Toward High Carrier Mobility and Low Contact Resistance: Laser Cleaning of PMMA Residues on Graphene Surfaces
Corresponding Author: Yunyi Fu
Nano-Micro Letters,
Vol. 8 No. 4 (2016), Article Number: 336-346
Abstract
Poly(methyl methacrylate) (PMMA) is widely used for graphene transfer and device fabrication. However, it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of device performance. How to eliminate contamination and restore clean surfaces of graphene is still highly demanded. In this paper, we present a reliable and position-controllable method to remove the polymer residues on graphene films by laser exposure. Under proper laser conditions, PMMA residues can be substantially reduced without introducing defects to the underlying graphene. Furthermore, by applying this laser cleaning technique to the channel and contacts of graphene field-effect transistors (GFETs), higher carrier mobility as well as lower contact resistance can be realized. This work opens a way for probing intrinsic properties of contaminant-free graphene and fabricating high-performance GFETs with both clean channel and intimate graphene/metal contact.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, V.I. FalKo, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490(7419), 192–200 (2012). doi:10.1038/nature11458
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005). doi:10.1038/nature04233
- Z. Li, G.L. Fan, Z.Q. Tan, Z.Q. Li, Q. Guo, D.B. Xiong, D. Zhang, A versatile method for uniform dispersion of nanocarbons in metal matrix based on electrostatic interactions. Nano-Micro Lett. 8(1), 54–60 (2016). doi:10.1007/s40820-015-0061-5
- Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T.C. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett. 9(4), 1472–1475 (2009). doi:10.1021/nl8033637
- A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson et al., The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99(12), 122108 (2011). doi:10.1063/1.3643444
- X. Zhang, Y. Huang, P.B. Liu, enhanced electromagnetic wave absorption properties of poly(3, 4-ethylenedioxythiophene) nanofibers decorated graphene sheets by non-covalent interactions. Nano-Micro Lett. 8(2), 131–136 (2016). doi:10.1007/s40820-015-0067-z
- Y. Lin, C. Lu, C. Yeh, C. Jin, K. Suenaga, P. Chiu, Graphene annealing: how clean can it be? Nano Lett. 12(1), 414–419 (2012). doi:10.1021/nl203733r
- R. Ifuku, K. Nagashio, T. Nishimura, A. Toriumi, The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity. Appl. Phys. Lett. 103(3), 33514 (2013). doi:10.1063/1.4815990
- T. Moriyama, K. Nagashio, T. Nishimura, A. Toriumi, Carrier density modulation in graphene underneath Ni electrode. J. Appl. Phys. 114(2), 24503 (2013). doi:10.1063/1.4813216
- Z.H. Ni, H.M. Wang, Z.Q. Luo, Y.Y. Wang, T. Yu, Y.H. Wu, Z.X. Shen, The effect of vacuum annealing on graphene. J. Raman Spectrosc 41(5), 479–483 (2010). doi:10.1002/jrs.2485
- Y. Ahn, H. Kim, Y. Kim, Y. Yi, S. Kim, Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene. Appl. Phys. Lett. 102(9), 91602 (2013). doi:10.1063/1.4794900
- Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, Y. Fang, Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 11(2), 767–771 (2011). doi:10.1021/nl103977d
- K. Kumar, Y. Kim, E. Yang, The influence of thermal annealing to remove polymeric residue on the electronic doping and morphological characteristics of graphene. Carbon 65, 35–45 (2013). doi:10.1016/j.carbon.2013.07.088
