. Guan et al., Photo-assisted Li-N2 batteries with enhanced nitrogen fixation and energy conversion. Angew. Chem. Int. Ed. 63(11), e202319211 (2024). https://doi.org/10.1002/anie.202319211
S. Hu, J. Shi, R. Yan, S. Pang, Z. Zhang et al., Flexible rechargeable photo-assisted zinc-air batteries based on photo-active pTTh bifunctional oxygen electrocatalyst. Energy Storage Mater. 65, 103139 (2024). https://doi.org/10.1016/j.ensm.2023.103139
W. Zha, Q. Ruan, L. Ma, M. Liu, H. Lin et al., Highly stable photo-assisted zinc-ion batteries via regulated photo-induced proton transfer. Angew. Chem. Int. Ed. 63(15), e202400621 (2024). https://doi.org/10.1002/anie.202400621
Y. Zhao, T. He, J. Li, C. Zhu, Y. Tan et al., Carbon superstructure-supported half-metallic V2O3 nanospheres for high-efficiency photorechargeable zinc ion batteries. Angew. Chem. Int. Ed. 63(38), e202408218 (2024). https://doi.org/10.1002/anie.202408218
M. Gao, R. Wang, X. Lu, Y. Fan, Z. Guo et al., A highly reversible Sn-air battery possessing the ultra-low charging potential with the assistance of light. Angew. Chem. Int. Ed. 63(32), e202407856 (2024). https://doi.org/10.1002/anie.202407856
R. Huang, J. Zhang, Z. Dong, H. Lin, S. Han, Reticulated TiO2-modified carbon fiber enabling as a supercapacitor electrode material for photoelectric synergistic charge storage. Energy Fuels 36(16), 9261–9271 (2022). https://doi.org/10.1021/acs.energyfuels.2c02078
J. Hu, Y. Pan, Q. Zhang, Z. Dong, S. Han, Constructing flower-shaped NiCo2S4@CoAl-LDH heterojunction nanosheets exhibits extraordinary electrochemical behavior for a light-assisted asymmetric supercapacitor. Energy Fuels 38(7), 6459–6470 (2024). https://doi.org/10.1021/acs.energyfuels.4c00124
J. Lv, J. Xie, A.G.A. Mohamed, X. Zhang, Y. Wang, Photoelectrochemical energy storage materials: design principles and functional devices towards direct solar to electrochemical energy storage. Chem. Soc. Rev. 51(4), 1511–1528 (2022). https://doi.org/10.1039/D1CS00859E
Z.-D. Ni, Y.-T. Song, H.-Q. Chen, L.-Y. Lin, Uv light-assisted electropolymerization of pyrrole on TiO2 for supercapacitors: investigating the role of TiO2. Electrochim. Acta 190, 313–321 (2016). https://doi.org/10.1016/j.electacta.2015.12.217
Y. Li, X. Li, X. Peng, X. Yang, F. Kang et al., Electrolyte additive-assembled interconnecting molecules-zinc anode interface for zinc-ion hybrid supercapacitors. Nano-Micro Lett. 17(1), 268 (2025). https://doi.org/10.1007/s40820-025-01794-1
B. Farhadi, I. Marriam, S. Yang, H. Zhang, M. Tebyetekerwa et al., Highly efficient photovoltaic energy storage hybrid system based on ultrathin carbon electrodes designed for a portable and flexible power source. J. Power. Sources 422, 196–207 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.091
Y. Teng, J. Wei, H. Du, M. Mojtaba, D. Li, A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring. J. Mater. Chem. A 8(23), 11695–11711 (2020). https://doi.org/10.1039/D0TA02894K
C. Yang, X. Wang, W. Dong, I.W. Chen, Z. Wang et al., Nitrogen-doped black titania for high performance supercapacitors. Sci. China Mater. 63(7), 1227–1234 (2020). https://doi.org/10.1007/s40843-020-1303-4
Q. Xiao, J. Zhu, C. Cheng, J. Liu, X. Zhang et al., Battery-like bismuth oxide anodes for soft-packed supercapacitors with high energy storage performance. Nanoscale 15(8), 3884–3892 (2023). https://doi.org/10.1039/D2NR07096K
S. Wang, W. Yu, Y. Chen, J. He, Z. Zhao et al., Electrode materials from cuprous oxide and chitin nanofibrils for supercapacitors with high specific capacity. Ionics 28(4), 1947–1955 (2022). https://doi.org/10.1007/s11581-022-04445-2
