Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array
Corresponding Author: Zhi Yang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 269
Abstract
As information acquisition terminals for artificial olfaction, chemiresistive gas sensors are often troubled by their cross-sensitivity, and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area. Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors. It is crucial to choose an appropriate pattern recognition method for enhancing data analysis, reducing errors and improving system reliability, obtaining better classification or gas concentration prediction results. In this review, we analyze the sensing mechanism of cross-sensitivity for chemiresistive gas sensors. We further examine the types, working principles, characteristics, and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays. Additionally, we report, summarize, and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification. At the same time, this work showcases the recent advancements in utilizing these methods for gas identification, particularly within three crucial domains: ensuring food safety, monitoring the environment, and aiding in medical diagnosis. In conclusion, this study anticipates future research prospects by considering the existing landscape and challenges. It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
Highlights:
1 The types, working principles, advantages and limitations of pattern recognition methods based on chemiresistive gas sensor array are reviewed and discussed comprehensively.
2 Outstanding and novel advancements in the application of machine learning methods for gas recognition in different important areas are compared, summarized and evaluated.
3 The current challenges and future prospects of machine learning methods in artificial olfactory systems are discussed and justified.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Bushdid, M.O. Magnasco, L.B. Vosshall, A. Keller, Humans can discriminate more than 1 trillion olfactory stimuli. Science 343, 1370–1372 (2014). https://doi.org/10.1126/science.1249168
- J.P. McGann, Poor human olfaction is a 19th-century myth. Science 356, eaam7263 (2017). https://doi.org/10.1126/science.aam7263
- K. Izawa, H. Ulmer, A. Staerz, U. Weimar, N. Barsan, Application of SMOX-based sensors. Gas Sensors Based on Conducting Metal Oxides. Amsterdam: Elsevier, (2019)., pp. 217–257. https://doi.org/10.1016/b978-0-12-811224-3.00005-6
- A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036
- Y. Liang, Z. Wu, Y. Wei, Q. Ding, M. Zilberman et al., Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
- H. Lim, H. Kwon, H. Kang, J.E. Jang, H.-J. Kwon, Laser-induced and MOF-derived metal oxide/carbon composite for synergistically improved ethanol sensing at room temperature. Nano-Micro Lett. 16, 113 (2024). https://doi.org/10.1007/s40820-024-01332-5
- Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14, 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
- X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
- Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
- M. Hilal, W. Yang, Y. Hwang, W. Xie, Tailoring MXene thickness and functionalization for enhanced room-temperature trace NO2 sensing. Nano-Micro Lett. 16, 84 (2024). https://doi.org/10.1007/s40820-023-01316-x
- K.H. Kim, C.S. Park, S.J. Park, J. Kim, S.E. Seo et al., In-situ food spoilage monitoring using a wireless chemical receptor-conjugated graphene electronic nose. Biosens. Bioelectron. 200, 113908 (2022). https://doi.org/10.1016/j.bios.2021.113908
- A. Khorramifar, M. Rasekh, H. Karami, J.A. Covington, S.M. Derakhshani et al., Application of MOS gas sensors coupled with chemometrics methods to predict the amount of sugar and carbohydrates in potatoes. Molecules 27, 3508 (2022). https://doi.org/10.3390/molecules27113508
- Y. Wang, X. Yan, S. Wang, S. Gao, K. Yang et al., Electronic nose application for detecting different odorants in source water: Possibility and scenario. Environ. Res. 227, 115677 (2023). https://doi.org/10.1016/j.envres.2023.115677
- X. Jia, P. Qiao, X. Wang, M. Yan, Y. Chen et al., Building feedback-regulation system through atomic design for highly active SO2 sensing. Nano-Micro Lett. 16, 136 (2024). https://doi.org/10.1007/s40820-024-01350-3
- I.G. van der Sar, C.C. Moor, J.C. Oppenheimer, M.L. Luijendijk, P.L.A. van Daele et al., Diagnostic performance of electronic nose technology in sarcoidosis. Chest 161, 738–747 (2022). https://doi.org/10.1016/j.chest.2021.10.025
- Y. Peters, R.W.M. Schrauwen, A.C. Tan, S.K. Bogers, B. de Jong et al., Detection of Barrett’s oesophagus through exhaled breath using an electronic nose device. Gut 69, 1169–1172 (2020). https://doi.org/10.1136/gutjnl-2019-320273
- F. Röck, N. Barsan, U. Weimar, Electronic nose: current status and future trends. Chem. Rev. 108, 705–725 (2008). https://doi.org/10.1021/cr068121q
- T. Yang, L. Gao, W. Wang, J. Kang, G. Zhao et al., Berlin green framework-based gas sensor for room-temperature and high-selectivity detection of ammonia. Nano-Micro Lett. 13, 63 (2021). https://doi.org/10.1007/s40820-020-00586-z
- S.Y. Chun, Y.G. Song, J.E. Kim, J.U. Kwon, K. Soh et al., An artificial olfactory system based on a chemi-memristive device. Adv. Mater. 35, e2302219 (2023). https://doi.org/10.1002/adma.202302219
- I. Cho, K. Lee, Y.C. Sim, J.S. Jeong, M. Cho et al., Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor. Light Sci. Appl. 12, 95 (2023). https://doi.org/10.1038/s41377-023-01120-7
- C. Wang, Z. Chen, C.L.J. Chan, Z. Wan, W. Ye et al., Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 7, 157–167 (2024). https://doi.org/10.1038/s41928-023-01107-7
- T. Saidi, O. Zaim, M. Moufid, N. El Bari, R. Ionescu et al., Exhaled breath analysis using electronic nose and gas chromatography–mass spectrometry for non-invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy subjects. Sens. Actuat. B Chem. 257, 178–188 (2018). https://doi.org/10.1016/j.snb.2017.10.178
- M. Tohidi, M. Ghasemi-Varnamkhasti, V. Ghafarinia, M. Bonyadian, S.S. Mohtasebi, Development of a metal oxide semiconductor-based artificial nose as a fast, reliable and non-expensive analytical technique for aroma profiling of milk adulteration. Int. Dairy J. 77, 38–46 (2018). https://doi.org/10.1016/j.idairyj.2017.09.003
- M.R. Zarezadeh, M. Aboonajmi, M. Ghasemi-Varnamkhasti, The effect of data fusion on improving the accuracy of olive oil quality measurement. Food Chem. X 18, 100622 (2023). https://doi.org/10.1016/j.fochx.2023.100622
- S.-H. Sung, J.M. Suh, Y.J. Hwang, H.W. Jang, J.G. Park et al., Data-centric artificial olfactory system based on the eigengraph. Nat. Commun. 15, 1211 (2024). https://doi.org/10.1038/s41467-024-45430-9
- A.H. Jalal, F. Alam, S. Roychoudhury, Y. Umasankar, N. Pala et al., Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 3, 1246–1263 (2018). https://doi.org/10.1021/acssensors.8b00400
- G. Verma, A. Gokarna, H. Kadiri, K. Nomenyo, G. Lerondel et al., Multiplexed gas sensor: fabrication strategies, recent progress, and challenges. ACS Sens. 8, 3320–3337 (2023). https://doi.org/10.1021/acssensors.3c01244
- Z.U. Abideen, W.U. Arifeen, Y.M.N.D.Y. Bandara, Emerging trends in metal oxide-based electronic noses for healthcare applications: a review. Nanoscale 16, 9259–9283 (2024). https://doi.org/10.1039/d4nr00073k
- C. Kim, K.K. Lee, M.S. Kang, D.M. Shin, J.W. Oh et al., Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review. Biomater. Res. 26, 40 (2022). https://doi.org/10.1186/s40824-022-00287-1
- H. Chen, D. Huo, J. Zhang, Gas recognition in E-nose system: a review. IEEE Trans. Biomed. Circuits Syst. 16, 169–184 (2022). https://doi.org/10.1109/TBCAS.2022.3166530
- A. Labidi, E. Gillet, R. Delamare, M. Maaref, K. Aguir, Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd. Sens. Actuat. B Chem. 120, 338–345 (2006). https://doi.org/10.1016/j.snb.2006.02.015
- H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
- M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanops in chemiresistors: does the nanoscale matter? Small 2, 36–50 (2006). https://doi.org/10.1002/smll.200500261
- H. Jin, J. Yu, D. Cui, S. Gao, H. Yang et al., Remote tracking gas molecular via the standalone-like nanosensor-based tele-monitoring system. Nano-Micro Lett. 13, 32 (2021). https://doi.org/10.1007/s40820-020-00551-w
- T. Wada, N. Murata, T. Suzuki, H. Uehara, H. Nitani et al., Improvement of a real gas-sensor for the origin of methane selectivity degradation by µ-XAFS investigation. Nano-Micro Lett. 7, 255–260 (2015). https://doi.org/10.1007/s40820-015-0035-7
- D. Wang, Z. Li, J. Zhou, H. Fang, X. He et al., Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanops. Nano-Micro Lett. 10, 4 (2017). https://doi.org/10.1007/s40820-017-0158-0
- A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
- O. Gschwend, N.M. Abraham, S. Lagier, F. Begnaud, I. Rodriguez et al., Neuronal pattern separation in the olfactory bulb improves odor discrimination learning. Nat. Neurosci. 18, 1474–1482 (2015). https://doi.org/10.1038/nn.4089
- P.Y. Wang, Y. Sun, R. Axel, L.F. Abbott, G.R. Yang, Evolving the olfactory system with machine learning. Neuron 109, 3879-3892.e5 (2021). https://doi.org/10.1016/j.neuron.2021.09.010
- B.K. Lee, E.J. Mayhew, B. Sanchez-Lengeling, J.N. Wei, W.W. Qian et al., A principal odor map unifies diverse tasks in olfactory perception. Science 381, 999–1006 (2023). https://doi.org/10.1126/science.ade4401
- L. Lu, Z. Hu, X. Hu, D. Li, S. Tian, Electronic tongue and electronic nose for food quality and safety. Food Res. Int. 162, 112214 (2022). https://doi.org/10.1016/j.foodres.2022.112214
- P. Gupta, H. Gholami Derami, D. Mehta, H. Yilmaz, S. Chakrabartty et al., In situ grown gold nanoisland-based chemiresistive electronic nose for sniffing distinct odor fingerprints. ACS Appl. Mater. Interfaces 14, 3207–3217 (2022). https://doi.org/10.1021/acsami.1c22173
- A. Glielmo, B.E. Husic, A. Rodriguez, C. Clementi, F. Noé et al., Unsupervised learning methods for molecular simulation data. Chem. Rev. 121, 9722–9758 (2021). https://doi.org/10.1021/acs.chemrev.0c01195
- J.F. Hair, Multivariate data analysis: an overview. International Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer Berlin Heidelberg, (2011). pp. 904–907. https://doi.org/10.1007/978-3-642-04898-2_395
- Y. Tang, K. Xu, B. Zhao, M. Zhang, C. Gong et al., A novel electronic nose for the detection and classification of pesticide residue on apples. RSC Adv. 11, 20874–20883 (2021). https://doi.org/10.1039/D1RA03069H
- N. Shauloff, A. Morag, K. Yaniv, S. Singh, R. Malishev et al., Sniffing bacteria with a carbon-dot artificial nose. Nano-Micro Lett. 13, 112 (2021). https://doi.org/10.1007/s40820-021-00610-w
- B. Junker, A. Kobald, C. Ewald, P. Janoschek, M. Schalk et al., Multivariate analysis of light-activated SMOX gas sensors. ACS Sens. 9, 1584–1591 (2024). https://doi.org/10.1021/acssensors.4c00078
- M. Jang, G. Bae, Y.M. Kwon, J.H. Cho, D.H. Lee et al., Artificial Q-grader: machine learning-enabled intelligent olfactory and gustatory sensing system. Adv. Sci. 11, 2308976 (2024). https://doi.org/10.1002/advs.202308976
- H. Zhao, Z. Lai, H. Leung, X. Zhang, Linear discriminant analysis. Information Fusion and Data Science. Cham: Springer International Publishing, (2020). pp. 71–85. https://doi.org/10.1007/978-3-030-40794-0_5
- B. Skiera, J. Reiner, S. Albers, Regression analysis. Handbook of Market Research. Cham: Springer International Publishing, (2021). pp. 299–327. https://doi.org/10.1007/978-3-319-57413-4_17
- J. Yin, Y. Zhao, Z. Peng, F. Ba, P. Peng et al., Rapid identification method for CH4/CO/CH4-CO gas mixtures based on electronic nose. Sensors 23, 2975 (2023). https://doi.org/10.3390/s23062975
- E. Aghdamifar, V.R. Sharabiani, E. Taghinezhad, M. Szymanek, A. Dziwulska-Hunek, E-nose as a non-destructive and fast method for identification and classification of coffee beans based on soft computing models. Sens. Actuat. B Chem. 393, 134229 (2023). https://doi.org/10.1016/j.snb.2023.134229
- T. Itoh, Y. Koyama, Y. Sakumura, T. Akamatsu, A. Tsuruta et al., Discrimination of volatile organic compounds using a sensor array via a rapid method based on linear discriminant analysis. Sens. Actuat. B Chem. 387, 133803 (2023). https://doi.org/10.1016/j.snb.2023.133803
- W.S. Noble, What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006). https://doi.org/10.1038/nbt1206-1565
- V.K. Chauhan, K. Dahiya, A. Sharma, Problem formulations and solvers in linear SVM: a review. Artif. Intell. Rev. 52, 803–855 (2019). https://doi.org/10.1007/s10462-018-9614-6
- X. Zhou, R. Stern, H. Müller, Case-based fracture image retrieval. Int. J. Comput. Assist. Radiol. Surg. 7, 401–411 (2012). https://doi.org/10.1007/s11548-011-0643-8
- V. Piccialli, M. Sciandrone, Nonlinear optimization and support vector machines. 4OR 16, 111–149 (2018). https://doi.org/10.1007/s10288-018-0378-2
- M. Rasekh, H. Karami, M. Kamruzzaman, V. Azizi, M. Gancarz, Impact of different drying approaches on VOCs and chemical composition of Mentha spicata L. essential oil: a combined analysis of GC/MS and E-nose with chemometrics methods. Ind. Crops Prod. 206, 117595 (2023). https://doi.org/10.1016/j.indcrop.2023.117595
- J. Chen, T. Luo, J. Yan, L. Zhang, A novel twin-center intuitionistic fuzzy large margin classifier with unified pinball loss for improving the performance of E-noses system. Expert Syst. Appl. 250, 123883 (2024). https://doi.org/10.1016/j.eswa.2024.123883
- C. Wiwie, J. Baumbach, R. Röttger, Comparing the performance of biomedical clustering methods. Nat. Meth. 12, 1033–1038 (2015). https://doi.org/10.1038/nmeth.3583
- A.M. Ikotun, A.E. Ezugwu, L. Abualigah, B. Abuhaija, H. Jia, K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 622, 178–210 (2023). https://doi.org/10.1016/j.ins.2022.11.139
- J.A. Hartigan, M.A. Wong, Algorithm AS 136: a K-means clustering algorithm. Appl. Stat. 28, 100 (1979). https://doi.org/10.2307/2346830
- N. Altman, M. Krzywinski, Clustering. Nat. Methods 14, 545–546 (2017). https://doi.org/10.1038/nmeth.4299
- Y. Meng, J. Liang, F. Cao, Y. He, A new distance with derivative information for functional k-means clustering algorithm. Inform. Sci. 463, 166–185 (2018). https://doi.org/10.1016/j.ins.2018.06.035
- S.-S. Yu, S.-W. Chu, C.-M. Wang, Y.-K. Chan, T.-C. Chang, Two improved k-means algorithms. Appl. Soft Comput. 68, 747–755 (2018). https://doi.org/10.1016/j.asoc.2017.08.032
- J. Zhu, Z. Jiang, G.D. Evangelidis, C. Zhang, S. Pang et al., Efficient registration of multi-view point sets by K-means clustering. Information Sci. 488, 205–218 (2019). https://doi.org/10.1016/j.ins.2019.03.024
- S. Licen, A. Di Gilio, J. Palmisani, S. Petraccone, G. de Gennaro et al., Pattern recognition and anomaly detection by self-organizing maps in a multi month E-nose survey at an industrial site. Sensors 20, 1887 (2020). https://doi.org/10.3390/s20071887
- S.N. Hidayat, T. Julian, A.B. Dharmawan, M. Puspita, L. Chandra et al., Hybrid learning method based on feature clustering and scoring for enhanced COVID-19 breath analysis by an electronic nose. Artif. Intell. Med. 129, 102323 (2022). https://doi.org/10.1016/j.artmed.2022.102323
- L. Rokach, Decision forest: twenty years of research. Inform. Fusion 27, 111–125 (2016). https://doi.org/10.1016/j.inffus.2015.06.005
- S.L. Salzberg, C4.5: programs for machine learning by J. ross quinlan. morgan kaufmann publishers, inc., 1993. Mach. Learn. 16, 235–240 (1994). https://doi.org/10.1007/BF00993309
