Trunk-Inspired SWCNT-Based Wrinkled Films for Highly-Stretchable Electromagnetic Interference Shielding and Wearable Thermotherapy
Corresponding Author: Zengyong Chu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 243
Abstract
Nowadays, the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health, so stretchable electromagnetic interference (EMI) shielding materials are highly demanded. Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins. Inspired by the wrinkled skin of the elephant trunks, herein, we propose a winkled conductive film based on single-walled carbon nanotubes (SWCNTs) for multifunctional EMI applications. The conductive film has a sandwich structure, which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate. The shrinking-induced winkled conductive network could withstand up to 200% tensile strain. Typically, when the stretching direction is parallel to the polarization direction of the electric field, the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200% tensile strain. It is mainly contributed by the increased connection of the SWCNTs. In addition, the film also has good Joule heating performance at several voltages, capable of releasing pains in injured joints. This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.
Highlights:
1 Elephant trunk-inspired anisotropic wrinkling structures were formed on a sandwich-like conductive film through a controlled shrinking method.
2 The wrinkled conductive network could withstand up to 200% tensile strain and exhibits a strain-enhanced electromagnetic interference shielding effectiveness when stretching parallel to the electric field polarization direction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Shi, Z. Wang, H. Song, Y. Chang, W. Hou et al., High-sensitivity and extreme environment-resistant sensors based on PEDOT: PSS@PVA hydrogel fibers for physiological monitoring. ACS Appl. Mater. Interfaces 14, 35114–35125 (2022). https://doi.org/10.1021/acsami.2c09556
- Z. Yin, Y. Huang, H. Yang, J. Chen, Y. Duan et al., Flexible electronics manufacturing technology and equipment. Sci. China Technol. Sci. 65, 1940–1956 (2022). https://doi.org/10.1007/s11431-022-2098-1
- J. Li, W. Chu, Q. Gao, H. Zhang, X. He et al., In situ fabrication of magnetic and hierarchically porous carbon films for efficient electromagnetic wave shielding and absorption. ACS Appl. Mater. Interfaces 14, 33675–33685 (2022). https://doi.org/10.1021/acsami.2c05286
- X.-X. Wang, Q. Zheng, Y.-J. Zheng, M.-S. Cao, Green EMI shielding: Dielectric/magnetic “genes” and design philosophy. Carbon 206, 124–141 (2023). https://doi.org/10.1016/j.carbon.2023.02.012
- Y.-J. Wan, X.-Y. Wang, X.-M. Li, S.-Y. Liao, Z.-Q. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14, 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
- M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
- K. Gong, Y. Peng, A. Liu, S. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A Appl. Sci. Manuf. 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
- J. Xiao, X. Qi, L. Wang, T. Jing, J.-L. Yang et al., Anion regulating endows core@shell structured hollow carbon spheres@MoSxSe2−x with tunable and boosted microwave absorption performance. Nano Res. 16, 5756–5766 (2023). https://doi.org/10.1007/s12274-023-5433-4
- B. Zhan, Y. Hao, X. Qi, Y. Qu, J. Ding et al., Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties. Nano Res. 17, 927–938 (2024). https://doi.org/10.1007/s12274-023-6236-7
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023). https://doi.org/10.1002/adma.202211642
- J. Xiao, B. Zhan, X. Qi, J. Ding, Y. Qu et al., Metal valence state modulation strategy to design core@shell hollow carbon Microspheres@MoSe2/MoOx multicomponent composites for anti-corrosion and microwave absorption. Small (2024). https://doi.org/10.1002/smll.202311312