M.S. Yadav, N. Singh, S.M. Bobade, Zinc oxide nanops and activated charcoal-based nanocomposite electrode for supercapacitor application. Ionics 24(11), 3611–3630 (2018). https://doi.org/10.1007/s11581-018-2527-1
C.J. Raj, M. Rajesh, R. Manikandan, J.Y. Sim, K.H. Yu et al., Two-dimensional planar supercapacitor based on zinc oxide/manganese oxide core/shell nano-architecture. Electrochim. Acta 247, 949–957 (2017). https://doi.org/10.1016/j.electacta.2017.07.009
X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou et al., Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53(7), 1849–1853 (2014). https://doi.org/10.1002/anie.201307581
L. Bai, H. Huang, S. Zhang, L. Hao, Z. Zhang et al., Photocatalysis-assisted Co3O4/g-C3N4 p–n junction all-solid-state supercapacitors: a bridge between energy storage and photocatalysis. Adv. Sci. 7(22), 2001939 (2020). https://doi.org/10.1002/advs.202001939
M.M. Momeni, S. Navandian, H.M. Aydisheh, B.-K. Lee, Photo-assisted rechargeable supercapacitors based on nickel-cobalt-deposited tungsten-doped titania photoelectrodes: a novel self-powered supercapacitor. J. Power. Sources 557, 232588 (2023). https://doi.org/10.1016/j.jpowsour.2022.232588
Z. Lv, Q. Zhong, Y. Bu, Controllable synthesis of Ni-Co nanosheets covered hollow box via altering the concentration of nitrate for high performance supercapacitor. Electrochim. Acta 215, 500–505 (2016). https://doi.org/10.1016/j.electacta.2016.08.070
Y. Zhang, S. Duan, Y. Li, S. Zhang, Y. Wu et al., 2.6 V aqueous symmetric supercapacitors based on phosphorus-doped TiO2 nanotube arrays. Dalton Trans. 49(6), 1785–1793 (2020). https://doi.org/10.1039/c9dt04316k
L. Zheng, F. Teng, X. Ye, H. Zheng, X. Fang, Photo/electrochemical applications of metal sulfide/TiO2 heterostructures. Adv. Energy Mater. 10(1), 1902355 (2020). https://doi.org/10.1002/aenm.201902355
B. Zeng, X. Chen, C. Chen, X. Ning, W. Deng, Reduced graphene oxides loaded-ZnS/CuS heteronanostructures as high-activity visible-light-driven photocatalysts. J. Alloys Compd. 582, 774–779 (2014). https://doi.org/10.1016/j.jallcom.2013.08.121
H. Liu, Z. Guo, X. Wang, J. Hao, J. Lian, CuS/MnS composite hexagonal nanosheet clusters: synthesis and enhanced pseudocapacitive properties. Electrochim. Acta 271, 425–432 (2018). https://doi.org/10.1016/j.electacta.2018.03.048
S. Zhai, Z. Fan, K. Jin, M. Zhou, H. Zhao et al., Synthesis of zinc sulfide/copper sulfide/porous carbonized cotton nanocomposites for flexible supercapacitor and recyclable photocatalysis with high performance. J. Colloid Interface Sci. 575, 306–316 (2020). https://doi.org/10.1016/j.jcis.2020.04.073
C. Cai, W. Zhou, Y. Fu, Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor. Chem. Eng. J. 418, 129275 (2021). https://doi.org/10.1016/j.cej.2021.129275
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
I. Hussain, W.U. Arifeen, S.A. Khan, S. Aftab, M.S. Javed et al., M4X3 MXenes: application in energy storage devices. Nano-Micro Lett. 16(1), 215 (2024). https://doi.org/10.1007/s40820-024-01418-0
A.A. AbdelHamid, X. Yang, J. Yang, X. Chen, J.Y. Ying, Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy 26, 425–437 (2016). https://doi.org/10.1016/j.nanoen.2016.05.046
A. Barai, K. Uddin, M. Dubarry, L. Somerville, A. McGordon et al., A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells. Prog. Energy Combust. Sci. 72, 1–31 (2019). https://doi.org/10.1016/j.pecs.2019.01.001