- P.S.P. Herrmann, M. Dos Santos Luccas, E.J. Ferreira, A. Torre Neto, Application of electronic nose and machine learning used to detect soybean gases under water stress and variability throughout the daytime. Front. Plant Sci. 15, 1323296 (2024). https://doi.org/10.3389/fpls.2024.1323296
- L. Breiman, Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
- K. Fawagreh, M.M. Gaber, E. Elyan, Random forests: from early developments to recent advancements. Syst. Sci. Contr. Eng. 2, 602–609 (2014). https://doi.org/10.1080/21642583.2014.956265
- H. Kim, W. Seong, E. Rha, H. Lee, S.K. Kim et al., Machine learning linked evolutionary biosensor array for highly sensitive and specific molecular identification. Biosens. Bioelectron. 170, 112670 (2020). https://doi.org/10.1016/j.bios.2020.112670
- D. Du, J. Wang, B. Wang, L. Zhu, X. Hong, Ripeness prediction of postharvest kiwifruit using a MOS E-nose combined with chemometrics. Sensors 19, 419 (2019). https://doi.org/10.3390/s19020419
- Z. Saringat, A. Mustapha, R.D. Rohmat Saedudin, N.A. Samsudin, Comparative analysis of classification algorithms for chronic kidney disease diagnosis. Bull. Electr. Eng. Inform. 8, 1496–1501 (2019). https://doi.org/10.11591/eei.v8i4.1621
- X. Zeng, R. Cao, Y. Xi, X. Li, M. Yu et al., Food flavor analysis 4.0: a cross-domain application of machine learning. Trends Food Sci. Technol. 138, 116–125 (2023). https://doi.org/10.1016/j.tifs.2023.06.011
- H. Khalili, M. Rismani, M.A. Nematollahi, M.S. Masoudi, A. Asadollahi et al., Prognosis prediction in traumatic brain injury patients using machine learning algorithms. Sci. Rep. 13, 960 (2023). https://doi.org/10.1038/s41598-023-28188-w
- N. Gerhardt, S. Schwolow, S. Rohn, P.R. Pérez-Cacho, H. Galán-Soldevilla et al., Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM. Food Chem. 278, 720–728 (2019). https://doi.org/10.1016/j.foodchem.2018.11.095
- S. Sironi, L. Capelli, P. Céntola, R. Del Rosso, M. Il Grande, Continuous monitoring of odours from a composting plant using electronic noses. Waste Manag. 27, 389–397 (2007). https://doi.org/10.1016/j.wasman.2006.01.029
- S. Manocha, M.A. Girolami, An empirical analysis of the probabilistic K-nearest neighbour classifier. Pattern Recognit. Lett. 28, 1818–1824 (2007). https://doi.org/10.1016/j.patrec.2007.05.018
- S. Qiu, J. Wang, The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chem. 230, 208–214 (2017). https://doi.org/10.1016/j.foodchem.2017.03.011
- W. Dong, J. Zhao, R. Hu, Y. Dong, L. Tan, Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Food Chem. 229, 743–751 (2017). https://doi.org/10.1016/j.foodchem.2017.02.149
- T.P. Lillicrap, A. Santoro, L. Marris, C.J. Akerman, G. Hinton, Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020). https://doi.org/10.1038/s41583-020-0277-3
- A. Derry, M. Krzywinski, N. Altman, Neural networks primer. Nat. Meth. 20, 165–167 (2023). https://doi.org/10.1038/s41592-022-01747-1
- J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003
- A. Kalinichenko, L. Arseniyeva, Electronic nose combined with chemometric approaches to assess authenticity and adulteration of sausages by soy protein. Sens. Actuat. B Chem. 303, 127250 (2020). https://doi.org/10.1016/j.snb.2019.127250
- J. Wang, S. Viciano-Tudela, L. Parra, R. Lacuesta, J. Lloret, Evaluation of suitability of low-cost gas sensors for monitoring indoor and outdoor urban areas. IEEE Sens. J. 23, 20968–20975 (2023). https://doi.org/10.1109/JSEN.2023.3301651
- D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323, 533–536 (1986). https://doi.org/10.1038/323533a0
- S. Jiang, C. Ni, G. Chen, Y. Liu, A novel data fusion strategy based on multiple intelligent sensory technologies and its application in the quality evaluation of Jinhua dry-cured hams. Sens. Actuat. B Chem. 344, 130324 (2021). https://doi.org/10.1016/j.snb.2021.130324
- Y. Zhang, L. Li, Z. Ren, Y. Yu, Y. Li et al., Plant-scale biogas production prediction based on multiple hybrid machine learning technique. Bioresour. Technol. 363, 127899 (2022). https://doi.org/10.1016/j.biortech.2022.127899
- N. Zhang, S. Ding, J. Zhang, Multi layer ELM-RBF for multi-label learning. Appl. Soft Comput. 43, 535–545 (2016). https://doi.org/10.1016/j.asoc.2016.02.039
- G. Huang, G.-B. Huang, S. Song, K. You, Trends in extreme learning machines: a review. Neural Netw. 61, 32–48 (2015). https://doi.org/10.1016/j.neunet.2014.10.001
- H.G.J. Voss, S.L. Stevan, R.A. Ayub, Peach growth cycle monitoring using an electronic nose. Comput. Electron. Agric. 163, 104858 (2019). https://doi.org/10.1016/j.compag.2019.104858
- Q.-Y. Zhu, A.K. Qin, P.N. Suganthan, G.-B. Huang, Evolutionary extreme learning machine. Pattern Recognit. 38, 1759–1763 (2005). https://doi.org/10.1016/j.patcog.2005.03.028
- T. Wang, H. Ma, W. Jiang, H. Zhang, M. Zeng et al., Type discrimination and concentration prediction towards ethanol using a machine learning-enhanced gas sensor array with different morphology-tuning characteristics. Phys. Chem. Chem. Phys. 23, 23933–23944 (2021). https://doi.org/10.1039/d1cp02394b
- Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
- J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy et al., Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018). https://doi.org/10.1016/j.patcog.2017.10.013
- A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017). https://doi.org/10.1145/3065386
- Y. Xiong, Y. Li, C. Wang, H. Shi, S. Wang et al., Non-destructive detection of chicken freshness based on electronic nose technology and transfer learning. Agriculture 13, 496 (2023). https://doi.org/10.3390/agriculture13020496
- G. Wei, G. Li, J. Zhao, A. He, Development of a LeNet-5 gas identification CNN structure for electronic noses. Sensors 19, 217 (2019). https://doi.org/10.3390/s19010217
- H. Hewamalage, C. Bergmeir, K. Bandara, Recurrent neural networks for time series forecasting: current status and future directions. Int. J. Forecast. 37, 388–427 (2021). https://doi.org/10.1016/j.ijforecast.2020.06.008
- S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
- S. Song, J. Chen, L. Ma, L. Zhang, S. He et al., Research on a working face gas concentration prediction model based on LASSO-RNN time series data. Heliyon 9, e14864 (2023). https://doi.org/10.1016/j.heliyon.2023.e14864
- S. Wakhid, R. Sarno, S.I. Sabilla, The effect of gas concentration on detection and classification of beef and pork mixtures using E-nose. Comput. Electron. Agric. 195, 106838 (2022). https://doi.org/10.1016/j.compag.2022.106838
- L. Liu, W. Li, Z. He, W. Chen, H. Liu et al., Detection of lung cancer with electronic nose using a novel ensemble learning framework. J. Breath Res. (2021). https://doi.org/10.1088/1752-7163/abe5c9
- J. Chu, W. Li, X. Yang, Y. Wu, D. Wang et al., Identification of gas mixtures via sensor array combining with neural networks. Sens. Actuat. B Chem. 329, 129090 (2021). https://doi.org/10.1016/j.snb.2020.129090
- T. Liu, W. Zhang, P. McLean, M. Ueland, S.L. Forbes et al., Electronic nose-based odor classification using genetic algorithms and fuzzy support vector machines. Int. J. Fuzzy Syst. 20, 1309–1320 (2018). https://doi.org/10.1007/s40815-018-0449-8
- H. Zhong, C. Miao, Z. Shen, Y. Feng, Comparing the learning effectiveness of BP, ELM, I-ELM, and SVM for corporate credit ratings. Neurocomputing 128, 285–295 (2014). https://doi.org/10.1016/j.neucom.2013.02.054
- T. Wang, Y. Wu, Y. Zhang, W. Lv, X. Chen et al., Portable electronic nose system with elastic architecture and fault tolerance based on edge computing, ensemble learning, and sensor swarm. Sens. Actuat. B Chem. 375, 132925 (2023). https://doi.org/10.1016/j.snb.2022.132925
- L. Xiong, M. He, C. Hu, Y. Hou, S. Han et al., Image presentation and effective classification of odor intensity levels using multi-channel electronic nose technology combined with GASF and CNN. Sens. Actuat. B Chem. 395, 134492 (2023). https://doi.org/10.1016/j.snb.2023.134492
- Y. Shi, B. Wang, C. Yin, Z. Li, Y. Yu, Performance improvement: a lightweight gas information classification method combined with an electronic nose system. Sens. Actuat. B Chem. 396, 134551 (2023). https://doi.org/10.1016/j.snb.2023.134551
- H. Sun, Z. Hua, C. Yin, F. Li, Y. Shi, Geographical traceability of soybean: an electronic nose coupled with an effective deep learning method. Food Chem. 440, 138207 (2024). https://doi.org/10.1016/j.foodchem.2023.138207
- F. Wu, R. Ma, Y. Li, F. Li, S. Duan et al., A novel electronic nose classification prediction method based on TETCN. Sens. Actuat. B Chem. 405, 135272 (2024). https://doi.org/10.1016/j.snb.2024.135272
- T. Zhang, R. Tan, W. Shen, D. Lv, J. Yin et al., Inkjet-printed ZnO-based MEMS sensor array combined with feature selection algorithm for VOCs gas analysis. Sens. Actuat. B Chem. 382, 133555 (2023). https://doi.org/10.1016/j.snb.2023.133555
- Y. Zhang, Q. Jiang, M. Xu, Y. Zhang, J. Liu et al., FTM-GCN: a novel technique for gas concentration predicting in space with sensor nodes. Sens. Actuat. B Chem. 399, 134830 (2024). https://doi.org/10.1016/j.snb.2023.134830
- X. Pan, J. Chen, X. Wen, J. Hao, W. Xu et al., A comprehensive gas recognition algorithm with label-free drift compensation based on domain adversarial network. Sens. Actuat. B Chem. 387, 133709 (2023). https://doi.org/10.1016/j.snb.2023.133709
- H. Se, K. Song, C. Sun, J. Jiang, H. Liu et al., Online drift compensation framework based on active learning for gas classification and concentration prediction. Sens. Actuat. B Chem. 398, 134716 (2024). https://doi.org/10.1016/j.snb.2023.134716
- R.J. Rath, S. Farajikhah, F. Oveissi, F. Dehghani, S. Naficy, Chemiresistive sensor arrays for gas/volatile organic compounds monitoring: a review. Adv. Eng. Mater. 25, 2200830 (2023). https://doi.org/10.1002/adem.202200830
- Z. Zheng, C. Zhang, Electronic noses based on metal oxide semiconductor sensors for detecting crop diseases and insect pests. Comput. Electron. Agric. 197, 106988 (2022). https://doi.org/10.1016/j.compag.2022.106988
- H.-Z. Chen, M. Zhang, Z. Guo, Discrimination of fresh-cut broccoli freshness by volatiles using electronic nose and gas chromatography-mass spectrometry. Postharvest Biol. Technol. 148, 168–175 (2019). https://doi.org/10.1016/j.postharvbio.2018.10.019
- X. Ren, Y. Wang, Y. Huang, M. Mustafa, D. Sun et al., A CNN-based E-nose using time series features for food freshness classification. IEEE Sens. J. 23, 6027–6038 (2023). https://doi.org/10.1109/JSEN.2023.3241842
- M.F. Rutolo, J.P. Clarkson, J.A. Covington, The use of an electronic nose to detect early signs of soft-rot infection in potatoes. Biosyst. Eng. 167, 137–143 (2018). https://doi.org/10.1016/j.biosystemseng.2018.01.001
- T. Wen, L. Zheng, S. Dong, Z. Gong, M. Sang et al., Rapid detection and classification of citrus fruits infestation by Bactrocera dorsalis (Hendel) based on electronic nose. Postharvest Biol. Technol. 147, 156–165 (2019). https://doi.org/10.1016/j.postharvbio.2018.09.017
- A. Makarichian, R.A. Chayjan, E. Ahmadi, D. Zafari, Early detection and classification of fungal infection in garlic (A. sativum) using electronic nose. Comput. Electron. Agric. 192, 106575 (2022). https://doi.org/10.1016/j.compag.2021.106575
- C. Zhao, J. Ma, W. Jia, H. Wang, H. Tian et al., An apple fungal infection detection model based on BPNN optimized by sparrow search algorithm. Biosensors 12, 692 (2022). https://doi.org/10.3390/bios12090692
- J. Du, M. Zhang, X. Teng, Y. Wang, C. Lim Law et al., Evaluation of vegetable sauerkraut quality during storage based on convolution neural network. Food Res. Int. 164, 112420 (2023). https://doi.org/10.1016/j.foodres.2022.112420
- B. Mahata, S. Acharyya, S. Giri, T. Mahata, P. Banerji et al., Fruit freshness monitoring employing chemiresistive volatile organic compound sensor and machine learning. ACS Appl. Nano Mater. 6, 22829–22836 (2023). https://doi.org/10.1021/acsanm.3c04138
- Y. Mao, N. Li, B. Shi, L. Zhao, S. Cheng et al., Geographical origin determination of Red Huajiao in China using the electronic nose combined with ensemble recognition algorithm. J. Food Sci. 86, 4922–4931 (2021). https://doi.org/10.1111/1750-3841.15933
- H. Lin, H. Chen, C. Yin, Q. Zhang, Z. Li et al., Lightweight residual convolutional neural network for soybean classification combined with electronic nose. IEEE Sens. J. 22, 11463–11473 (2022). https://doi.org/10.1109/JSEN.2022.3174251
- J. Fu, R. Liu, Y. Chen, J. Xing, Discrimination of geographical indication of Chinese green teas using an electronic nose combined with quantum neural networks: a portable strategy. Sens. Actuat. B Chem. 375, 132946 (2023). https://doi.org/10.1016/j.snb.2022.132946
- N. Aghilinategh, M.J. Dalvand, A. Anvar, Detection of ripeness grades of berries using an electronic nose. Food Sci. Nutr. 8, 4919–4928 (2020). https://doi.org/10.1002/fsn3.1788
- A.R. Shalaby, Significance of biogenic amines to food safety and human health. Food Res. Int. 29, 675–690 (1996). https://doi.org/10.1016/S0963-9969(96)00066-X
- Z. Ma, P. Chen, W. Cheng, K. Yan, L. Pan et al., Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Lett. 18, 4570–4575 (2018). https://doi.org/10.1021/acs.nanolett.8b01825
- R. Saeed, H. Feng, X. Wang, X. Zhang, Z. Fu, Fish quality evaluation by sensor and machine learning: a mechanistic review. Food Contr. 137, 108902 (2022). https://doi.org/10.1016/j.foodcont.2022.108902
- Q. Wang, L. Li, W. Ding, D. Zhang, J. Wang et al., Adulterant identification in mutton by electronic nose and gas chromatography-mass spectrometer. Food Contr. 98, 431–438 (2019). https://doi.org/10.1016/j.foodcont.2018.11.038
- S. Güney, A. Atasoy, Study of fish species discrimination via electronic nose. Comput. Electron. Agric. 119, 83–91 (2015). https://doi.org/10.1016/j.compag.2015.10.005
- M. Nurjuliana, Y.B. Che Man, D. Mat Hashim, A.K. Mohamed, Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer. Meat Sci. 88, 638–644 (2011). https://doi.org/10.1016/j.meatsci.2011.02.022
- E. Mirzaee-Ghaleh, A. Taheri-Garavand, F. Ayari, J. Lozano, Identification of fresh-chilled and frozen-thawed chicken meat and estimation of their shelf life using an E-nose machine coupled fuzzy KNN. Food Anal. Meth. 13, 678–689 (2020). https://doi.org/10.1007/s12161-019-01682-6
- S.R. Karunathilaka, Z. Ellsworth, B.J. Yakes, Detection of decomposition in mahi-mahi, croaker, red snapper, and weakfish using an electronic-nose sensor and chemometric modeling. J. Food Sci. 86, 4148–4158 (2021). https://doi.org/10.1111/1750-3841.15878
- R.S. Andre, M.H.M. Facure, L.A. Mercante, D.S. Correa, Electronic nose based on hybrid free-standing nanofibrous mats for meat spoilage monitoring. Sens. Actuat. B Chem. 353, 131114 (2022). https://doi.org/10.1016/j.snb.2021.131114
- H. Li, Y. Wang, J. Zhang, X. Li, J. Wang et al., Prediction of the freshness of horse mackerel (Trachurus japonicus) using E-nose, E-tongue, and colorimeter based on biochemical indexes analyzed during frozen storage of whole fish. Food Chem. 402, 134325 (2023). https://doi.org/10.1016/j.foodchem.2022.134325
- S. Grassi, S. Benedetti, L. Magnani, A. Pianezzola, S. Buratti, Seafood freshness: e-nose data for classification purposes. Food Contr. 138, 108994 (2022). https://doi.org/10.1016/j.foodcont.2022.108994
- A.E.-D.A. Bekhit, B.W.B. Holman, S.G. Giteru, D.L. Hopkins, Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: a review. Trends Food Sci. Technol. 109, 280–302 (2021). https://doi.org/10.1016/j.tifs.2021.01.006
- X. Tian, J. Wang, Z. Ma, M. Li, Z. Wei, Combination of an E-nose and an E-tongue for adulteration detection of minced mutton mixed with pork. J. Food Qual. 2019, 4342509 (2019). https://doi.org/10.1155/2019/4342509
