Robust and Reprocessable Biorenewable Polyester Nanocomposites In Situ Catalyzed and Reinforced by Dendritic MXene@CNT Heterostructure
Corresponding Author: Jinggang Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 161
Abstract
Renewable 2,5-furandicarboxylic acid-based polyesters are one of the most promising materials for achieving plastic replacement in the age of energy and environmental crisis. However, their properties still cannot compete with those of petrochemical-based plastics, owing to insufficient molecular and/or microstructure designs. Herein, we utilize the Ti3C2Tx-based MXene nanosheets for decorating carbon nanotube (CNT) and obtaining the structurally stable and highly dispersed dendritic hetero-structured MXene@CNT, that can act as multi-roles, i.e., polycondensation catalyst, crystal nucleator, and interface enhancer of polyester. The bio-based MXene@CNT/polybutylene furandicarboxylate (PBF) (denoted as MCP) nanocomposites are synthesized by the strategy of “in situ catalytic polymerization and hot-pressing”. Benefiting from the multi-scale interactions (i.e., covalent bonds, hydrogen bonds, and physical interlocks) in hybrid structure, the MCP presents exceptional mechanical strength (≈101 MPa), stiffness (≈3.1 GPa), toughness (≈130 MJ m−3), and barrier properties (e.g., O2 0.0187 barrer, CO2 0.0264 barrer, and H2O 1.57 × 10−14 g cm cm−2 s Pa) that are higher than most reported bio-based materials and engineering plastics. Moreover, it also displays satisfactory multifunctionality with high reprocessability (90% strength retention after 5 recycling), UV resistance (blocking 85% UVA rays), and solvent-resistant properties. As a state-of-art high-performance and multifunctional material, the novel bio-based MCP nanocomposite offers a more sustainable alternative to petrochemical-based plastics in packaging and engineering material fields. More importantly, our catalysis-interfacial strengthening integration strategy opens a door for designing and constructing high-performance bio-based polyester materials in future.
Highlights:
1 Structurally stable and well-dispersed dendritic MXene@CNT heterostructures with multiple roles (i.e., catalyst, nucleator, and interface enhancer of polyesters) were constructed.
2 Biorenewable MXene@CNT/PBF (MCP) polyester nanocomposites with ultrahigh mechanical strength (≈101 MPa), stiffness (≈3.1 GPa), and toughness (≈130 MJ m−3) were synthesized via MXene@CNT in situ catalytic polymerization.
3 Exceptional reprocessability, gas barrier (e.g., O2 0.0187 barrer), and UV resistance (e.g., resist 85% UVA rays) properties were achieved for the MCP, which can be employed as high-performance and multifunctional packaging materials for plastic replacement.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Brahney, M. Hallerud, E. Heim, M. Hahnenberger, S. Sukumaran, Plastic rain in protected areas of the United States. Science 368, 1257–1260 (2020). https://doi.org/10.1126/science.aaz5819
- X. Fei, J. Wang, J. Zhu, X. Wang, X. Liu, Biobased poly(ethylene 2, 5-furancoate): No longer an alternative, but an irreplaceable polyester in the polymer industry. ACS Sustain. Chem. Eng. 8, 8471–8485 (2020). https://doi.org/10.1021/acssuschemeng.0c01862
- R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017). https://doi.org/10.1126/sciadv.1700782
- M.C. Rillig, A. Lehmann, Microplastic in terrestrial ecosystems. Science 368, 1430–1431 (2020). https://doi.org/10.1126/science.abb5979
- V. Tournier, C.M. Topham, A. Gilles, B. David, C. Folgoas et al., An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020). https://doi.org/10.1038/s41586-020-2149-4
- P.R. Christensen, A.M. Scheuermann, K.E. Loeffler, B.A. Helms, Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442–448 (2019). https://doi.org/10.1038/s41557-019-0249-2