X. Yu, G. Liu, T. Wang, H. Gong, H. Qu et al., Recent advances in the research of photo-assisted lithium-based rechargeable batteries. Chemistry 28(66), e202202104 (2022). https://doi.org/10.1002/chem.202202104
L. Ren, F. Kong, X. Wang, Y. Song, X. Li et al., Triggering ambient polymer-based Li-O2 battery via photo-electro-thermal synergy. Nano Energy 98, 107248 (2022). https://doi.org/10.1016/j.nanoen.2022.107248
R. Gao, L. Liu, Z. Hu, P. Zhang, X. Cao et al., The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li–O2 batteries. J. Mater. Chem. A 3(34), 17598–17605 (2015). https://doi.org/10.1039/C5TA03885E
X. Chai, H. Zhang, Q. Pan, J. Bian, Z. Chen et al., 3D ordered urchin-like TiO2@Fe2O3 arrays photoanode for efficient photoelectrochemical water splitting. Appl. Surf. Sci. 470, 668–676 (2019). https://doi.org/10.1016/j.apsusc.2018.11.184
X.-Y. Yang, X.-L. Feng, X. Jin, M.-Z. Shao, B.-L. Yan et al., An illumination-assisted flexible self-powered energy system based on a Li–O2 battery. Angew. Chem. Int. Ed. 58(46), 16411–16415 (2019). https://doi.org/10.1002/anie.201907805
D. Liu, X. Zhang, Y.-J. Wang, S. Song, L. Cui et al., A new perspective of lanthanide metal–organic frameworks: tailoring Dy-BTC nanospheres for rechargeable Li–O2 batteries. Nanoscale 12(17), 9524–9532 (2020). https://doi.org/10.1039/D0NR00866D
Y. Gu, Y.-N. Wu, L. Li, W. Chen, F. Li et al., Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem. Int. Ed. 56(49), 15658–15662 (2017). https://doi.org/10.1002/anie.201709738
K. Ikigaki, K. Okada, Y. Tokudome, T. Toyao, P. Falcaro et al., MOF-on-MOF: oriented growth of multiple layered thin films of metal–organic frameworks. Angew. Chem. Int. Ed. 58(21), 6886–6890 (2019). https://doi.org/10.1002/anie.201901707
R. Shimoni, Z. Shi, S. Binyamin, Y. Yang, I. Liberman et al., Electrostatic secondary-sphere interactions that facilitate rapid and selective electrocatalytic CO2 reduction in a Fe-porphyrin-based metal–organic framework. Angew. Chem. Int. Ed. 61(32), e202206085 (2022). https://doi.org/10.1002/anie.202206085
F. Leng, H. Liu, M. Ding, Q.-P. Lin, H.-L. Jiang, Boosting photocatalytic hydrogen production of porphyrinic MOFs: the metal location in metalloporphyrin matters. ACS Catal. 8(5), 4583–4590 (2018). https://doi.org/10.1021/acscatal.8b00764
W.-J. Xu, B.-X. Huang, G. Li, F. Yang, W. Lin et al., Donor–acceptor mixed-naphthalene diimide-porphyrin MOF for boosting photocatalytic oxidative coupling of amines. ACS Catal. 13(8), 5723–5732 (2023). https://doi.org/10.1021/acscatal.3c00284
X. Li, H. Wang, Z. Chen, H.-S. Xu, W. Yu et al., Covalent-organic-framework-based Li–CO2 batteries. Adv. Mater. 31(48), 1905879 (2019). https://doi.org/10.1002/adma.201905879
Y. Xu, C. Jiang, H. Gong, H. Xue, B. Gao et al., Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries. Nano Res. 15(5), 4100–4107 (2022). https://doi.org/10.1007/s12274-021-4052-1
M. Mushtaq, X.-W. Guo, J.-P. Bi, Z.-X. Wang, H.-J. Yu, Polymer electrolyte with composite cathode for solid-state Li–CO2 battery. Rare Met. 37(6), 520–526 (2018). https://doi.org/10.1007/s12598-018-1044-8
C. Wang, Y. Shang, Y. Lu, L. Qu, H. Yao et al., Photoinduced homogeneous RuO2 nanops on TiO2 nanowire arrays: a high-performance cathode toward flexible Li–CO2 batteries. J. Power. Sources 475, 228703 (2020). https://doi.org/10.1016/j.jpowsour.2020.228703
X. Cai, J. Xie, X. Guo, X. Zheng, Y. Liu et al., Suppressing polysulfide shuttle in lithium-sulfur batteries using CNTs/C3N4/S cathodes. Mater. Today Commun. 35, 106138 (2023). https://doi.org/10.1016/j.mtcomm.2023.106138
