The Roadmap of 2D Materials and Devices Toward Chips
Corresponding Author: Tian‑Ling Ren
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 119
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore’s law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Highlights:
1 This review introduces the potential of 2D electronics for post-Moore era and discusses their current progress in digital circuits, analog circuits, heterogeneous integration, sensing circuits, artificial intelligence chips, and quantum chips in sequence.
2 A comprehensive analysis of the current trends and challenges encountered in the development of 2D materials is summarized.
3 An in-depth roadmap outlining the future development of 2D electronics is presented, and the most accessible and promising avenues for 2D electronics are suggested.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.S. Kilby, Invention of integrated-circuit. IEEE Tran. Electron. Devices 23(7), 648–654 (1976). https://doi.org/10.1109/t-ed.1976.18467
- K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata et al., Experimental study on carrier transport mechanism in ultrathin-body SOI n- and p-MOSFETs with SOI thickness less than 5 nm. in 2002 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 47–50 (2002). https://doi.org/10.1109/IEDM.2002.1175776
- D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur et al., Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259–288 (2001). https://doi.org/10.1109/5.915374
- S. Zeng, Z. Tang, C. Liu, P. Zhou, Electronics based on two-dimensional materials: Status and outlook. Nano Res. 14, 1752–1767 (2021). https://doi.org/10.1007/s12274-020-2945-z
- D.E. Nikonov, I.A. Young, Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101(12), 2498–2533 (2013). https://doi.org/10.1109/jproc.2013.2252317
- S. Yang, C. Jiang, S.-H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4(2), 021304 (2017). https://doi.org/10.1063/1.4983310
- Z. Xie, R. Avila, Y. Huang, J.A. Rogers, Flexible and stretchable antennas for biointegrated electronics. Adv. Mater. 32(15), 1902767 (2020). https://doi.org/10.1002/adma.201902767
- C. Choi, Y. Lee, K.W. Cho, J.H. Koo, D.-H. Kim, Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 52(1), 73–81 (2019). https://doi.org/10.1021/acs.accounts.8b00491
- H. Xiang, Y.-C. Chien, Y. Shi, K.-W. Ang, Application of 2D materials in hardware security for Internet-of-Things: Progress and perspective. Small Struct. 3(8), 2200060 (2022). https://doi.org/10.1002/sstr.202200060
- C. Cui, F. Xue, W.-J. Hu, L.-J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018). https://doi.org/10.1038/s41699-018-0063-5
- C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3
- A. Pal, S. Zhang, T. Chavan, K. Agashiwala, C.H. Yeh et al., Quantum-engineered devices based on 2D materials for next-generation information processing and storage. Adv. Mater. 35(27), 2109894 (2022). https://doi.org/10.1002/adma.202109894
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- S.J.B. Yoo, B. Guan, R.P. Scott, Heterogeneous 2D/3D photonic integrated microsystems. Microsyst. Nanoeng. 2, 16030 (2016). https://doi.org/10.1038/micronano.2016.30
- M. Donarelli, L. Ottaviano, 2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 18(11), 3638 (2018). https://doi.org/10.3390/s18113638
- V.D. Leyen, Fast-Forward into the Tech Future. (Antwerp, Belgium, 2022)
- S.H. Choi, S.J. Yun, Y.S. Won, C.S. Oh, S.M. Kim et al., Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat. Commun. 13, 1484 (2022). https://doi.org/10.1038/s41467-022-29182-y
- X. Chen, Y. Xie, Y. Sheng, H. Tang, Z. Wang et al., Wafer-scale functional circuits based on two-dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 12, 5953 (2021). https://doi.org/10.1038/s41467-021-26230-x
- P. Yang, X. Zou, Z. Zhang, M. Hong, J. Shi et al., Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018). https://doi.org/10.1038/s41467-018-03388-5
- S. Wachter, D.K. Polyushkin, O. Bethge, T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017). https://doi.org/10.1038/ncomms14948
- J.-Y. Kim, X. Ju, K.-W. Ang, D. Chi, Van der Waals layer transfer of 2D materials for monolithic 3D electronic system integration: review and outlook. ACS Nano 17(3), 1831–1844 (2023). https://doi.org/10.1021/acsnano.2c10737
- R. Campos, G. Machado, M.F. Cerqueira, J. Borme, P. Alpuim, Wafer scale fabrication of graphene microelectrode arrays for the detection of DNA hybridization. Microelectron. Eng. 189, 85–90 (2018). https://doi.org/10.1016/j.mee.2017.12.015
- M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
- F. Schwierz, Graphene transistors: Status, prospects, and problems. Pros. IEEE 101(7), 1567–1584 (2013). https://doi.org/10.1109/jproc.2013.2257633
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). https://doi.org/10.1021/nn400280c
- L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers et al., Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1(6), e1500222 (2015). https://doi.org/10.1126/sciadv.1500222
- Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang et al., Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021). https://doi.org/10.1038/s41586-021-03339-z
- X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M.B. Nardellil et al., Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87(11), 115418 (2013). https://doi.org/10.1103/PhysRevB.87.115418
- E. Cinquanta, E. Scalise, D. Chiappe, C. Grazianetti, M. Houssa et al., Getting through the nature of silicene: An sp2-sp3 two-dimensional silicon nanosheet. J. Phys. Chem. C 117(32), 16719–16724 (2013). https://doi.org/10.1021/jp405642g
- L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli et al., Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015). https://doi.org/10.1038/nnano.2014.325
- Y. Liu, H. Wu, H.-C. Cheng, S. Yang, E. Zhu et al., Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15(5), 3030–3034 (2015). https://doi.org/10.1021/nl504957p
- S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354(6308), 99–102 (2016). https://doi.org/10.1126/science.aah4698
- Y.Y. Illarionov, A.G. Banshchikov, D.K. Polyushkin, S. Wachter, T. Knobloch et al., Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019). https://doi.org/10.1038/s41928-019-0256-8
- L. Kong, Y. Chen, Y. Liu, Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 14(6), 1768–1783 (2021). https://doi.org/10.1007/s12274-020-2958-7
- M. Qian, Y. Pan, F. Liu, M. Wang, H. Shen et al., Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface. Adv. Mater. 26(20), 3275–3281 (2014). https://doi.org/10.1002/adma.201306028
- K. Qian, R.Y. Tay, V.C. Nguyen, J. Wang, G. Cai et al., Hexagonal boron nitride thin film for flexible resistive memory applications. Adv. Funct. Mater. 26(13), 2176–2184 (2016). https://doi.org/10.1002/adfm.201504771
- S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim et al., Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020). https://doi.org/10.1038/s41565-019-0623-7
- X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao et al., Van der waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019). https://doi.org/10.1038/s41467-019-10738-4
- H. Tian, X. Wang, H. Zhao, W. Mi, Y. Yang et al., A graphene-based filament transistor with sub-10 mVdec−1 subthreshold swing. Adv. Electron. Mater. 4(4), 1700608 (2018). https://doi.org/10.1002/aelm.201700608
- M. Lanza, Q. Smets, C. Huyghebaert, L.-J. Li, Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 11, 5689 (2020). https://doi.org/10.1038/s41467-020-19053-9
- G. Xue, X. Sui, P. Yin, Z. Zhou, X. Li et al., Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 68(14), 1514–1521 (2023). https://doi.org/10.1016/j.scib.2023.06.037
- P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang et al., Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14(4), 5036–5045 (2020). https://doi.org/10.1021/acsnano.0c01478
- J.-H. Park, A.-Y. Lu, P.-C. Shen, B.G. Shin, H. Wang et al., Synthesis of high-performance monolayer molybdenum disulfide at low temperature. Small Methods 5(6), 2000720 (2021). https://doi.org/10.1002/smtd.202000720
- J. Mun, H. Park, J. Park, D. Joung, S.-K. Lee et al., High-mobility MoS2 directly grown on polymer substrate with kinetics-controlled metal-organic chemical vapor deposition. ACS Appl. Electron. Mater. 1(4), 608–616 (2019). https://doi.org/10.1021/acsaelm.9b00078
- J. Zhu, J.-H. Park, S.A. Vitale, W. Ge, G.S. Jung et al., Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456–463 (2023). https://doi.org/10.1038/s41565-023-01375-6
- J. Mun, Y. Kim, I.-S. Kang, S.K. Lim, S.J. Lee et al., Low-temperature growth of layered molybdenum disulphide with controlled clusters. Sci. Rep. 6, 21854 (2016). https://doi.org/10.1038/srep21854
- L. Liu, T. Li, L. Ma, W. Li, S. Gao et al., Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022). https://doi.org/10.1038/s41586-022-04523-5
- J. Chen, W. Tang, B. Tian, B. Liu, X. Zhao et al., Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv. Sci. 3(8), 1500033 (2016). https://doi.org/10.1002/advs.201600033
- I. Bilgin, F. Liu, A. Vargas, A. Winchester, M.K.L. Man et al., Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9), 8822–8832 (2015). https://doi.org/10.1021/acsnano.5b02019
- W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 137(50), 15632–15635 (2015). https://doi.org/10.1021/jacs.5b10519
- H. Yu, M. Liao, W. Zhao, G. Liu, X.J. Zhou et al., Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11(12), 12001–12007 (2017). https://doi.org/10.1021/acsnano.7b03819
- Y. Huang, Y.-H. Pan, R. Yang, L.-H. Bao, L. Meng et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020). https://doi.org/10.1038/s41467-020-16266-w
- X. Lan, Y. Cheng, X. Yang, Z. Zhang, Wafer-scale engineering of two-dimensional transition metal chalcogenides. Chip 2(3), 100057 (2023). https://doi.org/10.1016/j.chip.2023.100057
- T. Li, W. Guo, L. Ma, W. Li, Z. Yu et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021). https://doi.org/10.1038/s41565-021-00963-8
- N. Briggs, S. Subramanian, Z. Lin, X. Li, X. Zhang et al., A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019). https://doi.org/10.1088/2053-1583/aaf836
- Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15, 38 (2023). https://doi.org/10.1007/s40820-022-01010-4
- K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). https://doi.org/10.1038/nature14417
- S. Hwangbo, L. Hu, A.T. Hoang, J.Y. Choi, J.-H. Ahn, Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022). https://doi.org/10.1038/s41565-022-01102-7
- M.-L. Shi, L. Chen, T.-B. Zhang, J. Xu, H. Zhu et al., Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small 13(35), 1603157 (2017). https://doi.org/10.1002/smll.201603157
- J.-Y. Moon, M. Kim, S.-I. Kim, S. Xu, J.-H. Choi et al., Layer-engineered large-area exfoliation of graphene. Sci. Adv. 6(44), 6601 (2020). https://doi.org/10.1126/sciadv.abc6601
- D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
- L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chen, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4, 675–684 (2011). https://doi.org/10.1007/s12274-011-0123-z
- Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu et al., Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018). https://doi.org/10.1038/s41586-018-0574-4
- N. Zavanelli, W.-H. Yeo, Advances in screen printing of conductive nanomaterials for stretchable electronics. ACS Omega 6(14), 9344–9351 (2021). https://doi.org/10.1021/acsomega.1c00638
- K.S. Kim, D. Lee, C.S. Chang, S. Seo, Y. Hu et al., Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023). https://doi.org/10.1038/s41586-022-05524-0
- S.A. Iyengar, S. Bhattacharyya, S. Roy, N.R. Glavin, A.K. Roy et al., A researcher’s perspective on unconventional lab-to-fab for 2D semiconductor devices. ACS Nano 17(14), 12955–12970 (2023). https://doi.org/10.1021/acsnano.3c01927
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
- F. Wu, J. Ren, Y. Yang, Z. Yan, H. Tian et al., A 10 nm short channel MoS2 transistor without the resolution requirement of photolithography. Adv. Electron. Mater. 7(12), 2100543 (2021). https://doi.org/10.1002/aelm.202100543
- K.A. Patel, R.W. Grady, K.K.H. Smithe, E. Pop, R. Sordan, Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. 2D Mater. 7, 015018 (2020). https://doi.org/10.1088/2053-1583/ab4ef0
- R. Wu, Q. Tao, J. Li, W. Li, Y. Chen et al., Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 5, 497–504 (2022). https://doi.org/10.1038/s41928-022-00800-3
- K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin et al., Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17(2), 1065–1070 (2017). https://doi.org/10.1021/acs.nanolett.6b04576
- J. Jiang, M.-H. Doan, L. Sun, H. Kim, H. Yu et al., Ultrashort vertical-channel van der Waals semiconductor transistors. Adv. Sci. 7(4), 1902964 (2020). https://doi.org/10.1002/advs.201902964
- L. Liu, L. Kong, Q. Li, C. He, L. Ren et al., Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 4(5), 342–347 (2021). https://doi.org/10.1038/s41928-021-00566-0
- J. Jiang, L. Xu, C. Qiu, L. Peng, Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023). https://doi.org/10.1038/s41586-023-05819-w
- C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin et al., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023). https://doi.org/10.1038/s41586-023-05797-z
- Y.-Y. Chung, B.-J. Chou, C.-F. Hsu, W.-S. Yun, M.-Y. Li et al., First demonstration of GAA Monolayer-MoS2 nanosheet nFET with 410μA/μm ID at 1V VD at 40nm gate length. in 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 34.5.1–34.5.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019563
- X. Xiong, A. Tong, X. Wang, S. Liu, X. Li et al., Demonstration of vertically-stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with Ion > 700 μA/μm and MoS2/WSe2 CFET. in 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7.5.1–7.5.4 (2021). https://doi.org/10.1109/IEDM19574.2021.9720533