- J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
- G. Chang, L. Zeng, L. Xie, B. Xue, Q. Zheng, Ultrathin multifunctional electromagnetic interference shielding MXene/AgNWs/PEDOT: PSS coatings with superior electro/photo-thermal transition ability and water repellency. Chem. Eng. J. 470, 144033 (2023). https://doi.org/10.1016/j.cej.2023.144033
- L.-C. Jia, L. Xu, F. Ren, P.-G. Ren, D.-X. Yan et al., Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 144, 101–108 (2019). https://doi.org/10.1016/j.carbon.2018.12.034
- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32, e1907499 (2020). https://doi.org/10.1002/adma.201907499
- Y. Wang, S. Gordon, W. Yu, Z. Wang, A highly stretchable, easily processed and robust metal wire-containing woven fabric with strain-enhanced electromagnetic shielding effectiveness. Text. Res. J. 91, 2063–2073 (2021). https://doi.org/10.1177/0040517521994891
- P. Li, H. Wang, Z. Ju, Z. Jin, J. Ma et al., Ti3C2Tx MXene- and sulfuric acid-treated double-network hydrogel with ultralow conductive filler content for stretchable electromagnetic interference shielding. ACS Nano 18, 2906–2916 (2024). https://doi.org/10.1021/acsnano.3c07233
- Q. Li, Y. Sun, B. Zhou, G. Han, Y. Feng et al., Flexible, stretchable, and transparent MXene nanosheet/thermoplastic polyurethane films for multifunctional heating and electromagnetic interference shielding. ACS Appl. Nano Mater. 6, 3395–3404 (2023). https://doi.org/10.1021/acsanm.2c05169
- J. Xu, H. Chang, B. Zhao, R. Li, T. Cui et al., Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 431, 133908 (2022). https://doi.org/10.1016/j.cej.2021.133908
- Z. Xu, J. Chen, G. Wang, Y. Zhao, B. Shen et al., Stretchable and translucent liquid-metal composite mesh for multifunctional electromagnetic shielding/sensing and Joule heating. Compos. Sci. Technol. 249, 110512 (2024). https://doi.org/10.1016/j.compscitech.2024.110512
- Y. Kim, O.Y. Kweon, Y. Won, J.H. Oh, Deformable and stretchable electrodes for soft electronic devices. Macromol. Res. 27, 625–639 (2019). https://doi.org/10.1007/s13233-019-7175-4
- J. Won, S. Mondal, J. Park, W. Wang, H. Lee et al., Highly stretchable wrinkled electrode based on silver ink-elastomer nanocomposite with excellent fatigue resistance. Polym. Compos. 41, 2210–2223 (2020). https://doi.org/10.1002/pc.25532
- S. Deshpande, S. Bhand, G. Bacher, Finite element method based modelling and analysis of serpentine electrodes for biochemical sensing. Mater. Today Proc. 57, 643–649 (2022). https://doi.org/10.1016/j.matpr.2022.02.066
- J. Xu, Y. Li, H. Liu, J. Wang, J. Wang et al., Integration of patterned electrolyte film and sacrificial substrate serpentine electrode of low curvature for high stretch supercapacitor, physiological signal detection. Chem. Eng. J. 472, 144907 (2023). https://doi.org/10.1016/j.cej.2023.144907
- C. Liu, J. Cai, P. Dang, X. Li, D. Zhang, Highly stretchable electromagnetic interference shielding materials made with conductive microcoils confined to a honeycomb structure. ACS Appl. Mater. Interfaces 12, 12101–12108 (2020). https://doi.org/10.1021/acsami.0c00034
- Z. Wang, X. Xia, M. Zhu, X. Zhang, R. Liu et al., Rational assembly of liquid metal/elastomer lattice conductors for high-performance and strain-invariant stretchable electronics. Adv. Funct. Mater. 32, 2108336 (2022). https://doi.org/10.1002/adfm.202108336
- K. Liu, Y. Yao, T. Lv, H. Li, N. Li et al., Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors. J. Power. Sources 446, 227355 (2020). https://doi.org/10.1016/j.jpowsour.2019.227355