- J. Moser, A. Barreiro, A. Bachtold, Current-induced cleaning of graphene. Appl. Phys. Lett. 91(16), 163513 (2007). doi:10.1063/1.2789673
- K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351–355 (2008). doi:10.1016/j.ssc.2008.02.024
- J.W. Suk, W.H. Lee, J. Lee, H. Chou, R.D. Piner, Y. Hao, D. Akinwande, R.S. Ruoff, Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett. 13(4), 1462–1467 (2013). doi:10.1021/nl304420b
- Y. Lim, D. Lee, T. Shen, C. Ra, J. Choi, W.J. Yoo, Si-compatible cleaning process for graphene using low-density inductively coupled plasma. ACS Nano 6(5), 4410–4417 (2012). doi:10.1021/nn301093h
- J.A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R. Cavalero, D. Snyder, Contacting graphene. Appl. Phys. Lett. 98(5), 53103 (2011). doi:10.1063/1.3549183
- W. Li, Y. Liang, D. Yu, L. Peng, K.P. Pernstich et al., Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Appl. Phys. Lett. 102(18), 183110 (2013). doi:10.1063/1.4804643
- F. Güneş, G.H. Han, H. Shin, S.Y. Lee, M. Jin et al., UV-light-assisted oxidative sp 3 hybridization of graphene. Nano 06, 409–418 (2011). doi:10.1142/S1793292011002780
- A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). doi:10.1126/science.1158877
- A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1), 47–57 (2007). doi:10.1016/j.ssc.2007.03.052
- A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3(4), 210–215 (2008). doi:10.1038/nnano.2008.67
- S. Ryu, L. Liu, S. Berciaud, Y. Yu, H. Liu, P. Kim, G.W. Flynn, L.E. Brus, Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett. 10(12), 4944–4951 (2010). doi:10.1021/nl1029607
- H. Hölscher, AFM, tapping mode. Encyclopedia of Nanotechnology, p 99 (2012). doi:10.1007/978-90-481-9751-4_33
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(7), 569–581 (2011). doi:10.1038/nmat3064
- L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009). doi:10.1016/j.physrep.2009.02.003
- D.W. Boukhvalov, M.I. Katsnelson, Enhancement of chemical activity in corrugated graphene. J. Phys. Chem. C 113(32), 14176–14178 (2009). doi:10.1021/jp905702e
- A. Felten, B.S. Flavel, L. Britnell, A. Eckmann, P. Louette, J. Pireaux, M. Hirtz, R. Krupke, C. Casiraghi, Single- and double-sided chemical functionalization of bilayer graphene. Small 9(4), 631–639 (2013). doi:10.1002/smll.201202214
- T. Ha, D. Akinwande, A. Dodabalapur, Hybrid graphene/organic semiconductor field-effect transistors. Appl. Phys. Lett. 101(3), 33309 (2012). doi:10.1063/1.4737939
- B. Huard, N. Stander, J.A. Sulpizio, D. Goldhaber-Gordon, Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys. Rev. B: Condens. Matter Mater 78(12), 121402 (2008). doi:10.1103/PhysRevB.78.121402
- W. Liu, J. Wei, X. Sun, H. Yu, A study on graphene—metal contact. Crystals 3(1), 257–274 (2013). doi:10.3390/cryst3010257
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). doi:10.1038/nmat1967
- J. Sabio, C. Seoanez, S. Fratini, F. Guinea, A.H. Castro, Neto, F. Sols, Electrostatic interactions between graphene layers and their environment. Phys. Rev. B: Condens. Matter Mater 77(19), 195409 (2008). doi:10.1103/PhysRevB.77.195409
- K. Nagashio, R. Ifuku, T. Moriyama, T. Nishimura, A. Toriumi, Intrinsic graphene/metal contact. IEEE International Electron Devices Meeting (IEDM), San Francisco (10–13 Dec 2012), pp 4.1.1–4.1.4
- S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94(6), 62107 (2009). doi:10.1063/1.3077021