- G.Z. Papageorgiou, D.G. Papageorgiou, Z. Terzopoulou, D.N. Bikiaris, Production of bio-based 2, 5-furan dicarboxylate polyesters: recent progress and critical aspects in their synthesis and thermal properties. Eur. Polym. J. 83, 202–229 (2016). https://doi.org/10.1016/j.eurpolymj.2016.08.004
- F.A. Kucherov, E.G. Gordeev, A.S. Kashin, V.P. Ananikov, Controlled natural biomass deoxygenation allows the design of reusable hot-melt adhesives acting in a multiple oxygen binding mode. ACS Appl. Mater. Interfaces 12, 45394–45403 (2020). https://doi.org/10.1021/acsami.0c14986
- J. Ding, H. Zhao, H. Wang, Q. Chu, J. Zhu et al., Flexible and recyclable bio-based polyester composite films with outstanding mechanical and gas barrier properties using leaf-shaped CNT@BNNS covalent heterojunction. Small 20, e2406958 (2024). https://doi.org/10.1002/smll.202406958
- J. Ding, H. Zhao, S. Shi, J. Su, Q. Chu et al., High-strength, high-barrier bio-based polyester nanocomposite films by binary multiscale boron nitride nanosheets. Adv. Funct. Mater. 34, 2308631 (2024). https://doi.org/10.1002/adfm.202308631
- M. Jiang, Q. Liu, Q. Zhang, C. Ye, G. Zhou, A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J. Polym. Sci. Part A Polym. Chem. 50, 1026–1036 (2012). https://doi.org/10.1002/pola.25859
- H. Hu, R. Zhang, Y. Jiang, L. Shi, J. Wang et al., Toward biobased, biodegradable, and smart barrier packaging material: modification of poly(neopentyl glycol 2, 5-furandicarboxylate) with succinic acid. ACS Sustain. Chem. Eng. 7, 4255–4265 (2019). https://doi.org/10.1021/acssuschemeng.8b05990
- H. Hu, R. Zhang, J. Wang, W.B. Ying, J. Zhu, Synthesis and structure–property relationship of biobased biodegradable poly(butylene carbonate-co-furandicarboxylate). ACS Sustain. Chem. Eng. 6, 7488–7498 (2018). https://doi.org/10.1021/acssuschemeng.8b00174
- T. Zhou, C. Wu, Y. Wang, A.P. Tomsia, M. Li et al., Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020). https://doi.org/10.1038/s41467-020-15991-6
- T. Zhou, H. Ni, Y. Wang, C. Wu, H. Zhang et al., Ultratough graphene-black phosphorus films. Proc. Natl. Acad. Sci. U.S.A. 117, 8727–8735 (2020). https://doi.org/10.1073/pnas.1916610117
- I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Composites with carbon nanotubes and graphene: an outlook. Science 362, 547–553 (2018). https://doi.org/10.1126/science.aat7439
- H. Wang, J. Ding, H. Zhao, Q. Chu, M.R. Miah et al., Preparing strong, tough, and high-barrier biobased polyester composites by regulating interfaces of carbon nanotubes. Mater. Today Nano 25, 100463 (2024). https://doi.org/10.1016/j.mtnano.2024.100463
- R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes: the route toward applications. Science 297, 787–792 (2002). https://doi.org/10.1126/science.1060928
- L. Shanmugam, X. Feng, J. Yang, Enhanced interphase between thermoplastic matrix and UHMWPE fiber sized with CNT-modified polydopamine coating. Compos. Sci. Technol. 174, 212–220 (2019). https://doi.org/10.1016/j.compscitech.2019.03.001
- C.A. Dyke, J.M. Tour, Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151–11159 (2004). https://doi.org/10.1021/jp046274g
- X. Yang, Y. Shan, X. Wei, S. Zhong, Y. Huang et al., Polyethylene/silica nanorod composites with reduced dielectric constant and enhanced mechanical strength. J. Appl. Polym. Sci. 136, 47143 (2019). https://doi.org/10.1002/app.47143
- J. Yang, M. Li, S. Fang, Y. Wang, H. He et al., Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science 383, 771–777 (2024). https://doi.org/10.1126/science.adj3549
- M. Tian, L. Wang, J. Wang, S. Zheng, F. Wang et al., A two-dimensional lamellar vermiculite membrane for precise molecular separation and ion sieving. ACS Sustain. Chem. Eng. 10, 1137–1148 (2022). https://doi.org/10.1021/acssuschemeng.1c05951
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/c8cs00324f