- S. Lin, S. Ju, G. Shi, J. Zhang, Y. He et al., Ultrathin nitrogen-doping graphene films for flexible and stretchable EMI shielding materials. J. Mater. Sci. 54, 7165–7179 (2019). https://doi.org/10.1007/s10853-019-03372-4
- J. Dong, S. Luo, S. Ning, G. Yang, D. Pan et al., MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 13, 60478–60488 (2021). https://doi.org/10.1021/acsami.1c19890
- W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Yu Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15, 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
- Y. Wang, Y. Zhao, Y. Han, X. Li, C. Dai et al., Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Sci. Adv. 8, eabn8338 (2022). https://doi.org/10.1126/sciadv.abn8338
- Y. Tan, Z. Chu, Z. Jiang, T. Hu, G. Li et al., Gyrification-inspired highly convoluted graphene oxide patterns for ultralarge deforming actuators. ACS Nano 11, 6843–6852 (2017). https://doi.org/10.1021/acsnano.7b01937
- J. Song, Y. Tan, Z. Chu, M. Xiao, G. Li et al., Hierarchical reduced graphene oxide ridges for stretchable, wearable, and washable strain sensors. ACS Appl. Mater. Interfaces 11, 1283–1293 (2019). https://doi.org/10.1021/acsami.8b18143
- X. Gong, Z. Chu, G. Li, Y. Tan, Q. Dong et al., Efficient fabrication of carbon nanotube-based stretchable electrodes for flexible electronic devices. Macromol. Rapid Commun. 44, e2200795 (2023). https://doi.org/10.1002/marc.202200795
- B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- Z. Wang, W. Yang, R. Liu, X. Zhang, H. Nie et al., Highly stretchable graphene/polydimethylsiloxane composite lattices with tailored structure for strain-tolerant EMI shielding performance. Compos. Sci. Technol. 206, 108652 (2021). https://doi.org/10.1016/j.compscitech.2021.108652
- B. Zhou, M. Su, D. Yang, G. Han, Y. Feng et al., Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12, 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
- S. Yang, D.-X. Yan, Y. Li, J. Lei, Z.-M. Li, Flexible Poly(vinylidene fluoride)-MXene/Silver nanowire electromagnetic shielding films with joule heating performance. Ind. Eng. Chem. Res. 60, 9824–9832 (2021). https://doi.org/10.1021/acs.iecr.1c01632
- X. Hong, W. Zhao, R. Yu, Q. Wang, F. Zeng et al., Multifunctional silver nanowire coated fabric capable of electrothermal, resistance temperature-sensitivity, electromagnetic interference shielding, and strain sensing. J. Ind. Text. 51, 6153S-6172S (2022). https://doi.org/10.1177/15280837221076029
- J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9, 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
- J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
- S.-J. Park, J. Kim, M. Chu, M. Khine, Highly flexible wrinkled carbon nanotube thin film strain sensor to monitor human movement. Adv. Mater. Technol. 1, 1600053 (2016)
- M. Fan, X. Xia, S. Li, R. Zhang, L. Wu et al., Sustainable bacterial cellulose reinforced carbon nanotube buckypaper and its multifunctionality for electromagnetic interference shielding, Joule heating and humidity sensing. Chem. Eng. J. 441, 136103 (2022). https://doi.org/10.1016/j.cej.2022.136103
- Y.-Y. Shi, S.-Y. Liao, Q.-F. Wang, X.-Y. Xu, X.-Y. Wang et al., Enhancing the interaction of carbon nanotubes by metal-organic decomposition with improved mechanical strength and ultra-broadband EMI shielding performance. Nano-Micro Lett. 16, 134 (2024). https://doi.org/10.1007/s40820-024-01344-1
- J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- Z. Zeng, W. Li, N. Wu, S. Zhao, X. Lu, Polymer-assisted fabrication of silver nanowire cellular monoliths: toward hydrophobic and ultraflexible high-performance electromagnetic interference shielding materials. ACS Appl. Mater. Interfaces 12, 38584–38592 (2020). https://doi.org/10.1021/acsami.0c10492