- C.J. Dorow, A. Penumatcha, A. Kitamura, C. Rogan, K.P.O’ Brien et al., Gate length scaling beyond Si: Mono-layer 2D channel FETs robust to short channel effects. in 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7.5.1–7.5.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019524
- M. Chen, X. Sun, H. Liu, H. Wang, Q. Zhu et al., A FinFET with one atomic layer channel. Nat. Commun. 11, 1205 (2020). https://doi.org/10.1038/s41467-020-15096-0
- A. Liu, X. Peng, S. Peng, H. Tian, Dielectrics for 2-D electronics: From device to circuit applications. IEEE Trans. Electron Devices 70(4), 1474–1498 (2022). https://doi.org/10.1109/ted.2022.3220483
- W.M. Arden, The international technology roadmap for semiconductors-Perspectives and challenges for the next 15 years. Curr. Opin. Solid State Mater. Sci. 6(5), 371–377 (2002). https://doi.org/10.1016/S1359-0286(02)00116-X
- M.M. Frank, High-k/metal gate innovations enabling continued CMOS scaling. in 2011 Proceedings of the ESSCIRC (ESSCIRC), Helsinki, Finland, 50–58 (2011). https://doi.org/10.1109/ESSCIRC.2011.6044913
- S. Fukamachi, P. Solis-Fernandez, K. Kawahara, D. Tanaka, T. Otake et al., Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 6, 126–136 (2023). https://doi.org/10.1038/s41928-022-00911-x
- T. Knobloch, Y.Y. Illarionov, F. Ducry, C. Schleich, S. Wachter et al., The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021). https://doi.org/10.1038/s41928-020-00529-x
- J.-K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022). https://doi.org/10.1038/s41586-022-04588-2
- C. Zhang, T. Tu, J. Wang, Y. Zhu, C. Tan et al., Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023). https://doi.org/10.1038/s41563-023-01502-7
- M. Fortin-Deschênes, R. Pu, Y.-F. Zhou, C. Ma, P. Cheung et al., Uncovering topological edge states in twisted bilayer graphene. Nano Lett. 22(15), 6186–6193 (2022). https://doi.org/10.1021/acs.nanolett.2c01481
- H.G. Kim, H.-B.-R. Lee, Atomic layer deposition on 2D materials. Chem. Mater. 29(9), 3809–3826 (2017). https://doi.org/10.1021/acs.chemmater.6b05103
- S. McDonnell, B. Brennan, A. Azcatl, N. Lu, H. Dong et al., HfO2 on MoS2 by atomic layer deposition: Adsorption mechanisms and thickness scalability. ACS Nano 7(11), 10354–10361 (2013). https://doi.org/10.1021/nn404775u
- W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang et al., Uniform and ultrathin high-kappa gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2(12), 563–571 (2019). https://doi.org/10.1038/s41928-019-0334-y
- J. Wang, S. Li, X. Zou, J. Ho, L. Liao et al., Integration of high-k oxide on MoS2 by using ozone pretreatment for high-performance MoS2 top-gated transistor with thickness-dependent carrier scattering investigation. Small 11(44), 5932–5938 (2015). https://doi.org/10.1002/smll.201501260
- X. Wang, T.-B. Zhang, W. Yang, H. Zhu, L. Chen et al., Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment. Appl. Phys. Lett. 110(5), 053110 (2017). https://doi.org/10.1063/1.4975627
- T. Li, T. Tu, Y. Sun, H. Fu, J. Yu et al., A native oxide high-kappa gate dielectric for two-dimensional electronics. Nat. Electron. 3, 473–478 (2020). https://doi.org/10.1038/s41928-020-0444-6
- D. Qi, P. Li, H. Ou, D. Wu, W. Lian et al., Graphene-enhanced metal transfer printing for strong van der Waals contacts between 3D metals and 2D semiconductors. Adv. Funct. Mater. 33(27), 2301704 (2023). https://doi.org/10.1002/adfm.202301704
- P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
- Z. Cheng, Y. Yu, S. Singh, K. Price, S.G. Noyce et al., Immunity to contact scaling in MoS2 transistors using in situ edge contacts. Nano Lett. 19(8), 5077–5085 (2019). https://doi.org/10.1021/acs.nanolett.9b01355
- D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47(9), 3037–3058 (2018). https://doi.org/10.1039/c7cs00828g
- S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13(1), 100–105 (2013). https://doi.org/10.1021/nl303583v
- W. Li, X. Gong, Z. Yu, L. Ma, W. Sun et al., Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613(7943), 274–279 (2023). https://doi.org/10.1038/s41586-022-05431-4
- S. Cho, S. Kim, J.H. Kim, J. Zhao, J. Seok et al., Phase patterning for ohmic homojunction contact in MoTe2. Science 349(6248), 625–628 (2015). https://doi.org/10.1126/science.aab3175
- Y. Wang, J. Xiao, H. Zhu, Y. Li, Y. Alsaid et al., Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017). https://doi.org/10.1038/nature24043
- J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang et al., Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 139(30), 10216–10219 (2017). https://doi.org/10.1021/jacs.7b05765
- Z. Qian, L. Jiao, L. Xie, Phase engineering of two-dimensional transition metal dichalcogenides. Chinese J. Chem. 38(7), 753–760 (2020). https://doi.org/10.1002/cjoc.202000064
- G. Kwon, Y.-H. Choi, H. Lee, H.-S. Kim, J. Jeong et al., Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 5, 241–247 (2022). https://doi.org/10.1038/s41928-022-00746-6
- Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee et al., Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557(7707), 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
- Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019). https://doi.org/10.1038/s41586-019-1013-x
- L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao et al., One-dimensional electrical contact to a two-dimensional material. Science 342(6158), 614–617 (2013). https://doi.org/10.1126/science.1244358
- Y. Wang, M. Chhowalla, Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022). https://doi.org/10.1038/s42254-021-00389-0
- A. Jain, A. Szabo, M. Parzefall, E. Bonvin, T. Taniguchi et al., One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 19(10), 6914–6923 (2019). https://doi.org/10.1021/acs.nanolett.9b02166
- M.H.D. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie et al., Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10(6), 6392–6399 (2016). https://doi.org/10.1021/acsnano.6b02879
- L. Kong, R. Wu, Y. Chen, Y. Huangfu, L. Liu et al., Wafer-scale and universal van der Waals metal semiconductor contact. Nat. Commun. 14, 1014–1014 (2023). https://doi.org/10.1038/s41467-023-36715-6
- H. Liu, Q.H. Thi, P. Man, X. Chen, T. Chen et al., Controlled adhesion of ice-toward ultraclean 2D materials. Adv. Mater. 35(14), 2210503 (2023). https://doi.org/10.1002/adma.202210503
- Y. Zhao, Y. Song, Z. Hu, W. Wang, Z. Chang et al., Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat. Commun. 13, 4409 (2022). https://doi.org/10.1038/s41467-022-31887-z
- K.K.H. Smithe, S.V. Suryavanshi, M.M. Rojo, A.D. Tedjarati, E. Pop, Low variability in synthetic monolayer MoS2 devices. ACS Nano 11(8), 8456–8463 (2017). https://doi.org/10.1021/acsnano.7b04100
- W. Xie, L.-T. Weng, K.M. Ng, C.K. Chan, C.-M. Chan, Clean graphene surface through high temperature annealing. Carbon 94, 740–748 (2015). https://doi.org/10.1016/j.carbon.2015.07.046
- L. Yu, D. El-Damak, U. Radhakrishna, X. Ling, A. Zubair et al., Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with e-Mode FETs for large-area electronics. Nano Lett. 16(10), 6349–6356 (2016). https://doi.org/10.1021/acs.nanolett.6b02739
- A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer et al., Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale 7(45), 19099–19109 (2015). https://doi.org/10.1039/c5nr06038a
- S. Fernandez, A. Molinero, D. Sanz, J.P. Gonzalez, M. Cruz et al., Graphene-based contacts for optoelectronic devices. Micromachines 11(10), 919 (2020). https://doi.org/10.3390/mi11100919
- T. Li, J. Hou, J. Yan, R. Liu, H. Yang et al., Chiplet heterogeneous integration technology-status and challenges. Electronics 9(4), 670 (2020). https://doi.org/10.3390/electronics9040670
- C.S. Premachandran, S. Choi, S. Cimino, T.-Q. Thuy, L. Burrell et al., Reliability challenges for 2.5D/3D integration: An overview. in 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 5B.4–1–5B.4–5 (2018). https://doi.org/10.1109/IRPS.2018.8353609
- M. Koyanagi, T. Fukushima, T. Tanaka, Three-dimensional integration technology and integrated systems. in 2009 Asia and South Pacific Design Automation Conference, Yokohama, Japan, 409–415 (2009). https://doi.org/10.1109/ASPDAC.2009.4796515
- X. Wang, Y. Sun, K. Liu, Chemical and structural stability of 2D layered materials. 2D Mater. 6, 042001 (2019). https://doi.org/10.1088/2053-1583/ab20d6
- Z. Hu, Q. Li, B. Lei, Q. Zhou, D. Xiang et al., Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew. Chem. Int. Ed. 56(31), 9131–9135 (2017). https://doi.org/10.1002/anie.201705012
- T. Kawauchi, J. Kumaki, E. Yashima, Nanosphere and nanonetwork formations of [60]fullerene-end-capped stereoregular poly(methyl methacrylate)s through stereocomplex formation combined with self-assembly of the fullerenes. J. Am. Chem. Soc. 128(32), 10560–10567 (2006). https://doi.org/10.1021/ja063252u
- J. Ma, K.-Y. Choi, S.H. Kim, H. Lee, G. Yoo et al., All polymer encapsulated, highly-sensitive MoS2 phototransistors on flexible PAR substrate. Appl. Phys. Lett. 113(1), 013102 (2018). https://doi.org/10.1063/1.5036556
- Y.-W. Song, M.-K. Song, D. Choi, J.-Y. Kwon, Encapsulation-enhanced switching stability of MoS2 memristors. J. Alloys Compd. 885, 161016 (2021). https://doi.org/10.1016/j.jallcom.2021.161016
- K. Alexandrou, N. Petrone, J. Hone, I. Kymissis, Encapsulated graphene field-effect transistors for air stable operation. Appl. Phys. Lett. 106(11), 113104 (2015). https://doi.org/10.1063/1.4915513
- J. Jia, S.K. Jang, S. Lai, J. Xu, Y.J. Choi et al., Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS Nano 9(9), 8729–8736 (2015). https://doi.org/10.1021/acsnano.5b04265
- Z. Li, Y. Lv, L. Ren, J. Li, L. Kong et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11, 1151 (2020). https://doi.org/10.1038/s41467-020-15023-3
- W.J. Woo, I.K. Oh, B.E. Park, Y. Kim, J. Park et al., Bi-layer high-k dielectrics of Al2O3/ZrO2 to reduce damage to MoS2 channel layers during atomic layer deposition. 2D Mater. 6, 015019 (2019). https://doi.org/10.1088/2053-1583/aaef1e
- Y. Liu, X. Wang, S.K. Ghosh, M. Zou, H. Zhou et al., Atomic layer deposition of lithium zirconium oxides for the improved performance of lithium-ion batteries. Dalton Trans. 51(7), 2737–2749 (2022). https://doi.org/10.1039/d1dt03600a
- M.Z. Ansari, P. Janicek, Y.J. Park, S. NamGung, B.Y. Cho et al., Preparation of wafer-scale highly conformalamorphous hafnium dioxide thin films by atomic layer deposition using a thermally stable boratabenzene ligand-containing hafnium precursor. Appl. Surf. Sci. 620, 156834 (2023). https://doi.org/10.1016/j.apsusc.2023.156834
- N. Li, Z. Wei, J. Zhao, Q. Wang, C. Shen et al., Atomic layer deposition of Al2O3 directly on 2D materials for high-performance electronics. Adv. Mater. Interfaces 6(10), 1802055 (2019). https://doi.org/10.1002/admi.201802055
- A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w
- G. Nazir, A. Rehman, S.-J. Park, Energy-efficient tunneling field-effect transistors for low-power device applications: Challenges and opportunities. ACS Appl. Mater. Interfaces 12(42), 47127–47163 (2020). https://doi.org/10.1021/acsami.0c10213
- C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski et al., Chemical sensing with 2D materials. Chem. Soc. Rev. 47(13), 4860–4908 (2018). https://doi.org/10.1039/c8cs00417j
- M. Long, P. Wang, H. Fang, W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29(19), 1803807 (2019). https://doi.org/10.1002/adfm.201803807
- Q. Qian, J. Lei, J. Wei, Z. Zhang, G. Tang et al., 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current. npj 2D Mater. Appl. 3, 24 (2019). https://doi.org/10.1038/s41699-019-0106-6
- L. Lin, L. Zhang, X. Wang, J. Liu, H. Zhao et al., Novel nanophase-switching ESD protection. IEEE Electron Device Lett. 32(3), 378–380 (2011). https://doi.org/10.1109/LED.2010.2099100
- R. Ma, Q. Chen, W. Zhang, F. Lu, C. Wang et al., A dual-polarity graphene NEMS switch ESD protection structure. IEEE Electron Device Lett. 37(5), 674–676 (2016). https://doi.org/10.1109/LED.2016.2544343
- H. Feng, G. Chen, R. Zhan, Q. Wu, X. Guan et al., A mixed-mode ESD protection circuit simulation-design methodology. IEEE J. Solid-State Circuits 38(6), 995–1006 (2003). https://doi.org/10.1109/JSSC.2003.811978
- L. Wang, X. Wang, Z. Shi, R. Ma, J. Liu et al., Dual-direction nanocrossbar array ESD protection structures. IEEE Electron Device Lett. 34(1), 111–113 (2013). https://doi.org/10.1109/LED.2012.2222337
- S.-K. Su, C.-P. Chuu, M.-Y. Li, C.-C. Cheng, H.-S.P. Wong et al., Layered semiconducting 2D materials for future transistor applications. Small Struct. 2(5), 2000103 (2021). https://doi.org/10.1002/sstr.202000103
- Z. Wang, W. Zhu, Tunable band alignments in 2D ferroelectric alpha-In2Se3 based van der Waals heterostructures. ACS Appl. Electron. Mater. 3(11), 5114–5123 (2021). https://doi.org/10.1021/acsaelm.1c00855
- A. Srivastava, M. Dubey, GaAs digital integrated circuits-a review from silicon point of view for designing ultra-fast VLSI circuits. in Proceedings of the 32nd Midwest Symposium on Circuits and Systems Champaign, IL, USA, 2, 1250–1254 (1989). https://doi.org/10.1109/mws.1989.102083
- H. Wang, L. Yu, Y.-H. Lee, W. Fang, A. Hsu et al., Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition. in 2012 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 4.6.1–4.6.4 (2012). https://doi.org/10.1109/IEDM.2012.6478980
- P.J. Jeon, J.S. Kim, J.Y. Lim, Y. Cho, A. Pezeshki et al., Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 7(40), 22333–22340 (2015). https://doi.org/10.1021/acsami.5b06027
- H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu et al., Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012). https://doi.org/10.1021/nl302015v
- Z. Zhang, Z. Wang, T. Shi, C. Bi, F. Rao et al., Memory materials and devices: from concept to application. Infomat 2(2), 261–290 (2020). https://doi.org/10.1002/inf2.12077