- F. Xia, V. Perebeinos, Y. Lin, Y. Wu, P. Avouris, The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 6(3), 179–184 (2011). doi:10.1038/nnano.2011.6
- K. Matsumoto, Frontiers of graphene and carbon nanotubes: devices and applications (Springer, Osaka, 2015). doi:10.1007/978-4-431-55372-4
- D. Yuan, S. Das, Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation. J. Appl. Phys. 101(2), 24901 (2007). doi:10.1063/1.2409621
- Y. Feng, Z. Liu, R. Vilar, X.S. Yi, Laser surface cleaning of organic contaminants. Appl. Surf. Sci. 150(1), 131–136 (1999). doi:10.1016/S0169-4332(99)00237-8
- T. Hirata, T. Kashiwagi, J.E. Brown, Thermal and oxidative degradation of poly (methyl methacrylate): weight loss. Macromolecules 18(7), 1410–1418 (1985). doi:10.1021/ma00149a010
- R. Srinivasan, Ablation of polymethyl methacrylate films by pulsed (ns) ultraviolet and infrared (9.17 μm) lasers: a comparative study by ultrafast imaging. J. Appl. Phys. 73(6), 2743–2750 (1993). doi:10.1063/1.353048
- S. Kuper, J. Brannon, K. Brannon, Threshold behavior in polyimide photoablation—single-shot rate measurements and surface-temperature modeling. Appl. Phys. A: Mater. Sci 56(1), 43–50 (1993). doi:10.1007/BF00351902
- R. Srinivasan, B. Braren, D.E. Seeger, R.W. Dreyfus, Photochemical cleavage of a polymeric solid—details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm. Macromolecules 19(3), 916–921 (1986). doi:10.1021/ma00157a074
- B.J. Garrison, R. Srinivasan, Laser ablation of organic polymers: microscopic models for photochemical and thermal processes. J. Appl. Phys. 57(8), 2909–2914 (1985). doi:10.1063/1.335230
- S.I. Stoliarov, P.R. Westmoreland, M.R. Nyden, G.P. Forney, A reactive molecular dynamics model of thermal decomposition in polymers: I. Poly(methyl methacrylate). Polymer 44(3), 883–894 (2003). doi:10.1016/S0032-3861(02)00761-9
- H. Arisawa, T.B. Brill, Kinetics and mechanisms of flash pyrolysis of poly(methyl methacrylate) (PMMA). Combust. Flame 109(3), 415–426 (1997). doi:10.1016/S0010-2180(96)00190-3
- C. Phipps, M. Birkan, W. Bohn, H. Eckel, H. Horisawa et al., Review: laser-ablation propulsion. J. Propuls. Power 26(4), 609–637 (2010). doi:10.2514/1.43733
- R. Srinivasan, B. Braren, Ultraviolet-laser ablation of organic polymers. Chem. Rev. 89(6), 1303–1316 (1989). doi:10.1021/cr00096a003
- O. Svelto, Principles of lasers (Plenum Press, New York, 1998). doi:10.1007/978-1-4757-6266-2
References
K.S. Novoselov, V.I. FalKo, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490(7419), 192–200 (2012). doi:10.1038/nature11458
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005). doi:10.1038/nature04233
Z. Li, G.L. Fan, Z.Q. Tan, Z.Q. Li, Q. Guo, D.B. Xiong, D. Zhang, A versatile method for uniform dispersion of nanocarbons in metal matrix based on electrostatic interactions. Nano-Micro Lett. 8(1), 54–60 (2016). doi:10.1007/s40820-015-0061-5
Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T.C. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett. 9(4), 1472–1475 (2009). doi:10.1021/nl8033637
A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson et al., The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99(12), 122108 (2011). doi:10.1063/1.3643444
X. Zhang, Y. Huang, P.B. Liu, enhanced electromagnetic wave absorption properties of poly(3, 4-ethylenedioxythiophene) nanofibers decorated graphene sheets by non-covalent interactions. Nano-Micro Lett. 8(2), 131–136 (2016). doi:10.1007/s40820-015-0067-z