L. Wang, Q. Yang, K. Li, M. Wei, Q. Wang et al., Defects-rich TiO2(B) in situ grown on carbon fiber cloth as self-standing electrode for high-loading lithium–sulfur batteries. Mater. Lett. 357, 135668 (2024). https://doi.org/10.1016/j.matlet.2023.135668
D.L. Zhao, F. Feng, L. Shen, Z. Huang, Q. Zhao et al., Engineering metal–organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chem. Eng. J. 454, 140447 (2023). https://doi.org/10.1016/j.cej.2022.140447
W. Fan, X. Wang, X. Zhang, X. Liu, Y. Wang et al., Fine-tuning the pore environment of the microporous Cu-MOF for high propylene storage and efficient separation of light hydrocarbons. ACS Cent. Sci. 5(7), 1261–1268 (2019). https://doi.org/10.1021/acscentsci.9b00423
J. Pan, Z. Chen, J. Zhou, Q. Luo, Mof-derived MOF(Fe)/FeSx photocatalyst with enhanced photocatalytic activity for tetracycline degradation. Inorg. Chem. Commun. 159, 111754 (2024). https://doi.org/10.1016/j.inoche.2023.111754
L.J. Small, S.E. Henkelis, D.X. Rademacher, M.E. Schindelholz, J.L. Krumhansl et al., Near-zero power MOF-based sensors for NO2 detection. Adv. Funct. Mater. 30(50), 2006598 (2020). https://doi.org/10.1002/adfm.202006598
I. Abánades Lázaro, C.J.R. Wells, R.S. Forgan, Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew. Chem. Int. Ed. 59(13), 5211–5217 (2020). https://doi.org/10.1002/anie.201915848
W. Xu, L.-H. Wang, Y. Chen, Y. Liu, Flexible carbon membrane supercapacitor based on γ-cyclodextrin-MOF. Mater. Today Chem. 24, 100896 (2022). https://doi.org/10.1016/j.mtchem.2022.100896
J.-W. Wang, T.-L. Meng, Y.-X. Ma, L. Lei, J. Li et al., Fabrication of Ni-MOFs/MWCNTs by in situ growth for high-performance supercapacitor electrode materials. J. Mater. Sci. Mater. Electron. 34(28), 1920 (2023). https://doi.org/10.1007/s10854-023-11286-w
F. Bu, I. Shakir, Y. Xu, 3D graphene composites for efficient electrochemical energy storage. Adv. Mater. Interfaces 5(15), 1800468 (2018). https://doi.org/10.1002/admi.201800468
P.-F. Wang, X. He, Z.-C. Lv, H. Song, X. Song et al., Light-driven polymer-based all-solid-state lithium-sulfur battery operating at room temperature. Adv. Funct. Mater. 33(5), 2211074 (2023). https://doi.org/10.1002/adfm.202211074
J. Li, K. Zhang, Y. Zhao, C. Wang, L. Wang et al., High-efficiency and stable Li−CO2 battery enabled by carbon nanotube/carbon nitride heterostructured photocathode. Angew. Chem. Int. Ed. 61(4), e202114612 (2022). https://doi.org/10.1002/anie.202114612
G. Zhou, E. Paek, G.S. Hwang, A. Manthiram, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6(1), 7760 (2015). https://doi.org/10.1038/ncomms8760
F. Zhao, K. Yang, Y. Liu, J. Li, C. Li et al., Developing a multifunctional cathode for photoassisted lithium–sulfur battery. Adv. Sci. 11(35), 2402978 (2024). https://doi.org/10.1002/advs.202402978
J.-L. Ma, D. Bao, M.-M. Shi, J.-M. Yan, X.-B. Zhang, Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2(4), 525–532 (2017). https://doi.org/10.1016/j.chempr.2017.03.016
Y. Yang, N. Zhang, Z. Zou, X. Yi, J. Liu, Atomic layer deposited Ru/Mo2C heterostructure for efficient nitrogen reduction and nitrogen evolution in Li-N2 battery. Chem. Eng. J. 435, 135148 (2022). https://doi.org/10.1016/j.cej.2022.135148
F. Meng, J. Qin, X. Xiong, X. Li, R. Hu, Understanding the reversible reactions of Li-N2 battery catalyzed with SnO2. Energy. Environ. Mater. 6(1), e12298 (2023). https://doi.org/10.1002/eem2.12298
J. Xie, H. Dong, X. Cao, Y. Li, Computational insights into nitrogen reduction reaction catalyzed by transition metal doped graphene: comparative investigations. Mater. Chem. Phys. 243, 122622 (2020). https://doi.org/10.1016/j.matchemphys.2020.122622