- L.A. Putri, I. Rahman, M. Puspita, S.N. Hidayat, A.B. Dharmawan et al., Rapid analysis of meat floss origin using a supervised machine learning-based electronic nose towards food authentication. NPJ Sci. Food 7, 31 (2023). https://doi.org/10.1038/s41538-023-00205-2
- K. Qian, Y. Bao, J. Zhu, J. Wang, Z. Wei, Development of a portable electronic nose based on a hybrid filter-wrapper method for identifying the Chinese dry-cured ham of different grades. J. Food Eng. 290, 110250 (2021). https://doi.org/10.1016/j.jfoodeng.2020.110250
- H. Reinhard, F. Sager, O. Zoller, Citrus juice classification by SPME-GC-MS and electronic nose measurements. LWT Food Sci. Technol. 41, 1906–1912 (2008). https://doi.org/10.1016/j.lwt.2007.11.012
- Q. Peng, R. Tian, F. Chen, B. Li, H. Gao, Discrimination of producing area of Chinese Tongshan Kaoliang spirit using electronic nose sensing characteristics combined with the chemometrics methods. Food Chem. 178, 301–305 (2015). https://doi.org/10.1016/j.foodchem.2015.01.023
- S. Roussel, V. Bellon-Maurel, J.-M. Roger, P. Grenier, Authenticating white grape must variety with classification models based on aroma sensors, FT-IR and UV spectrometry. J. Food Eng. 60, 407–419 (2003). https://doi.org/10.1016/S0260-8774(03)00064-5
- H. Yang, Y. Wang, J. Zhao, P. Li, L. Li et al., A machine learning method for juice human sensory hedonic prediction using electronic sensory features. Curr. Res. Food Sci. 7, 100576 (2023). https://doi.org/10.1016/j.crfs.2023.100576
- H.-B. Ren, B.-L. Feng, H.-Y. Wang, J.-J. Zhang, X.-S. Bai et al., An electronic sense-based machine learning model to predict formulas and processes for vegetable-fruit beverages. Comput. Electron. Agric. 210, 107883 (2023). https://doi.org/10.1016/j.compag.2023.107883
- S.L. Stevan, H.V. Siqueira, B.A. Menegotto, L.C. Schroeder, I.L. Pessenti et al., Discrimination analysis of wines made from four species of blueberry through their olfactory signatures using an E-nose. LWT 187, 115320 (2023). https://doi.org/10.1016/j.lwt.2023.115320
- J.C. Rodriguez, E.S. Gamboa, E. Albarracin, A.J. da Silva, L.L. de Andrade, T.A.E. Ferreira, Wine quality rapid detection using a compact electronic nose system: Application focused on spoilage thresholds by acetic acid. LWT 108, 377–384 (2019). https://doi.org/10.1016/j.lwt.2019.03.074
- J. Xu, L. Guo, T. Wang, M. Ma, B. Wang et al., Effect of inorganic and organic nitrogen supplementation on volatile components and aroma profile of cider. Food Res. Int. 161, 111765 (2022). https://doi.org/10.1016/j.foodres.2022.111765
- X. Jiang, P. Jia, R. Luo, B. Deng, S. Duan et al., A novel electronic nose learning technique based on active learning: EQBC-RBFNN. Sens. Actuat. B Chem. 249, 533–541 (2017). https://doi.org/10.1016/j.snb.2017.04.072
- S. Freddi, M.C. Rodriguez Gonzalez, A. Casotto, L. Sangaletti, S. De Feyter, Machine-learning-aided NO2 discrimination with an array of graphene chemiresistors covalently functionalized by diazonium chemistry. Chemistry 29, e202302154 (2023). https://doi.org/10.1002/chem.202302154
- P. Arroyo, F. Meléndez, J.I. Suárez, J.L. Herrero, S. Rodríguez et al., Electronic nose with digital gas sensors connected via bluetooth to a smartphone for air quality measurements. Sensors 20, 786 (2020). https://doi.org/10.3390/s20030786
- H. Yu, J. Wang, Y. Xu, Identification of adulterated milk using electronic nose. Sensor. Mater. 19, 275–285 (2007). https://doi.org/10.1007/978-0-387-71720-3_15
- M. Tohidi, M. Ghasemi-Varnamkhasti, V. Ghafarinia, S. Saeid Mohtasebi, M. Bonyadian, Identification of trace amounts of detergent powder in raw milk using a customized low-cost artificial olfactory system: a novel method. Measurement 124, 120–129 (2018). https://doi.org/10.1016/j.measurement.2018.04.006
- F. Ayari, E. Mirzaee- Ghaleh, H. Rabbani, K. Heidarbeigi, Using an E-nose machine for detection the adulteration of margarine in cow ghee. J. Food Process Eng 41, e12806 (2018). https://doi.org/10.1111/jfpe.12806
- Y. Yang, L. Wei, Application of E-nose technology combined with artificial neural network to predict total bacterial count in milk. J. Dairy Sci. 104, 10558–10565 (2021). https://doi.org/10.3168/jds.2020-19987
- H. Zeng, H. Han, Y. Huang, B. Wang, Rapid prediction of the aroma type of plain yogurts via electronic nose combined with machine learning approaches. Food Biosci. 56, 103269 (2023). https://doi.org/10.1016/j.fbio.2023.103269
- R. Wu, S. Xie, Spatial distribution of secondary organic aerosol formation potential in China derived from speciated anthropogenic volatile organic compound emissions. Environ. Sci. Technol. 52, 8146–8156 (2018). https://doi.org/10.1021/acs.est.8b01269
- A. Pozzer, S.C. Anenberg, S. Dey, A. Haines, J. Lelieveld et al., Mortality attributable to ambient air pollution: a review of global estimates. Geohealth 7, e2022GH000711 (2023). https://doi.org/10.1029/2022GH000711
- D. Fattorini, F. Regoli, Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 264, 114732 (2020). https://doi.org/10.1016/j.envpol.2020.114732
- S. Gulas, M. Downton, K. D’Souza, K. Hayden, T.R. Walker, Declining Arctic Ocean oil and gas developments: opportunities to improve governance and environmental pollution control. Mar. Policy 75, 53–61 (2017). https://doi.org/10.1016/j.marpol.2016.10.014
- H.S. Hong, N.H. Phuong, N.T. Huong, N.H. Nam, N.T. Hue, Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures. Appl. Surf. Sci. 492, 449–454 (2019). https://doi.org/10.1016/j.apsusc.2019.06.230
- R.G. Ewing, M.J. Waltman, D.A. Atkinson, J.W. Grate, P.J. Hotchkiss, The vapor pressures of explosives. Trac Trends Anal. Chem. 42, 35–48 (2013). https://doi.org/10.1016/j.trac.2012.09.010
- Y. Li, W. Zhou, B. Zu, X. Dou, Qualitative detection toward military and improvised explosive vapors by a facile TiO2 nanosheet-based chemiresistive sensor array. Front. Chem. 8, 29 (2020). https://doi.org/10.3389/fchem.2020.00029
- C.-S. Lee, H.-Y. Li, B.-Y. Kim, Y.-M. Jo, H.-G. Byun et al., Discriminative detection of indoor volatile organic compounds using a sensor array based on pure and Fe-doped In2O3 nanofibers. Sens. Actuat. B Chem. 285, 193–200 (2019). https://doi.org/10.1016/j.snb.2019.01.044
- L. Zhang, F. Tian, H. Nie, L. Dang, G. Li et al., Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens. Actuat. B Chem. 174, 114–125 (2012). https://doi.org/10.1016/j.snb.2012.07.021
- P. Liu, X. Guo, C. Liang, B. Du, Y. Tan et al., Rapid detection of trace nitro-explosives under UV irradiation by electronic nose with neural networks. ACS Appl. Mater. Interfaces 15, 36539–36549 (2023). https://doi.org/10.1021/acsami.3c06498
- R. López, M. Vega, L.M. Debán, R. Pardo, Detection of Triacetone Triperoxide in air combining SnO2 sensor e-nose enhanced with a kinetic model. Sens. Actuat. B Chem. 403, 135242 (2024). https://doi.org/10.1016/j.snb.2023.135242
- J. Chapman, V.K. Truong, A. Elbourne, S. Gangadoo, S. Cheeseman et al., Combining chemometrics and sensors: toward new applications in monitoring and environmental analysis. Chem. Rev. 120, 6048–6069 (2020). https://doi.org/10.1021/acs.chemrev.9b00616
- O. Attallah, Multitask deep learning-based pipeline for gas leakage detection via E-nose and thermal imaging multimodal fusion. Chemosensors 11, 364 (2023). https://doi.org/10.3390/chemosensors11070364
- K.R. Sinju, B. Bhangare, A. Pathak, S.J. Patil, N.S. Ramgir et al., ZnO nanowires based e-nose for the detection of H2S and NO2 toxic gases. Mater. Sci. Semicond. Process. 137, 106235 (2022). https://doi.org/10.1016/j.mssp.2021.106235
- O. Attallah, I. Morsi, An electronic nose for identifying multiple combustible/harmful gases and their concentration levels via artificial intelligence. Measurement 199, 111458 (2022). https://doi.org/10.1016/j.measurement.2022.111458
- A. Shahid, J.H. Choi, A.U.H.S. Rana, H.S. Kim, Least Squares neural network-based wireless E-nose system using an SnO2 sensor array. Sensors 18, 1446 (2018). https://doi.org/10.3390/s18051446
- H. Kang, S.-Y. Cho, J. Ryu, J. Choi, H. Ahn et al., Multiarray nanopattern electronic nose (E-nose) by high-resolution top-down nanolithography. Adv. Funct. Mater. 30, 2002486 (2020). https://doi.org/10.1002/adfm.202002486
- J. Zhang, Y. Xue, Q. Sun, T. Zhang, Y. Chen et al., A miniaturized electronic nose with artificial neural network for anti-interference detection of mixed indoor hazardous gases. Sens. Actuat. B Chem. 326, 128822 (2021). https://doi.org/10.1016/j.snb.2020.128822
- S. Ni, P. Jia, Y. Xu, L. Zeng, X. Li et al., Prediction of CO concentration in different conditions based on Gaussian-TCN. Sens. Actuat. B Chem. 376, 133010 (2023). https://doi.org/10.1016/j.snb.2022.133010
- G. Mao, Y. Zhang, Y. Xu, X. Li, M. Xu et al., An electronic nose for harmful gas early detection based on a hybrid deep learning method H-CRNN. Microchem. J. 195, 109464 (2023). https://doi.org/10.1016/j.microc.2023.109464
- R.H. Weiss, K. Kim, Metabolomics in the study of kidney diseases. Nat. Rev. Nephrol. 8, 22–33 (2012). https://doi.org/10.1038/nrneph.2011.152
- D.W. Dockery, C.A. Pope, X. Xu, J.D. Spengler, J.H. Ware et al., An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329, 1753–1759 (1993). https://doi.org/10.1056/nejm199312093292401
- H. Ma, T. Wang, B. Li, W. Cao, M. Zeng et al., A low-cost and efficient electronic nose system for quantification of multiple indoor air contaminants utilizing HC and PLSR. Sens. Actuat. B Chem. 350, 130768 (2022). https://doi.org/10.1016/j.snb.2021.130768
- P. Jia, F. Meng, H. Cao, S. Duan, X. Peng et al., Training technique of electronic nose using labeled and unlabeled samples based on multi-kernel LapSVM. Sens. Actuat. B Chem. 294, 98–105 (2019). https://doi.org/10.1016/j.snb.2019.05.034
- L. Wang, P. Jia, T. Huang, S. Duan, J. Yan et al., A novel optimization technique to improve gas recognition by electronic noses based on the enhanced krill herd algorithm. Sensors 16, 1275 (2016). https://doi.org/10.3390/s16081275
- H. Fan, V.H. Bennetts, E. Schaffernicht, A.J. Lilienthal, A cluster analysis approach based on exploiting density peaks for gas discrimination with electronic noses in open environments. Sens. Actuat. B Chem. 259, 183–203 (2018). https://doi.org/10.1016/j.snb.2017.10.063
- M. Leidinger, T. Sauerwald, W. Reimringer, G. Ventura, A. Schütze, Selective detection of hazardous VOCs for indoor air quality applications using a virtual gas sensor array. J. Sens. Sens. Syst. 3, 253–263 (2014). https://doi.org/10.5194/jsss-3-253-2014
- J. He, L. Xu, P. Wang, Q. Wang, A high precise E-nose for daily indoor air quality monitoring in living environment. Integration 58, 286–294 (2017). https://doi.org/10.1016/j.vlsi.2016.12.010
- Y. Chen, Z. Zhu, S. Cheng, Industrial agglomeration and haze pollution: Evidence from China. Sci. Total. Environ. 845, 157392 (2022). https://doi.org/10.1016/j.scitotenv.2022.157392
- Y. Wang, Y. Wen, S. Zhang, G. Zheng, H. Zheng et al., Vehicular ammonia emissions significantly contribute to urban PM2.5 pollution in two Chinese megacities. Environ. Sci. Technol. 57, 2698–2705 (2023). https://doi.org/10.1021/acs.est.2c06198
- A. Rim-Rukeh, An assessment of the contribution of municipal solid waste dump sites fire to atmospheric pollution. Open J. Air Pollut. 3, 53–60 (2014). https://doi.org/10.4236/ojap.2014.33006
- Y. Su, J. Wang, B. Wang, T. Yang, B. Yang et al., Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 14, 6067–6075 (2020). https://doi.org/10.1021/acsnano.0c01804
- D. Ma, J. Zhang, X. Li, C. He, Z. Lu et al., C3N monolayers as promising candidates for NO2 sensors. Sens. Actuat. B Chem. 266, 664–673 (2018). https://doi.org/10.1016/j.snb.2018.03.159
- G. Domènech-Gil, N.T. Duc, J.J. Wikner, J. Eriksson, S.N. Påledal et al., Electronic nose for improved environmental methane monitoring. Environ. Sci. Technol. 58, 352–361 (2024). https://doi.org/10.1021/acs.est.3c06945
- C. Zhang, M. Debliquy, A. Boudiba, H. Liao, C. Coddet, Sensing properties of atmospheric plasma-sprayed WO3 coating for sub-ppm NO2 detection. Sens. Actuat. B Chem. 144, 280–288 (2010). https://doi.org/10.1016/j.snb.2009.11.006
- I. Sayago, M. Aleixandre, J.P. Santos, Development of tin oxide-based nanosensors for electronic nose environmental applications. Biosensors 9, 21 (2019). https://doi.org/10.3390/bios9010021
- T.-M. Chen, W.G. Kuschner, J. Gokhale, S. Shofer, Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am. J. Med. Sci. 333, 249–256 (2007). https://doi.org/10.1097/MAJ.0b013e31803b900f
- S. Zhai, Z. Li, H. Zhang, L. Wang, S. Duan et al., A multilevel interleaved group attention-based convolutional network for gas detection via an electronic nose system. Eng. Appl. Artif. Intell. 133, 108038 (2024). https://doi.org/10.1016/j.engappai.2024.108038
- J. Burgués, S. Doñate, M.D. Esclapez, L. Saúco, S. Marco, Characterization of odour emissions in a wastewater treatment plant using a drone-based chemical sensor system. Sci. Total. Environ. 846, 157290 (2022). https://doi.org/10.1016/j.scitotenv.2022.157290
- J. Burgués, M.D. Esclapez, S. Doñate, S. Marco, RHINOS: a lightweight portable electronic nose for real-time odor quantification in wastewater treatment plants. iScience 24, 103371 (2021). https://doi.org/10.1016/j.isci.2021.103371
- M. Kang, I. Cho, J. Park, J. Jeong, K. Lee et al., High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens. 7, 430–440 (2022). https://doi.org/10.1021/acssensors.1c01204
- K. Lee, I. Cho, M. Kang, J. Jeong, M. Choi et al., Ultra-low-power E-nose system based on multi-micro-LED-integrated, nanostructured gas sensors and deep learning. ACS Nano 17, 539–551 (2023). https://doi.org/10.1021/acsnano.2c09314
- T. Wang, H. Zhang, Y. Wu, W. Jiang, X. Chen et al., Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning. Sens. Actuat. B Chem. 351, 130915 (2022). https://doi.org/10.1016/j.snb.2021.130915
- A.H. Abdullah, M.A.A. Bakar, F.S.A. Saad, S. Sudin, Z.A. Ahmad et al., Development of cloud-based electronic nose for university laboratories air monitoring. IOP Conf. Ser. Mater. Sci. Eng. 932, 012082 (2020). https://doi.org/10.1088/1757-899x/932/1/012082
- H.Y. Chae, J. Cho, R. Purbia, C.S. Park, H. Kim et al., Environment-adaptable edge-computing gas-sensor device with analog-assisted continual learning scheme. IEEE Trans. Ind. Electron. 70, 10720–10729 (2023). https://doi.org/10.1109/TIE.2022.3220871
- J. Wang, J. Yang, D. Chen, L. Jin, Y. Li et al., Gas detection microsystem with MEMS gas sensor and integrated circuit. IEEE Sens. J. 18, 6765–6773 (2018). https://doi.org/10.1109/JSEN.2018.2829742
- Y.M. Kwon, B. Oh, R. Purbia, H.Y. Chae, G.H. Han et al., High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level. Sens. Actuat. B Chem. 375, 132939 (2023). https://doi.org/10.1016/j.snb.2022.132939
- F. Raspagliesi, G. Bogani, S. Benedetti, S. Grassi, S. Ferla et al., Detection of ovarian cancer through exhaled breath by electronic nose: a prospective study. Cancers 12, 2408 (2020). https://doi.org/10.3390/cancers12092408
- S. Sethi, R. Nanda, T. Chakraborty, Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin. Microbiol. Rev. 26, 462–475 (2013). https://doi.org/10.1128/CMR.00020-13
- J. Cancer, R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020. CA. Clin. 70, 7–30 (2020). https://doi.org/10.3322/caac.21590
- A.T. Güntner, S. Abegg, K. Königstein, P.A. Gerber, A. Schmidt-Trucksäss et al., Breath sensors for health monitoring. ACS Sens. 4, 268–280 (2019). https://doi.org/10.1021/acssensors.8b00937