- X. Gao, X. Wang, J. Cai, Y. Zhang, J. Zhang et al., CNT cluster arrays grown on carbon fiber for excellent green EMI shielding and microwave absorbing. Carbon 211, 118083 (2023). https://doi.org/10.1016/j.carbon.2023.118083
- Y. Tan, B. Hu, J. Song, Z. Chu, W. Wu, Bioinspired multiscale wrinkling patterns on curved substrates: an overview. Nano-Micro Lett. 12, 101 (2020). https://doi.org/10.1007/s40820-020-00436-y
- R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui et al., Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 92, 106700 (2022). https://doi.org/10.1016/j.nanoen.2021.106700
- Y. Bai, B. Zhang, G. Fei, Z. Ma, Composite polymeric film for stretchable, self-healing, recyclable EMI shielding and Joule heating. Chem. Eng. J. 478, 147382 (2023). https://doi.org/10.1016/j.cej.2023.147382
- X. Jiang, J. Zhou, X. Zhong, Z. Hu, R. Hu et al., Stretchable PEDOT: PSS/Li-TFSI/XSB composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15, 8521–8529 (2023). https://doi.org/10.1021/acsami.2c21604
- A. Katheria, P. Das, S.K. Ghosh, J. Nayak, K. Nath et al., Fabrication of 2D nanomaterial reinforced co-continuous binary blend composites for thermal management and EMI shielding applications. J. Polym. Res. 30, 459 (2023). https://doi.org/10.1007/s10965-023-03843-y
- F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15, 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
- Y. Wang, X.-D. Cheng, W.-L. Song, C.-J. Ma, X.-M. Bian et al., Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chem. Eng. J. 344, 342–352 (2018). https://doi.org/10.1016/j.cej.2018.03.097
- X. Hu, L. Mou, Z. Liu, Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers. Chin. Phys. B 30, 018401 (2021). https://doi.org/10.1088/1674-1056/abc2b3
- Z. Chen, S. Yang, J. Huang, Y. Gu, W. Huang et al., Flexible, transparent and conductive metal mesh films with ultra-high FoM for stretchable heating and electromagnetic interference shielding. Nano-Micro Lett. 16, 92 (2024). https://doi.org/10.1007/s40820-023-01295-z
- Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
- Y. Feng, J. Song, G. Han, B. Zhou, C. Liu et al., Transparent and stretchable electromagnetic interference shielding film with fence-like aligned silver nanowire conductive network. Small Methods 7, e2201490 (2023). https://doi.org/10.1002/smtd.202201490
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- Y. Yang, S. Chen, W. Li, P. Li, J. Ma et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14, 8754–8765 (2020). https://doi.org/10.1021/acsnano.0c03337
- L. Chen, T. Mai, X.-X. Ji, P.-L. Wang, M.-Y. Qi et al., 3D printing of customizable and lightweight multilayer MXene/nanocellulose architectures for tunable electromagnetic interference shielding via direct ink writing. Chem. Eng. J. 476, 146652 (2023). https://doi.org/10.1016/j.cej.2023.146652
References
W. Shi, Z. Wang, H. Song, Y. Chang, W. Hou et al., High-sensitivity and extreme environment-resistant sensors based on PEDOT: PSS@PVA hydrogel fibers for physiological monitoring. ACS Appl. Mater. Interfaces 14, 35114–35125 (2022). https://doi.org/10.1021/acsami.2c09556
Z. Yin, Y. Huang, H. Yang, J. Chen, Y. Duan et al., Flexible electronics manufacturing technology and equipment. Sci. China Technol. Sci. 65, 1940–1956 (2022). https://doi.org/10.1007/s11431-022-2098-1
J. Li, W. Chu, Q. Gao, H. Zhang, X. He et al., In situ fabrication of magnetic and hierarchically porous carbon films for efficient electromagnetic wave shielding and absorption. ACS Appl. Mater. Interfaces 14, 33675–33685 (2022). https://doi.org/10.1021/acsami.2c05286
X.-X. Wang, Q. Zheng, Y.-J. Zheng, M.-S. Cao, Green EMI shielding: Dielectric/magnetic “genes” and design philosophy. Carbon 206, 124–141 (2023). https://doi.org/10.1016/j.carbon.2023.02.012