- J. Li, J. Li, Y. Ding, C. Liu, X. Hou et al., Highly area-efficient low-power SRAM cell with 2 transistors and 2 resistors. in 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 23.3.1–23.3.4 (2019). https://doi.org/10.1109/IEDM19573.2019.8993520
- X. Wang, X. Chen, J. Ma, S. Gou, X. Guo et al., Pass-transistor logic circuits based on wafer-scale 2D semiconductors. Adv. Mater. 34(48), 2202472 (2022). https://doi.org/10.1002/adma.202202472
- F. Traversi, V. Russo, R. Sordan, Integrated complementary graphene inverter. Appl. Phys. Lett. 94(22), 223312 (2009). https://doi.org/10.1063/1.3148342
- S.-L. Li, H. Miyazaki, A. Kumatani, A. Kanda, K. Tsukagoshi, Low operating bias and matched input-output characteristics in graphene logic inverters. Nano Lett. 10(7), 2357–2362 (2010). https://doi.org/10.1021/nl100031x
- S.-L. Li, H. Miyazaki, M.V. Lee, C. Liu, A. Kanda et al., Complementary-like graphene logic gates controlled by electrostatic doping. Small 7(11), 1552–1556 (2011). https://doi.org/10.1002/smll.201100318
- H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
- B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12), 9934–9938 (2011). https://doi.org/10.1021/nn203715c
- S. Das, M. Dubey, A. Roelofs, High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors. Appl. Phys. Lett. 105(8), 083511 (2014). https://doi.org/10.1063/1.4894426
- J. Pu, K. Funahashi, C.-H. Chen, M.-Y. Li, L.-J. Li et al., Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 28(21), 4111–4119 (2016). https://doi.org/10.1002/adma.201503872
- Z. Bian, J. Miao, T. Zhang, H. Chen, Q. Zhu et al., Carrier modulation in 2D transistors by inserting interfacial dielectric layer for area-efficient computation. Small 19(26), 2206791 (2023). https://doi.org/10.1002/smll.202206791
- H. Liu, L. Chen, H. Zhu, Q.-Q. Sun, S.-J. Ding et al., Atomic layer deposited 2D MoS2 atomic crystals: from material to circuit. Nano Res. 13(6), 1644–1650 (2020). https://doi.org/10.1007/s12274-020-2787-8
- J. Yi, X. Sun, C. Zhu, S. Li, Y. Liu et al., Double-gate MoS2 field-effect transistors with full-range tunable threshold voltage for multifunctional logic circuits. Adv. Mater. 33(27), 2101036 (2021). https://doi.org/10.1002/adma.202101036
- H. Son, H. Choi, J. Jeon, Y.J. Kim, S. Choi et al., Complementary driving between 2D heterostructures and surface functionalization for surpassing binary logic devices. ACS Appl. Mater. Interfaces 13(7), 8692–8699 (2021). https://doi.org/10.1021/acsami.0c17739
- L. Yu, Y.-H. Lee, X. Ling, E.J.G. Santos, Y.C. Shin et al., Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14(6), 3055–3063 (2014). https://doi.org/10.1021/nl404795z
- A. Dathbun, Y. Kim, S. Kim, Y. Yoo, M.S. Kang et al., Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett. 17(5), 2999–3005 (2017). https://doi.org/10.1021/acs.nanolett.7b00315
- X. Xiong, S. Liu, H. Liu, Y. Chen, X. Shi et al., Top-gate CVD WSe2 pFETs with record-high Id~594 µA/µm, Gm~244 µS/µm and WSe2/MoS2 CFET based half-adder circuit using monolithic 3D integration. in 2022 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 20.6.1–20.6.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019476
- S.-J. Han, A.V. Garcia, S. Oida, K.A. Jenkins, W. Haensch, Graphene radio frequency receiver integrated circuit. Nat. Commun. 5, 3086 (2014). https://doi.org/10.1038/ncomms4086
- S.F. Chowdhury, M.N. Yogeesh, S.K. Banerjee, D. Akinwande, Black phosphorous thin-film transistor and RF circuit applications. IEEE Electron Device Lett. 37(4), 449–451 (2016). https://doi.org/10.1109/led.2016.2536102
- Q. Gao, Z. Zhang, X. Xu, J. Song, X. Li et al., Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat. Commun. 9, 4778 (2018). https://doi.org/10.1038/s41467-018-07135-8
- S. Park, S.H. Shin, M.N. Yogeesh, A.L. Lee, S. Rahimi et al., Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett. 37(4), 512–515 (2016). https://doi.org/10.1109/led.2016.2535484
- S. Conti, L. Pimpolari, G. Calabrese, R. Worsley, S. Majee et al., Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 11, 3566 (2020). https://doi.org/10.1038/s41467-020-17297-z
- S. Ma, Y. Wang, X. Chen, T. Wu, X. Wang et al., Analog integrated circuits based on wafer-level two-dimensional MoS2 materials with physical and SPICE model. IEEE Access 8, 197287–197299 (2020). https://doi.org/10.1109/access.2020.3034321
- N.O. Adesina, A. Srivastava, A. Ullah Khan, J. Xu, An ultra-low power MoS2 tunnel field effect transistor PLL design for IoT applications. in 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 1–6 (2021). https://doi.org/10.1109/IEMTRONICS52119.2021.9422641
- K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
- H. Wang, D. Nezich, J. Kong, T. Palacios, Graphene frequency multipliers. IEEE Electron Device Lett. 30(5), 547–549 (2009). https://doi.org/10.1109/led.2009.2016443
- H. Wang, A. Hsu, J. Wu, J. Kong, T. Palacios, Graphene-based ambipolar RF mixers. IEEE Electron Device Lett. 31(9), 906–908 (2010). https://doi.org/10.1109/led.2010.2052017
- Y. Wu, Y.-M. Lin, A.A. Bol, K.A. Jenkins, F. Xia et al., High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011). https://doi.org/10.1038/nature09979
- Y. Wu, K.A. Jenkins, A. Valdes-Garcia, D.B. Farmer, Y. Zhu et al., State-of-the-art graphene high-frequency electronics. Nano Lett. 12(6), 3062–3067 (2012). https://doi.org/10.1021/nl300904k
- H. Lyu, H. Wu, J. Liu, Q. Lu, J. Zhang et al., Double-balanced graphene integrated mixer with outstanding linearity. Nano Lett. 15(10), 6677–6682 (2015). https://doi.org/10.1021/acs.nanolett.5b02503
- S. Das, W. Zhang, L.R. Thoutam, Z. Xiao, A. Hoffmann et al., A small signal amplifier based on ionic liquid gated black phosphorous field effect transistor. IEEE Electron Device Lett. 36(6), 621–623 (2015). https://doi.org/10.1109/led.2015.2421948
- W. Lu, G. Yang, N. Lu, L. Li, Recent progress in analog circuits based on two-dimensional semiconductors. J. Vac. Sci. Technol. 41(6), 501–514 (2021). https://doi.org/10.13922/j.cnki.cjvst.202105001
- H.-Y. Chang, M.N. Yogeesh, R. Ghosh, A. Rai, A. Sanne et al., Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 28(9), 1818–1823 (2016). https://doi.org/10.1002/adma.201504309
- A. Sanne, S. Park, R. Ghosh, M.N. Yogeesh, C. Liu et al., Embedded gate CVD MoS2 microwave FETs. npj 2D Mater. Appl. 1, 26 (2017). https://doi.org/10.1038/s41699-017-0029-z
- D.K. Polyushkin, S. Wachter, L. Mennel, M. Paur, M. Paliy et al., Analogue two-dimensional semiconductor electronics. Nat. Electron. 3, 486–491 (2020). https://doi.org/10.1038/s41928-020-0460-6
- T. Leng, K. Parvez, K. Pan, J. Ali, D. McManus et al., Printed graphene/WS2 battery-free wireless photosensor on papers. 2D Mater. 7(2), 024004 (2020). https://doi.org/10.1088/2053-1583/ab602f
- B.J. Shastri, A.N. Tait, T.F. de Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021). https://doi.org/10.1038/s41566-020-00754-y
- J.-A. Carballo, W.-T. J. Chan, P.A. Gargini, A.B. Kahng, S. Nath, ITRS 2.0: Toward a re-framing of the Semiconductor Technology Roadmap. in 2014 IEEE 32nd International Conference on Computer Design (ICCD), Seoul, Korea (South), 139–146 (2014). https://doi.org/10.1109/ICCD.2014.6974673
- H.-C. Lin, T. Chou, C.-C. Chung, C.-J. Tsen, B.-W. Huang et al., RF performance of stacked Si nanosheet nFETs. IEEE Trans. Electron Devices 68(10), 5277–5283 (2021). https://doi.org/10.1109/ted.2021.3106287
- F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
- N. Bourahla, B. Hadri, A. Bourahla, Impact of channel doping concentration on the performance characteristics and the reliability of ultra-thin double gate DG-FinFET compared with nano-single gate FD-SOI-MOSFET by using TCAD-Silvaco tool. SILICON 14, 3477–3491 (2022). https://doi.org/10.1007/s12633-021-01121-4
- R.W. Keyes, Fundamental limits of silicon technology. Proc. IEEE 89(3), 227–239 (2001). https://doi.org/10.1109/5.915372
- D. Jena, K. Banerjee, G. Xing, Intimate contacts. Nat. Mater. 13, 1076–1078 (2014). https://doi.org/10.1038/nmat4121
- P.V. Pham, S.C. Bodepudi, K. Shehzad, Y. Liu, Y. Xu et al., 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 122(6), 6514–6613 (2022). https://doi.org/10.1021/acs.chemrev.1c00735
- L. Tong, J. Wan, K. Xiao, J. Liu, J. Ma et al., Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. 6, 37–44 (2023). https://doi.org/10.1038/s41928-022-00881-0
- Y. Xia, L. Zong, Y. Pan, X. Chen, L. Zhou et al., Wafer-Scale demonstration of MBC-FET and C-FET arrays based on two-dimensional semiconductors. Small 18(20), 2107650 (2022). https://doi.org/10.1002/smll.202107650
- M. Liu, J. Niu, G. Yang, K. Chen, W. Lu et al., Large-scale ultrathin channel nanosheet-stacked CFET based on CVD 1L MoS2/WSe2. Adv. Electron. Mater. 9(2), 2200722 (2023). https://doi.org/10.1002/aelm.202200722
- A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R.W. Grady et al., High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021). https://doi.org/10.1038/s41928-021-00598-6
- Z. Li, D. Xie, R. Dai, J. Xu, Y. Sun et al., High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors. Nano Res. 10, 276–283 (2017). https://doi.org/10.1007/s12274-016-1286-4
- H. Mertens, R. Ritzenthaler, V. Pena, G. Santoro, K. Kenis et al., Vertically stacked gate-all-around Si nanowire transistors: Key process optimizations and ring oscillator demonstration. in 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 37.4.1–37.4.4 (2017). https://doi.org/10.1109/IEDM.2017.8268511
- C.J. Estrada, Z. Ma, M. Chan, Complementary two-dimensional (2-D) FET technology with MoS2/hBN/graphene stack. IEEE Electron Device Lett. 42(12), 1890–1893 (2021). https://doi.org/10.1109/LED.2021.3124823
- R. Pendurthi, D. Jayachandran, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Heterogeneous integration of atomically thin semiconductors for non-von Neumann CMOS. Small 18(33), 2202590 (2022). https://doi.org/10.1002/smll.202202590
- T. Dai, C. Chen, L. Huang, J. Jiang, L.-M. Peng et al., Ultrasensitive magnetic sensors enabled by heterogeneous integration of graphene hall elements and silicon processing circuits. ACS Nano 14(12), 17606–17614 (2020). https://doi.org/10.1021/acsnano.0c08435
- S.K. Hong, C.S. Kim, W.S. Hwang, B.J. Cho, Hybrid integration of graphene analog and silicon complementary metal–oxide–semiconductor digital circuits. ACS Nano 10(7), 7142–7146 (2016). https://doi.org/10.1021/acsnano.6b03382
- L. Xu, W. Cai, Y. Jia, R. Xing, T. Han et al., Graphene–silicon hybrid MOSFET integrated circuits for high-linearity analog amplification. IEEE Electron Device Lett. 43(11), 1886–1889 (2022). https://doi.org/10.1109/led.2022.3204950
- G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020). https://doi.org/10.1038/s41586-020-2861-0
- Y. Zheng, H. Ravichandran, T.F. Schranghamer, N. Trainor, J.M. Redwing et al., Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nat. Commun. 13, 5578 (2022). https://doi.org/10.1038/s41467-022-33053-x
- A. Dodda, N. Trainor, J.M. Redwing, S. Das, All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13, 3587 (2022). https://doi.org/10.1038/s41467-022-31148-z
- S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
- C.-C. Yang, K.-C. Chiu, C.-T. Chou, C.-N. Liao, M.-H. Chuang et al., Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+IC. in 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 1–2 (2016). https://doi.org/10.1109/VLSIT.2016.7573448
- H. Hinton, H. Jang, W. Wu, M.-H. Lee, M. Seol et al., A 200 x 256 image sensor heterogeneously integrating a 2D nanomaterial-based photo-FET array and CMOS time-to-digital converters. in 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 1–3 (2022). https://doi.org/10.1109/ISSCC42614.2022.9731685
- W. Meng, F. Xu, Z. Yu, T. Tao, L. Shao et al., Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021). https://doi.org/10.1038/s41565-021-00966-5
- J. Shin, H. Kim, S. Sundaram, J. Jeong, B.-I. Park et al., Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614, 81–87 (2023). https://doi.org/10.1038/s41586-022-05612-1
- O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013). https://doi.org/10.1038/nnano.2013.100
- J.F. Gonzalez Marin, D. Unuchek, K. Watanabe, T. Taniguchi, A. Kis, MoS2 photodetectors integrated with photonic circuits. npj 2D Mater. Appl. 3, 14 (2019). https://doi.org/10.1038/s41699-019-0096-4
- T.N. Theis, H.-S.P. Wong, The end of Moore’s law: A new beginning for information technology. Comput. Sci. Eng. 19(2), 41–50 (2017). https://doi.org/10.1109/mcse.2017.29
- Y. Liu, J. Sun, L. Tong, Y. Li, T. Deng, High-performance one-dimensional MOSFET array photodetectors in the 0.8-μm standard CMOS process. Opt. Express 30(24), 43706–43717 (2022). https://doi.org/10.1364/oe.475687
- M.M. Shulaker, G. Hills, R.S. Park, R.T. Howe, K. Saraswat et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017). https://doi.org/10.1038/nature22994
- S.R. Cho, D.-H. Kim, M. Jeon, R. Pragya, M. Gyeon et al., Overlaying monolayer metal-organic framework on PtSe2-based gas sensor for tuning selectivity. Adv. Funct. Mater. 32(47), 2207265 (2022). https://doi.org/10.1002/adfm.202207265
- A. Paghi, S. Mariani, G. Barillaro, 1D and 2D field effect transistors in gas sensing: A comprehensive review. Small 19(15), 2206100 (2023). https://doi.org/10.1002/smll.202206100
- C. Dai, Y. Liu, D. Wei, Two-dimensional field-effect transistor sensors: the road toward commercialization. Chem. Rev. 122(11), 10319–10392 (2022). https://doi.org/10.1021/acs.chemrev.1c00924
- C.-Y. You, B.-F. Hu, B.-R. Xu, Z.-Y. Zhang, B.-M. Wu et al., Foldable-circuit-enabled miniaturized multifunctional sensor for smart digital dust. Chip 1(4), 100034 (2022). https://doi.org/10.1016/j.chip.2022.100034
- Y. Luo, M.R. Abidian, J.H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17(6), 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
- B. Davaji, H.D. Cho, M. Malakoutian, J.K. Lee, G. Panin et al., A patterned single layer graphene resistance temperature sensor. Sci. Rep. 7, 8811 (2017). https://doi.org/10.1038/s41598-017-08967-y