- A. Leiter, R.R. Veluswamy, J.P. Wisnivesky, The global burden of lung cancer: current status and future trends. Nat. Rev. Clin. Oncol. 20, 624–639 (2023). https://doi.org/10.1038/s41571-023-00798-3
- D. Shlomi, M. Abud, O. Liran, J. Bar, N. Gai-Mor et al., Detection of lung cancer and EGFR mutation by electronic nose system. J. Thorac. Oncol. 12, 1544–1551 (2017). https://doi.org/10.1016/j.jtho.2017.06.073
- A. Kononov, B. Korotetsky, I. Jahatspanian, A. Gubal, A. Vasiliev et al., Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer. J. Breath Res. 14, 016004 (2019). https://doi.org/10.1088/1752-7163/ab433d
- R. de Vries, N. Farzan, T. Fabius, F.H.C. De Jongh, P.M.C. Jak et al., Prospective detection of early lung cancer in patients with COPD in regular care by electronic nose analysis of exhaled breath. Chest 164, 1315–1324 (2023). https://doi.org/10.1016/j.chest.2023.04.050
- G. Zonta, G. Anania, B. Fabbri, A. Gaiardo, S. Gherardi et al., Detection of colorectal cancer biomarkers in the presence of interfering gases. Sens. Actuat. B Chem. 218, 289–295 (2015). https://doi.org/10.1016/j.snb.2015.04.080
- G. Zonta, G. Anania, C. Feo, A. Gaiardo, S. Gherardi et al., Use of gas sensors and FOBT for the early detection of colorectal cancer. Sens. Actuat. B Chem. 262, 884–891 (2018). https://doi.org/10.1016/j.snb.2018.01.225
- G. Zonta, C. Malagù, S. Gherardi, A. Giberti, A. Pezzoli et al., Clinical validation results of an innovative non-invasive device for colorectal cancer preventive screening through fecal exhalation analysis. Cancers 12, 1471 (2020). https://doi.org/10.3390/cancers12061471
- R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics. CA Cancer J. Clin. 68, 7–30 (2018). https://doi.org/10.3322/caac.21442
- F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018). https://doi.org/10.3322/caac.21492
- C. Bax, G. Taverna, L. Eusebio, S. Sironi, F. Grizzi et al., Innovative diagnostic methods for early prostate cancer detection through urine analysis: a review. Cancers 10, 123 (2018). https://doi.org/10.3390/cancers10040123
- C. Bax, B.J. Lotesoriere, S. Sironi, L. Capelli, Review and comparison of cancer biomarker trends in urine as a basis for new diagnostic pathways. Cancers 11, 1244 (2019). https://doi.org/10.3390/cancers11091244
- L. Capelli, C. Bax, F. Grizzi, G. Taverna, Optimization of training and measurement protocol for eNose analysis of urine headspace aimed at prostate cancer diagnosis. Sci. Rep. 11, 20898 (2021). https://doi.org/10.1038/s41598-021-00033-y
- G. Taverna, F. Grizzi, L. Tidu, C. Bax, M. Zanoni et al., Accuracy of a new electronic nose for prostate cancer diagnosis in urine samples. Int. J. Urol. 29, 890–896 (2022). https://doi.org/10.1111/iju.14912
- C. Bax, S. Prudenza, G. Gaspari, L. Capelli, F. Grizzi et al., Drift compensation on electronic nose data for non-invasive diagnosis of prostate cancer by urine analysis. iScience 25, 103622 (2022). https://doi.org/10.1016/j.isci.2021.103622
- C.M. Durán Acevedo, J.K. Carrillo Gómez, C.A. Cuastumal Vasquez, J. Ramos, Prostate cancer detection in Colombian patients through E-senses devices in exhaled breath and urine samples. Chemosensors 12, 11 (2024). https://doi.org/10.3390/chemosensors12010011
- L. Lavra, A. Catini, A. Ulivieri, R. Capuano, L. Baghernajad Salehi et al., Investigation of VOCs associated with different characteristics of breast cancer cells. Sci. Rep. 5, 13246 (2015). https://doi.org/10.1038/srep13246
- J. Giró Benet, M. Seo, M. Khine, J. Gumà Padró, A. Pardo Martnez et al., Breast cancer detection by analyzing the volatile organic compound (VOC) signature in human urine. Sci. Rep. 12, 14873 (2022). https://doi.org/10.1038/s41598-022-17795-8
- H.-Y. Yang, Y.-C. Wang, H.-Y. Peng, C.-H. Huang, Breath biopsy of breast cancer using sensor array signals and machine learning analysis. Sci. Rep. 11, 103 (2021). https://doi.org/10.1038/s41598-020-80570-0
- M.K. Nakhleh, H. Amal, R. Jeries, Y.Y. Broza, M. Aboud et al., Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS Nano 11, 112–125 (2017). https://doi.org/10.1021/acsnano.6b04930
- A. Kwiatkowski, S. Borys, K. Sikorska, K. Drozdowska, J.M. Smulko, Clinical studies of detecting COVID-19 from exhaled breath with electronic nose. Sci. Rep. 12, 15990 (2022). https://doi.org/10.1038/s41598-022-20534-8
- D.K. Nurputra, A. Kusumaatmaja, M.S. Hakim, S.N. Hidayat, T. Julian et al., Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print recognition. NPJ Digit. Med. 5, 115 (2022). https://doi.org/10.1038/s41746-022-00661-2
- M.P. Bhandari, V. Veliks, I. Stonāns, M. Padilla, O. Šuba et al., Breath sensor technology for the use in mechanical lung ventilation equipment for monitoring critically ill patients. Diagnostics 12, 430 (2022). https://doi.org/10.3390/diagnostics12020430
- J. Li, A. Hannon, G. Yu, L.A. Idziak, A. Sahasrabhojanee et al., Electronic nose development and preliminary human breath testing for rapid, non-invasive COVID-19 detection. ACS Sens. 8, 2309–2318 (2023). https://doi.org/10.1021/acssensors.3c00367
- C.-Y. Chen, W.-C. Lin, H.-Y. Yang, Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: solutions to improve the application of machine learning in respiratory research. Respir. Res. 21, 45 (2020). https://doi.org/10.1186/s12931-020-1285-6
- J.B. Soriano, P.J. Kendrick, K.R. Paulson, V. Gupta, E.M. Abrams et al., Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 8, 585–596 (2020). https://doi.org/10.1016/S2213-2600(20)30105-3
- D. Pritchard, A. Adegunsoye, E. Lafond, J.V. Pugashetti, R. DiGeronimo et al., Diagnostic test interpretation and referral delay in patients with interstitial lung disease. Respir. Res. 20, 253 (2019). https://doi.org/10.1186/s12931-019-1228-2
- N. Hoyer, T.S. Prior, E. Bendstrup, T. Wilcke, S.B. Shaker, Risk factors for diagnostic delay in idiopathic pulmonary fibrosis. Respir. Res. 20, 103 (2019). https://doi.org/10.1186/s12931-019-1076-0
- I.G. van der Sar, M.S. Wijsenbeek, G.J. Braunstahl, J.O. Loekabino, A.C. Dingemans et al., Differentiating interstitial lung diseases from other respiratory diseases using electronic nose technology. Respir. Res. 24, 271 (2023). https://doi.org/10.1186/s12931-023-02575-3
- N. Wijbenga, R.A.S. Hoek, B.J. Mathot, L. Seghers, C.C. Moor et al., Diagnostic performance of electronic nose technology in chronic lung allograft dysfunction. J Heart Lung Transplant 42, 236–245 (2023). https://doi.org/10.1016/j.healun.2022.09.009
- N. Alkhouri, T. Singh, E. Alsabbagh, J. Guirguis, T. Chami et al., Isoprene in the exhaled breath is a novel biomarker for advanced fibrosis in patients with chronic liver disease: a pilot study. Clin. Transl. Gastroenterol. 6, e112 (2015). https://doi.org/10.1038/ctg.2015.40
- A. Tangerman, M.T. Meuwese-Arends, J.B. Jansen, Cause and composition of foetor hepaticus. Lancet 343, 483 (1994). https://doi.org/10.1016/s0140-6736(94)92729-4
- D.-D. Wu, D.-Y. Wang, H.-M. Li, J.-C. Guo, S.-F. Duan et al., Hydrogen sulfide as a novel regulatory factor in liver health and disease. Oxid. Med. Cell. Longev. 2019, 3831713 (2019). https://doi.org/10.1155/2019/3831713
- R.F. Del Río, M.E. O’Hara, A. Holt, P. Pemberton, T. Shah et al., Volatile biomarkers in breath associated with liver cirrhosis: comparisons of pre- and post-liver transplant breath samples. EBioMedicine 2, 1243–1250 (2015). https://doi.org/10.1016/j.ebiom.2015.07.027
- O. Zaim, A. Diouf, N. El Bari, N. Lagdali, I. Benelbarhdadi et al., Comparative analysis of volatile organic compounds of breath and urine for distinguishing patients with liver cirrhosis from healthy controls by using electronic nose and voltammetric electronic tongue. Anal. Chim. Acta 1184, 339028 (2021). https://doi.org/10.1016/j.aca.2021.339028
- C. Dalis, F.M. Mesfin, K. Manohar, J. Liu, W.C. Shelley et al., Volatile organic compound assessment as a screening tool for early detection of gastrointestinal diseases. Microorganisms 11, 1822 (2023). https://doi.org/10.3390/microorganisms11071822
- M. Buijck, D.J. Berkhout, E.F. de Groot, M.A. Benninga, M.P. van der Schee et al., Sniffing out paediatric gastrointestinal diseases: the potential of volatile organic compounds as biomarkers for disease. J. Pediatr. Gastroenterol. Nutr. 63, 585–591 (2016). https://doi.org/10.1097/MPG.0000000000001250
- S. Kurada, N. Alkhouri, C. Fiocchi, R. Dweik, F. Rieder, Review : breath analysis in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 41, 329–341 (2015). https://doi.org/10.1111/apt.13050
- R.P. Arasaradnam, N. Ouaret, M.G. Thomas, N. Quraishi, E. Heatherington et al., A novel tool for noninvasive diagnosis and tracking of patients with inflammatory bowel disease. Inflamm. Bowel Dis. 19, 999–1003 (2013). https://doi.org/10.1097/mib.0b013e3182802b26
- N.D. McGuire, R.J. Ewen, B. de Lacy Costello, C.E. Garner, C.S. Probert et al., Towards point of care testing for C. difficile infection by volatile profiling, using the combination of a short multi-capillary gas chromatography column with metal oxide sensor detection. Meas. Sci. Technol. 25, 065108 (2014). https://doi.org/10.1088/0957-0233/25/6/065108
- B.A. Day, C.E. Wilmer, Computational design of MOF-based electronic noses for dilute gas species detection: application to kidney disease detection. ACS Sens. 6, 4425–4434 (2021). https://doi.org/10.1021/acssensors.1c01808
- K. Dhatariya, Blood ketones: measurement, interpretation, limitations, and utility in the management of diabetic ketoacidosis. Rev. Diabet. Stud. 13, 217–225 (2016). https://doi.org/10.1900/rds.2016.13.217
- P. Wang, Y. Tan, H. Xie, F. Shen, A novel method for diabetes diagnosis based on electronic nose 1 paper presented at Biosensors ’96, Bangkock, May 1996.1. Biosens. Bioelectron. 12, 1031–1036 (1997). https://doi.org/10.1016/S0956-5663(97)00059-6
- J.-Y. Jeon, J.-S. Choi, J.-B. Yu, H.-R. Lee, B.K. Jang et al., Sensor array optimization techniques for exhaled breath analysis to discriminate diabetics using an electronic nose. ETRI J. 40, 802–812 (2018). https://doi.org/10.4218/etrij.2017-0018
- S. Esfahani, A. Wicaksono, E. Mozdiak, R.P. Arasaradnam, J.A. Covington, Non-invasive diagnosis of diabetes by volatile organic compounds in urine using FAIMS and Fox4000 electronic nose. Biosensors 8, 121 (2018). https://doi.org/10.3390/bios8040121
- J.E. Lee, C.K. Lim, H. Song, S.-Y. Choi, D.-S. Lee, A highly smart MEMS acetone gas sensors in array for diet-monitoring applications. Micro Nano Syst. Lett. 9, 10 (2021). https://doi.org/10.1186/s40486-021-00136-1
- S.Y. Park, Y. Kim, T. Kim, T.H. Eom, S.Y. Kim et al., Chemoresistive materials for electronic nose: progress, perspectives, and challenges. InfoMat 1, 289–316 (2019). https://doi.org/10.1002/inf2.12029
- S.-Y. Jeong, J.-S. Kim, J.-H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 32, e2002075 (2020). https://doi.org/10.1002/adma.202002075
- S.-J. Choi, I.-D. Kim, Recent, developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14, 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
- F. Zhu, J. Gao, J. Yang, N. Ye, Neighborhood linear discriminant analysis. Pattern Recognit. 123, 108422 (2022). https://doi.org/10.1016/j.patcog.2021.108422
- M. Greenacre, P.J.F. Groenen, T. Hastie, A.I. D’Enza, A. Markos et al., Principal component analysis. Nat. Rev. Meth. Primers 2, 100 (2022). https://doi.org/10.1038/s43586-022-00184-w
- S.A. Abdulrahman, W. Khalifa, M. Roushdy, A.-B.M. Salem, Comparative study for 8 computational intelligence algorithms for human identification. Comput. Sci. Rev. 36, 100237 (2020). https://doi.org/10.1016/j.cosrev.2020.100237
- R. Vidal, Y. Ma, S.S. Sastry, In Principal Component Analysis (Springer, New York, 2016), pp.25–62
- A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, A. Song, Efficient agglomerative hierarchical clustering. Expert Syst. Appl. 42, 2785–2797 (2015). https://doi.org/10.1016/j.eswa.2014.09.054
- A. Sebastian, A. Pannone, S. Subbulakshmi Radhakrishnan, S. Das, Gaussian synapses for probabilistic neural networks. Nat. Commun. 10, 4199 (2019). https://doi.org/10.1038/s41467-019-12035-6
- V.K. Ojha, A. Abraham, V. Snášel, Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017). https://doi.org/10.1016/j.engappai.2017.01.013
- S. Ding, H. Zhao, Y. Zhang, X. Xu, R. Nie, Extreme learning machine: algorithm, theory and applications. Artif. Intell. Rev. 44, 103–115 (2015). https://doi.org/10.1007/s10462-013-9405-z
- G. Van Houdt, C. Mosquera, G. Nápoles, A review on the long short-term memory model. Artif. Intell. Rev. 53, 5929–5955 (2020). https://doi.org/10.1007/s10462-020-09838-1
- A.H. Gómez, J. Wang, G. Hu, A.G. Pereira, Monitoring storage shelf life of tomato using electronic nose technique. J. Food Eng. 85, 625–631 (2008). https://doi.org/10.1016/j.jfoodeng.2007.06.039
- Q. Liu, N. Zhao, D. Zhou, Y. Sun, K. Sun et al., Discrimination and growth tracking of fungi contamination in peaches using electronic nose. Food Chem. 262, 226–234 (2018). https://doi.org/10.1016/j.foodchem.2018.04.100
- M. Ghasemi-Varnamkhasti, A. Mohammad-Razdari, S.H. Yoosefian, Z. Izadi, G. Rabiei, Selection of an optimized metal oxide semiconductor sensor (MOS) array for freshness characterization of strawberry in polymer packages using response surface method (RSM). Postharvest Biol. Technol. 151, 53–60 (2019). https://doi.org/10.1016/j.postharvbio.2019.01.016
- S. Qiu, L. Gao, J. Wang, Classification and regression of ELM, LVQ and SVM for E-nose data of strawberry juice. J. Food Eng. 144, 77–85 (2015). https://doi.org/10.1016/j.jfoodeng.2014.07.015
- M. Ghasemi-Varnamkhasti, Z.S. Amiri, M. Tohidi, M. Dowlati, S.S. Mohtasebi et al., Differentiation of cumin seeds using a metal-oxide based gas sensor array in tandem with chemometric tools. Talanta 176, 221–226 (2018). https://doi.org/10.1016/j.talanta.2017.08.024
- W. Jia, G. Liang, H. Tian, J. Sun, C. Wan, Electronic nose-based technique for rapid detection and recognition of moldy apples. Sensors 19, 1526 (2019). https://doi.org/10.3390/s19071526
- J. Wen, Y. Zhao, Q. Rong, Z. Yang, J. Yin et al., Rapid odor recognition based on reliefF algorithm using electronic nose and its application in fruit identification and classification. J. Food Meas. Charact. 16, 2422–2433 (2022). https://doi.org/10.1007/s11694-022-01351-z
- X. Hong, J. Wang, Detection of adulteration in cherry tomato juices based on electronic nose and tongue: comparison of different data fusion approaches. J. Food Eng. 126, 89–97 (2014). https://doi.org/10.1016/j.jfoodeng.2013.11.008
- E. Yavuzer, Determination of fish quality parameters with low cost electronic nose. Food Biosci. 41, 100948 (2021). https://doi.org/10.1016/j.fbio.2021.100948
- S. Grassi, S. Benedetti, M. Opizzio, E.D. Nardo, S. Buratti, Meat and fish freshness assessment by a portable and simplified electronic nose system (mastersense). Sensors 19, 3225 (2019). https://doi.org/10.3390/s19143225
- N.U. Hasan, N. Ejaz, W. Ejaz, H.S. Kim, Meat and fish freshness inspection system based on odor sensing. Sensors 12, 15542–15557 (2012). https://doi.org/10.3390/s121115542
- X. Hong, J. Wang, Z. Hai, Discrimination and prediction of multiple beef freshness indexes based on electronic nose. Sens. Actuat. B Chem. 161, 381–389 (2012). https://doi.org/10.1016/j.snb.2011.10.048
- X. Tian, J. Wang, S. Cui, Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. J. Food Eng. 119, 744–749 (2013). https://doi.org/10.1016/j.jfoodeng.2013.07.004
- D.R. Wijaya, R. Sarno, E. Zulaika, DWTLSTM for electronic nose signal processing in beef quality monitoring. Sens. Actuat. B Chem. 326, 128931 (2021). https://doi.org/10.1016/j.snb.2020.128931