Y.-J. Wan, X.-Y. Wang, X.-M. Li, S.-Y. Liao, Z.-Q. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14, 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
K. Gong, Y. Peng, A. Liu, S. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A Appl. Sci. Manuf. 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
J. Xiao, X. Qi, L. Wang, T. Jing, J.-L. Yang et al., Anion regulating endows core@shell structured hollow carbon spheres@MoSxSe2−x with tunable and boosted microwave absorption performance. Nano Res. 16, 5756–5766 (2023). https://doi.org/10.1007/s12274-023-5433-4
B. Zhan, Y. Hao, X. Qi, Y. Qu, J. Ding et al., Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties. Nano Res. 17, 927–938 (2024). https://doi.org/10.1007/s12274-023-6236-7
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023). https://doi.org/10.1002/adma.202211642
J. Xiao, B. Zhan, X. Qi, J. Ding, Y. Qu et al., Metal valence state modulation strategy to design core@shell hollow carbon Microspheres@MoSe2/MoOx multicomponent composites for anti-corrosion and microwave absorption. Small (2024). https://doi.org/10.1002/smll.202311312
J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
G. Chang, L. Zeng, L. Xie, B. Xue, Q. Zheng, Ultrathin multifunctional electromagnetic interference shielding MXene/AgNWs/PEDOT: PSS coatings with superior electro/photo-thermal transition ability and water repellency. Chem. Eng. J. 470, 144033 (2023). https://doi.org/10.1016/j.cej.2023.144033
L.-C. Jia, L. Xu, F. Ren, P.-G. Ren, D.-X. Yan et al., Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 144, 101–108 (2019). https://doi.org/10.1016/j.carbon.2018.12.034
B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32, e1907499 (2020). https://doi.org/10.1002/adma.201907499
Y. Wang, S. Gordon, W. Yu, Z. Wang, A highly stretchable, easily processed and robust metal wire-containing woven fabric with strain-enhanced electromagnetic shielding effectiveness. Text. Res. J. 91, 2063–2073 (2021). https://doi.org/10.1177/0040517521994891
P. Li, H. Wang, Z. Ju, Z. Jin, J. Ma et al., Ti3C2Tx MXene- and sulfuric acid-treated double-network hydrogel with ultralow conductive filler content for stretchable electromagnetic interference shielding. ACS Nano 18, 2906–2916 (2024). https://doi.org/10.1021/acsnano.3c07233
Q. Li, Y. Sun, B. Zhou, G. Han, Y. Feng et al., Flexible, stretchable, and transparent MXene nanosheet/thermoplastic polyurethane films for multifunctional heating and electromagnetic interference shielding. ACS Appl. Nano Mater. 6, 3395–3404 (2023). https://doi.org/10.1021/acsanm.2c05169
J. Xu, H. Chang, B. Zhao, R. Li, T. Cui et al., Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 431, 133908 (2022). https://doi.org/10.1016/j.cej.2021.133908
Z. Xu, J. Chen, G. Wang, Y. Zhao, B. Shen et al., Stretchable and translucent liquid-metal composite mesh for multifunctional electromagnetic shielding/sensing and Joule heating. Compos. Sci. Technol. 249, 110512 (2024). https://doi.org/10.1016/j.compscitech.2024.110512
Y. Kim, O.Y. Kweon, Y. Won, J.H. Oh, Deformable and stretchable electrodes for soft electronic devices. Macromol. Res. 27, 625–639 (2019). https://doi.org/10.1007/s13233-019-7175-4
J. Won, S. Mondal, J. Park, W. Wang, H. Lee et al., Highly stretchable wrinkled electrode based on silver ink-elastomer nanocomposite with excellent fatigue resistance. Polym. Compos. 41, 2210–2223 (2020). https://doi.org/10.1002/pc.25532
S. Deshpande, S. Bhand, G. Bacher, Finite element method based modelling and analysis of serpentine electrodes for biochemical sensing. Mater. Today Proc. 57, 643–649 (2022). https://doi.org/10.1016/j.matpr.2022.02.066