- A. Harzheim, F. Koenemann, B. Gotsmann, H. van der Zant, P. Gehring, Single-material graphene thermocouples. Adv. Funct. Mater. 30(22), 2000574 (2020). https://doi.org/10.1002/adfm.202000574
- A.M.H. Kwan, Y. Guan, X. Liu, K.J. Chen, A highly linear integrated temperature sensor on a GaN smart power IC platform. IEEE Trans. Electron Devices 61(8), 2970–2976 (2014). https://doi.org/10.1109/ted.2014.2327386
- L. Viti, E. Riccardi, H.E. Beere, D.A. Ritchie, M.S. Vitiello, Real-time measure of the lattice temperature of a semiconductor heterostructure laser via an on-chip integrated graphene thermometer. ACS Nano 17(6), 6103–6112 (2023). https://doi.org/10.1021/acsnano.3c01208
- A. Daus, M. Jaikissoon, A.I. Khan, A. Kumar, R.W. Grady et al., Fast-response flexible temperature sensors with atomically thin molybdenum disulfide. Nano Lett. 22(15), 6135–6140 (2022). https://doi.org/10.1021/acs.nanolett.2c01344
- Y.J. Park, B.K. Sharma, S.M. Shinde, M.S. Kim, B. Jang et al., All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 13(3), 3023–3030 (2019). https://doi.org/10.1021/acsnano.8b07995
- J. Jang, H. Kim, S. Ji, H.J. Kim, M.S. Kang et al., Mechanoluminescent, air-dielectric MoS2 transistors as active-matrix pressure sensors for wide detection ranges from footsteps to cellular motions. Nano Lett. 20(1), 66–74 (2020). https://doi.org/10.1021/acs.nanolett.9b02978
- M. Siskins, M. Lee, D. Wehenkel, R. van Rijn, T.W. de Jong et al., Sensitive capacitive pressure sensors based on graphene membrane arrays. Microsyst. Nanoeng. 6, 102 (2020). https://doi.org/10.1038/s41378-020-00212-3
- S. Zeng, C. Tang, H. Hong, Y. Fang, Y. Li et al., A novel high-temperature pressure sensor based on graphene coated by Si3N4. IEEE Sens. J. 23(3), 2008–2013 (2023). https://doi.org/10.1109/jsen.2022.3232626
- Z. Zhu, J. Wang, C. Wu, X. Chen, X. Liu et al., A wide range and high repeatability MEMS pressure sensor based on graphene. IEEE Sens. J. 22(18), 17737–17745 (2022). https://doi.org/10.1109/jsen.2022.3195231
- L. Zhou, H. Fu, T. Lv, C. Wang, H. Gao et al., Nonlinear optical characterization of 2D materials. Nanomaterials 10(11), 2263 (2020). https://doi.org/10.3390/nano10112263
- J. Zhao, G. Wang, R. Yang, X. Lu, M. Cheng et al., Tunable piezoresistivity of nanographene films for strain sensing. ACS Nano 9(2), 1622–1629 (2015). https://doi.org/10.1021/nn506341u
- Y. Zhang, Q. Lu, J. He, Z. Huo, R. Zhou et al., Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk. Nat. Commun. 14, 1252 (2023). https://doi.org/10.1038/s41467-023-36885-3
- T. Zhao, J. Guo, T. Li, Z. Wang, M. Peng et al., Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem. Soc. Rev. 52(5), 1650–1671 (2023). https://doi.org/10.1039/d2cs00657j
- S. Hong, N. Zagni, S. Choo, N. Liu, S. Baek et al., Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 12, 3559 (2021). https://doi.org/10.1038/s41467-021-23711-x
- S. Ma, T. Wu, X. Chen, Y. Wang, J. Ma et al., A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors. Sci. Adv. 8(31), eabn9328 (2022). https://doi.org/10.1126/sciadv.abn9328
- W. Yu, Z. Dong, H. Mu, G. Ren, X. He et al., Wafer-scale synthesis of 2D Dirac heterostructures for self-driven, fast, broadband photodetectors. ACS Nano 16(8), 12922–12929 (2022). https://doi.org/10.1021/acsnano.2c05278
- H. Park, A. Sen, M. Kaniselvan, A. AlMutairi, A. Bala et al., A wafer-scale nanoporous 2D active pixel image sensor matrix with high uniformity, high sensitivity, and rapid switching. Adv. Mater. 35(14), 2210715 (2023). https://doi.org/10.1002/adma.202210715
- Z. Li, B. Xu, D. Liang, A. Pan, Polarization-dependent optical properties and optoelectronic devices of 2D materials. Research 2020, 5464258 (2020). https://doi.org/10.34133/2020/5464258
- Y. Li, Y. Zhang, Y. Wang, J. Sun, Q. You et al., Polarization-sensitive optoelectronic synapse based on 3D graphene/MoS2 heterostructure. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202302288
- C.N. Saggau, F. Gabler, D.D. Karnaushenko, D. Karnaushenko, L. Ma et al., Wafer-scale high-quality microtubular devices fabricated via dry-etching for optical and microelectronic applications. Adv. Mater. 32(37), 2003252 (2020). https://doi.org/10.1002/adma.202003252
- X. Liu, T. Ma, N. Pinna, J. Zhang, Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27(37), 1702168 (2017). https://doi.org/10.1002/adfm.201702168
- S. Kim, H. Park, S. Choo, S. Baek, Y. Kwon et al., Active-matrix monolithic gas sensor array based on MoS2 thin-film transistors. Commun. Mater. 1, 86 (2020). https://doi.org/10.1038/s43246-020-00086-y
- J. Sun, M. Muruganathan, H. Mizuta, Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Sci. Adv. 2(4), 1501518 (2016). https://doi.org/10.1126/sciadv.1501518
- S.M.M. Zanjani, M. Holt, M.M. Sadeghi, S. Rahimi, D. Akinwande, 3D integrated monolayer graphene-Si CMOS RF gas sensor platform. npj 2D Mater. Appl. 1, 36 (2017). https://doi.org/10.1038/s41699-017-0036-0
- H. Li, S. Liu, X. Li, R. Hao, X. Wang et al., All-Solid, ultra-micro, and ultrasensitive pH sensor by monolayer MoS2-based array field-effect transistors. ACS Appl. Nano Mater. 4(9), 8950–8957 (2021). https://doi.org/10.1021/acsanm.1c01568
- T. Deng, Z. Zhang, Y. Zhang, Y. Li, Z. Liu, Three-dimensional graphene FETs for pH detection. in 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 68–72 (2021). https://doi.org/10.1109/NEMS51815.2021.9451321
- C. Panteli, P. Georgiou, K. Fobelets, Reduced drift of CMOS ISFET pH sensors using graphene sheets. IEEE Sens. J. 21(13), 14609–14618 (2021). https://doi.org/10.1109/jsen.2021.3074748
- M. Park, T.S. Seo, An integrated microfluidic device with solid-phase extraction and graphene oxide quantum dot array for highly sensitive and multiplex detection of trace metal ions. Biosens. Bioelectron. 126, 405–411 (2019). https://doi.org/10.1016/j.bios.2018.11.010
- A. Chalupniak, A. Merkoci, Graphene oxide-poly(dinnethylsiloxane)-based lab-on-a-chip platform for heavy-metals preconcentration and electrochemical detection. ACS Appl. Mater. Interfaces 9(51), 44766–44775 (2017). https://doi.org/10.1021/acsami.7b12368
- M. Xue, C. Mackin, W. Weng, J. Zhu, Y. Luo et al., Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 13, 5064 (2022). https://doi.org/10.1038/s41467-022-32749-4
- A. Bolotsky, D. Butler, C. Dong, K. Gerace, N.R. Glayin et al., Two-dimensional materials in biosensing and healthcare: From in vitro diagnostics to optogenetics and beyond. ACS Nano 13(9), 9781–9810 (2019). https://doi.org/10.1021/acsnano.9b03632
- D.K. Ban, Y. Liu, Z. Wang, S. Ramachandran, N. Sarkar et al., Direct DNA methylation profiling with an electric biosensor. ACS Nano 14(6), 6743–6751 (2020). https://doi.org/10.1021/acsnano.9b10085
- F. Pu, J. Ren, X. Qu, Recent progress in sensor arrays using nucleic acid as sensing elements. Coord. Chem. Rev. 456, 214379 (2022). https://doi.org/10.1016/j.ccr.2021.214379
- A. Purwidyantri, S. Azinheiro, A. Garcia Roldan, T. Jaegerova, A. Vilaca et al., Integrated approach from sample-to-answer for grapevine varietal identification on a portable graphene sensor chip. ACS Sens. 8(2), 640–654 (2023). https://doi.org/10.1021/acssensors.2c02090
- C. Zheng, L. Huang, H. Zhang, Z. Sun, Z. Zhang et al., Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl. Mater. Interfaces 7(31), 16953–16959 (2015). https://doi.org/10.1021/acsami.5b03941
- L. Xu, S. Ramadan, B.G. Rosa, Y. Zhang, T. Yin et al., On-chip integrated graphene aptasensor with portable readout for fast and label-free COVID-19 detection in virus transport medium. Sens. Diagn. 1(4), 719–730 (2022). https://doi.org/10.1039/D2SD00076H
- J. Kim, M.-S. Chae, S.M. Lee, D. Jeong, B.C. Lee et al., Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma. Sci. Rep. 6, 31276 (2016). https://doi.org/10.1038/srep31276
- C. Wang, Y. Zhang, W. Tang, C. Wang, Y. Han et al., Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform. Anal. Chim. Acta 1178, 338791 (2021). https://doi.org/10.1016/j.aca.2021.338791
- Y. Wang, T.H. Kim, S. Fouladdel, Z. Zhang, P. Soni et al., PD-L1 expression in circulating tumor cells increases during radio (chemo) therapy and indicates poor prognosis in non-small cell lung cancer. Sci. Rep. 9, 566 (2019). https://doi.org/10.1038/s41598-018-36096-7
- B.R. Goldsmith, L. Locio, Y. Gao, M. Lerner, A. Walker et al., Digital biosensing by foundry-fabricated graphene sensors. Sci. Rep. 9, 434 (2019). https://doi.org/10.1038/s41598-019-38700-w
- D. Shahdeo, N. Chauhan, A. Majumdar, A. Ghosh, S. Gandhi, Graphene-based field-effect transistor for ultrasensitive immunosensing of SARS-CoV-2 spike S1 antigen. ACS Appl. Bio Mater. 5(7), 3563–3572 (2022). https://doi.org/10.1021/acsabm.2c00503
- N. Gupta, V. Renugopalakrishnan, D. Liepmann, R. Paulmurugan, B.D. Malhotra, Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens. Bioelectron. 141, 111435 (2019). https://doi.org/10.1016/j.bios.2019.111435
- J. Yang, G. Li, L. Zu, W. Wang, Z. Ge et al., Optogenetically engineered cell-based graphene transistor for pharmacodynamic evaluation of anticancer drugs. Sens. Actuators B Chem. 358, 131494 (2022). https://doi.org/10.1016/j.snb.2022.131494
- D. Ozsoylu, T. Wagner, M.J. Schoning, Electrochemical cell-based biosensors for biomedical applications. Curr. Top. Med. Chem. 22(9), 713–733 (2022). https://doi.org/10.2174/1568026622666220304213617
- D. Ham, H. Park, S. Hwang, K. Kim, Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4(9), 635–644 (2021). https://doi.org/10.1038/s41928-021-00646-1
- H. Song, H. Wu, T. Ren, S. Yan, T. Chen et al., Developments in stability and passivation strategies for black phosphorus. Nano Res. 14(12), 4386–4397 (2021). https://doi.org/10.1007/s12274-021-3385-0
- Y. Song, W. Zou, Q. Lu, L. Lin, Z. Liu, Graphene transfer: Paving the road for applications of chemical vapor deposition graphene. Small 17(48), 2007600 (2021). https://doi.org/10.1002/smll.202007600
- X. Yang, J. Li, R. Song, B. Zhao, J. Tang et al., Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 18, 471–478 (2023). https://doi.org/10.1038/s41565-023-01342-1
- L. Liu, P. Gong, K. Liu, A. Nie, Z. Liu et al., Scalable van der Waals encapsulation by inorganic molecular crystals. Adv. Mater. 34(7), 2106041 (2022). https://doi.org/10.1002/adma.202106041
- C. Choi, M.K. Choi, S.Y. Liu, M.S. Kim, O.K. Park et al., Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017). https://doi.org/10.1038/s41467-017-01824-6
- W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. ACMSIGARCH. 23(1), 20–24 (1995). https://doi.org/10.1145/216585.216588
- M. Horowitz, 1.1 Computing's energy problem (and what we can do about it). in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 10–14 (2014). https://doi.org/10.1109/ISSCC.2014.6757323
- V.M. Ho, J.-A. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011). https://doi.org/10.1126/science.1209236
- Y. Zhu, Y. Zhu, H. Mao, Y. He, S. Jiang et al., Recent advances in emerging neuromorphic computing and perception devices. J. Phys. D Appl. Phys. 55(5), 053002 (2021). https://doi.org/10.1088/1361-6463/ac2868
- X. Zhou, L. Zhao, W. Zhen, Y. Lin, C. Wang et al., Phase-transition-induced VO2 thin film IR photodetector and threshold switching selector for optical neural network applications. Adv. Electron. Mater. 7(5), 2001254 (2021). https://doi.org/10.1002/aelm.202001254
- W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943). https://doi.org/10.1007/bf02478259
- L. Chua, Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/tct.1971.1083337
- A.A. Cruz-Cabrera, M. Yang, G. Cui, E.C. Behrman, J.E. Steck et al., Reinforcement and backpropagation training for an optical neural network using self-lensing effects. IEEE Trans. Neural Netw. 11(6), 1450–1457 (2000). https://doi.org/10.1109/72.883476
- D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008). https://doi.org/10.1038/nature06932
- M.S. Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S.H. Lee et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). https://doi.org/10.1038/ncomms2652
- S. Lei, F. Wen, B. Li, Q. Wang, Y. Huang et al., Optoelectronic memory using two-dimensional materials. Nano Lett. 15(1), 259–265 (2015). https://doi.org/10.1021/nl503505f
- V.K. Sangwan, D. Jariwala, I.S. Kim, K.-S. Chen, T.J. Marks et al., Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015). https://doi.org/10.1038/nnano.2015.56
- J. Lee, S. Pak, Y.-W. Lee, Y. Cho, J. Hong et al., Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 8, 14734 (2017). https://doi.org/10.1038/ncomms14734
- R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde et al., Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18(1), 434–441 (2018). https://doi.org/10.1021/acs.nanolett.7b04342
- S. Seo, S.-H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
- L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang et al., Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10, 3161 (2019). https://doi.org/10.1038/s41467-019-11187-9
- S. Chen, M.R. Mahmoodi, Y. Shi, C. Mahata, B. Yuan et al., Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020). https://doi.org/10.1038/s41928-020-00473-w
- M.M. Islam, D. Dev, A. Krishnaprasad, L. Tetard, T. Roy, Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci. Rep. 10, 21870 (2020). https://doi.org/10.1038/s41598-020-78767-4
- B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 (2022). https://doi.org/10.1038/s41467-022-30519-w
- Y. Hu, H. Yang, J. Huang, X. Zhang, B. Tan et al., Flexible optical synapses based on In2Se3/MoS2 heterojunctions for artificial vision systems in the near-infrared range. ACS Appl. Mater. Interfaces 14(50), 55839–55849 (2022). https://doi.org/10.1021/acsami.2c19097
- K. Zhu, S. Pazos, F. Aguirre, Y. Shen, Y. Yuan et al., Hybrid 2D-CMOS microchips for memristive applications. Nature 618, 57–62 (2023). https://doi.org/10.1038/s41586-023-05973-1
- F. Wang, F. Hu, M. Dai, S. Zhu, F. Sun et al., A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding. Nat. Commun. 14, 1938 (2023). https://doi.org/10.1038/s41467-023-37623-5
- Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin et al., A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 (2023). https://doi.org/10.1080/14686996.2022.2162323
- K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
- L. Liu, Z. Cheng, B. Jiang, Y. Liu, Y. Zhang et al., Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide. ACS Appl. Mater. Inter. 13(26), 30797–30805 (2021). https://doi.org/10.1021/acsami.1c03202
- S. Seo, J.-J. Lee, H.-J. Lee, H.W. Lee, S. Oh et al., Recent progress in artificial synapses based on two-dimensional van der Waals materials for brain-inspired computing. ACS Appl. Electron. Mater. 2(2), 371–388 (2020). https://doi.org/10.1021/acsaelm.9b00694
- S. Yu, Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106(2), 260–285 (2018). https://doi.org/10.1109/jproc.2018.2790840
- H. Ning,
References
J.S. Kilby, Invention of integrated-circuit. IEEE Tran. Electron. Devices 23(7), 648–654 (1976). https://doi.org/10.1109/t-ed.1976.18467
K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata et al., Experimental study on carrier transport mechanism in ultrathin-body SOI n- and p-MOSFETs with SOI thickness less than 5 nm. in 2002 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 47–50 (2002). https://doi.org/10.1109/IEDM.2002.1175776
D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur et al., Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259–288 (2001). https://doi.org/10.1109/5.915374
S. Zeng, Z. Tang, C. Liu, P. Zhou, Electronics based on two-dimensional materials: Status and outlook. Nano Res. 14, 1752–1767 (2021). https://doi.org/10.1007/s12274-020-2945-z
D.E. Nikonov, I.A. Young, Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101(12), 2498–2533 (2013). https://doi.org/10.1109/jproc.2013.2252317
S. Yang, C. Jiang, S.-H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4(2), 021304 (2017). https://doi.org/10.1063/1.4983310
Z. Xie, R. Avila, Y. Huang, J.A. Rogers, Flexible and stretchable antennas for biointegrated electronics. Adv. Mater. 32(15), 1902767 (2020). https://doi.org/10.1002/adma.201902767
C. Choi, Y. Lee, K.W. Cho, J.H. Koo, D.-H. Kim, Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 52(1), 73–81 (2019). https://doi.org/10.1021/acs.accounts.8b00491
H. Xiang, Y.-C. Chien, Y. Shi, K.-W. Ang, Application of 2D materials in hardware security for Internet-of-Things: Progress and perspective. Small Struct. 3(8), 2200060 (2022). https://doi.org/10.1002/sstr.202200060
C. Cui, F. Xue, W.-J. Hu, L.-J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018). https://doi.org/10.1038/s41699-018-0063-5
C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3
A. Pal, S. Zhang, T. Chavan, K. Agashiwala, C.H. Yeh et al., Quantum-engineered devices based on 2D materials for next-generation information processing and storage. Adv. Mater. 35(27), 2109894 (2022). https://doi.org/10.1002/adma.202109894
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
S.J.B. Yoo, B. Guan, R.P. Scott, Heterogeneous 2D/3D photonic integrated microsystems. Microsyst. Nanoeng. 2, 16030 (2016). https://doi.org/10.1038/micronano.2016.30
M. Donarelli, L. Ottaviano, 2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 18(11), 3638 (2018). https://doi.org/10.3390/s18113638
V.D. Leyen, Fast-Forward into the Tech Future. (Antwerp, Belgium, 2022)
S.H. Choi, S.J. Yun, Y.S. Won, C.S. Oh, S.M. Kim et al., Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat. Commun. 13, 1484 (2022). https://doi.org/10.1038/s41467-022-29182-y
X. Chen, Y. Xie, Y. Sheng, H. Tang, Z. Wang et al., Wafer-scale functional circuits based on two-dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 12, 5953 (2021). https://doi.org/10.1038/s41467-021-26230-x
P. Yang, X. Zou, Z. Zhang, M. Hong, J. Shi et al., Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018). https://doi.org/10.1038/s41467-018-03388-5
S. Wachter, D.K. Polyushkin, O. Bethge, T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017). https://doi.org/10.1038/ncomms14948
J.-Y. Kim, X. Ju, K.-W. Ang, D. Chi, Van der Waals layer transfer of 2D materials for monolithic 3D electronic system integration: review and outlook. ACS Nano 17(3), 1831–1844 (2023). https://doi.org/10.1021/acsnano.2c10737
R. Campos, G. Machado, M.F. Cerqueira, J. Borme, P. Alpuim, Wafer scale fabrication of graphene microelectrode arrays for the detection of DNA hybridization. Microelectron. Eng. 189, 85–90 (2018). https://doi.org/10.1016/j.mee.2017.12.015
M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
F. Schwierz, Graphene transistors: Status, prospects, and problems. Pros. IEEE 101(7), 1567–1584 (2013). https://doi.org/10.1109/jproc.2013.2257633
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). https://doi.org/10.1021/nn400280c
L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers et al., Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1(6), e1500222 (2015). https://doi.org/10.1126/sciadv.1500222
Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang et al., Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021). https://doi.org/10.1038/s41586-021-03339-z
X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M.B. Nardellil et al., Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87(11), 115418 (2013). https://doi.org/10.1103/PhysRevB.87.115418
E. Cinquanta, E. Scalise, D. Chiappe, C. Grazianetti, M. Houssa et al., Getting through the nature of silicene: An sp2-sp3 two-dimensional silicon nanosheet. J. Phys. Chem. C 117(32), 16719–16724 (2013). https://doi.org/10.1021/jp405642g
L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli et al., Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015). https://doi.org/10.1038/nnano.2014.325
Y. Liu, H. Wu, H.-C. Cheng, S. Yang, E. Zhu et al., Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15(5), 3030–3034 (2015). https://doi.org/10.1021/nl504957p
S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354(6308), 99–102 (2016). https://doi.org/10.1126/science.aah4698
Y.Y. Illarionov, A.G. Banshchikov, D.K. Polyushkin, S. Wachter, T. Knobloch et al., Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019). https://doi.org/10.1038/s41928-019-0256-8
L. Kong, Y. Chen, Y. Liu, Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 14(6), 1768–1783 (2021). https://doi.org/10.1007/s12274-020-2958-7
M. Qian, Y. Pan, F. Liu, M. Wang, H. Shen et al., Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface. Adv. Mater. 26(20), 3275–3281 (2014). https://doi.org/10.1002/adma.201306028
K. Qian, R.Y. Tay, V.C. Nguyen, J. Wang, G. Cai et al., Hexagonal boron nitride thin film for flexible resistive memory applications. Adv. Funct. Mater. 26(13), 2176–2184 (2016). https://doi.org/10.1002/adfm.201504771
S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim et al., Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020). https://doi.org/10.1038/s41565-019-0623-7
X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao et al., Van der waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019). https://doi.org/10.1038/s41467-019-10738-4
H. Tian, X. Wang, H. Zhao, W. Mi, Y. Yang et al., A graphene-based filament transistor with sub-10 mVdec−1 subthreshold swing. Adv. Electron. Mater. 4(4), 1700608 (2018). https://doi.org/10.1002/aelm.201700608
M. Lanza, Q. Smets, C. Huyghebaert, L.-J. Li, Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 11, 5689 (2020). https://doi.org/10.1038/s41467-020-19053-9
G. Xue, X. Sui, P. Yin, Z. Zhou, X. Li et al., Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 68(14), 1514–1521 (2023). https://doi.org/10.1016/j.scib.2023.06.037
P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang et al., Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14(4), 5036–5045 (2020). https://doi.org/10.1021/acsnano.0c01478
J.-H. Park, A.-Y. Lu, P.-C. Shen, B.G. Shin, H. Wang et al., Synthesis of high-performance monolayer molybdenum disulfide at low temperature. Small Methods 5(6), 2000720 (2021). https://doi.org/10.1002/smtd.202000720
J. Mun, H. Park, J. Park, D. Joung, S.-K. Lee et al., High-mobility MoS2 directly grown on polymer substrate with kinetics-controlled metal-organic chemical vapor deposition. ACS Appl. Electron. Mater. 1(4), 608–616 (2019). https://doi.org/10.1021/acsaelm.9b00078
J. Zhu, J.-H. Park, S.A. Vitale, W. Ge, G.S. Jung et al., Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456–463 (2023). https://doi.org/10.1038/s41565-023-01375-6
J. Mun, Y. Kim, I.-S. Kang, S.K. Lim, S.J. Lee et al., Low-temperature growth of layered molybdenum disulphide with controlled clusters. Sci. Rep. 6, 21854 (2016). https://doi.org/10.1038/srep21854
L. Liu, T. Li, L. Ma, W. Li, S. Gao et al., Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022). https://doi.org/10.1038/s41586-022-04523-5
J. Chen, W. Tang, B. Tian, B. Liu, X. Zhao et al., Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv. Sci. 3(8), 1500033 (2016). https://doi.org/10.1002/advs.201600033
I. Bilgin, F. Liu, A. Vargas, A. Winchester, M.K.L. Man et al., Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9), 8822–8832 (2015). https://doi.org/10.1021/acsnano.5b02019
W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 137(50), 15632–15635 (2015). https://doi.org/10.1021/jacs.5b10519
H. Yu, M. Liao, W. Zhao, G. Liu, X.J. Zhou et al., Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11(12), 12001–12007 (2017). https://doi.org/10.1021/acsnano.7b03819
Y. Huang, Y.-H. Pan, R. Yang, L.-H. Bao, L. Meng et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020). https://doi.org/10.1038/s41467-020-16266-w
X. Lan, Y. Cheng, X. Yang, Z. Zhang, Wafer-scale engineering of two-dimensional transition metal chalcogenides. Chip 2(3), 100057 (2023). https://doi.org/10.1016/j.chip.2023.100057
T. Li, W. Guo, L. Ma, W. Li, Z. Yu et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021). https://doi.org/10.1038/s41565-021-00963-8
N. Briggs, S. Subramanian, Z. Lin, X. Li, X. Zhang et al., A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019). https://doi.org/10.1088/2053-1583/aaf836
Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15, 38 (2023). https://doi.org/10.1007/s40820-022-01010-4
K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). https://doi.org/10.1038/nature14417
S. Hwangbo, L. Hu, A.T. Hoang, J.Y. Choi, J.-H. Ahn, Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022). https://doi.org/10.1038/s41565-022-01102-7
M.-L. Shi, L. Chen, T.-B. Zhang, J. Xu, H. Zhu et al., Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small 13(35), 1603157 (2017). https://doi.org/10.1002/smll.201603157
J.-Y. Moon, M. Kim, S.-I. Kim, S. Xu, J.-H. Choi et al., Layer-engineered large-area exfoliation of graphene. Sci. Adv. 6(44), 6601 (2020). https://doi.org/10.1126/sciadv.abc6601
D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chen, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4, 675–684 (2011). https://doi.org/10.1007/s12274-011-0123-z
Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu et al., Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018). https://doi.org/10.1038/s41586-018-0574-4
N. Zavanelli, W.-H. Yeo, Advances in screen printing of conductive nanomaterials for stretchable electronics. ACS Omega 6(14), 9344–9351 (2021). https://doi.org/10.1021/acsomega.1c00638
K.S. Kim, D. Lee, C.S. Chang, S. Seo, Y. Hu et al., Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023). https://doi.org/10.1038/s41586-022-05524-0
S.A. Iyengar, S. Bhattacharyya, S. Roy, N.R. Glavin, A.K. Roy et al., A researcher’s perspective on unconventional lab-to-fab for 2D semiconductor devices. ACS Nano 17(14), 12955–12970 (2023). https://doi.org/10.1021/acsnano.3c01927
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
F. Wu, J. Ren, Y. Yang, Z. Yan, H. Tian et al., A 10 nm short channel MoS2 transistor without the resolution requirement of photolithography. Adv. Electron. Mater. 7(12), 2100543 (2021). https://doi.org/10.1002/aelm.202100543
K.A. Patel, R.W. Grady, K.K.H. Smithe, E. Pop, R. Sordan, Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. 2D Mater. 7, 015018 (2020). https://doi.org/10.1088/2053-1583/ab4ef0
R. Wu, Q. Tao, J. Li, W. Li, Y. Chen et al., Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 5, 497–504 (2022). https://doi.org/10.1038/s41928-022-00800-3
K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin et al., Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17(2), 1065–1070 (2017). https://doi.org/10.1021/acs.nanolett.6b04576
J. Jiang, M.-H. Doan, L. Sun, H. Kim, H. Yu et al., Ultrashort vertical-channel van der Waals semiconductor transistors. Adv. Sci. 7(4), 1902964 (2020). https://doi.org/10.1002/advs.201902964
L. Liu, L. Kong, Q. Li, C. He, L. Ren et al., Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 4(5), 342–347 (2021). https://doi.org/10.1038/s41928-021-00566-0
J. Jiang, L. Xu, C. Qiu, L. Peng, Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023). https://doi.org/10.1038/s41586-023-05819-w
C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin et al., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023). https://doi.org/10.1038/s41586-023-05797-z
Y.-Y. Chung, B.-J. Chou, C.-F. Hsu, W.-S. Yun, M.-Y. Li et al., First demonstration of GAA Monolayer-MoS2 nanosheet nFET with 410μA/μm ID at 1V VD at 40nm gate length. in 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 34.5.1–34.5.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019563
X. Xiong, A. Tong, X. Wang, S. Liu, X. Li et al., Demonstration of vertically-stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with Ion > 700 μA/μm and MoS2/WSe2 CFET. in 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7.5.1–7.5.4 (2021). https://doi.org/10.1109/IEDM19574.2021.9720533
C.J. Dorow, A. Penumatcha, A. Kitamura, C. Rogan, K.P.O’ Brien et al., Gate length scaling beyond Si: Mono-layer 2D channel FETs robust to short channel effects. in 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7.5.1–7.5.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019524