- M. Rasekh, H. Karami, E-nose coupled with an artificial neural network to detection of fraud in pure and industrial fruit juices. Inter. J. Food Properties 24, 592–602 (2021). https://doi.org/10.1080/10942912.2021.1908354
- F. Mu, Y. Gu, J. Zhang, L. Zhang, Milk source identification and milk quality estimation using an electronic nose and machine learning techniques. Sensors 20, 4238 (2020). https://doi.org/10.3390/s20154238
- H. Karami, M. Rasekh, E. Mirzaee-Ghaleh, Qualitative analysis of edible oil oxidation using an olfactory machine. J. Food Meas. Charact. 14, 2600–2610 (2020). https://doi.org/10.1007/s11694-020-00506-0
- H. Jiang, Y. He, Q. Chen, Qualitative identification of the edible oil storage period using a homemade portable electronic nose combined with multivariate analysis. J. Sci. Food Agric. 101, 3448–3456 (2021). https://doi.org/10.1002/jsfa.10975
- X. Dong, L. Gao, H. Zhang, J. Wang, K. Qiu et al., Comparison of sensory qualities in eggs from three breeds based on electronic sensory evaluations. Foods 10, 1984 (2021). https://doi.org/10.3390/foods10091984
- M. Rasekh, H. Karami, A.D. Wilson, M. Gancarz, Classification and identification of essential oils from herbs and fruits based on a MOS electronic-nose technology. Chemosensors 9, 142 (2021). https://doi.org/10.3390/chemosensors9060142
- R. Dutta, E.L. Hines, J.W. Gardner, K.R. Kash
References
C. Bushdid, M.O. Magnasco, L.B. Vosshall, A. Keller, Humans can discriminate more than 1 trillion olfactory stimuli. Science 343, 1370–1372 (2014). https://doi.org/10.1126/science.1249168
J.P. McGann, Poor human olfaction is a 19th-century myth. Science 356, eaam7263 (2017). https://doi.org/10.1126/science.aam7263
K. Izawa, H. Ulmer, A. Staerz, U. Weimar, N. Barsan, Application of SMOX-based sensors. Gas Sensors Based on Conducting Metal Oxides. Amsterdam: Elsevier, (2019)., pp. 217–257. https://doi.org/10.1016/b978-0-12-811224-3.00005-6
A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036
Y. Liang, Z. Wu, Y. Wei, Q. Ding, M. Zilberman et al., Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
H. Lim, H. Kwon, H. Kang, J.E. Jang, H.-J. Kwon, Laser-induced and MOF-derived metal oxide/carbon composite for synergistically improved ethanol sensing at room temperature. Nano-Micro Lett. 16, 113 (2024). https://doi.org/10.1007/s40820-024-01332-5
Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14, 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
M. Hilal, W. Yang, Y. Hwang, W. Xie, Tailoring MXene thickness and functionalization for enhanced room-temperature trace NO2 sensing. Nano-Micro Lett. 16, 84 (2024). https://doi.org/10.1007/s40820-023-01316-x
K.H. Kim, C.S. Park, S.J. Park, J. Kim, S.E. Seo et al., In-situ food spoilage monitoring using a wireless chemical receptor-conjugated graphene electronic nose. Biosens. Bioelectron. 200, 113908 (2022). https://doi.org/10.1016/j.bios.2021.113908
A. Khorramifar, M. Rasekh, H. Karami, J.A. Covington, S.M. Derakhshani et al., Application of MOS gas sensors coupled with chemometrics methods to predict the amount of sugar and carbohydrates in potatoes. Molecules 27, 3508 (2022). https://doi.org/10.3390/molecules27113508
Y. Wang, X. Yan, S. Wang, S. Gao, K. Yang et al., Electronic nose application for detecting different odorants in source water: Possibility and scenario. Environ. Res. 227, 115677 (2023). https://doi.org/10.1016/j.envres.2023.115677
X. Jia, P. Qiao, X. Wang, M. Yan, Y. Chen et al., Building feedback-regulation system through atomic design for highly active SO2 sensing. Nano-Micro Lett. 16, 136 (2024). https://doi.org/10.1007/s40820-024-01350-3
I.G. van der Sar, C.C. Moor, J.C. Oppenheimer, M.L. Luijendijk, P.L.A. van Daele et al., Diagnostic performance of electronic nose technology in sarcoidosis. Chest 161, 738–747 (2022). https://doi.org/10.1016/j.chest.2021.10.025
Y. Peters, R.W.M. Schrauwen, A.C. Tan, S.K. Bogers, B. de Jong et al., Detection of Barrett’s oesophagus through exhaled breath using an electronic nose device. Gut 69, 1169–1172 (2020). https://doi.org/10.1136/gutjnl-2019-320273
F. Röck, N. Barsan, U. Weimar, Electronic nose: current status and future trends. Chem. Rev. 108, 705–725 (2008). https://doi.org/10.1021/cr068121q
T. Yang, L. Gao, W. Wang, J. Kang, G. Zhao et al., Berlin green framework-based gas sensor for room-temperature and high-selectivity detection of ammonia. Nano-Micro Lett. 13, 63 (2021). https://doi.org/10.1007/s40820-020-00586-z
S.Y. Chun, Y.G. Song, J.E. Kim, J.U. Kwon, K. Soh et al., An artificial olfactory system based on a chemi-memristive device. Adv. Mater. 35, e2302219 (2023). https://doi.org/10.1002/adma.202302219
I. Cho, K. Lee, Y.C. Sim, J.S. Jeong, M. Cho et al., Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor. Light Sci. Appl. 12, 95 (2023). https://doi.org/10.1038/s41377-023-01120-7
C. Wang, Z. Chen, C.L.J. Chan, Z. Wan, W. Ye et al., Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 7, 157–167 (2024). https://doi.org/10.1038/s41928-023-01107-7
T. Saidi, O. Zaim, M. Moufid, N. El Bari, R. Ionescu et al., Exhaled breath analysis using electronic nose and gas chromatography–mass spectrometry for non-invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy subjects. Sens. Actuat. B Chem. 257, 178–188 (2018). https://doi.org/10.1016/j.snb.2017.10.178
M. Tohidi, M. Ghasemi-Varnamkhasti, V. Ghafarinia, M. Bonyadian, S.S. Mohtasebi, Development of a metal oxide semiconductor-based artificial nose as a fast, reliable and non-expensive analytical technique for aroma profiling of milk adulteration. Int. Dairy J. 77, 38–46 (2018). https://doi.org/10.1016/j.idairyj.2017.09.003
M.R. Zarezadeh, M. Aboonajmi, M. Ghasemi-Varnamkhasti, The effect of data fusion on improving the accuracy of olive oil quality measurement. Food Chem. X 18, 100622 (2023). https://doi.org/10.1016/j.fochx.2023.100622
S.-H. Sung, J.M. Suh, Y.J. Hwang, H.W. Jang, J.G. Park et al., Data-centric artificial olfactory system based on the eigengraph. Nat. Commun. 15, 1211 (2024). https://doi.org/10.1038/s41467-024-45430-9
A.H. Jalal, F. Alam, S. Roychoudhury, Y. Umasankar, N. Pala et al., Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 3, 1246–1263 (2018). https://doi.org/10.1021/acssensors.8b00400
G. Verma, A. Gokarna, H. Kadiri, K. Nomenyo, G. Lerondel et al., Multiplexed gas sensor: fabrication strategies, recent progress, and challenges. ACS Sens. 8, 3320–3337 (2023). https://doi.org/10.1021/acssensors.3c01244
Z.U. Abideen, W.U. Arifeen, Y.M.N.D.Y. Bandara, Emerging trends in metal oxide-based electronic noses for healthcare applications: a review. Nanoscale 16, 9259–9283 (2024). https://doi.org/10.1039/d4nr00073k
C. Kim, K.K. Lee, M.S. Kang, D.M. Shin, J.W. Oh et al., Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review. Biomater. Res. 26, 40 (2022). https://doi.org/10.1186/s40824-022-00287-1
H. Chen, D. Huo, J. Zhang, Gas recognition in E-nose system: a review. IEEE Trans. Biomed. Circuits Syst. 16, 169–184 (2022). https://doi.org/10.1109/TBCAS.2022.3166530
A. Labidi, E. Gillet, R. Delamare, M. Maaref, K. Aguir, Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd. Sens. Actuat. B Chem. 120, 338–345 (2006). https://doi.org/10.1016/j.snb.2006.02.015
H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanops in chemiresistors: does the nanoscale matter? Small 2, 36–50 (2006). https://doi.org/10.1002/smll.200500261
H. Jin, J. Yu, D. Cui, S. Gao, H. Yang et al., Remote tracking gas molecular via the standalone-like nanosensor-based tele-monitoring system. Nano-Micro Lett. 13, 32 (2021). https://doi.org/10.1007/s40820-020-00551-w
T. Wada, N. Murata, T. Suzuki, H. Uehara, H. Nitani et al., Improvement of a real gas-sensor for the origin of methane selectivity degradation by µ-XAFS investigation. Nano-Micro Lett. 7, 255–260 (2015). https://doi.org/10.1007/s40820-015-0035-7
D. Wang, Z. Li, J. Zhou, H. Fang, X. He et al., Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanops. Nano-Micro Lett. 10, 4 (2017). https://doi.org/10.1007/s40820-017-0158-0
A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
O. Gschwend, N.M. Abraham, S. Lagier, F. Begnaud, I. Rodriguez et al., Neuronal pattern separation in the olfactory bulb improves odor discrimination learning. Nat. Neurosci. 18, 1474–1482 (2015). https://doi.org/10.1038/nn.4089
P.Y. Wang, Y. Sun, R. Axel, L.F. Abbott, G.R. Yang, Evolving the olfactory system with machine learning. Neuron 109, 3879-3892.e5 (2021). https://doi.org/10.1016/j.neuron.2021.09.010
B.K. Lee, E.J. Mayhew, B. Sanchez-Lengeling, J.N. Wei, W.W. Qian et al., A principal odor map unifies diverse tasks in olfactory perception. Science 381, 999–1006 (2023). https://doi.org/10.1126/science.ade4401
L. Lu, Z. Hu, X. Hu, D. Li, S. Tian, Electronic tongue and electronic nose for food quality and safety. Food Res. Int. 162, 112214 (2022). https://doi.org/10.1016/j.foodres.2022.112214
P. Gupta, H. Gholami Derami, D. Mehta, H. Yilmaz, S. Chakrabartty et al., In situ grown gold nanoisland-based chemiresistive electronic nose for sniffing distinct odor fingerprints. ACS Appl. Mater. Interfaces 14, 3207–3217 (2022). https://doi.org/10.1021/acsami.1c22173
A. Glielmo, B.E. Husic, A. Rodriguez, C. Clementi, F. Noé et al., Unsupervised learning methods for molecular simulation data. Chem. Rev. 121, 9722–9758 (2021). https://doi.org/10.1021/acs.chemrev.0c01195
J.F. Hair, Multivariate data analysis: an overview. International Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer Berlin Heidelberg, (2011). pp. 904–907. https://doi.org/10.1007/978-3-642-04898-2_395
Y. Tang, K. Xu, B. Zhao, M. Zhang, C. Gong et al., A novel electronic nose for the detection and classification of pesticide residue on apples. RSC Adv. 11, 20874–20883 (2021). https://doi.org/10.1039/D1RA03069H
N. Shauloff, A. Morag, K. Yaniv, S. Singh, R. Malishev et al., Sniffing bacteria with a carbon-dot artificial nose. Nano-Micro Lett. 13, 112 (2021). https://doi.org/10.1007/s40820-021-00610-w
B. Junker, A. Kobald, C. Ewald, P. Janoschek, M. Schalk et al., Multivariate analysis of light-activated SMOX gas sensors. ACS Sens. 9, 1584–1591 (2024). https://doi.org/10.1021/acssensors.4c00078
M. Jang, G. Bae, Y.M. Kwon, J.H. Cho, D.H. Lee et al., Artificial Q-grader: machine learning-enabled intelligent olfactory and gustatory sensing system. Adv. Sci. 11, 2308976 (2024). https://doi.org/10.1002/advs.202308976
H. Zhao, Z. Lai, H. Leung, X. Zhang, Linear discriminant analysis. Information Fusion and Data Science. Cham: Springer International Publishing, (2020). pp. 71–85. https://doi.org/10.1007/978-3-030-40794-0_5
B. Skiera, J. Reiner, S. Albers, Regression analysis. Handbook of Market Research. Cham: Springer International Publishing, (2021). pp. 299–327. https://doi.org/10.1007/978-3-319-57413-4_17
J. Yin, Y. Zhao, Z. Peng, F. Ba, P. Peng et al., Rapid identification method for CH4/CO/CH4-CO gas mixtures based on electronic nose. Sensors 23, 2975 (2023). https://doi.org/10.3390/s23062975
E. Aghdamifar, V.R. Sharabiani, E. Taghinezhad, M. Szymanek, A. Dziwulska-Hunek, E-nose as a non-destructive and fast method for identification and classification of coffee beans based on soft computing models. Sens. Actuat. B Chem. 393, 134229 (2023). https://doi.org/10.1016/j.snb.2023.134229
T. Itoh, Y. Koyama, Y. Sakumura, T. Akamatsu, A. Tsuruta et al., Discrimination of volatile organic compounds using a sensor array via a rapid method based on linear discriminant analysis. Sens. Actuat. B Chem. 387, 133803 (2023). https://doi.org/10.1016/j.snb.2023.133803
W.S. Noble, What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006). https://doi.org/10.1038/nbt1206-1565
V.K. Chauhan, K. Dahiya, A. Sharma, Problem formulations and solvers in linear SVM: a review. Artif. Intell. Rev. 52, 803–855 (2019). https://doi.org/10.1007/s10462-018-9614-6
X. Zhou, R. Stern, H. Müller, Case-based fracture image retrieval. Int. J. Comput. Assist. Radiol. Surg. 7, 401–411 (2012). https://doi.org/10.1007/s11548-011-0643-8
V. Piccialli, M. Sciandrone, Nonlinear optimization and support vector machines. 4OR 16, 111–149 (2018). https://doi.org/10.1007/s10288-018-0378-2
M. Rasekh, H. Karami, M. Kamruzzaman, V. Azizi, M. Gancarz, Impact of different drying approaches on VOCs and chemical composition of Mentha spicata L. essential oil: a combined analysis of GC/MS and E-nose with chemometrics methods. Ind. Crops Prod. 206, 117595 (2023). https://doi.org/10.1016/j.indcrop.2023.117595
J. Chen, T. Luo, J. Yan, L. Zhang, A novel twin-center intuitionistic fuzzy large margin classifier with unified pinball loss for improving the performance of E-noses system. Expert Syst. Appl. 250, 123883 (2024). https://doi.org/10.1016/j.eswa.2024.123883
C. Wiwie, J. Baumbach, R. Röttger, Comparing the performance of biomedical clustering methods. Nat. Meth. 12, 1033–1038 (2015). https://doi.org/10.1038/nmeth.3583
A.M. Ikotun, A.E. Ezugwu, L. Abualigah, B. Abuhaija, H. Jia, K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 622, 178–210 (2023). https://doi.org/10.1016/j.ins.2022.11.139
J.A. Hartigan, M.A. Wong, Algorithm AS 136: a K-means clustering algorithm. Appl. Stat. 28, 100 (1979). https://doi.org/10.2307/2346830
N. Altman, M. Krzywinski, Clustering. Nat. Methods 14, 545–546 (2017). https://doi.org/10.1038/nmeth.4299
Y. Meng, J. Liang, F. Cao, Y. He, A new distance with derivative information for functional k-means clustering algorithm. Inform. Sci. 463, 166–185 (2018). https://doi.org/10.1016/j.ins.2018.06.035
S.-S. Yu, S.-W. Chu, C.-M. Wang, Y.-K. Chan, T.-C. Chang, Two improved k-means algorithms. Appl. Soft Comput. 68, 747–755 (2018). https://doi.org/10.1016/j.asoc.2017.08.032
J. Zhu, Z. Jiang, G.D. Evangelidis, C. Zhang, S. Pang et al., Efficient registration of multi-view point sets by K-means clustering. Information Sci. 488, 205–218 (2019). https://doi.org/10.1016/j.ins.2019.03.024
S. Licen, A. Di Gilio, J. Palmisani, S. Petraccone, G. de Gennaro et al., Pattern recognition and anomaly detection by self-organizing maps in a multi month E-nose survey at an industrial site. Sensors 20, 1887 (2020). https://doi.org/10.3390/s20071887
S.N. Hidayat, T. Julian, A.B. Dharmawan, M. Puspita, L. Chandra et al., Hybrid learning method based on feature clustering and scoring for enhanced COVID-19 breath analysis by an electronic nose. Artif. Intell. Med. 129, 102323 (2022). https://doi.org/10.1016/j.artmed.2022.102323
L. Rokach, Decision forest: twenty years of research. Inform. Fusion 27, 111–125 (2016). https://doi.org/10.1016/j.inffus.2015.06.005
S.L. Salzberg, C4.5: programs for machine learning by J. ross quinlan. morgan kaufmann publishers, inc., 1993. Mach. Learn. 16, 235–240 (1994). https://doi.org/10.1007/BF00993309
P.S.P. Herrmann, M. Dos Santos Luccas, E.J. Ferreira, A. Torre Neto, Application of electronic nose and machine learning used to detect soybean gases under water stress and variability throughout the daytime. Front. Plant Sci. 15, 1323296 (2024). https://doi.org/10.3389/fpls.2024.1323296
L. Breiman, Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
K. Fawagreh, M.M. Gaber, E. Elyan, Random forests: from early developments to recent advancements. Syst. Sci. Contr. Eng. 2, 602–609 (2014). https://doi.org/10.1080/21642583.2014.956265
H. Kim, W. Seong, E. Rha, H. Lee, S.K. Kim et al., Machine learning linked evolutionary biosensor array for highly sensitive and specific molecular identification. Biosens. Bioelectron. 170, 112670 (2020). https://doi.org/10.1016/j.bios.2020.112670
D. Du, J. Wang, B. Wang, L. Zhu, X. Hong, Ripeness prediction of postharvest kiwifruit using a MOS E-nose combined with chemometrics. Sensors 19, 419 (2019). https://doi.org/10.3390/s19020419