Y. Lin, C. Lu, C. Yeh, C. Jin, K. Suenaga, P. Chiu, Graphene annealing: how clean can it be? Nano Lett. 12(1), 414–419 (2012). doi:10.1021/nl203733r
R. Ifuku, K. Nagashio, T. Nishimura, A. Toriumi, The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity. Appl. Phys. Lett. 103(3), 33514 (2013). doi:10.1063/1.4815990
T. Moriyama, K. Nagashio, T. Nishimura, A. Toriumi, Carrier density modulation in graphene underneath Ni electrode. J. Appl. Phys. 114(2), 24503 (2013). doi:10.1063/1.4813216
Z.H. Ni, H.M. Wang, Z.Q. Luo, Y.Y. Wang, T. Yu, Y.H. Wu, Z.X. Shen, The effect of vacuum annealing on graphene. J. Raman Spectrosc 41(5), 479–483 (2010). doi:10.1002/jrs.2485
Y. Ahn, H. Kim, Y. Kim, Y. Yi, S. Kim, Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene. Appl. Phys. Lett. 102(9), 91602 (2013). doi:10.1063/1.4794900
Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, Y. Fang, Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 11(2), 767–771 (2011). doi:10.1021/nl103977d
K. Kumar, Y. Kim, E. Yang, The influence of thermal annealing to remove polymeric residue on the electronic doping and morphological characteristics of graphene. Carbon 65, 35–45 (2013). doi:10.1016/j.carbon.2013.07.088
J. Moser, A. Barreiro, A. Bachtold, Current-induced cleaning of graphene. Appl. Phys. Lett. 91(16), 163513 (2007). doi:10.1063/1.2789673
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351–355 (2008). doi:10.1016/j.ssc.2008.02.024
J.W. Suk, W.H. Lee, J. Lee, H. Chou, R.D. Piner, Y. Hao, D. Akinwande, R.S. Ruoff, Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett. 13(4), 1462–1467 (2013). doi:10.1021/nl304420b
Y. Lim, D. Lee, T. Shen, C. Ra, J. Choi, W.J. Yoo, Si-compatible cleaning process for graphene using low-density inductively coupled plasma. ACS Nano 6(5), 4410–4417 (2012). doi:10.1021/nn301093h
J.A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R. Cavalero, D. Snyder, Contacting graphene. Appl. Phys. Lett. 98(5), 53103 (2011). doi:10.1063/1.3549183
W. Li, Y. Liang, D. Yu, L. Peng, K.P. Pernstich et al., Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Appl. Phys. Lett. 102(18), 183110 (2013). doi:10.1063/1.4804643
F. Güneş, G.H. Han, H. Shin, S.Y. Lee, M. Jin et al., UV-light-assisted oxidative sp 3 hybridization of graphene. Nano 06, 409–418 (2011). doi:10.1142/S1793292011002780
A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). doi:10.1126/science.1158877
A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1), 47–57 (2007). doi:10.1016/j.ssc.2007.03.052
A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3(4), 210–215 (2008). doi:10.1038/nnano.2008.67
S. Ryu, L. Liu, S. Berciaud, Y. Yu, H. Liu, P. Kim, G.W. Flynn, L.E. Brus, Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett. 10(12), 4944–4951 (2010). doi:10.1021/nl1029607
H. Hölscher, AFM, tapping mode. Encyclopedia of Nanotechnology, p 99 (2012). doi:10.1007/978-90-481-9751-4_33
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(7), 569–581 (2011). doi:10.1038/nmat3064
L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009). doi:10.1016/j.physrep.2009.02.003
D.W. Boukhvalov, M.I. Katsnelson, Enhancement of chemical activity in corrugated graphene. J. Phys. Chem. C 113(32), 14176–14178 (2009). doi:10.1021/jp905702e
A. Felten, B.S. Flavel, L. Britnell, A. Eckmann, P. Louette, J. Pireaux, M. Hirtz, R. Krupke, C. Casiraghi, Single- and double-sided chemical functionalization of bilayer graphene. Small 9(4), 631–639 (2013). doi:10.1002/smll.201202214