M. Chen, X. Sun, H. Liu, H. Wang, Q. Zhu et al., A FinFET with one atomic layer channel. Nat. Commun. 11, 1205 (2020). https://doi.org/10.1038/s41467-020-15096-0
A. Liu, X. Peng, S. Peng, H. Tian, Dielectrics for 2-D electronics: From device to circuit applications. IEEE Trans. Electron Devices 70(4), 1474–1498 (2022). https://doi.org/10.1109/ted.2022.3220483
W.M. Arden, The international technology roadmap for semiconductors-Perspectives and challenges for the next 15 years. Curr. Opin. Solid State Mater. Sci. 6(5), 371–377 (2002). https://doi.org/10.1016/S1359-0286(02)00116-X
M.M. Frank, High-k/metal gate innovations enabling continued CMOS scaling. in 2011 Proceedings of the ESSCIRC (ESSCIRC), Helsinki, Finland, 50–58 (2011). https://doi.org/10.1109/ESSCIRC.2011.6044913
S. Fukamachi, P. Solis-Fernandez, K. Kawahara, D. Tanaka, T. Otake et al., Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 6, 126–136 (2023). https://doi.org/10.1038/s41928-022-00911-x
T. Knobloch, Y.Y. Illarionov, F. Ducry, C. Schleich, S. Wachter et al., The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021). https://doi.org/10.1038/s41928-020-00529-x
J.-K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022). https://doi.org/10.1038/s41586-022-04588-2
C. Zhang, T. Tu, J. Wang, Y. Zhu, C. Tan et al., Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023). https://doi.org/10.1038/s41563-023-01502-7
M. Fortin-Deschênes, R. Pu, Y.-F. Zhou, C. Ma, P. Cheung et al., Uncovering topological edge states in twisted bilayer graphene. Nano Lett. 22(15), 6186–6193 (2022). https://doi.org/10.1021/acs.nanolett.2c01481
H.G. Kim, H.-B.-R. Lee, Atomic layer deposition on 2D materials. Chem. Mater. 29(9), 3809–3826 (2017). https://doi.org/10.1021/acs.chemmater.6b05103
S. McDonnell, B. Brennan, A. Azcatl, N. Lu, H. Dong et al., HfO2 on MoS2 by atomic layer deposition: Adsorption mechanisms and thickness scalability. ACS Nano 7(11), 10354–10361 (2013). https://doi.org/10.1021/nn404775u
W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang et al., Uniform and ultrathin high-kappa gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2(12), 563–571 (2019). https://doi.org/10.1038/s41928-019-0334-y
J. Wang, S. Li, X. Zou, J. Ho, L. Liao et al., Integration of high-k oxide on MoS2 by using ozone pretreatment for high-performance MoS2 top-gated transistor with thickness-dependent carrier scattering investigation. Small 11(44), 5932–5938 (2015). https://doi.org/10.1002/smll.201501260
X. Wang, T.-B. Zhang, W. Yang, H. Zhu, L. Chen et al., Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment. Appl. Phys. Lett. 110(5), 053110 (2017). https://doi.org/10.1063/1.4975627
T. Li, T. Tu, Y. Sun, H. Fu, J. Yu et al., A native oxide high-kappa gate dielectric for two-dimensional electronics. Nat. Electron. 3, 473–478 (2020). https://doi.org/10.1038/s41928-020-0444-6
D. Qi, P. Li, H. Ou, D. Wu, W. Lian et al., Graphene-enhanced metal transfer printing for strong van der Waals contacts between 3D metals and 2D semiconductors. Adv. Funct. Mater. 33(27), 2301704 (2023). https://doi.org/10.1002/adfm.202301704
P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
Z. Cheng, Y. Yu, S. Singh, K. Price, S.G. Noyce et al., Immunity to contact scaling in MoS2 transistors using in situ edge contacts. Nano Lett. 19(8), 5077–5085 (2019). https://doi.org/10.1021/acs.nanolett.9b01355
D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47(9), 3037–3058 (2018). https://doi.org/10.1039/c7cs00828g
S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13(1), 100–105 (2013). https://doi.org/10.1021/nl303583v
W. Li, X. Gong, Z. Yu, L. Ma, W. Sun et al., Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613(7943), 274–279 (2023). https://doi.org/10.1038/s41586-022-05431-4
S. Cho, S. Kim, J.H. Kim, J. Zhao, J. Seok et al., Phase patterning for ohmic homojunction contact in MoTe2. Science 349(6248), 625–628 (2015). https://doi.org/10.1126/science.aab3175
Y. Wang, J. Xiao, H. Zhu, Y. Li, Y. Alsaid et al., Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017). https://doi.org/10.1038/nature24043
J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang et al., Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 139(30), 10216–10219 (2017). https://doi.org/10.1021/jacs.7b05765
Z. Qian, L. Jiao, L. Xie, Phase engineering of two-dimensional transition metal dichalcogenides. Chinese J. Chem. 38(7), 753–760 (2020). https://doi.org/10.1002/cjoc.202000064
G. Kwon, Y.-H. Choi, H. Lee, H.-S. Kim, J. Jeong et al., Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 5, 241–247 (2022). https://doi.org/10.1038/s41928-022-00746-6
Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee et al., Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557(7707), 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019). https://doi.org/10.1038/s41586-019-1013-x
L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao et al., One-dimensional electrical contact to a two-dimensional material. Science 342(6158), 614–617 (2013). https://doi.org/10.1126/science.1244358
Y. Wang, M. Chhowalla, Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022). https://doi.org/10.1038/s42254-021-00389-0
A. Jain, A. Szabo, M. Parzefall, E. Bonvin, T. Taniguchi et al., One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 19(10), 6914–6923 (2019). https://doi.org/10.1021/acs.nanolett.9b02166
M.H.D. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie et al., Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10(6), 6392–6399 (2016). https://doi.org/10.1021/acsnano.6b02879
L. Kong, R. Wu, Y. Chen, Y. Huangfu, L. Liu et al., Wafer-scale and universal van der Waals metal semiconductor contact. Nat. Commun. 14, 1014–1014 (2023). https://doi.org/10.1038/s41467-023-36715-6
H. Liu, Q.H. Thi, P. Man, X. Chen, T. Chen et al., Controlled adhesion of ice-toward ultraclean 2D materials. Adv. Mater. 35(14), 2210503 (2023). https://doi.org/10.1002/adma.202210503
Y. Zhao, Y. Song, Z. Hu, W. Wang, Z. Chang et al., Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat. Commun. 13, 4409 (2022). https://doi.org/10.1038/s41467-022-31887-z
K.K.H. Smithe, S.V. Suryavanshi, M.M. Rojo, A.D. Tedjarati, E. Pop, Low variability in synthetic monolayer MoS2 devices. ACS Nano 11(8), 8456–8463 (2017). https://doi.org/10.1021/acsnano.7b04100
W. Xie, L.-T. Weng, K.M. Ng, C.K. Chan, C.-M. Chan, Clean graphene surface through high temperature annealing. Carbon 94, 740–748 (2015). https://doi.org/10.1016/j.carbon.2015.07.046
L. Yu, D. El-Damak, U. Radhakrishna, X. Ling, A. Zubair et al., Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with e-Mode FETs for large-area electronics. Nano Lett. 16(10), 6349–6356 (2016). https://doi.org/10.1021/acs.nanolett.6b02739
A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer et al., Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale 7(45), 19099–19109 (2015). https://doi.org/10.1039/c5nr06038a
S. Fernandez, A. Molinero, D. Sanz, J.P. Gonzalez, M. Cruz et al., Graphene-based contacts for optoelectronic devices. Micromachines 11(10), 919 (2020). https://doi.org/10.3390/mi11100919
T. Li, J. Hou, J. Yan, R. Liu, H. Yang et al., Chiplet heterogeneous integration technology-status and challenges. Electronics 9(4), 670 (2020). https://doi.org/10.3390/electronics9040670
C.S. Premachandran, S. Choi, S. Cimino, T.-Q. Thuy, L. Burrell et al., Reliability challenges for 2.5D/3D integration: An overview. in 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 5B.4–1–5B.4–5 (2018). https://doi.org/10.1109/IRPS.2018.8353609
M. Koyanagi, T. Fukushima, T. Tanaka, Three-dimensional integration technology and integrated systems. in 2009 Asia and South Pacific Design Automation Conference, Yokohama, Japan, 409–415 (2009). https://doi.org/10.1109/ASPDAC.2009.4796515
X. Wang, Y. Sun, K. Liu, Chemical and structural stability of 2D layered materials. 2D Mater. 6, 042001 (2019). https://doi.org/10.1088/2053-1583/ab20d6
Z. Hu, Q. Li, B. Lei, Q. Zhou, D. Xiang et al., Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew. Chem. Int. Ed. 56(31), 9131–9135 (2017). https://doi.org/10.1002/anie.201705012
T. Kawauchi, J. Kumaki, E. Yashima, Nanosphere and nanonetwork formations of [60]fullerene-end-capped stereoregular poly(methyl methacrylate)s through stereocomplex formation combined with self-assembly of the fullerenes. J. Am. Chem. Soc. 128(32), 10560–10567 (2006). https://doi.org/10.1021/ja063252u
J. Ma, K.-Y. Choi, S.H. Kim, H. Lee, G. Yoo et al., All polymer encapsulated, highly-sensitive MoS2 phototransistors on flexible PAR substrate. Appl. Phys. Lett. 113(1), 013102 (2018). https://doi.org/10.1063/1.5036556
Y.-W. Song, M.-K. Song, D. Choi, J.-Y. Kwon, Encapsulation-enhanced switching stability of MoS2 memristors. J. Alloys Compd. 885, 161016 (2021). https://doi.org/10.1016/j.jallcom.2021.161016
K. Alexandrou, N. Petrone, J. Hone, I. Kymissis, Encapsulated graphene field-effect transistors for air stable operation. Appl. Phys. Lett. 106(11), 113104 (2015). https://doi.org/10.1063/1.4915513
J. Jia, S.K. Jang, S. Lai, J. Xu, Y.J. Choi et al., Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS Nano 9(9), 8729–8736 (2015). https://doi.org/10.1021/acsnano.5b04265
Z. Li, Y. Lv, L. Ren, J. Li, L. Kong et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11, 1151 (2020). https://doi.org/10.1038/s41467-020-15023-3
W.J. Woo, I.K. Oh, B.E. Park, Y. Kim, J. Park et al., Bi-layer high-k dielectrics of Al2O3/ZrO2 to reduce damage to MoS2 channel layers during atomic layer deposition. 2D Mater. 6, 015019 (2019). https://doi.org/10.1088/2053-1583/aaef1e
Y. Liu, X. Wang, S.K. Ghosh, M. Zou, H. Zhou et al., Atomic layer deposition of lithium zirconium oxides for the improved performance of lithium-ion batteries. Dalton Trans. 51(7), 2737–2749 (2022). https://doi.org/10.1039/d1dt03600a
M.Z. Ansari, P. Janicek, Y.J. Park, S. NamGung, B.Y. Cho et al., Preparation of wafer-scale highly conformalamorphous hafnium dioxide thin films by atomic layer deposition using a thermally stable boratabenzene ligand-containing hafnium precursor. Appl. Surf. Sci. 620, 156834 (2023). https://doi.org/10.1016/j.apsusc.2023.156834
N. Li, Z. Wei, J. Zhao, Q. Wang, C. Shen et al., Atomic layer deposition of Al2O3 directly on 2D materials for high-performance electronics. Adv. Mater. Interfaces 6(10), 1802055 (2019). https://doi.org/10.1002/admi.201802055
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w
G. Nazir, A. Rehman, S.-J. Park, Energy-efficient tunneling field-effect transistors for low-power device applications: Challenges and opportunities. ACS Appl. Mater. Interfaces 12(42), 47127–47163 (2020). https://doi.org/10.1021/acsami.0c10213
C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski et al., Chemical sensing with 2D materials. Chem. Soc. Rev. 47(13), 4860–4908 (2018). https://doi.org/10.1039/c8cs00417j
M. Long, P. Wang, H. Fang, W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29(19), 1803807 (2019). https://doi.org/10.1002/adfm.201803807
Q. Qian, J. Lei, J. Wei, Z. Zhang, G. Tang et al., 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current. npj 2D Mater. Appl. 3, 24 (2019). https://doi.org/10.1038/s41699-019-0106-6
L. Lin, L. Zhang, X. Wang, J. Liu, H. Zhao et al., Novel nanophase-switching ESD protection. IEEE Electron Device Lett. 32(3), 378–380 (2011). https://doi.org/10.1109/LED.2010.2099100
R. Ma, Q. Chen, W. Zhang, F. Lu, C. Wang et al., A dual-polarity graphene NEMS switch ESD protection structure. IEEE Electron Device Lett. 37(5), 674–676 (2016). https://doi.org/10.1109/LED.2016.2544343
H. Feng, G. Chen, R. Zhan, Q. Wu, X. Guan et al., A mixed-mode ESD protection circuit simulation-design methodology. IEEE J. Solid-State Circuits 38(6), 995–1006 (2003). https://doi.org/10.1109/JSSC.2003.811978
L. Wang, X. Wang, Z. Shi, R. Ma, J. Liu et al., Dual-direction nanocrossbar array ESD protection structures. IEEE Electron Device Lett. 34(1), 111–113 (2013). https://doi.org/10.1109/LED.2012.2222337
S.-K. Su, C.-P. Chuu, M.-Y. Li, C.-C. Cheng, H.-S.P. Wong et al., Layered semiconducting 2D materials for future transistor applications. Small Struct. 2(5), 2000103 (2021). https://doi.org/10.1002/sstr.202000103
Z. Wang, W. Zhu, Tunable band alignments in 2D ferroelectric alpha-In2Se3 based van der Waals heterostructures. ACS Appl. Electron. Mater. 3(11), 5114–5123 (2021). https://doi.org/10.1021/acsaelm.1c00855
A. Srivastava, M. Dubey, GaAs digital integrated circuits-a review from silicon point of view for designing ultra-fast VLSI circuits. in Proceedings of the 32nd Midwest Symposium on Circuits and Systems Champaign, IL, USA, 2, 1250–1254 (1989). https://doi.org/10.1109/mws.1989.102083
H. Wang, L. Yu, Y.-H. Lee, W. Fang, A. Hsu et al., Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition. in 2012 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 4.6.1–4.6.4 (2012). https://doi.org/10.1109/IEDM.2012.6478980
P.J. Jeon, J.S. Kim, J.Y. Lim, Y. Cho, A. Pezeshki et al., Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 7(40), 22333–22340 (2015). https://doi.org/10.1021/acsami.5b06027
H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu et al., Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012). https://doi.org/10.1021/nl302015v
Z. Zhang, Z. Wang, T. Shi, C. Bi, F. Rao et al., Memory materials and devices: from concept to application. Infomat 2(2), 261–290 (2020). https://doi.org/10.1002/inf2.12077
J. Li, J. Li, Y. Ding, C. Liu, X. Hou et al., Highly area-efficient low-power SRAM cell with 2 transistors and 2 resistors. in 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 23.3.1–23.3.4 (2019). https://doi.org/10.1109/IEDM19573.2019.8993520
X. Wang, X. Chen, J. Ma, S. Gou, X. Guo et al., Pass-transistor logic circuits based on wafer-scale 2D semiconductors. Adv. Mater. 34(48), 2202472 (2022). https://doi.org/10.1002/adma.202202472
F. Traversi, V. Russo, R. Sordan, Integrated complementary graphene inverter. Appl. Phys. Lett. 94(22), 223312 (2009). https://doi.org/10.1063/1.3148342