Z. Saringat, A. Mustapha, R.D. Rohmat Saedudin, N.A. Samsudin, Comparative analysis of classification algorithms for chronic kidney disease diagnosis. Bull. Electr. Eng. Inform. 8, 1496–1501 (2019). https://doi.org/10.11591/eei.v8i4.1621
X. Zeng, R. Cao, Y. Xi, X. Li, M. Yu et al., Food flavor analysis 4.0: a cross-domain application of machine learning. Trends Food Sci. Technol. 138, 116–125 (2023). https://doi.org/10.1016/j.tifs.2023.06.011
H. Khalili, M. Rismani, M.A. Nematollahi, M.S. Masoudi, A. Asadollahi et al., Prognosis prediction in traumatic brain injury patients using machine learning algorithms. Sci. Rep. 13, 960 (2023). https://doi.org/10.1038/s41598-023-28188-w
N. Gerhardt, S. Schwolow, S. Rohn, P.R. Pérez-Cacho, H. Galán-Soldevilla et al., Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM. Food Chem. 278, 720–728 (2019). https://doi.org/10.1016/j.foodchem.2018.11.095
S. Sironi, L. Capelli, P. Céntola, R. Del Rosso, M. Il Grande, Continuous monitoring of odours from a composting plant using electronic noses. Waste Manag. 27, 389–397 (2007). https://doi.org/10.1016/j.wasman.2006.01.029
S. Manocha, M.A. Girolami, An empirical analysis of the probabilistic K-nearest neighbour classifier. Pattern Recognit. Lett. 28, 1818–1824 (2007). https://doi.org/10.1016/j.patrec.2007.05.018
S. Qiu, J. Wang, The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chem. 230, 208–214 (2017). https://doi.org/10.1016/j.foodchem.2017.03.011
W. Dong, J. Zhao, R. Hu, Y. Dong, L. Tan, Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Food Chem. 229, 743–751 (2017). https://doi.org/10.1016/j.foodchem.2017.02.149
T.P. Lillicrap, A. Santoro, L. Marris, C.J. Akerman, G. Hinton, Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020). https://doi.org/10.1038/s41583-020-0277-3
A. Derry, M. Krzywinski, N. Altman, Neural networks primer. Nat. Meth. 20, 165–167 (2023). https://doi.org/10.1038/s41592-022-01747-1
J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003
A. Kalinichenko, L. Arseniyeva, Electronic nose combined with chemometric approaches to assess authenticity and adulteration of sausages by soy protein. Sens. Actuat. B Chem. 303, 127250 (2020). https://doi.org/10.1016/j.snb.2019.127250
J. Wang, S. Viciano-Tudela, L. Parra, R. Lacuesta, J. Lloret, Evaluation of suitability of low-cost gas sensors for monitoring indoor and outdoor urban areas. IEEE Sens. J. 23, 20968–20975 (2023). https://doi.org/10.1109/JSEN.2023.3301651
D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323, 533–536 (1986). https://doi.org/10.1038/323533a0
S. Jiang, C. Ni, G. Chen, Y. Liu, A novel data fusion strategy based on multiple intelligent sensory technologies and its application in the quality evaluation of Jinhua dry-cured hams. Sens. Actuat. B Chem. 344, 130324 (2021). https://doi.org/10.1016/j.snb.2021.130324
Y. Zhang, L. Li, Z. Ren, Y. Yu, Y. Li et al., Plant-scale biogas production prediction based on multiple hybrid machine learning technique. Bioresour. Technol. 363, 127899 (2022). https://doi.org/10.1016/j.biortech.2022.127899
N. Zhang, S. Ding, J. Zhang, Multi layer ELM-RBF for multi-label learning. Appl. Soft Comput. 43, 535–545 (2016). https://doi.org/10.1016/j.asoc.2016.02.039
G. Huang, G.-B. Huang, S. Song, K. You, Trends in extreme learning machines: a review. Neural Netw. 61, 32–48 (2015). https://doi.org/10.1016/j.neunet.2014.10.001
H.G.J. Voss, S.L. Stevan, R.A. Ayub, Peach growth cycle monitoring using an electronic nose. Comput. Electron. Agric. 163, 104858 (2019). https://doi.org/10.1016/j.compag.2019.104858
Q.-Y. Zhu, A.K. Qin, P.N. Suganthan, G.-B. Huang, Evolutionary extreme learning machine. Pattern Recognit. 38, 1759–1763 (2005). https://doi.org/10.1016/j.patcog.2005.03.028
T. Wang, H. Ma, W. Jiang, H. Zhang, M. Zeng et al., Type discrimination and concentration prediction towards ethanol using a machine learning-enhanced gas sensor array with different morphology-tuning characteristics. Phys. Chem. Chem. Phys. 23, 23933–23944 (2021). https://doi.org/10.1039/d1cp02394b
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy et al., Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018). https://doi.org/10.1016/j.patcog.2017.10.013
A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017). https://doi.org/10.1145/3065386
Y. Xiong, Y. Li, C. Wang, H. Shi, S. Wang et al., Non-destructive detection of chicken freshness based on electronic nose technology and transfer learning. Agriculture 13, 496 (2023). https://doi.org/10.3390/agriculture13020496
G. Wei, G. Li, J. Zhao, A. He, Development of a LeNet-5 gas identification CNN structure for electronic noses. Sensors 19, 217 (2019). https://doi.org/10.3390/s19010217
H. Hewamalage, C. Bergmeir, K. Bandara, Recurrent neural networks for time series forecasting: current status and future directions. Int. J. Forecast. 37, 388–427 (2021). https://doi.org/10.1016/j.ijforecast.2020.06.008
S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
S. Song, J. Chen, L. Ma, L. Zhang, S. He et al., Research on a working face gas concentration prediction model based on LASSO-RNN time series data. Heliyon 9, e14864 (2023). https://doi.org/10.1016/j.heliyon.2023.e14864
S. Wakhid, R. Sarno, S.I. Sabilla, The effect of gas concentration on detection and classification of beef and pork mixtures using E-nose. Comput. Electron. Agric. 195, 106838 (2022). https://doi.org/10.1016/j.compag.2022.106838
L. Liu, W. Li, Z. He, W. Chen, H. Liu et al., Detection of lung cancer with electronic nose using a novel ensemble learning framework. J. Breath Res. (2021). https://doi.org/10.1088/1752-7163/abe5c9
J. Chu, W. Li, X. Yang, Y. Wu, D. Wang et al., Identification of gas mixtures via sensor array combining with neural networks. Sens. Actuat. B Chem. 329, 129090 (2021). https://doi.org/10.1016/j.snb.2020.129090
T. Liu, W. Zhang, P. McLean, M. Ueland, S.L. Forbes et al., Electronic nose-based odor classification using genetic algorithms and fuzzy support vector machines. Int. J. Fuzzy Syst. 20, 1309–1320 (2018). https://doi.org/10.1007/s40815-018-0449-8
H. Zhong, C. Miao, Z. Shen, Y. Feng, Comparing the learning effectiveness of BP, ELM, I-ELM, and SVM for corporate credit ratings. Neurocomputing 128, 285–295 (2014). https://doi.org/10.1016/j.neucom.2013.02.054
T. Wang, Y. Wu, Y. Zhang, W. Lv, X. Chen et al., Portable electronic nose system with elastic architecture and fault tolerance based on edge computing, ensemble learning, and sensor swarm. Sens. Actuat. B Chem. 375, 132925 (2023). https://doi.org/10.1016/j.snb.2022.132925
L. Xiong, M. He, C. Hu, Y. Hou, S. Han et al., Image presentation and effective classification of odor intensity levels using multi-channel electronic nose technology combined with GASF and CNN. Sens. Actuat. B Chem. 395, 134492 (2023). https://doi.org/10.1016/j.snb.2023.134492
Y. Shi, B. Wang, C. Yin, Z. Li, Y. Yu, Performance improvement: a lightweight gas information classification method combined with an electronic nose system. Sens. Actuat. B Chem. 396, 134551 (2023). https://doi.org/10.1016/j.snb.2023.134551
H. Sun, Z. Hua, C. Yin, F. Li, Y. Shi, Geographical traceability of soybean: an electronic nose coupled with an effective deep learning method. Food Chem. 440, 138207 (2024). https://doi.org/10.1016/j.foodchem.2023.138207
F. Wu, R. Ma, Y. Li, F. Li, S. Duan et al., A novel electronic nose classification prediction method based on TETCN. Sens. Actuat. B Chem. 405, 135272 (2024). https://doi.org/10.1016/j.snb.2024.135272
T. Zhang, R. Tan, W. Shen, D. Lv, J. Yin et al., Inkjet-printed ZnO-based MEMS sensor array combined with feature selection algorithm for VOCs gas analysis. Sens. Actuat. B Chem. 382, 133555 (2023). https://doi.org/10.1016/j.snb.2023.133555
Y. Zhang, Q. Jiang, M. Xu, Y. Zhang, J. Liu et al., FTM-GCN: a novel technique for gas concentration predicting in space with sensor nodes. Sens. Actuat. B Chem. 399, 134830 (2024). https://doi.org/10.1016/j.snb.2023.134830
X. Pan, J. Chen, X. Wen, J. Hao, W. Xu et al., A comprehensive gas recognition algorithm with label-free drift compensation based on domain adversarial network. Sens. Actuat. B Chem. 387, 133709 (2023). https://doi.org/10.1016/j.snb.2023.133709
H. Se, K. Song, C. Sun, J. Jiang, H. Liu et al., Online drift compensation framework based on active learning for gas classification and concentration prediction. Sens. Actuat. B Chem. 398, 134716 (2024). https://doi.org/10.1016/j.snb.2023.134716
R.J. Rath, S. Farajikhah, F. Oveissi, F. Dehghani, S. Naficy, Chemiresistive sensor arrays for gas/volatile organic compounds monitoring: a review. Adv. Eng. Mater. 25, 2200830 (2023). https://doi.org/10.1002/adem.202200830
Z. Zheng, C. Zhang, Electronic noses based on metal oxide semiconductor sensors for detecting crop diseases and insect pests. Comput. Electron. Agric. 197, 106988 (2022). https://doi.org/10.1016/j.compag.2022.106988
H.-Z. Chen, M. Zhang, Z. Guo, Discrimination of fresh-cut broccoli freshness by volatiles using electronic nose and gas chromatography-mass spectrometry. Postharvest Biol. Technol. 148, 168–175 (2019). https://doi.org/10.1016/j.postharvbio.2018.10.019
X. Ren, Y. Wang, Y. Huang, M. Mustafa, D. Sun et al., A CNN-based E-nose using time series features for food freshness classification. IEEE Sens. J. 23, 6027–6038 (2023). https://doi.org/10.1109/JSEN.2023.3241842
M.F. Rutolo, J.P. Clarkson, J.A. Covington, The use of an electronic nose to detect early signs of soft-rot infection in potatoes. Biosyst. Eng. 167, 137–143 (2018). https://doi.org/10.1016/j.biosystemseng.2018.01.001
T. Wen, L. Zheng, S. Dong, Z. Gong, M. Sang et al., Rapid detection and classification of citrus fruits infestation by Bactrocera dorsalis (Hendel) based on electronic nose. Postharvest Biol. Technol. 147, 156–165 (2019). https://doi.org/10.1016/j.postharvbio.2018.09.017
A. Makarichian, R.A. Chayjan, E. Ahmadi, D. Zafari, Early detection and classification of fungal infection in garlic (A. sativum) using electronic nose. Comput. Electron. Agric. 192, 106575 (2022). https://doi.org/10.1016/j.compag.2021.106575
C. Zhao, J. Ma, W. Jia, H. Wang, H. Tian et al., An apple fungal infection detection model based on BPNN optimized by sparrow search algorithm. Biosensors 12, 692 (2022). https://doi.org/10.3390/bios12090692
J. Du, M. Zhang, X. Teng, Y. Wang, C. Lim Law et al., Evaluation of vegetable sauerkraut quality during storage based on convolution neural network. Food Res. Int. 164, 112420 (2023). https://doi.org/10.1016/j.foodres.2022.112420
B. Mahata, S. Acharyya, S. Giri, T. Mahata, P. Banerji et al., Fruit freshness monitoring employing chemiresistive volatile organic compound sensor and machine learning. ACS Appl. Nano Mater. 6, 22829–22836 (2023). https://doi.org/10.1021/acsanm.3c04138
Y. Mao, N. Li, B. Shi, L. Zhao, S. Cheng et al., Geographical origin determination of Red Huajiao in China using the electronic nose combined with ensemble recognition algorithm. J. Food Sci. 86, 4922–4931 (2021). https://doi.org/10.1111/1750-3841.15933
H. Lin, H. Chen, C. Yin, Q. Zhang, Z. Li et al., Lightweight residual convolutional neural network for soybean classification combined with electronic nose. IEEE Sens. J. 22, 11463–11473 (2022). https://doi.org/10.1109/JSEN.2022.3174251
J. Fu, R. Liu, Y. Chen, J. Xing, Discrimination of geographical indication of Chinese green teas using an electronic nose combined with quantum neural networks: a portable strategy. Sens. Actuat. B Chem. 375, 132946 (2023). https://doi.org/10.1016/j.snb.2022.132946
N. Aghilinategh, M.J. Dalvand, A. Anvar, Detection of ripeness grades of berries using an electronic nose. Food Sci. Nutr. 8, 4919–4928 (2020). https://doi.org/10.1002/fsn3.1788
A.R. Shalaby, Significance of biogenic amines to food safety and human health. Food Res. Int. 29, 675–690 (1996). https://doi.org/10.1016/S0963-9969(96)00066-X
Z. Ma, P. Chen, W. Cheng, K. Yan, L. Pan et al., Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Lett. 18, 4570–4575 (2018). https://doi.org/10.1021/acs.nanolett.8b01825
R. Saeed, H. Feng, X. Wang, X. Zhang, Z. Fu, Fish quality evaluation by sensor and machine learning: a mechanistic review. Food Contr. 137, 108902 (2022). https://doi.org/10.1016/j.foodcont.2022.108902
Q. Wang, L. Li, W. Ding, D. Zhang, J. Wang et al., Adulterant identification in mutton by electronic nose and gas chromatography-mass spectrometer. Food Contr. 98, 431–438 (2019). https://doi.org/10.1016/j.foodcont.2018.11.038
S. Güney, A. Atasoy, Study of fish species discrimination via electronic nose. Comput. Electron. Agric. 119, 83–91 (2015). https://doi.org/10.1016/j.compag.2015.10.005
M. Nurjuliana, Y.B. Che Man, D. Mat Hashim, A.K. Mohamed, Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer. Meat Sci. 88, 638–644 (2011). https://doi.org/10.1016/j.meatsci.2011.02.022
E. Mirzaee-Ghaleh, A. Taheri-Garavand, F. Ayari, J. Lozano, Identification of fresh-chilled and frozen-thawed chicken meat and estimation of their shelf life using an E-nose machine coupled fuzzy KNN. Food Anal. Meth. 13, 678–689 (2020). https://doi.org/10.1007/s12161-019-01682-6
S.R. Karunathilaka, Z. Ellsworth, B.J. Yakes, Detection of decomposition in mahi-mahi, croaker, red snapper, and weakfish using an electronic-nose sensor and chemometric modeling. J. Food Sci. 86, 4148–4158 (2021). https://doi.org/10.1111/1750-3841.15878
R.S. Andre, M.H.M. Facure, L.A. Mercante, D.S. Correa, Electronic nose based on hybrid free-standing nanofibrous mats for meat spoilage monitoring. Sens. Actuat. B Chem. 353, 131114 (2022). https://doi.org/10.1016/j.snb.2021.131114
H. Li, Y. Wang, J. Zhang, X. Li, J. Wang et al., Prediction of the freshness of horse mackerel (Trachurus japonicus) using E-nose, E-tongue, and colorimeter based on biochemical indexes analyzed during frozen storage of whole fish. Food Chem. 402, 134325 (2023). https://doi.org/10.1016/j.foodchem.2022.134325
S. Grassi, S. Benedetti, L. Magnani, A. Pianezzola, S. Buratti, Seafood freshness: e-nose data for classification purposes. Food Contr. 138, 108994 (2022). https://doi.org/10.1016/j.foodcont.2022.108994
A.E.-D.A. Bekhit, B.W.B. Holman, S.G. Giteru, D.L. Hopkins, Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: a review. Trends Food Sci. Technol. 109, 280–302 (2021). https://doi.org/10.1016/j.tifs.2021.01.006
X. Tian, J. Wang, Z. Ma, M. Li, Z. Wei, Combination of an E-nose and an E-tongue for adulteration detection of minced mutton mixed with pork. J. Food Qual. 2019, 4342509 (2019). https://doi.org/10.1155/2019/4342509
L.A. Putri, I. Rahman, M. Puspita, S.N. Hidayat, A.B. Dharmawan et al., Rapid analysis of meat floss origin using a supervised machine learning-based electronic nose towards food authentication. NPJ Sci. Food 7, 31 (2023). https://doi.org/10.1038/s41538-023-00205-2
K. Qian, Y. Bao, J. Zhu, J. Wang, Z. Wei, Development of a portable electronic nose based on a hybrid filter-wrapper method for identifying the Chinese dry-cured ham of different grades. J. Food Eng. 290, 110250 (2021). https://doi.org/10.1016/j.jfoodeng.2020.110250
H. Reinhard, F. Sager, O. Zoller, Citrus juice classification by SPME-GC-MS and electronic nose measurements. LWT Food Sci. Technol. 41, 1906–1912 (2008). https://doi.org/10.1016/j.lwt.2007.11.012
Q. Peng, R. Tian, F. Chen, B. Li, H. Gao, Discrimination of producing area of Chinese Tongshan Kaoliang spirit using electronic nose sensing characteristics combined with the chemometrics methods. Food Chem. 178, 301–305 (2015). https://doi.org/10.1016/j.foodchem.2015.01.023