- Y.-Z. Wang, Y.-C. Wang, T.-T. Liu, Q.-L. Zhao, C.-S. Li et al., MXene hybridized polymer with enhanced electromagnetic energy harvest for sensitized microwave actuation and self-powered motion sensing. Nano-Micro Lett. 17, 65 (2024). https://doi.org/10.1007/s40820-024-01578-z
- J. Xiong, X. Zhao, Z. Liu, H. Chen, Q. Yan et al., Multifunctional nacre-like nanocomposite papers for electromagnetic interference shielding via heterocyclic aramid/MXene template-assisted in situ polypyrrole assembly. Nano-Micro Lett. 17, 53 (2024). https://doi.org/10.1007/s40820-024-01552-9
- J. Ding, H. Zhao, H. Yu, Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings. Chem. Eng. J. 430, 132838 (2022). https://doi.org/10.1016/j.cej.2021.132838
- W. Tan, W. Zhao, Designing WS2@Ti3C2Tx heterojunction nanofillers via electrostatic self-assembly for achieving long term corrosion resistance under AHP environment. Mater. Today Nano 20, 100259 (2022). https://doi.org/10.1016/j.mtnano.2022.100259
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
- N. Song, Z. Gao, X. Li, Tailoring nanocomposite interfaces with graphene to achieve high strength and toughness. Sci. Adv. 6, eaba7016 (2020). https://doi.org/10.1126/sciadv.aba7016
- B. Zhao, Z. Ma, Y. Sun, Y. Han, J. Gu, Flexible and robust Ti3C2Tx/(ANF@FeNi) composite films with outstanding electromagnetic interference shielding and electrothermal conversion performances. Small Struct. 3, 2200162 (2022). https://doi.org/10.1002/sstr.202200162
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
- C. Cui, R. Cheng, H. Zhang, C. Zhang, Y. Ma et al., Ultrastable MXene@Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 30, 2000693 (2020). https://doi.org/10.1002/adfm.202000693
- Y. Wang, W. Chang, Z. Wang, J. Ma, X. Yu et al., Silanized MXene/carbon nanotube composites as a shielding layer of polyurethane coatings for anticorrosion. ACS Appl. Nano Mater. 5, 1408–1418 (2022). https://doi.org/10.1021/acsanm.1c03953
- X. Huang, J. Huang, J. Yang, D. Yang, T. Li et al., High-yield exfoliation of large MXene with flake sizes over 10 µm using edge-anchored carbon nanotubes. Adv. Funct. Mater. 33, 2303003 (2023). https://doi.org/10.1002/adfm.202303003
- Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62, e202216093 (2023). https://doi.org/10.1002/anie.202216093
- Y. Zhang, N. Song, J. He, R. Chen, X. Li, Lithiation-aided conversion of end-of-life lithium-ion battery anodes to high-quality graphene and graphene oxide. Nano Lett. 19, 512–519 (2019). https://doi.org/10.1021/acs.nanolett.8b04410
- C.-F. Cao, B. Yu, Z.-Y. Chen, Y.-X. Qu, Y.-T. Li et al., Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14, 92 (2022). https://doi.org/10.1007/s40820-022-00837-1
- S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable MXene films through bridging-induced densification. Science 374, 96–99 (2021). https://doi.org/10.1126/science.abg2026
- M. Naguib, W. Tang, K.L. Browning, G.M. Veith, V. Maliekkal et al., Catalytic activity of Ti-based MXenes for the hydrogenation of furfural. ChemCatChem 12, 5733–5742 (2020). https://doi.org/10.1002/cctc.202000977
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- C.A. Teles, P.M. de Souza, R.C. Rabelo-Neto, M.B. Griffin, C. Mukarakate et al., Catalytic upgrading of biomass pyrolysis vapors and model compounds using Niobia supported Pd catalyst. Appl. Catal. B Environ. 238, 38–50 (2018). https://doi.org/10.1016/j.apcatb.2018.06.073
- A.I. Osman, J.K. Abu-Dahrieh, A. Abdelkader, N.M. Hassan, F. Laffir et al., Silver-modified η-Al2O3 catalyst for DME production. J. Phys. Chem. C 121, 25018–25032 (2017). https://doi.org/10.1021/acs.jpcc.7b04697
- X. Fei, Y. Wang, P. Guo, J. Wang, G. Wang et al., Efficient catalytic activity of Ti3C2Tx MXene for polyester synthesis. Ind. Eng. Chem. Res. 63, 6868–6879 (2024). https://doi.org/10.1021/acs.iecr.3c04485