J. Xu, Y. Li, H. Liu, J. Wang, J. Wang et al., Integration of patterned electrolyte film and sacrificial substrate serpentine electrode of low curvature for high stretch supercapacitor, physiological signal detection. Chem. Eng. J. 472, 144907 (2023). https://doi.org/10.1016/j.cej.2023.144907
C. Liu, J. Cai, P. Dang, X. Li, D. Zhang, Highly stretchable electromagnetic interference shielding materials made with conductive microcoils confined to a honeycomb structure. ACS Appl. Mater. Interfaces 12, 12101–12108 (2020). https://doi.org/10.1021/acsami.0c00034
Z. Wang, X. Xia, M. Zhu, X. Zhang, R. Liu et al., Rational assembly of liquid metal/elastomer lattice conductors for high-performance and strain-invariant stretchable electronics. Adv. Funct. Mater. 32, 2108336 (2022). https://doi.org/10.1002/adfm.202108336
K. Liu, Y. Yao, T. Lv, H. Li, N. Li et al., Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors. J. Power. Sources 446, 227355 (2020). https://doi.org/10.1016/j.jpowsour.2019.227355
S. Lin, S. Ju, G. Shi, J. Zhang, Y. He et al., Ultrathin nitrogen-doping graphene films for flexible and stretchable EMI shielding materials. J. Mater. Sci. 54, 7165–7179 (2019). https://doi.org/10.1007/s10853-019-03372-4
J. Dong, S. Luo, S. Ning, G. Yang, D. Pan et al., MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 13, 60478–60488 (2021). https://doi.org/10.1021/acsami.1c19890
W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Yu Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15, 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
Y. Wang, Y. Zhao, Y. Han, X. Li, C. Dai et al., Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Sci. Adv. 8, eabn8338 (2022). https://doi.org/10.1126/sciadv.abn8338
Y. Tan, Z. Chu, Z. Jiang, T. Hu, G. Li et al., Gyrification-inspired highly convoluted graphene oxide patterns for ultralarge deforming actuators. ACS Nano 11, 6843–6852 (2017). https://doi.org/10.1021/acsnano.7b01937
J. Song, Y. Tan, Z. Chu, M. Xiao, G. Li et al., Hierarchical reduced graphene oxide ridges for stretchable, wearable, and washable strain sensors. ACS Appl. Mater. Interfaces 11, 1283–1293 (2019). https://doi.org/10.1021/acsami.8b18143
X. Gong, Z. Chu, G. Li, Y. Tan, Q. Dong et al., Efficient fabrication of carbon nanotube-based stretchable electrodes for flexible electronic devices. Macromol. Rapid Commun. 44, e2200795 (2023). https://doi.org/10.1002/marc.202200795
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
Z. Wang, W. Yang, R. Liu, X. Zhang, H. Nie et al., Highly stretchable graphene/polydimethylsiloxane composite lattices with tailored structure for strain-tolerant EMI shielding performance. Compos. Sci. Technol. 206, 108652 (2021). https://doi.org/10.1016/j.compscitech.2021.108652
B. Zhou, M. Su, D. Yang, G. Han, Y. Feng et al., Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12, 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
S. Yang, D.-X. Yan, Y. Li, J. Lei, Z.-M. Li, Flexible Poly(vinylidene fluoride)-MXene/Silver nanowire electromagnetic shielding films with joule heating performance. Ind. Eng. Chem. Res. 60, 9824–9832 (2021). https://doi.org/10.1021/acs.iecr.1c01632
X. Hong, W. Zhao, R. Yu, Q. Wang, F. Zeng et al., Multifunctional silver nanowire coated fabric capable of electrothermal, resistance temperature-sensitivity, electromagnetic interference shielding, and strain sensing. J. Ind. Text. 51, 6153S-6172S (2022). https://doi.org/10.1177/15280837221076029
J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9, 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
S.-J. Park, J. Kim, M. Chu, M. Khine, Highly flexible wrinkled carbon nanotube thin film strain sensor to monitor human movement. Adv. Mater. Technol. 1, 1600053 (2016)