S. Roussel, V. Bellon-Maurel, J.-M. Roger, P. Grenier, Authenticating white grape must variety with classification models based on aroma sensors, FT-IR and UV spectrometry. J. Food Eng. 60, 407–419 (2003). https://doi.org/10.1016/S0260-8774(03)00064-5
H. Yang, Y. Wang, J. Zhao, P. Li, L. Li et al., A machine learning method for juice human sensory hedonic prediction using electronic sensory features. Curr. Res. Food Sci. 7, 100576 (2023). https://doi.org/10.1016/j.crfs.2023.100576
H.-B. Ren, B.-L. Feng, H.-Y. Wang, J.-J. Zhang, X.-S. Bai et al., An electronic sense-based machine learning model to predict formulas and processes for vegetable-fruit beverages. Comput. Electron. Agric. 210, 107883 (2023). https://doi.org/10.1016/j.compag.2023.107883
S.L. Stevan, H.V. Siqueira, B.A. Menegotto, L.C. Schroeder, I.L. Pessenti et al., Discrimination analysis of wines made from four species of blueberry through their olfactory signatures using an E-nose. LWT 187, 115320 (2023). https://doi.org/10.1016/j.lwt.2023.115320
J.C. Rodriguez, E.S. Gamboa, E. Albarracin, A.J. da Silva, L.L. de Andrade, T.A.E. Ferreira, Wine quality rapid detection using a compact electronic nose system: Application focused on spoilage thresholds by acetic acid. LWT 108, 377–384 (2019). https://doi.org/10.1016/j.lwt.2019.03.074
J. Xu, L. Guo, T. Wang, M. Ma, B. Wang et al., Effect of inorganic and organic nitrogen supplementation on volatile components and aroma profile of cider. Food Res. Int. 161, 111765 (2022). https://doi.org/10.1016/j.foodres.2022.111765
X. Jiang, P. Jia, R. Luo, B. Deng, S. Duan et al., A novel electronic nose learning technique based on active learning: EQBC-RBFNN. Sens. Actuat. B Chem. 249, 533–541 (2017). https://doi.org/10.1016/j.snb.2017.04.072
S. Freddi, M.C. Rodriguez Gonzalez, A. Casotto, L. Sangaletti, S. De Feyter, Machine-learning-aided NO2 discrimination with an array of graphene chemiresistors covalently functionalized by diazonium chemistry. Chemistry 29, e202302154 (2023). https://doi.org/10.1002/chem.202302154
P. Arroyo, F. Meléndez, J.I. Suárez, J.L. Herrero, S. Rodríguez et al., Electronic nose with digital gas sensors connected via bluetooth to a smartphone for air quality measurements. Sensors 20, 786 (2020). https://doi.org/10.3390/s20030786
H. Yu, J. Wang, Y. Xu, Identification of adulterated milk using electronic nose. Sensor. Mater. 19, 275–285 (2007). https://doi.org/10.1007/978-0-387-71720-3_15
M. Tohidi, M. Ghasemi-Varnamkhasti, V. Ghafarinia, S. Saeid Mohtasebi, M. Bonyadian, Identification of trace amounts of detergent powder in raw milk using a customized low-cost artificial olfactory system: a novel method. Measurement 124, 120–129 (2018). https://doi.org/10.1016/j.measurement.2018.04.006
F. Ayari, E. Mirzaee- Ghaleh, H. Rabbani, K. Heidarbeigi, Using an E-nose machine for detection the adulteration of margarine in cow ghee. J. Food Process Eng 41, e12806 (2018). https://doi.org/10.1111/jfpe.12806
Y. Yang, L. Wei, Application of E-nose technology combined with artificial neural network to predict total bacterial count in milk. J. Dairy Sci. 104, 10558–10565 (2021). https://doi.org/10.3168/jds.2020-19987
H. Zeng, H. Han, Y. Huang, B. Wang, Rapid prediction of the aroma type of plain yogurts via electronic nose combined with machine learning approaches. Food Biosci. 56, 103269 (2023). https://doi.org/10.1016/j.fbio.2023.103269
R. Wu, S. Xie, Spatial distribution of secondary organic aerosol formation potential in China derived from speciated anthropogenic volatile organic compound emissions. Environ. Sci. Technol. 52, 8146–8156 (2018). https://doi.org/10.1021/acs.est.8b01269
A. Pozzer, S.C. Anenberg, S. Dey, A. Haines, J. Lelieveld et al., Mortality attributable to ambient air pollution: a review of global estimates. Geohealth 7, e2022GH000711 (2023). https://doi.org/10.1029/2022GH000711
D. Fattorini, F. Regoli, Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 264, 114732 (2020). https://doi.org/10.1016/j.envpol.2020.114732
S. Gulas, M. Downton, K. D’Souza, K. Hayden, T.R. Walker, Declining Arctic Ocean oil and gas developments: opportunities to improve governance and environmental pollution control. Mar. Policy 75, 53–61 (2017). https://doi.org/10.1016/j.marpol.2016.10.014
H.S. Hong, N.H. Phuong, N.T. Huong, N.H. Nam, N.T. Hue, Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures. Appl. Surf. Sci. 492, 449–454 (2019). https://doi.org/10.1016/j.apsusc.2019.06.230
R.G. Ewing, M.J. Waltman, D.A. Atkinson, J.W. Grate, P.J. Hotchkiss, The vapor pressures of explosives. Trac Trends Anal. Chem. 42, 35–48 (2013). https://doi.org/10.1016/j.trac.2012.09.010
Y. Li, W. Zhou, B. Zu, X. Dou, Qualitative detection toward military and improvised explosive vapors by a facile TiO2 nanosheet-based chemiresistive sensor array. Front. Chem. 8, 29 (2020). https://doi.org/10.3389/fchem.2020.00029
C.-S. Lee, H.-Y. Li, B.-Y. Kim, Y.-M. Jo, H.-G. Byun et al., Discriminative detection of indoor volatile organic compounds using a sensor array based on pure and Fe-doped In2O3 nanofibers. Sens. Actuat. B Chem. 285, 193–200 (2019). https://doi.org/10.1016/j.snb.2019.01.044
L. Zhang, F. Tian, H. Nie, L. Dang, G. Li et al., Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens. Actuat. B Chem. 174, 114–125 (2012). https://doi.org/10.1016/j.snb.2012.07.021
P. Liu, X. Guo, C. Liang, B. Du, Y. Tan et al., Rapid detection of trace nitro-explosives under UV irradiation by electronic nose with neural networks. ACS Appl. Mater. Interfaces 15, 36539–36549 (2023). https://doi.org/10.1021/acsami.3c06498
R. López, M. Vega, L.M. Debán, R. Pardo, Detection of Triacetone Triperoxide in air combining SnO2 sensor e-nose enhanced with a kinetic model. Sens. Actuat. B Chem. 403, 135242 (2024). https://doi.org/10.1016/j.snb.2023.135242
J. Chapman, V.K. Truong, A. Elbourne, S. Gangadoo, S. Cheeseman et al., Combining chemometrics and sensors: toward new applications in monitoring and environmental analysis. Chem. Rev. 120, 6048–6069 (2020). https://doi.org/10.1021/acs.chemrev.9b00616
O. Attallah, Multitask deep learning-based pipeline for gas leakage detection via E-nose and thermal imaging multimodal fusion. Chemosensors 11, 364 (2023). https://doi.org/10.3390/chemosensors11070364
K.R. Sinju, B. Bhangare, A. Pathak, S.J. Patil, N.S. Ramgir et al., ZnO nanowires based e-nose for the detection of H2S and NO2 toxic gases. Mater. Sci. Semicond. Process. 137, 106235 (2022). https://doi.org/10.1016/j.mssp.2021.106235
O. Attallah, I. Morsi, An electronic nose for identifying multiple combustible/harmful gases and their concentration levels via artificial intelligence. Measurement 199, 111458 (2022). https://doi.org/10.1016/j.measurement.2022.111458
A. Shahid, J.H. Choi, A.U.H.S. Rana, H.S. Kim, Least Squares neural network-based wireless E-nose system using an SnO2 sensor array. Sensors 18, 1446 (2018). https://doi.org/10.3390/s18051446
H. Kang, S.-Y. Cho, J. Ryu, J. Choi, H. Ahn et al., Multiarray nanopattern electronic nose (E-nose) by high-resolution top-down nanolithography. Adv. Funct. Mater. 30, 2002486 (2020). https://doi.org/10.1002/adfm.202002486
J. Zhang, Y. Xue, Q. Sun, T. Zhang, Y. Chen et al., A miniaturized electronic nose with artificial neural network for anti-interference detection of mixed indoor hazardous gases. Sens. Actuat. B Chem. 326, 128822 (2021). https://doi.org/10.1016/j.snb.2020.128822
S. Ni, P. Jia, Y. Xu, L. Zeng, X. Li et al., Prediction of CO concentration in different conditions based on Gaussian-TCN. Sens. Actuat. B Chem. 376, 133010 (2023). https://doi.org/10.1016/j.snb.2022.133010
G. Mao, Y. Zhang, Y. Xu, X. Li, M. Xu et al., An electronic nose for harmful gas early detection based on a hybrid deep learning method H-CRNN. Microchem. J. 195, 109464 (2023). https://doi.org/10.1016/j.microc.2023.109464
R.H. Weiss, K. Kim, Metabolomics in the study of kidney diseases. Nat. Rev. Nephrol. 8, 22–33 (2012). https://doi.org/10.1038/nrneph.2011.152
D.W. Dockery, C.A. Pope, X. Xu, J.D. Spengler, J.H. Ware et al., An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329, 1753–1759 (1993). https://doi.org/10.1056/nejm199312093292401
H. Ma, T. Wang, B. Li, W. Cao, M. Zeng et al., A low-cost and efficient electronic nose system for quantification of multiple indoor air contaminants utilizing HC and PLSR. Sens. Actuat. B Chem. 350, 130768 (2022). https://doi.org/10.1016/j.snb.2021.130768
P. Jia, F. Meng, H. Cao, S. Duan, X. Peng et al., Training technique of electronic nose using labeled and unlabeled samples based on multi-kernel LapSVM. Sens. Actuat. B Chem. 294, 98–105 (2019). https://doi.org/10.1016/j.snb.2019.05.034
L. Wang, P. Jia, T. Huang, S. Duan, J. Yan et al., A novel optimization technique to improve gas recognition by electronic noses based on the enhanced krill herd algorithm. Sensors 16, 1275 (2016). https://doi.org/10.3390/s16081275
H. Fan, V.H. Bennetts, E. Schaffernicht, A.J. Lilienthal, A cluster analysis approach based on exploiting density peaks for gas discrimination with electronic noses in open environments. Sens. Actuat. B Chem. 259, 183–203 (2018). https://doi.org/10.1016/j.snb.2017.10.063
M. Leidinger, T. Sauerwald, W. Reimringer, G. Ventura, A. Schütze, Selective detection of hazardous VOCs for indoor air quality applications using a virtual gas sensor array. J. Sens. Sens. Syst. 3, 253–263 (2014). https://doi.org/10.5194/jsss-3-253-2014
J. He, L. Xu, P. Wang, Q. Wang, A high precise E-nose for daily indoor air quality monitoring in living environment. Integration 58, 286–294 (2017). https://doi.org/10.1016/j.vlsi.2016.12.010
Y. Chen, Z. Zhu, S. Cheng, Industrial agglomeration and haze pollution: Evidence from China. Sci. Total. Environ. 845, 157392 (2022). https://doi.org/10.1016/j.scitotenv.2022.157392
Y. Wang, Y. Wen, S. Zhang, G. Zheng, H. Zheng et al., Vehicular ammonia emissions significantly contribute to urban PM2.5 pollution in two Chinese megacities. Environ. Sci. Technol. 57, 2698–2705 (2023). https://doi.org/10.1021/acs.est.2c06198
A. Rim-Rukeh, An assessment of the contribution of municipal solid waste dump sites fire to atmospheric pollution. Open J. Air Pollut. 3, 53–60 (2014). https://doi.org/10.4236/ojap.2014.33006
Y. Su, J. Wang, B. Wang, T. Yang, B. Yang et al., Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 14, 6067–6075 (2020). https://doi.org/10.1021/acsnano.0c01804
D. Ma, J. Zhang, X. Li, C. He, Z. Lu et al., C3N monolayers as promising candidates for NO2 sensors. Sens. Actuat. B Chem. 266, 664–673 (2018). https://doi.org/10.1016/j.snb.2018.03.159
G. Domènech-Gil, N.T. Duc, J.J. Wikner, J. Eriksson, S.N. Påledal et al., Electronic nose for improved environmental methane monitoring. Environ. Sci. Technol. 58, 352–361 (2024). https://doi.org/10.1021/acs.est.3c06945
C. Zhang, M. Debliquy, A. Boudiba, H. Liao, C. Coddet, Sensing properties of atmospheric plasma-sprayed WO3 coating for sub-ppm NO2 detection. Sens. Actuat. B Chem. 144, 280–288 (2010). https://doi.org/10.1016/j.snb.2009.11.006
I. Sayago, M. Aleixandre, J.P. Santos, Development of tin oxide-based nanosensors for electronic nose environmental applications. Biosensors 9, 21 (2019). https://doi.org/10.3390/bios9010021
T.-M. Chen, W.G. Kuschner, J. Gokhale, S. Shofer, Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am. J. Med. Sci. 333, 249–256 (2007). https://doi.org/10.1097/MAJ.0b013e31803b900f
S. Zhai, Z. Li, H. Zhang, L. Wang, S. Duan et al., A multilevel interleaved group attention-based convolutional network for gas detection via an electronic nose system. Eng. Appl. Artif. Intell. 133, 108038 (2024). https://doi.org/10.1016/j.engappai.2024.108038
J. Burgués, S. Doñate, M.D. Esclapez, L. Saúco, S. Marco, Characterization of odour emissions in a wastewater treatment plant using a drone-based chemical sensor system. Sci. Total. Environ. 846, 157290 (2022). https://doi.org/10.1016/j.scitotenv.2022.157290
J. Burgués, M.D. Esclapez, S. Doñate, S. Marco, RHINOS: a lightweight portable electronic nose for real-time odor quantification in wastewater treatment plants. iScience 24, 103371 (2021). https://doi.org/10.1016/j.isci.2021.103371
M. Kang, I. Cho, J. Park, J. Jeong, K. Lee et al., High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens. 7, 430–440 (2022). https://doi.org/10.1021/acssensors.1c01204
K. Lee, I. Cho, M. Kang, J. Jeong, M. Choi et al., Ultra-low-power E-nose system based on multi-micro-LED-integrated, nanostructured gas sensors and deep learning. ACS Nano 17, 539–551 (2023). https://doi.org/10.1021/acsnano.2c09314
T. Wang, H. Zhang, Y. Wu, W. Jiang, X. Chen et al., Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning. Sens. Actuat. B Chem. 351, 130915 (2022). https://doi.org/10.1016/j.snb.2021.130915
A.H. Abdullah, M.A.A. Bakar, F.S.A. Saad, S. Sudin, Z.A. Ahmad et al., Development of cloud-based electronic nose for university laboratories air monitoring. IOP Conf. Ser. Mater. Sci. Eng. 932, 012082 (2020). https://doi.org/10.1088/1757-899x/932/1/012082
H.Y. Chae, J. Cho, R. Purbia, C.S. Park, H. Kim et al., Environment-adaptable edge-computing gas-sensor device with analog-assisted continual learning scheme. IEEE Trans. Ind. Electron. 70, 10720–10729 (2023). https://doi.org/10.1109/TIE.2022.3220871
J. Wang, J. Yang, D. Chen, L. Jin, Y. Li et al., Gas detection microsystem with MEMS gas sensor and integrated circuit. IEEE Sens. J. 18, 6765–6773 (2018). https://doi.org/10.1109/JSEN.2018.2829742
Y.M. Kwon, B. Oh, R. Purbia, H.Y. Chae, G.H. Han et al., High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level. Sens. Actuat. B Chem. 375, 132939 (2023). https://doi.org/10.1016/j.snb.2022.132939
F. Raspagliesi, G. Bogani, S. Benedetti, S. Grassi, S. Ferla et al., Detection of ovarian cancer through exhaled breath by electronic nose: a prospective study. Cancers 12, 2408 (2020). https://doi.org/10.3390/cancers12092408
S. Sethi, R. Nanda, T. Chakraborty, Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin. Microbiol. Rev. 26, 462–475 (2013). https://doi.org/10.1128/CMR.00020-13
J. Cancer, R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020. CA. Clin. 70, 7–30 (2020). https://doi.org/10.3322/caac.21590
A.T. Güntner, S. Abegg, K. Königstein, P.A. Gerber, A. Schmidt-Trucksäss et al., Breath sensors for health monitoring. ACS Sens. 4, 268–280 (2019). https://doi.org/10.1021/acssensors.8b00937
A. Leiter, R.R. Veluswamy, J.P. Wisnivesky, The global burden of lung cancer: current status and future trends. Nat. Rev. Clin. Oncol. 20, 624–639 (2023). https://doi.org/10.1038/s41571-023-00798-3
D. Shlomi, M. Abud, O. Liran, J. Bar, N. Gai-Mor et al., Detection of lung cancer and EGFR mutation by electronic nose system. J. Thorac. Oncol. 12, 1544–1551 (2017). https://doi.org/10.1016/j.jtho.2017.06.073
A. Kononov, B. Korotetsky, I. Jahatspanian, A. Gubal, A. Vasiliev et al., Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer. J. Breath Res. 14, 016004 (2019). https://doi.org/10.1088/1752-7163/ab433d
R. de Vries, N. Farzan, T. Fabius, F.H.C. De Jongh, P.M.C. Jak et al., Prospective detection of early lung cancer in patients with COPD in regular care by electronic nose analysis of exhaled breath. Chest 164, 1315–1324 (2023). https://doi.org/10.1016/j.chest.2023.04.050
G. Zonta, G. Anania, B. Fabbri, A. Gaiardo, S. Gherardi et al., Detection of colorectal cancer biomarkers in the presence of interfering gases. Sens. Actuat. B Chem. 218, 289–295 (2015). https://doi.org/10.1016/j.snb.2015.04.080
G. Zonta, G. Anania, C. Feo, A. Gaiardo, S. Gherardi et al., Use of gas sensors and FOBT for the early detection of colorectal cancer. Sens. Actuat. B Chem. 262, 884–891 (2018). https://doi.org/10.1016/j.snb.2018.01.225