- D. Sun, J. Mo, W. Liu, N. Yan, X. Qiu, Ultra-strong and tough bio-based polyester elastomer with excellent photothermal shape memory effect and degradation performance. Adv. Funct. Mater. 34, 2403333 (2024). https://doi.org/10.1002/adfm.202403333
- X. Zhang, W. Liu, D. Yang, X. Qiu, Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Adv. Funct. Mater. 29, 1806912 (2019). https://doi.org/10.1002/adfm.201806912
- S.K. Burgess, J.E. Leisen, B.E. Kraftschik, C.R. Mubarak, R.M. Kriegel et al., Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47, 1383–1391 (2014). https://doi.org/10.1021/ma5000199
- J. Luo, Y. Wen, X. Jia, X. Lei, Z. Gao et al., Fabricating strong and tough aramid fibers by small addition of carbon nanotubes. Nat. Commun. 14, 3019 (2023). https://doi.org/10.1038/s41467-023-38701-4
- X.-L. Li, R.-Z. Wu, T. Fu, Z.-M. Li, Y. Li et al., A multifunctional bio-based polyester material integrated with high mechanical performance, gas barrier performance, and chemically closed-loop. Adv. Funct. Mater. 34, 2400911 (2024). https://doi.org/10.1002/adfm.202400911
- W.-Q. Du, T. Fu, X.-L. Li, Y. Li, C. Deng et al., High-performance biobased polyesters with high gas barrier, glass transition temperature, and tensile strength enabled by hydrogen bonds and flexible segments. ACS Sustain. Chem. Eng. 10, 14240–14247 (2022). https://doi.org/10.1021/acssuschemeng.2c04152
References
J. Brahney, M. Hallerud, E. Heim, M. Hahnenberger, S. Sukumaran, Plastic rain in protected areas of the United States. Science 368, 1257–1260 (2020). https://doi.org/10.1126/science.aaz5819
X. Fei, J. Wang, J. Zhu, X. Wang, X. Liu, Biobased poly(ethylene 2, 5-furancoate): No longer an alternative, but an irreplaceable polyester in the polymer industry. ACS Sustain. Chem. Eng. 8, 8471–8485 (2020). https://doi.org/10.1021/acssuschemeng.0c01862
R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017). https://doi.org/10.1126/sciadv.1700782
M.C. Rillig, A. Lehmann, Microplastic in terrestrial ecosystems. Science 368, 1430–1431 (2020). https://doi.org/10.1126/science.abb5979
V. Tournier, C.M. Topham, A. Gilles, B. David, C. Folgoas et al., An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020). https://doi.org/10.1038/s41586-020-2149-4
P.R. Christensen, A.M. Scheuermann, K.E. Loeffler, B.A. Helms, Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442–448 (2019). https://doi.org/10.1038/s41557-019-0249-2
G.Z. Papageorgiou, D.G. Papageorgiou, Z. Terzopoulou, D.N. Bikiaris, Production of bio-based 2, 5-furan dicarboxylate polyesters: recent progress and critical aspects in their synthesis and thermal properties. Eur. Polym. J. 83, 202–229 (2016). https://doi.org/10.1016/j.eurpolymj.2016.08.004
F.A. Kucherov, E.G. Gordeev, A.S. Kashin, V.P. Ananikov, Controlled natural biomass deoxygenation allows the design of reusable hot-melt adhesives acting in a multiple oxygen binding mode. ACS Appl. Mater. Interfaces 12, 45394–45403 (2020). https://doi.org/10.1021/acsami.0c14986
J. Ding, H. Zhao, H. Wang, Q. Chu, J. Zhu et al., Flexible and recyclable bio-based polyester composite films with outstanding mechanical and gas barrier properties using leaf-shaped CNT@BNNS covalent heterojunction. Small 20, e2406958 (2024). https://doi.org/10.1002/smll.202406958
J. Ding, H. Zhao, S. Shi, J. Su, Q. Chu et al., High-strength, high-barrier bio-based polyester nanocomposite films by binary multiscale boron nitride nanosheets. Adv. Funct. Mater. 34, 2308631 (2024). https://doi.org/10.1002/adfm.202308631
M. Jiang, Q. Liu, Q. Zhang, C. Ye, G. Zhou, A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J. Polym. Sci. Part A Polym. Chem. 50, 1026–1036 (2012). https://doi.org/10.1002/pola.25859