S.-L. Li, H. Miyazaki, A. Kumatani, A. Kanda, K. Tsukagoshi, Low operating bias and matched input-output characteristics in graphene logic inverters. Nano Lett. 10(7), 2357–2362 (2010). https://doi.org/10.1021/nl100031x
S.-L. Li, H. Miyazaki, M.V. Lee, C. Liu, A. Kanda et al., Complementary-like graphene logic gates controlled by electrostatic doping. Small 7(11), 1552–1556 (2011). https://doi.org/10.1002/smll.201100318
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12), 9934–9938 (2011). https://doi.org/10.1021/nn203715c
S. Das, M. Dubey, A. Roelofs, High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors. Appl. Phys. Lett. 105(8), 083511 (2014). https://doi.org/10.1063/1.4894426
J. Pu, K. Funahashi, C.-H. Chen, M.-Y. Li, L.-J. Li et al., Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 28(21), 4111–4119 (2016). https://doi.org/10.1002/adma.201503872
Z. Bian, J. Miao, T. Zhang, H. Chen, Q. Zhu et al., Carrier modulation in 2D transistors by inserting interfacial dielectric layer for area-efficient computation. Small 19(26), 2206791 (2023). https://doi.org/10.1002/smll.202206791
H. Liu, L. Chen, H. Zhu, Q.-Q. Sun, S.-J. Ding et al., Atomic layer deposited 2D MoS2 atomic crystals: from material to circuit. Nano Res. 13(6), 1644–1650 (2020). https://doi.org/10.1007/s12274-020-2787-8
J. Yi, X. Sun, C. Zhu, S. Li, Y. Liu et al., Double-gate MoS2 field-effect transistors with full-range tunable threshold voltage for multifunctional logic circuits. Adv. Mater. 33(27), 2101036 (2021). https://doi.org/10.1002/adma.202101036
H. Son, H. Choi, J. Jeon, Y.J. Kim, S. Choi et al., Complementary driving between 2D heterostructures and surface functionalization for surpassing binary logic devices. ACS Appl. Mater. Interfaces 13(7), 8692–8699 (2021). https://doi.org/10.1021/acsami.0c17739
L. Yu, Y.-H. Lee, X. Ling, E.J.G. Santos, Y.C. Shin et al., Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14(6), 3055–3063 (2014). https://doi.org/10.1021/nl404795z
A. Dathbun, Y. Kim, S. Kim, Y. Yoo, M.S. Kang et al., Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett. 17(5), 2999–3005 (2017). https://doi.org/10.1021/acs.nanolett.7b00315
X. Xiong, S. Liu, H. Liu, Y. Chen, X. Shi et al., Top-gate CVD WSe2 pFETs with record-high Id~594 µA/µm, Gm~244 µS/µm and WSe2/MoS2 CFET based half-adder circuit using monolithic 3D integration. in 2022 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 20.6.1–20.6.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019476
S.-J. Han, A.V. Garcia, S. Oida, K.A. Jenkins, W. Haensch, Graphene radio frequency receiver integrated circuit. Nat. Commun. 5, 3086 (2014). https://doi.org/10.1038/ncomms4086
S.F. Chowdhury, M.N. Yogeesh, S.K. Banerjee, D. Akinwande, Black phosphorous thin-film transistor and RF circuit applications. IEEE Electron Device Lett. 37(4), 449–451 (2016). https://doi.org/10.1109/led.2016.2536102
Q. Gao, Z. Zhang, X. Xu, J. Song, X. Li et al., Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat. Commun. 9, 4778 (2018). https://doi.org/10.1038/s41467-018-07135-8
S. Park, S.H. Shin, M.N. Yogeesh, A.L. Lee, S. Rahimi et al., Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett. 37(4), 512–515 (2016). https://doi.org/10.1109/led.2016.2535484
S. Conti, L. Pimpolari, G. Calabrese, R. Worsley, S. Majee et al., Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 11, 3566 (2020). https://doi.org/10.1038/s41467-020-17297-z
S. Ma, Y. Wang, X. Chen, T. Wu, X. Wang et al., Analog integrated circuits based on wafer-level two-dimensional MoS2 materials with physical and SPICE model. IEEE Access 8, 197287–197299 (2020). https://doi.org/10.1109/access.2020.3034321
N.O. Adesina, A. Srivastava, A. Ullah Khan, J. Xu, An ultra-low power MoS2 tunnel field effect transistor PLL design for IoT applications. in 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 1–6 (2021). https://doi.org/10.1109/IEMTRONICS52119.2021.9422641
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
H. Wang, D. Nezich, J. Kong, T. Palacios, Graphene frequency multipliers. IEEE Electron Device Lett. 30(5), 547–549 (2009). https://doi.org/10.1109/led.2009.2016443
H. Wang, A. Hsu, J. Wu, J. Kong, T. Palacios, Graphene-based ambipolar RF mixers. IEEE Electron Device Lett. 31(9), 906–908 (2010). https://doi.org/10.1109/led.2010.2052017
Y. Wu, Y.-M. Lin, A.A. Bol, K.A. Jenkins, F. Xia et al., High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011). https://doi.org/10.1038/nature09979
Y. Wu, K.A. Jenkins, A. Valdes-Garcia, D.B. Farmer, Y. Zhu et al., State-of-the-art graphene high-frequency electronics. Nano Lett. 12(6), 3062–3067 (2012). https://doi.org/10.1021/nl300904k
H. Lyu, H. Wu, J. Liu, Q. Lu, J. Zhang et al., Double-balanced graphene integrated mixer with outstanding linearity. Nano Lett. 15(10), 6677–6682 (2015). https://doi.org/10.1021/acs.nanolett.5b02503
S. Das, W. Zhang, L.R. Thoutam, Z. Xiao, A. Hoffmann et al., A small signal amplifier based on ionic liquid gated black phosphorous field effect transistor. IEEE Electron Device Lett. 36(6), 621–623 (2015). https://doi.org/10.1109/led.2015.2421948
W. Lu, G. Yang, N. Lu, L. Li, Recent progress in analog circuits based on two-dimensional semiconductors. J. Vac. Sci. Technol. 41(6), 501–514 (2021). https://doi.org/10.13922/j.cnki.cjvst.202105001
H.-Y. Chang, M.N. Yogeesh, R. Ghosh, A. Rai, A. Sanne et al., Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 28(9), 1818–1823 (2016). https://doi.org/10.1002/adma.201504309
A. Sanne, S. Park, R. Ghosh, M.N. Yogeesh, C. Liu et al., Embedded gate CVD MoS2 microwave FETs. npj 2D Mater. Appl. 1, 26 (2017). https://doi.org/10.1038/s41699-017-0029-z
D.K. Polyushkin, S. Wachter, L. Mennel, M. Paur, M. Paliy et al., Analogue two-dimensional semiconductor electronics. Nat. Electron. 3, 486–491 (2020). https://doi.org/10.1038/s41928-020-0460-6
T. Leng, K. Parvez, K. Pan, J. Ali, D. McManus et al., Printed graphene/WS2 battery-free wireless photosensor on papers. 2D Mater. 7(2), 024004 (2020). https://doi.org/10.1088/2053-1583/ab602f
B.J. Shastri, A.N. Tait, T.F. de Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021). https://doi.org/10.1038/s41566-020-00754-y
J.-A. Carballo, W.-T. J. Chan, P.A. Gargini, A.B. Kahng, S. Nath, ITRS 2.0: Toward a re-framing of the Semiconductor Technology Roadmap. in 2014 IEEE 32nd International Conference on Computer Design (ICCD), Seoul, Korea (South), 139–146 (2014). https://doi.org/10.1109/ICCD.2014.6974673
H.-C. Lin, T. Chou, C.-C. Chung, C.-J. Tsen, B.-W. Huang et al., RF performance of stacked Si nanosheet nFETs. IEEE Trans. Electron Devices 68(10), 5277–5283 (2021). https://doi.org/10.1109/ted.2021.3106287
F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
N. Bourahla, B. Hadri, A. Bourahla, Impact of channel doping concentration on the performance characteristics and the reliability of ultra-thin double gate DG-FinFET compared with nano-single gate FD-SOI-MOSFET by using TCAD-Silvaco tool. SILICON 14, 3477–3491 (2022). https://doi.org/10.1007/s12633-021-01121-4
R.W. Keyes, Fundamental limits of silicon technology. Proc. IEEE 89(3), 227–239 (2001). https://doi.org/10.1109/5.915372
D. Jena, K. Banerjee, G. Xing, Intimate contacts. Nat. Mater. 13, 1076–1078 (2014). https://doi.org/10.1038/nmat4121
P.V. Pham, S.C. Bodepudi, K. Shehzad, Y. Liu, Y. Xu et al., 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 122(6), 6514–6613 (2022). https://doi.org/10.1021/acs.chemrev.1c00735
L. Tong, J. Wan, K. Xiao, J. Liu, J. Ma et al., Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. 6, 37–44 (2023). https://doi.org/10.1038/s41928-022-00881-0
Y. Xia, L. Zong, Y. Pan, X. Chen, L. Zhou et al., Wafer-Scale demonstration of MBC-FET and C-FET arrays based on two-dimensional semiconductors. Small 18(20), 2107650 (2022). https://doi.org/10.1002/smll.202107650
M. Liu, J. Niu, G. Yang, K. Chen, W. Lu et al., Large-scale ultrathin channel nanosheet-stacked CFET based on CVD 1L MoS2/WSe2. Adv. Electron. Mater. 9(2), 2200722 (2023). https://doi.org/10.1002/aelm.202200722
A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R.W. Grady et al., High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021). https://doi.org/10.1038/s41928-021-00598-6
Z. Li, D. Xie, R. Dai, J. Xu, Y. Sun et al., High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors. Nano Res. 10, 276–283 (2017). https://doi.org/10.1007/s12274-016-1286-4
H. Mertens, R. Ritzenthaler, V. Pena, G. Santoro, K. Kenis et al., Vertically stacked gate-all-around Si nanowire transistors: Key process optimizations and ring oscillator demonstration. in 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 37.4.1–37.4.4 (2017). https://doi.org/10.1109/IEDM.2017.8268511
C.J. Estrada, Z. Ma, M. Chan, Complementary two-dimensional (2-D) FET technology with MoS2/hBN/graphene stack. IEEE Electron Device Lett. 42(12), 1890–1893 (2021). https://doi.org/10.1109/LED.2021.3124823
R. Pendurthi, D. Jayachandran, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Heterogeneous integration of atomically thin semiconductors for non-von Neumann CMOS. Small 18(33), 2202590 (2022). https://doi.org/10.1002/smll.202202590
T. Dai, C. Chen, L. Huang, J. Jiang, L.-M. Peng et al., Ultrasensitive magnetic sensors enabled by heterogeneous integration of graphene hall elements and silicon processing circuits. ACS Nano 14(12), 17606–17614 (2020). https://doi.org/10.1021/acsnano.0c08435
S.K. Hong, C.S. Kim, W.S. Hwang, B.J. Cho, Hybrid integration of graphene analog and silicon complementary metal–oxide–semiconductor digital circuits. ACS Nano 10(7), 7142–7146 (2016). https://doi.org/10.1021/acsnano.6b03382
L. Xu, W. Cai, Y. Jia, R. Xing, T. Han et al., Graphene–silicon hybrid MOSFET integrated circuits for high-linearity analog amplification. IEEE Electron Device Lett. 43(11), 1886–1889 (2022). https://doi.org/10.1109/led.2022.3204950
G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020). https://doi.org/10.1038/s41586-020-2861-0
Y. Zheng, H. Ravichandran, T.F. Schranghamer, N. Trainor, J.M. Redwing et al., Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nat. Commun. 13, 5578 (2022). https://doi.org/10.1038/s41467-022-33053-x
A. Dodda, N. Trainor, J.M. Redwing, S. Das, All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13, 3587 (2022). https://doi.org/10.1038/s41467-022-31148-z
S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
C.-C. Yang, K.-C. Chiu, C.-T. Chou, C.-N. Liao, M.-H. Chuang et al., Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+IC. in 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 1–2 (2016). https://doi.org/10.1109/VLSIT.2016.7573448
H. Hinton, H. Jang, W. Wu, M.-H. Lee, M. Seol et al., A 200 x 256 image sensor heterogeneously integrating a 2D nanomaterial-based photo-FET array and CMOS time-to-digital converters. in 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 1–3 (2022). https://doi.org/10.1109/ISSCC42614.2022.9731685
W. Meng, F. Xu, Z. Yu, T. Tao, L. Shao et al., Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021). https://doi.org/10.1038/s41565-021-00966-5
J. Shin, H. Kim, S. Sundaram, J. Jeong, B.-I. Park et al., Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614, 81–87 (2023). https://doi.org/10.1038/s41586-022-05612-1
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013). https://doi.org/10.1038/nnano.2013.100
J.F. Gonzalez Marin, D. Unuchek, K. Watanabe, T. Taniguchi, A. Kis, MoS2 photodetectors integrated with photonic circuits. npj 2D Mater. Appl. 3, 14 (2019). https://doi.org/10.1038/s41699-019-0096-4
T.N. Theis, H.-S.P. Wong, The end of Moore’s law: A new beginning for information technology. Comput. Sci. Eng. 19(2), 41–50 (2017). https://doi.org/10.1109/mcse.2017.29
Y. Liu, J. Sun, L. Tong, Y. Li, T. Deng, High-performance one-dimensional MOSFET array photodetectors in the 0.8-μm standard CMOS process. Opt. Express 30(24), 43706–43717 (2022). https://doi.org/10.1364/oe.475687
M.M. Shulaker, G. Hills, R.S. Park, R.T. Howe, K. Saraswat et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017). https://doi.org/10.1038/nature22994
S.R. Cho, D.-H. Kim, M. Jeon, R. Pragya, M. Gyeon et al., Overlaying monolayer metal-organic framework on PtSe2-based gas sensor for tuning selectivity. Adv. Funct. Mater. 32(47), 2207265 (2022). https://doi.org/10.1002/adfm.202207265
A. Paghi, S. Mariani, G. Barillaro, 1D and 2D field effect transistors in gas sensing: A comprehensive review. Small 19(15), 2206100 (2023). https://doi.org/10.1002/smll.202206100
C. Dai, Y. Liu, D. Wei, Two-dimensional field-effect transistor sensors: the road toward commercialization. Chem. Rev. 122(11), 10319–10392 (2022). https://doi.org/10.1021/acs.chemrev.1c00924
C.-Y. You, B.-F. Hu, B.-R. Xu, Z.-Y. Zhang, B.-M. Wu et al., Foldable-circuit-enabled miniaturized multifunctional sensor for smart digital dust. Chip 1(4), 100034 (2022). https://doi.org/10.1016/j.chip.2022.100034
Y. Luo, M.R. Abidian, J.H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17(6), 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
B. Davaji, H.D. Cho, M. Malakoutian, J.K. Lee, G. Panin et al., A patterned single layer graphene resistance temperature sensor. Sci. Rep. 7, 8811 (2017). https://doi.org/10.1038/s41598-017-08967-y
A. Harzheim, F. Koenemann, B. Gotsmann, H. van der Zant, P. Gehring, Single-material graphene thermocouples. Adv. Funct. Mater. 30(22), 2000574 (2020). https://doi.org/10.1002/adfm.202000574
A.M.H. Kwan, Y. Guan, X. Liu, K.J. Chen, A highly linear integrated temperature sensor on a GaN smart power IC platform. IEEE Trans. Electron Devices 61(8), 2970–2976 (2014). https://doi.org/10.1109/ted.2014.2327386
L. Viti, E. Riccardi, H.E. Beere, D.A. Ritchie, M.S. Vitiello, Real-time measure of the lattice temperature of a semiconductor heterostructure laser via an on-chip integrated graphene thermometer. ACS Nano 17(6), 6103–6112 (2023). https://doi.org/10.1021/acsnano.3c01208