G. Zonta, C. Malagù, S. Gherardi, A. Giberti, A. Pezzoli et al., Clinical validation results of an innovative non-invasive device for colorectal cancer preventive screening through fecal exhalation analysis. Cancers 12, 1471 (2020). https://doi.org/10.3390/cancers12061471
R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics. CA Cancer J. Clin. 68, 7–30 (2018). https://doi.org/10.3322/caac.21442
F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018). https://doi.org/10.3322/caac.21492
C. Bax, G. Taverna, L. Eusebio, S. Sironi, F. Grizzi et al., Innovative diagnostic methods for early prostate cancer detection through urine analysis: a review. Cancers 10, 123 (2018). https://doi.org/10.3390/cancers10040123
C. Bax, B.J. Lotesoriere, S. Sironi, L. Capelli, Review and comparison of cancer biomarker trends in urine as a basis for new diagnostic pathways. Cancers 11, 1244 (2019). https://doi.org/10.3390/cancers11091244
L. Capelli, C. Bax, F. Grizzi, G. Taverna, Optimization of training and measurement protocol for eNose analysis of urine headspace aimed at prostate cancer diagnosis. Sci. Rep. 11, 20898 (2021). https://doi.org/10.1038/s41598-021-00033-y
G. Taverna, F. Grizzi, L. Tidu, C. Bax, M. Zanoni et al., Accuracy of a new electronic nose for prostate cancer diagnosis in urine samples. Int. J. Urol. 29, 890–896 (2022). https://doi.org/10.1111/iju.14912
C. Bax, S. Prudenza, G. Gaspari, L. Capelli, F. Grizzi et al., Drift compensation on electronic nose data for non-invasive diagnosis of prostate cancer by urine analysis. iScience 25, 103622 (2022). https://doi.org/10.1016/j.isci.2021.103622
C.M. Durán Acevedo, J.K. Carrillo Gómez, C.A. Cuastumal Vasquez, J. Ramos, Prostate cancer detection in Colombian patients through E-senses devices in exhaled breath and urine samples. Chemosensors 12, 11 (2024). https://doi.org/10.3390/chemosensors12010011
L. Lavra, A. Catini, A. Ulivieri, R. Capuano, L. Baghernajad Salehi et al., Investigation of VOCs associated with different characteristics of breast cancer cells. Sci. Rep. 5, 13246 (2015). https://doi.org/10.1038/srep13246
J. Giró Benet, M. Seo, M. Khine, J. Gumà Padró, A. Pardo Martnez et al., Breast cancer detection by analyzing the volatile organic compound (VOC) signature in human urine. Sci. Rep. 12, 14873 (2022). https://doi.org/10.1038/s41598-022-17795-8
H.-Y. Yang, Y.-C. Wang, H.-Y. Peng, C.-H. Huang, Breath biopsy of breast cancer using sensor array signals and machine learning analysis. Sci. Rep. 11, 103 (2021). https://doi.org/10.1038/s41598-020-80570-0
M.K. Nakhleh, H. Amal, R. Jeries, Y.Y. Broza, M. Aboud et al., Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS Nano 11, 112–125 (2017). https://doi.org/10.1021/acsnano.6b04930
A. Kwiatkowski, S. Borys, K. Sikorska, K. Drozdowska, J.M. Smulko, Clinical studies of detecting COVID-19 from exhaled breath with electronic nose. Sci. Rep. 12, 15990 (2022). https://doi.org/10.1038/s41598-022-20534-8
D.K. Nurputra, A. Kusumaatmaja, M.S. Hakim, S.N. Hidayat, T. Julian et al., Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print recognition. NPJ Digit. Med. 5, 115 (2022). https://doi.org/10.1038/s41746-022-00661-2
M.P. Bhandari, V. Veliks, I. Stonāns, M. Padilla, O. Šuba et al., Breath sensor technology for the use in mechanical lung ventilation equipment for monitoring critically ill patients. Diagnostics 12, 430 (2022). https://doi.org/10.3390/diagnostics12020430
J. Li, A. Hannon, G. Yu, L.A. Idziak, A. Sahasrabhojanee et al., Electronic nose development and preliminary human breath testing for rapid, non-invasive COVID-19 detection. ACS Sens. 8, 2309–2318 (2023). https://doi.org/10.1021/acssensors.3c00367
C.-Y. Chen, W.-C. Lin, H.-Y. Yang, Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: solutions to improve the application of machine learning in respiratory research. Respir. Res. 21, 45 (2020). https://doi.org/10.1186/s12931-020-1285-6
J.B. Soriano, P.J. Kendrick, K.R. Paulson, V. Gupta, E.M. Abrams et al., Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 8, 585–596 (2020). https://doi.org/10.1016/S2213-2600(20)30105-3
D. Pritchard, A. Adegunsoye, E. Lafond, J.V. Pugashetti, R. DiGeronimo et al., Diagnostic test interpretation and referral delay in patients with interstitial lung disease. Respir. Res. 20, 253 (2019). https://doi.org/10.1186/s12931-019-1228-2
N. Hoyer, T.S. Prior, E. Bendstrup, T. Wilcke, S.B. Shaker, Risk factors for diagnostic delay in idiopathic pulmonary fibrosis. Respir. Res. 20, 103 (2019). https://doi.org/10.1186/s12931-019-1076-0
I.G. van der Sar, M.S. Wijsenbeek, G.J. Braunstahl, J.O. Loekabino, A.C. Dingemans et al., Differentiating interstitial lung diseases from other respiratory diseases using electronic nose technology. Respir. Res. 24, 271 (2023). https://doi.org/10.1186/s12931-023-02575-3
N. Wijbenga, R.A.S. Hoek, B.J. Mathot, L. Seghers, C.C. Moor et al., Diagnostic performance of electronic nose technology in chronic lung allograft dysfunction. J Heart Lung Transplant 42, 236–245 (2023). https://doi.org/10.1016/j.healun.2022.09.009
N. Alkhouri, T. Singh, E. Alsabbagh, J. Guirguis, T. Chami et al., Isoprene in the exhaled breath is a novel biomarker for advanced fibrosis in patients with chronic liver disease: a pilot study. Clin. Transl. Gastroenterol. 6, e112 (2015). https://doi.org/10.1038/ctg.2015.40
A. Tangerman, M.T. Meuwese-Arends, J.B. Jansen, Cause and composition of foetor hepaticus. Lancet 343, 483 (1994). https://doi.org/10.1016/s0140-6736(94)92729-4
D.-D. Wu, D.-Y. Wang, H.-M. Li, J.-C. Guo, S.-F. Duan et al., Hydrogen sulfide as a novel regulatory factor in liver health and disease. Oxid. Med. Cell. Longev. 2019, 3831713 (2019). https://doi.org/10.1155/2019/3831713
R.F. Del Río, M.E. O’Hara, A. Holt, P. Pemberton, T. Shah et al., Volatile biomarkers in breath associated with liver cirrhosis: comparisons of pre- and post-liver transplant breath samples. EBioMedicine 2, 1243–1250 (2015). https://doi.org/10.1016/j.ebiom.2015.07.027
O. Zaim, A. Diouf, N. El Bari, N. Lagdali, I. Benelbarhdadi et al., Comparative analysis of volatile organic compounds of breath and urine for distinguishing patients with liver cirrhosis from healthy controls by using electronic nose and voltammetric electronic tongue. Anal. Chim. Acta 1184, 339028 (2021). https://doi.org/10.1016/j.aca.2021.339028
C. Dalis, F.M. Mesfin, K. Manohar, J. Liu, W.C. Shelley et al., Volatile organic compound assessment as a screening tool for early detection of gastrointestinal diseases. Microorganisms 11, 1822 (2023). https://doi.org/10.3390/microorganisms11071822
M. Buijck, D.J. Berkhout, E.F. de Groot, M.A. Benninga, M.P. van der Schee et al., Sniffing out paediatric gastrointestinal diseases: the potential of volatile organic compounds as biomarkers for disease. J. Pediatr. Gastroenterol. Nutr. 63, 585–591 (2016). https://doi.org/10.1097/MPG.0000000000001250
S. Kurada, N. Alkhouri, C. Fiocchi, R. Dweik, F. Rieder, Review : breath analysis in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 41, 329–341 (2015). https://doi.org/10.1111/apt.13050
R.P. Arasaradnam, N. Ouaret, M.G. Thomas, N. Quraishi, E. Heatherington et al., A novel tool for noninvasive diagnosis and tracking of patients with inflammatory bowel disease. Inflamm. Bowel Dis. 19, 999–1003 (2013). https://doi.org/10.1097/mib.0b013e3182802b26
N.D. McGuire, R.J. Ewen, B. de Lacy Costello, C.E. Garner, C.S. Probert et al., Towards point of care testing for C. difficile infection by volatile profiling, using the combination of a short multi-capillary gas chromatography column with metal oxide sensor detection. Meas. Sci. Technol. 25, 065108 (2014). https://doi.org/10.1088/0957-0233/25/6/065108
B.A. Day, C.E. Wilmer, Computational design of MOF-based electronic noses for dilute gas species detection: application to kidney disease detection. ACS Sens. 6, 4425–4434 (2021). https://doi.org/10.1021/acssensors.1c01808
K. Dhatariya, Blood ketones: measurement, interpretation, limitations, and utility in the management of diabetic ketoacidosis. Rev. Diabet. Stud. 13, 217–225 (2016). https://doi.org/10.1900/rds.2016.13.217
P. Wang, Y. Tan, H. Xie, F. Shen, A novel method for diabetes diagnosis based on electronic nose 1 paper presented at Biosensors ’96, Bangkock, May 1996.1. Biosens. Bioelectron. 12, 1031–1036 (1997). https://doi.org/10.1016/S0956-5663(97)00059-6
J.-Y. Jeon, J.-S. Choi, J.-B. Yu, H.-R. Lee, B.K. Jang et al., Sensor array optimization techniques for exhaled breath analysis to discriminate diabetics using an electronic nose. ETRI J. 40, 802–812 (2018). https://doi.org/10.4218/etrij.2017-0018
S. Esfahani, A. Wicaksono, E. Mozdiak, R.P. Arasaradnam, J.A. Covington, Non-invasive diagnosis of diabetes by volatile organic compounds in urine using FAIMS and Fox4000 electronic nose. Biosensors 8, 121 (2018). https://doi.org/10.3390/bios8040121
J.E. Lee, C.K. Lim, H. Song, S.-Y. Choi, D.-S. Lee, A highly smart MEMS acetone gas sensors in array for diet-monitoring applications. Micro Nano Syst. Lett. 9, 10 (2021). https://doi.org/10.1186/s40486-021-00136-1
S.Y. Park, Y. Kim, T. Kim, T.H. Eom, S.Y. Kim et al., Chemoresistive materials for electronic nose: progress, perspectives, and challenges. InfoMat 1, 289–316 (2019). https://doi.org/10.1002/inf2.12029
S.-Y. Jeong, J.-S. Kim, J.-H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 32, e2002075 (2020). https://doi.org/10.1002/adma.202002075
S.-J. Choi, I.-D. Kim, Recent, developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14, 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
F. Zhu, J. Gao, J. Yang, N. Ye, Neighborhood linear discriminant analysis. Pattern Recognit. 123, 108422 (2022). https://doi.org/10.1016/j.patcog.2021.108422
M. Greenacre, P.J.F. Groenen, T. Hastie, A.I. D’Enza, A. Markos et al., Principal component analysis. Nat. Rev. Meth. Primers 2, 100 (2022). https://doi.org/10.1038/s43586-022-00184-w
S.A. Abdulrahman, W. Khalifa, M. Roushdy, A.-B.M. Salem, Comparative study for 8 computational intelligence algorithms for human identification. Comput. Sci. Rev. 36, 100237 (2020). https://doi.org/10.1016/j.cosrev.2020.100237
R. Vidal, Y. Ma, S.S. Sastry, In Principal Component Analysis (Springer, New York, 2016), pp.25–62
A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, A. Song, Efficient agglomerative hierarchical clustering. Expert Syst. Appl. 42, 2785–2797 (2015). https://doi.org/10.1016/j.eswa.2014.09.054
A. Sebastian, A. Pannone, S. Subbulakshmi Radhakrishnan, S. Das, Gaussian synapses for probabilistic neural networks. Nat. Commun. 10, 4199 (2019). https://doi.org/10.1038/s41467-019-12035-6
V.K. Ojha, A. Abraham, V. Snášel, Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017). https://doi.org/10.1016/j.engappai.2017.01.013
S. Ding, H. Zhao, Y. Zhang, X. Xu, R. Nie, Extreme learning machine: algorithm, theory and applications. Artif. Intell. Rev. 44, 103–115 (2015). https://doi.org/10.1007/s10462-013-9405-z
G. Van Houdt, C. Mosquera, G. Nápoles, A review on the long short-term memory model. Artif. Intell. Rev. 53, 5929–5955 (2020). https://doi.org/10.1007/s10462-020-09838-1
A.H. Gómez, J. Wang, G. Hu, A.G. Pereira, Monitoring storage shelf life of tomato using electronic nose technique. J. Food Eng. 85, 625–631 (2008). https://doi.org/10.1016/j.jfoodeng.2007.06.039
Q. Liu, N. Zhao, D. Zhou, Y. Sun, K. Sun et al., Discrimination and growth tracking of fungi contamination in peaches using electronic nose. Food Chem. 262, 226–234 (2018). https://doi.org/10.1016/j.foodchem.2018.04.100
M. Ghasemi-Varnamkhasti, A. Mohammad-Razdari, S.H. Yoosefian, Z. Izadi, G. Rabiei, Selection of an optimized metal oxide semiconductor sensor (MOS) array for freshness characterization of strawberry in polymer packages using response surface method (RSM). Postharvest Biol. Technol. 151, 53–60 (2019). https://doi.org/10.1016/j.postharvbio.2019.01.016
S. Qiu, L. Gao, J. Wang, Classification and regression of ELM, LVQ and SVM for E-nose data of strawberry juice. J. Food Eng. 144, 77–85 (2015). https://doi.org/10.1016/j.jfoodeng.2014.07.015
M. Ghasemi-Varnamkhasti, Z.S. Amiri, M. Tohidi, M. Dowlati, S.S. Mohtasebi et al., Differentiation of cumin seeds using a metal-oxide based gas sensor array in tandem with chemometric tools. Talanta 176, 221–226 (2018). https://doi.org/10.1016/j.talanta.2017.08.024
W. Jia, G. Liang, H. Tian, J. Sun, C. Wan, Electronic nose-based technique for rapid detection and recognition of moldy apples. Sensors 19, 1526 (2019). https://doi.org/10.3390/s19071526
J. Wen, Y. Zhao, Q. Rong, Z. Yang, J. Yin et al., Rapid odor recognition based on reliefF algorithm using electronic nose and its application in fruit identification and classification. J. Food Meas. Charact. 16, 2422–2433 (2022). https://doi.org/10.1007/s11694-022-01351-z
X. Hong, J. Wang, Detection of adulteration in cherry tomato juices based on electronic nose and tongue: comparison of different data fusion approaches. J. Food Eng. 126, 89–97 (2014). https://doi.org/10.1016/j.jfoodeng.2013.11.008
E. Yavuzer, Determination of fish quality parameters with low cost electronic nose. Food Biosci. 41, 100948 (2021). https://doi.org/10.1016/j.fbio.2021.100948
S. Grassi, S. Benedetti, M. Opizzio, E.D. Nardo, S. Buratti, Meat and fish freshness assessment by a portable and simplified electronic nose system (mastersense). Sensors 19, 3225 (2019). https://doi.org/10.3390/s19143225
N.U. Hasan, N. Ejaz, W. Ejaz, H.S. Kim, Meat and fish freshness inspection system based on odor sensing. Sensors 12, 15542–15557 (2012). https://doi.org/10.3390/s121115542
X. Hong, J. Wang, Z. Hai, Discrimination and prediction of multiple beef freshness indexes based on electronic nose. Sens. Actuat. B Chem. 161, 381–389 (2012). https://doi.org/10.1016/j.snb.2011.10.048
X. Tian, J. Wang, S. Cui, Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. J. Food Eng. 119, 744–749 (2013). https://doi.org/10.1016/j.jfoodeng.2013.07.004
D.R. Wijaya, R. Sarno, E. Zulaika, DWTLSTM for electronic nose signal processing in beef quality monitoring. Sens. Actuat. B Chem. 326, 128931 (2021). https://doi.org/10.1016/j.snb.2020.128931
M. Rasekh, H. Karami, E-nose coupled with an artificial neural network to detection of fraud in pure and industrial fruit juices. Inter. J. Food Properties 24, 592–602 (2021). https://doi.org/10.1080/10942912.2021.1908354
F. Mu, Y. Gu, J. Zhang, L. Zhang, Milk source identification and milk quality estimation using an electronic nose and machine learning techniques. Sensors 20, 4238 (2020). https://doi.org/10.3390/s20154238
H. Karami, M. Rasekh, E. Mirzaee-Ghaleh, Qualitative analysis of edible oil oxidation using an olfactory machine. J. Food Meas. Charact. 14, 2600–2610 (2020). https://doi.org/10.1007/s11694-020-00506-0
H. Jiang, Y. He, Q. Chen, Qualitative identification of the edible oil storage period using a homemade portable electronic nose combined with multivariate analysis. J. Sci. Food Agric. 101, 3448–3456 (2021). https://doi.org/10.1002/jsfa.10975
X. Dong, L. Gao, H. Zhang, J. Wang, K. Qiu et al., Comparison of sensory qualities in eggs from three breeds based on electronic sensory evaluations. Foods 10, 1984 (2021). https://doi.org/10.3390/foods10091984
M. Rasekh, H. Karami, A.D. Wilson, M. Gancarz, Classification and identification of essential oils from herbs and fruits based on a MOS electronic-nose technology. Chemosensors 9, 142 (2021). https://doi.org/10.3390/chemosensors9060142
R. Dutta, E.L. Hines, J.W. Gardner, K.R. Kash