H. Hu, R. Zhang, Y. Jiang, L. Shi, J. Wang et al., Toward biobased, biodegradable, and smart barrier packaging material: modification of poly(neopentyl glycol 2, 5-furandicarboxylate) with succinic acid. ACS Sustain. Chem. Eng. 7, 4255–4265 (2019). https://doi.org/10.1021/acssuschemeng.8b05990
H. Hu, R. Zhang, J. Wang, W.B. Ying, J. Zhu, Synthesis and structure–property relationship of biobased biodegradable poly(butylene carbonate-co-furandicarboxylate). ACS Sustain. Chem. Eng. 6, 7488–7498 (2018). https://doi.org/10.1021/acssuschemeng.8b00174
T. Zhou, C. Wu, Y. Wang, A.P. Tomsia, M. Li et al., Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020). https://doi.org/10.1038/s41467-020-15991-6
T. Zhou, H. Ni, Y. Wang, C. Wu, H. Zhang et al., Ultratough graphene-black phosphorus films. Proc. Natl. Acad. Sci. U.S.A. 117, 8727–8735 (2020). https://doi.org/10.1073/pnas.1916610117
I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Composites with carbon nanotubes and graphene: an outlook. Science 362, 547–553 (2018). https://doi.org/10.1126/science.aat7439
H. Wang, J. Ding, H. Zhao, Q. Chu, M.R. Miah et al., Preparing strong, tough, and high-barrier biobased polyester composites by regulating interfaces of carbon nanotubes. Mater. Today Nano 25, 100463 (2024). https://doi.org/10.1016/j.mtnano.2024.100463
R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes: the route toward applications. Science 297, 787–792 (2002). https://doi.org/10.1126/science.1060928
L. Shanmugam, X. Feng, J. Yang, Enhanced interphase between thermoplastic matrix and UHMWPE fiber sized with CNT-modified polydopamine coating. Compos. Sci. Technol. 174, 212–220 (2019). https://doi.org/10.1016/j.compscitech.2019.03.001
C.A. Dyke, J.M. Tour, Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151–11159 (2004). https://doi.org/10.1021/jp046274g
X. Yang, Y. Shan, X. Wei, S. Zhong, Y. Huang et al., Polyethylene/silica nanorod composites with reduced dielectric constant and enhanced mechanical strength. J. Appl. Polym. Sci. 136, 47143 (2019). https://doi.org/10.1002/app.47143
J. Yang, M. Li, S. Fang, Y. Wang, H. He et al., Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science 383, 771–777 (2024). https://doi.org/10.1126/science.adj3549
M. Tian, L. Wang, J. Wang, S. Zheng, F. Wang et al., A two-dimensional lamellar vermiculite membrane for precise molecular separation and ion sieving. ACS Sustain. Chem. Eng. 10, 1137–1148 (2022). https://doi.org/10.1021/acssuschemeng.1c05951
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/c8cs00324f
Y.-Z. Wang, Y.-C. Wang, T.-T. Liu, Q.-L. Zhao, C.-S. Li et al., MXene hybridized polymer with enhanced electromagnetic energy harvest for sensitized microwave actuation and self-powered motion sensing. Nano-Micro Lett. 17, 65 (2024). https://doi.org/10.1007/s40820-024-01578-z
J. Xiong, X. Zhao, Z. Liu, H. Chen, Q. Yan et al., Multifunctional nacre-like nanocomposite papers for electromagnetic interference shielding via heterocyclic aramid/MXene template-assisted in situ polypyrrole assembly. Nano-Micro Lett. 17, 53 (2024). https://doi.org/10.1007/s40820-024-01552-9
J. Ding, H. Zhao, H. Yu, Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings. Chem. Eng. J. 430, 132838 (2022). https://doi.org/10.1016/j.cej.2021.132838
W. Tan, W. Zhao, Designing WS2@Ti3C2Tx heterojunction nanofillers via electrostatic self-assembly for achieving long term corrosion resistance under AHP environment. Mater. Today Nano 20, 100259 (2022). https://doi.org/10.1016/j.mtnano.2022.100259
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
N. Song, Z. Gao, X. Li, Tailoring nanocomposite interfaces with graphene to achieve high strength and toughness. Sci. Adv. 6, eaba7016 (2020). https://doi.org/10.1126/sciadv.aba7016
B. Zhao, Z. Ma, Y. Sun, Y. Han, J. Gu, Flexible and robust Ti3C2Tx/(ANF@FeNi) composite films with outstanding electromagnetic interference shielding and electrothermal conversion performances. Small Struct. 3, 2200162 (2022). https://doi.org/10.1002/sstr.202200162