W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
G. Dong, W. Ho, C. Wang, Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 3(46), 23435–23441 (2015). https://doi.org/10.1039/C5TA06540B
J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler et al., Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017). https://doi.org/10.1002/adma.201604685
S. Chen, C. Peng, D. Zhu, C. Zhi, Bifunctionally electrocatalytic bromine redox reaction by single-atom catalysts for high-performance zinc batteries. Adv. Mater. 36(46), 2409810 (2024). https://doi.org/10.1002/adma.202409810
X. Fan, J. Liu, Z. Song, X. Han, Y. Deng et al., Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries. Nano Energy 56, 454–462 (2019). https://doi.org/10.1016/j.nanoen.2018.11.057
Y. Zhang, Y.-P. Deng, J. Wang, Y. Jiang, G. Cui et al., Recent progress on flexible Zn-air batteries. Energy Storage Mater. 35, 538–549 (2021). https://doi.org/10.1016/j.ensm.2020.09.008
N. Yan, X. Gao, Photo-assisted rechargeable metal batteries for energy conversion and storage. Energy. Environ. Mater. 5(2), 439–451 (2022). https://doi.org/10.1002/eem2.12182
Z. Fang, Y. Zhang, X. Hu, X. Fu, L. Dai et al., Tactile UV- and solar-light multi-sensing rechargeable batteries with smart self-conditioned charge and discharge. Angew. Chem. Int. Ed. 58(27), 9248–9253 (2019). https://doi.org/10.1002/anie.201903805
W. Liu, Y. Yang, X. Hu, Q. Zhang, C. Wang et al., Light-assisted Li–O2 batteries with lowered bias voltages by redox mediators. Small 18(27), 2200334 (2022). https://doi.org/10.1002/smll.202200334
C. Lin, J. Wang, H. He, X. Liu, F. Qiu et al., Self-charged dual-photoelectrode vanadium–iron energy storage battery. Adv. Energy Mater. 14(2), 2303126 (2024). https://doi.org/10.1002/aenm.202303126
F. Chen, B.-Q. Zhao, K. Huang, X.-F. Ma, H.-Y. Li et al., Dual-defect engineering strategy enables high-durability rechargeable magnesium-metal batteries. Nano-Micro Lett. 16(1), 184 (2024). https://doi.org/10.1007/s40820-024-01410-8
X. Fu, F. He, J. Gao, X. Yan, Q. Chang et al., Directly growing graphdiyne nanoarray cathode to integrate an intelligent solid Mg-moisture battery. J. Am. Chem. Soc. 145(5), 2759–2764 (2023). https://doi.org/10.1021/jacs.2c11409
H. Yang, Z. Jin, G. Wang, D. Liu, K. Fan, Light-assisted synthesis MoSx as a noble metal free cocatalyst formed heterojunction CdS/Co3O4 photocatalyst for visible light harvesting and spatial charge separation. Dalton Trans. 47(20), 6973–6985 (2018). https://doi.org/10.1039/C8DT01142G
T. Godet-Bar, J.C. Leprêtre, P. Poizot, F. Massuyeau, E. Faulques et al., Light assisted rechargeable batteries: a proof of concept with bodipy derivatives acting as a combined photosensitizer and electrical storage unit. J. Mater. Chem. A 5(5), 1902–1905 (2017). https://doi.org/10.1039/C6TA10177A
X. Li, X. Niu, P. Fu, Y. Song, E. Zhang et al., Macrocycle-on-COF photocatalyst constructed by in-situ linker exchange for efficient photocatalytic CO2 cycloaddition. Appl. Catal. B Environ. Energy 350, 123943 (2024). https://doi.org/10.1016/j.apcatb.2024.123943
P. Lv, S.-C. Chen, C. Xu, B. Peng, Photo-assisted deposited titanium dioxide for all-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13.6%. Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0018868
Y. Zhu, Y. Wei, P. Li, S. Liu, J. Zhang et al., Type-II heterojunction photocathode for CO2 reduction and light-assisted metal–CO2 batteries. J. Mater. Chem. A 12(9), 5133–5144 (2024). https://doi.org/10.1039/D3TA07450A