M. Fan, X. Xia, S. Li, R. Zhang, L. Wu et al., Sustainable bacterial cellulose reinforced carbon nanotube buckypaper and its multifunctionality for electromagnetic interference shielding, Joule heating and humidity sensing. Chem. Eng. J. 441, 136103 (2022). https://doi.org/10.1016/j.cej.2022.136103
Y.-Y. Shi, S.-Y. Liao, Q.-F. Wang, X.-Y. Xu, X.-Y. Wang et al., Enhancing the interaction of carbon nanotubes by metal-organic decomposition with improved mechanical strength and ultra-broadband EMI shielding performance. Nano-Micro Lett. 16, 134 (2024). https://doi.org/10.1007/s40820-024-01344-1
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
Z. Zeng, W. Li, N. Wu, S. Zhao, X. Lu, Polymer-assisted fabrication of silver nanowire cellular monoliths: toward hydrophobic and ultraflexible high-performance electromagnetic interference shielding materials. ACS Appl. Mater. Interfaces 12, 38584–38592 (2020). https://doi.org/10.1021/acsami.0c10492
X. Gao, X. Wang, J. Cai, Y. Zhang, J. Zhang et al., CNT cluster arrays grown on carbon fiber for excellent green EMI shielding and microwave absorbing. Carbon 211, 118083 (2023). https://doi.org/10.1016/j.carbon.2023.118083
Y. Tan, B. Hu, J. Song, Z. Chu, W. Wu, Bioinspired multiscale wrinkling patterns on curved substrates: an overview. Nano-Micro Lett. 12, 101 (2020). https://doi.org/10.1007/s40820-020-00436-y
R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui et al., Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 92, 106700 (2022). https://doi.org/10.1016/j.nanoen.2021.106700
Y. Bai, B. Zhang, G. Fei, Z. Ma, Composite polymeric film for stretchable, self-healing, recyclable EMI shielding and Joule heating. Chem. Eng. J. 478, 147382 (2023). https://doi.org/10.1016/j.cej.2023.147382
X. Jiang, J. Zhou, X. Zhong, Z. Hu, R. Hu et al., Stretchable PEDOT: PSS/Li-TFSI/XSB composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15, 8521–8529 (2023). https://doi.org/10.1021/acsami.2c21604
A. Katheria, P. Das, S.K. Ghosh, J. Nayak, K. Nath et al., Fabrication of 2D nanomaterial reinforced co-continuous binary blend composites for thermal management and EMI shielding applications. J. Polym. Res. 30, 459 (2023). https://doi.org/10.1007/s10965-023-03843-y
F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15, 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
Y. Wang, X.-D. Cheng, W.-L. Song, C.-J. Ma, X.-M. Bian et al., Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chem. Eng. J. 344, 342–352 (2018). https://doi.org/10.1016/j.cej.2018.03.097
X. Hu, L. Mou, Z. Liu, Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers. Chin. Phys. B 30, 018401 (2021). https://doi.org/10.1088/1674-1056/abc2b3
Z. Chen, S. Yang, J. Huang, Y. Gu, W. Huang et al., Flexible, transparent and conductive metal mesh films with ultra-high FoM for stretchable heating and electromagnetic interference shielding. Nano-Micro Lett. 16, 92 (2024). https://doi.org/10.1007/s40820-023-01295-z
Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
Y. Feng, J. Song, G. Han, B. Zhou, C. Liu et al., Transparent and stretchable electromagnetic interference shielding film with fence-like aligned silver nanowire conductive network. Small Methods 7, e2201490 (2023). https://doi.org/10.1002/smtd.202201490
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
Y. Yang, S. Chen, W. Li, P. Li, J. Ma et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14, 8754–8765 (2020). https://doi.org/10.1021/acsnano.0c03337
L. Chen, T. Mai, X.-X. Ji, P.-L. Wang, M.-Y. Qi et al., 3D printing of customizable and lightweight multilayer MXene/nanocellulose architectures for tunable electromagnetic interference shielding via direct ink writing. Chem. Eng. J. 476, 146652 (2023). https://doi.org/10.1016/j.cej.2023.146652