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
C. Cui, R. Cheng, H. Zhang, C. Zhang, Y. Ma et al., Ultrastable MXene@Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 30, 2000693 (2020). https://doi.org/10.1002/adfm.202000693
Y. Wang, W. Chang, Z. Wang, J. Ma, X. Yu et al., Silanized MXene/carbon nanotube composites as a shielding layer of polyurethane coatings for anticorrosion. ACS Appl. Nano Mater. 5, 1408–1418 (2022). https://doi.org/10.1021/acsanm.1c03953
X. Huang, J. Huang, J. Yang, D. Yang, T. Li et al., High-yield exfoliation of large MXene with flake sizes over 10 µm using edge-anchored carbon nanotubes. Adv. Funct. Mater. 33, 2303003 (2023). https://doi.org/10.1002/adfm.202303003
Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62, e202216093 (2023). https://doi.org/10.1002/anie.202216093
Y. Zhang, N. Song, J. He, R. Chen, X. Li, Lithiation-aided conversion of end-of-life lithium-ion battery anodes to high-quality graphene and graphene oxide. Nano Lett. 19, 512–519 (2019). https://doi.org/10.1021/acs.nanolett.8b04410
C.-F. Cao, B. Yu, Z.-Y. Chen, Y.-X. Qu, Y.-T. Li et al., Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14, 92 (2022). https://doi.org/10.1007/s40820-022-00837-1
S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable MXene films through bridging-induced densification. Science 374, 96–99 (2021). https://doi.org/10.1126/science.abg2026
M. Naguib, W. Tang, K.L. Browning, G.M. Veith, V. Maliekkal et al., Catalytic activity of Ti-based MXenes for the hydrogenation of furfural. ChemCatChem 12, 5733–5742 (2020). https://doi.org/10.1002/cctc.202000977
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
C.A. Teles, P.M. de Souza, R.C. Rabelo-Neto, M.B. Griffin, C. Mukarakate et al., Catalytic upgrading of biomass pyrolysis vapors and model compounds using Niobia supported Pd catalyst. Appl. Catal. B Environ. 238, 38–50 (2018). https://doi.org/10.1016/j.apcatb.2018.06.073
A.I. Osman, J.K. Abu-Dahrieh, A. Abdelkader, N.M. Hassan, F. Laffir et al., Silver-modified η-Al2O3 catalyst for DME production. J. Phys. Chem. C 121, 25018–25032 (2017). https://doi.org/10.1021/acs.jpcc.7b04697
X. Fei, Y. Wang, P. Guo, J. Wang, G. Wang et al., Efficient catalytic activity of Ti3C2Tx MXene for polyester synthesis. Ind. Eng. Chem. Res. 63, 6868–6879 (2024). https://doi.org/10.1021/acs.iecr.3c04485
D. Sun, J. Mo, W. Liu, N. Yan, X. Qiu, Ultra-strong and tough bio-based polyester elastomer with excellent photothermal shape memory effect and degradation performance. Adv. Funct. Mater. 34, 2403333 (2024). https://doi.org/10.1002/adfm.202403333
X. Zhang, W. Liu, D. Yang, X. Qiu, Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Adv. Funct. Mater. 29, 1806912 (2019). https://doi.org/10.1002/adfm.201806912
S.K. Burgess, J.E. Leisen, B.E. Kraftschik, C.R. Mubarak, R.M. Kriegel et al., Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47, 1383–1391 (2014). https://doi.org/10.1021/ma5000199
J. Luo, Y. Wen, X. Jia, X. Lei, Z. Gao et al., Fabricating strong and tough aramid fibers by small addition of carbon nanotubes. Nat. Commun. 14, 3019 (2023). https://doi.org/10.1038/s41467-023-38701-4
X.-L. Li, R.-Z. Wu, T. Fu, Z.-M. Li, Y. Li et al., A multifunctional bio-based polyester material integrated with high mechanical performance, gas barrier performance, and chemically closed-loop. Adv. Funct. Mater. 34, 2400911 (2024). https://doi.org/10.1002/adfm.202400911
W.-Q. Du, T. Fu, X.-L. Li, Y. Li, C. Deng et al., High-performance biobased polyesters with high gas barrier, glass transition temperature, and tensile strength enabled by hydrogen bonds and flexible segments. ACS Sustain. Chem. Eng. 10, 14240–14247 (2022). https://doi.org/10.1021/acssuschemeng.2c04152