A. Daus, M. Jaikissoon, A.I. Khan, A. Kumar, R.W. Grady et al., Fast-response flexible temperature sensors with atomically thin molybdenum disulfide. Nano Lett. 22(15), 6135–6140 (2022). https://doi.org/10.1021/acs.nanolett.2c01344
Y.J. Park, B.K. Sharma, S.M. Shinde, M.S. Kim, B. Jang et al., All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 13(3), 3023–3030 (2019). https://doi.org/10.1021/acsnano.8b07995
J. Jang, H. Kim, S. Ji, H.J. Kim, M.S. Kang et al., Mechanoluminescent, air-dielectric MoS2 transistors as active-matrix pressure sensors for wide detection ranges from footsteps to cellular motions. Nano Lett. 20(1), 66–74 (2020). https://doi.org/10.1021/acs.nanolett.9b02978
M. Siskins, M. Lee, D. Wehenkel, R. van Rijn, T.W. de Jong et al., Sensitive capacitive pressure sensors based on graphene membrane arrays. Microsyst. Nanoeng. 6, 102 (2020). https://doi.org/10.1038/s41378-020-00212-3
S. Zeng, C. Tang, H. Hong, Y. Fang, Y. Li et al., A novel high-temperature pressure sensor based on graphene coated by Si3N4. IEEE Sens. J. 23(3), 2008–2013 (2023). https://doi.org/10.1109/jsen.2022.3232626
Z. Zhu, J. Wang, C. Wu, X. Chen, X. Liu et al., A wide range and high repeatability MEMS pressure sensor based on graphene. IEEE Sens. J. 22(18), 17737–17745 (2022). https://doi.org/10.1109/jsen.2022.3195231
L. Zhou, H. Fu, T. Lv, C. Wang, H. Gao et al., Nonlinear optical characterization of 2D materials. Nanomaterials 10(11), 2263 (2020). https://doi.org/10.3390/nano10112263
J. Zhao, G. Wang, R. Yang, X. Lu, M. Cheng et al., Tunable piezoresistivity of nanographene films for strain sensing. ACS Nano 9(2), 1622–1629 (2015). https://doi.org/10.1021/nn506341u
Y. Zhang, Q. Lu, J. He, Z. Huo, R. Zhou et al., Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk. Nat. Commun. 14, 1252 (2023). https://doi.org/10.1038/s41467-023-36885-3
T. Zhao, J. Guo, T. Li, Z. Wang, M. Peng et al., Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem. Soc. Rev. 52(5), 1650–1671 (2023). https://doi.org/10.1039/d2cs00657j
S. Hong, N. Zagni, S. Choo, N. Liu, S. Baek et al., Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 12, 3559 (2021). https://doi.org/10.1038/s41467-021-23711-x
S. Ma, T. Wu, X. Chen, Y. Wang, J. Ma et al., A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors. Sci. Adv. 8(31), eabn9328 (2022). https://doi.org/10.1126/sciadv.abn9328
W. Yu, Z. Dong, H. Mu, G. Ren, X. He et al., Wafer-scale synthesis of 2D Dirac heterostructures for self-driven, fast, broadband photodetectors. ACS Nano 16(8), 12922–12929 (2022). https://doi.org/10.1021/acsnano.2c05278
H. Park, A. Sen, M. Kaniselvan, A. AlMutairi, A. Bala et al., A wafer-scale nanoporous 2D active pixel image sensor matrix with high uniformity, high sensitivity, and rapid switching. Adv. Mater. 35(14), 2210715 (2023). https://doi.org/10.1002/adma.202210715
Z. Li, B. Xu, D. Liang, A. Pan, Polarization-dependent optical properties and optoelectronic devices of 2D materials. Research 2020, 5464258 (2020). https://doi.org/10.34133/2020/5464258
Y. Li, Y. Zhang, Y. Wang, J. Sun, Q. You et al., Polarization-sensitive optoelectronic synapse based on 3D graphene/MoS2 heterostructure. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202302288
C.N. Saggau, F. Gabler, D.D. Karnaushenko, D. Karnaushenko, L. Ma et al., Wafer-scale high-quality microtubular devices fabricated via dry-etching for optical and microelectronic applications. Adv. Mater. 32(37), 2003252 (2020). https://doi.org/10.1002/adma.202003252
X. Liu, T. Ma, N. Pinna, J. Zhang, Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27(37), 1702168 (2017). https://doi.org/10.1002/adfm.201702168
S. Kim, H. Park, S. Choo, S. Baek, Y. Kwon et al., Active-matrix monolithic gas sensor array based on MoS2 thin-film transistors. Commun. Mater. 1, 86 (2020). https://doi.org/10.1038/s43246-020-00086-y
J. Sun, M. Muruganathan, H. Mizuta, Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Sci. Adv. 2(4), 1501518 (2016). https://doi.org/10.1126/sciadv.1501518
S.M.M. Zanjani, M. Holt, M.M. Sadeghi, S. Rahimi, D. Akinwande, 3D integrated monolayer graphene-Si CMOS RF gas sensor platform. npj 2D Mater. Appl. 1, 36 (2017). https://doi.org/10.1038/s41699-017-0036-0
H. Li, S. Liu, X. Li, R. Hao, X. Wang et al., All-Solid, ultra-micro, and ultrasensitive pH sensor by monolayer MoS2-based array field-effect transistors. ACS Appl. Nano Mater. 4(9), 8950–8957 (2021). https://doi.org/10.1021/acsanm.1c01568
T. Deng, Z. Zhang, Y. Zhang, Y. Li, Z. Liu, Three-dimensional graphene FETs for pH detection. in 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 68–72 (2021). https://doi.org/10.1109/NEMS51815.2021.9451321
C. Panteli, P. Georgiou, K. Fobelets, Reduced drift of CMOS ISFET pH sensors using graphene sheets. IEEE Sens. J. 21(13), 14609–14618 (2021). https://doi.org/10.1109/jsen.2021.3074748
M. Park, T.S. Seo, An integrated microfluidic device with solid-phase extraction and graphene oxide quantum dot array for highly sensitive and multiplex detection of trace metal ions. Biosens. Bioelectron. 126, 405–411 (2019). https://doi.org/10.1016/j.bios.2018.11.010
A. Chalupniak, A. Merkoci, Graphene oxide-poly(dinnethylsiloxane)-based lab-on-a-chip platform for heavy-metals preconcentration and electrochemical detection. ACS Appl. Mater. Interfaces 9(51), 44766–44775 (2017). https://doi.org/10.1021/acsami.7b12368
M. Xue, C. Mackin, W. Weng, J. Zhu, Y. Luo et al., Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 13, 5064 (2022). https://doi.org/10.1038/s41467-022-32749-4
A. Bolotsky, D. Butler, C. Dong, K. Gerace, N.R. Glayin et al., Two-dimensional materials in biosensing and healthcare: From in vitro diagnostics to optogenetics and beyond. ACS Nano 13(9), 9781–9810 (2019). https://doi.org/10.1021/acsnano.9b03632
D.K. Ban, Y. Liu, Z. Wang, S. Ramachandran, N. Sarkar et al., Direct DNA methylation profiling with an electric biosensor. ACS Nano 14(6), 6743–6751 (2020). https://doi.org/10.1021/acsnano.9b10085
F. Pu, J. Ren, X. Qu, Recent progress in sensor arrays using nucleic acid as sensing elements. Coord. Chem. Rev. 456, 214379 (2022). https://doi.org/10.1016/j.ccr.2021.214379
A. Purwidyantri, S. Azinheiro, A. Garcia Roldan, T. Jaegerova, A. Vilaca et al., Integrated approach from sample-to-answer for grapevine varietal identification on a portable graphene sensor chip. ACS Sens. 8(2), 640–654 (2023). https://doi.org/10.1021/acssensors.2c02090
C. Zheng, L. Huang, H. Zhang, Z. Sun, Z. Zhang et al., Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl. Mater. Interfaces 7(31), 16953–16959 (2015). https://doi.org/10.1021/acsami.5b03941
L. Xu, S. Ramadan, B.G. Rosa, Y. Zhang, T. Yin et al., On-chip integrated graphene aptasensor with portable readout for fast and label-free COVID-19 detection in virus transport medium. Sens. Diagn. 1(4), 719–730 (2022). https://doi.org/10.1039/D2SD00076H
J. Kim, M.-S. Chae, S.M. Lee, D. Jeong, B.C. Lee et al., Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma. Sci. Rep. 6, 31276 (2016). https://doi.org/10.1038/srep31276
C. Wang, Y. Zhang, W. Tang, C. Wang, Y. Han et al., Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform. Anal. Chim. Acta 1178, 338791 (2021). https://doi.org/10.1016/j.aca.2021.338791
Y. Wang, T.H. Kim, S. Fouladdel, Z. Zhang, P. Soni et al., PD-L1 expression in circulating tumor cells increases during radio (chemo) therapy and indicates poor prognosis in non-small cell lung cancer. Sci. Rep. 9, 566 (2019). https://doi.org/10.1038/s41598-018-36096-7
B.R. Goldsmith, L. Locio, Y. Gao, M. Lerner, A. Walker et al., Digital biosensing by foundry-fabricated graphene sensors. Sci. Rep. 9, 434 (2019). https://doi.org/10.1038/s41598-019-38700-w
D. Shahdeo, N. Chauhan, A. Majumdar, A. Ghosh, S. Gandhi, Graphene-based field-effect transistor for ultrasensitive immunosensing of SARS-CoV-2 spike S1 antigen. ACS Appl. Bio Mater. 5(7), 3563–3572 (2022). https://doi.org/10.1021/acsabm.2c00503
N. Gupta, V. Renugopalakrishnan, D. Liepmann, R. Paulmurugan, B.D. Malhotra, Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens. Bioelectron. 141, 111435 (2019). https://doi.org/10.1016/j.bios.2019.111435
J. Yang, G. Li, L. Zu, W. Wang, Z. Ge et al., Optogenetically engineered cell-based graphene transistor for pharmacodynamic evaluation of anticancer drugs. Sens. Actuators B Chem. 358, 131494 (2022). https://doi.org/10.1016/j.snb.2022.131494
D. Ozsoylu, T. Wagner, M.J. Schoning, Electrochemical cell-based biosensors for biomedical applications. Curr. Top. Med. Chem. 22(9), 713–733 (2022). https://doi.org/10.2174/1568026622666220304213617
D. Ham, H. Park, S. Hwang, K. Kim, Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4(9), 635–644 (2021). https://doi.org/10.1038/s41928-021-00646-1
H. Song, H. Wu, T. Ren, S. Yan, T. Chen et al., Developments in stability and passivation strategies for black phosphorus. Nano Res. 14(12), 4386–4397 (2021). https://doi.org/10.1007/s12274-021-3385-0
Y. Song, W. Zou, Q. Lu, L. Lin, Z. Liu, Graphene transfer: Paving the road for applications of chemical vapor deposition graphene. Small 17(48), 2007600 (2021). https://doi.org/10.1002/smll.202007600
X. Yang, J. Li, R. Song, B. Zhao, J. Tang et al., Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 18, 471–478 (2023). https://doi.org/10.1038/s41565-023-01342-1
L. Liu, P. Gong, K. Liu, A. Nie, Z. Liu et al., Scalable van der Waals encapsulation by inorganic molecular crystals. Adv. Mater. 34(7), 2106041 (2022). https://doi.org/10.1002/adma.202106041
C. Choi, M.K. Choi, S.Y. Liu, M.S. Kim, O.K. Park et al., Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017). https://doi.org/10.1038/s41467-017-01824-6
W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. ACMSIGARCH. 23(1), 20–24 (1995). https://doi.org/10.1145/216585.216588
M. Horowitz, 1.1 Computing's energy problem (and what we can do about it). in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 10–14 (2014). https://doi.org/10.1109/ISSCC.2014.6757323
V.M. Ho, J.-A. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011). https://doi.org/10.1126/science.1209236
Y. Zhu, Y. Zhu, H. Mao, Y. He, S. Jiang et al., Recent advances in emerging neuromorphic computing and perception devices. J. Phys. D Appl. Phys. 55(5), 053002 (2021). https://doi.org/10.1088/1361-6463/ac2868
X. Zhou, L. Zhao, W. Zhen, Y. Lin, C. Wang et al., Phase-transition-induced VO2 thin film IR photodetector and threshold switching selector for optical neural network applications. Adv. Electron. Mater. 7(5), 2001254 (2021). https://doi.org/10.1002/aelm.202001254
W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943). https://doi.org/10.1007/bf02478259
L. Chua, Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/tct.1971.1083337
A.A. Cruz-Cabrera, M. Yang, G. Cui, E.C. Behrman, J.E. Steck et al., Reinforcement and backpropagation training for an optical neural network using self-lensing effects. IEEE Trans. Neural Netw. 11(6), 1450–1457 (2000). https://doi.org/10.1109/72.883476
D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008). https://doi.org/10.1038/nature06932
M.S. Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S.H. Lee et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). https://doi.org/10.1038/ncomms2652
S. Lei, F. Wen, B. Li, Q. Wang, Y. Huang et al., Optoelectronic memory using two-dimensional materials. Nano Lett. 15(1), 259–265 (2015). https://doi.org/10.1021/nl503505f
V.K. Sangwan, D. Jariwala, I.S. Kim, K.-S. Chen, T.J. Marks et al., Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015). https://doi.org/10.1038/nnano.2015.56
J. Lee, S. Pak, Y.-W. Lee, Y. Cho, J. Hong et al., Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 8, 14734 (2017). https://doi.org/10.1038/ncomms14734
R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde et al., Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18(1), 434–441 (2018). https://doi.org/10.1021/acs.nanolett.7b04342
S. Seo, S.-H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang et al., Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10, 3161 (2019). https://doi.org/10.1038/s41467-019-11187-9
S. Chen, M.R. Mahmoodi, Y. Shi, C. Mahata, B. Yuan et al., Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020). https://doi.org/10.1038/s41928-020-00473-w
M.M. Islam, D. Dev, A. Krishnaprasad, L. Tetard, T. Roy, Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci. Rep. 10, 21870 (2020). https://doi.org/10.1038/s41598-020-78767-4
B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 (2022). https://doi.org/10.1038/s41467-022-30519-w
Y. Hu, H. Yang, J. Huang, X. Zhang, B. Tan et al., Flexible optical synapses based on In2Se3/MoS2 heterojunctions for artificial vision systems in the near-infrared range. ACS Appl. Mater. Interfaces 14(50), 55839–55849 (2022). https://doi.org/10.1021/acsami.2c19097
K. Zhu, S. Pazos, F. Aguirre, Y. Shen, Y. Yuan et al., Hybrid 2D-CMOS microchips for memristive applications. Nature 618, 57–62 (2023). https://doi.org/10.1038/s41586-023-05973-1
F. Wang, F. Hu, M. Dai, S. Zhu, F. Sun et al., A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding. Nat. Commun. 14, 1938 (2023). https://doi.org/10.1038/s41467-023-37623-5
Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin et al., A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 (2023). https://doi.org/10.1080/14686996.2022.2162323
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
L. Liu, Z. Cheng, B. Jiang, Y. Liu, Y. Zhang et al., Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide. ACS Appl. Mater. Inter. 13(26), 30797–30805 (2021). https://doi.org/10.1021/acsami.1c03202
S. Seo, J.-J. Lee, H.-J. Lee, H.W. Lee, S. Oh et al., Recent progress in artificial synapses based on two-dimensional van der Waals materials for brain-inspired computing. ACS Appl. Electron. Mater. 2(2), 371–388 (2020). https://doi.org/10.1021/acsaelm.9b00694
S. Yu, Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106(2), 260–285 (2018). https://doi.org/10.1109/jproc.2018.2790840
H. Ning,