T. Ha, D. Akinwande, A. Dodabalapur, Hybrid graphene/organic semiconductor field-effect transistors. Appl. Phys. Lett. 101(3), 33309 (2012). doi:10.1063/1.4737939
B. Huard, N. Stander, J.A. Sulpizio, D. Goldhaber-Gordon, Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys. Rev. B: Condens. Matter Mater 78(12), 121402 (2008). doi:10.1103/PhysRevB.78.121402
W. Liu, J. Wei, X. Sun, H. Yu, A study on graphene—metal contact. Crystals 3(1), 257–274 (2013). doi:10.3390/cryst3010257
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). doi:10.1038/nmat1967
J. Sabio, C. Seoanez, S. Fratini, F. Guinea, A.H. Castro, Neto, F. Sols, Electrostatic interactions between graphene layers and their environment. Phys. Rev. B: Condens. Matter Mater 77(19), 195409 (2008). doi:10.1103/PhysRevB.77.195409
K. Nagashio, R. Ifuku, T. Moriyama, T. Nishimura, A. Toriumi, Intrinsic graphene/metal contact. IEEE International Electron Devices Meeting (IEDM), San Francisco (10–13 Dec 2012), pp 4.1.1–4.1.4
S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94(6), 62107 (2009). doi:10.1063/1.3077021
F. Xia, V. Perebeinos, Y. Lin, Y. Wu, P. Avouris, The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 6(3), 179–184 (2011). doi:10.1038/nnano.2011.6
K. Matsumoto, Frontiers of graphene and carbon nanotubes: devices and applications (Springer, Osaka, 2015). doi:10.1007/978-4-431-55372-4
D. Yuan, S. Das, Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation. J. Appl. Phys. 101(2), 24901 (2007). doi:10.1063/1.2409621
Y. Feng, Z. Liu, R. Vilar, X.S. Yi, Laser surface cleaning of organic contaminants. Appl. Surf. Sci. 150(1), 131–136 (1999). doi:10.1016/S0169-4332(99)00237-8
T. Hirata, T. Kashiwagi, J.E. Brown, Thermal and oxidative degradation of poly (methyl methacrylate): weight loss. Macromolecules 18(7), 1410–1418 (1985). doi:10.1021/ma00149a010
R. Srinivasan, Ablation of polymethyl methacrylate films by pulsed (ns) ultraviolet and infrared (9.17 μm) lasers: a comparative study by ultrafast imaging. J. Appl. Phys. 73(6), 2743–2750 (1993). doi:10.1063/1.353048
S. Kuper, J. Brannon, K. Brannon, Threshold behavior in polyimide photoablation—single-shot rate measurements and surface-temperature modeling. Appl. Phys. A: Mater. Sci 56(1), 43–50 (1993). doi:10.1007/BF00351902
R. Srinivasan, B. Braren, D.E. Seeger, R.W. Dreyfus, Photochemical cleavage of a polymeric solid—details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm. Macromolecules 19(3), 916–921 (1986). doi:10.1021/ma00157a074
B.J. Garrison, R. Srinivasan, Laser ablation of organic polymers: microscopic models for photochemical and thermal processes. J. Appl. Phys. 57(8), 2909–2914 (1985). doi:10.1063/1.335230
S.I. Stoliarov, P.R. Westmoreland, M.R. Nyden, G.P. Forney, A reactive molecular dynamics model of thermal decomposition in polymers: I. Poly(methyl methacrylate). Polymer 44(3), 883–894 (2003). doi:10.1016/S0032-3861(02)00761-9
H. Arisawa, T.B. Brill, Kinetics and mechanisms of flash pyrolysis of poly(methyl methacrylate) (PMMA). Combust. Flame 109(3), 415–426 (1997). doi:10.1016/S0010-2180(96)00190-3
C. Phipps, M. Birkan, W. Bohn, H. Eckel, H. Horisawa et al., Review: laser-ablation propulsion. J. Propuls. Power 26(4), 609–637 (2010). doi:10.2514/1.43733
R. Srinivasan, B. Braren, Ultraviolet-laser ablation of organic polymers. Chem. Rev. 89(6), 1303–1316 (1989). doi:10.1021/cr00096a003
O. Svelto, Principles of lasers (Plenum Press, New York, 1998). doi:10.1007/978-1-4757-6266-2