Local Strain Engineering of Two-Dimensional Transition Metal Dichalcogenides Towards Quantum Emitters
Corresponding Author: Xiaolu Zhuo
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 104
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDCs) have received considerable attention in local strain engineering due to their extraordinary mechanical flexibility, electonic structure, and optical properties. The strain-induced out-of-plane deformations in 2D TMDCs lead to diverse excitonic behaviors and versatile modulations in optical properties, paving the way for the development of advanced quantum technologies, flexible optoelectronic materials, and straintronic devices. Research on local strain engineering on 2D TMDCs has been delved into fabrication techniques, electronic state variations, and quantum optical applications. This review begins by summarizing the state-of-the-art methods for introducing local strain into 2D TMDCs, followed by an exploration of the impact of local strain engineering on optical properties. The intriguing phenomena resulting from local strain, such as exciton funnelling and anti-funnelling, are also discussed. We then shift the focus to the application of locally strained 2D TMDCs as quantum emitters, with various strategies outlined for modulating the properties of TMDC-based quantum emitters. Finally, we discuss the remaining questions in this field and provide an outlook on the future of local strain engineering on 2D TMDCs.
Highlights:
1 Methods for creating the local deformation in two-dimensional transition metal dichalcogenides (2D TMDCs) are introduced.
2 Modulations of local strain on their optical properties and excitonic behaviors are discussed.
3 Quantum emitters based on strained 2D TMDCs and other applications are presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.D. Duan, C. Wang, A.L. Pan, R. Yu, X.F. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015). https://doi.org/10.1039/C5CS00507H
- K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). https://doi.org/10.1038/nature14417
- H. Zhang, B. Abhiraman, Q. Zhang, J. Miao, K. Jo et al., Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings. Nat. Commun. 11, 3552 (2020). https://doi.org/10.1038/s41467-020-17313-2
- L.H. Zeng, S.H. Lin, Z.J. Li, Z.X. Zhang, T.F. Zhang et al., Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 28, 1705970 (2018). https://doi.org/10.1002/adfm.201705970
- X. Xu, T. Schultz, Z. Qin, N. Severin, B. Haas et al., Microstructure and elastic constants of transition metal dichalcogenide monolayers from friction and shear force microscopy. Adv. Mater. 30, 1803748 (2018). https://doi.org/10.1002/adma.201803748
- S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia et al., Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592–4597 (2014). https://doi.org/10.1021/nl501638a
- Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo et al., Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 8, 2562–2572 (2015). https://doi.org/10.1007/s12274-015-0762-6
- M. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng et al., Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 3, 362–396 (2021). https://doi.org/10.1002/inf2.12161
- J.R. Schaibley, H. Yu, G. Clark, P. Rivera, J.S. Ross et al., Valleytronics in 2D materials. Nat. Rev. Mater. 1, 1–15 (2016). https://doi.org/10.1038/natrevmats.2016.55
- A. Piacentini, A. Daus, Z. Wang, M.C. Lemme, D. Neumaier, Potential of transition metal dichalcogenide transistors for flexible electronics applications. Adv. Electron. Mater. 9, 2300181 (2023). https://doi.org/10.1002/aelm.202300181
- X. Wu, H. Zhang, J. Zhang, X.W. Lou, Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater. 33, 2008376 (2021). https://doi.org/10.1002/adma.202008376
- J.-K. Qin, C. Sui, Z. Qin, J. Wu, H. Guo et al., Mechanical anisotropy in two-dimensional selenium atomic layers. Nano Lett. 21, 8043–8050 (2021). https://doi.org/10.1021/acs.nanolett.1c02294
- A. Falin, M. Holwill, H. Lv, W. Gan, J. Cheng et al., Mechanical properties of atomically thin tungsten dichalcogenides: WS2, WSe2, and WTe2. ACS Nano 15, 2600–2610 (2021). https://doi.org/10.1021/acsnano.0c07430
- Y. Yang, X. Li, M. Wen, E. Hacopian, W. Chen et al., Brittle fracture of 2D MoSe2. Adv. Mater. 29, 1604201 (2016). https://doi.org/10.1002/adma.201604201
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
- J.M. Kim, M.F. Haque, E.Y. Hsieh, S.M. Nahid, I. Zarin et al., Strain engineering of low-dimensional materials for emerging quantum phenomena and functionalities. Adv. Mater. 35, 2107362 (2023). https://doi.org/10.1002/adma.202107362
- Z. Peng, X. Chen, Y. Fan, D.J. Srolovitz, D. Lei, Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light: Sci. Appl. 9, 190 (2020). https://doi.org/10.1038/s41377-020-00421-5
- E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5, 43–48 (2012). https://doi.org/10.1007/s12274-011-0183-0
- M. Ghorbani-Asl, S. Borini, A. Kuc, T. Heine, Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 87, 235434 (2013). https://doi.org/10.1103/PhysRevB.87.235434
- R.J. Gelly, D. Renaud, X. Liao, B. Pingault, S. Bogdanovic et al., Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer. Nat. Commun. 13, 232 (2022). https://doi.org/10.1038/s41467-021-27877-2
- H. Moon, G. Grosso, C. Chakraborty, C. Peng, T. Taniguchi et al., Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Lett. 20, 6791–6797 (2020). https://doi.org/10.1021/acs.nanolett.0c02757
- M.G. Harats, J.N. Kirchhof, M. Qiao, K. Greben, K.I. Bolotin, Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2. Nat. Photonics 14, 324–329 (2020). https://doi.org/10.1038/s41566-019-0581-5
- H. Lee, Y. Koo, J. Choi, S. Kumar, H.-T. Lee et al., Drift-dominant exciton funneling and trion conversion in 2D semiconductors on the nanogap. Sci. Adv. 8, eabm5236 (2022). https://doi.org/10.1126/sciadv.abm5236
- C. Chakraborty, L. Kinnischtzke, K.M. Goodfellow, R. Beams, A.N. Vamivakas, Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015). https://doi.org/10.1038/nnano.2015.79
- J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger et al., Nanoscale positioning of single-photon emitters in atomically thin WSe2. Adv. Mater. 28, 7101–7105 (2016). https://doi.org/10.1002/adma.201600560
- A. Branny, S. Kumar, R. Proux, B.D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017). https://doi.org/10.1038/ncomms15053
- N.V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen et al., Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 5, 1128–1134 (2018). https://doi.org/10.1364/OPTICA.5.001128
- M. Turunen, M. Brotons-Gisbert, Y. Dai, Y. Wang, E. Scerri et al., Quantum photonics with layered 2D materials. Nat. Rev. Phys. 4, 219–236 (2022). https://doi.org/10.1038/s42254-021-00408-0
- I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016). https://doi.org/10.1038/nphoton.2016.186
- K. Parto, S.I. Azzam, K. Banerjee, G. Moody, Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021). https://doi.org/10.1038/s41467-021-23709-5
- D.D. Xu, A.F. Vong, M.I.B. Utama, D. Lebedev, R. Ananth et al., Sub-diffraction correlation of quantum emitters and local strain fields in strain-engineered WSe2 monolayers. Adv. Mater. 36, 2314242 (2024). https://doi.org/10.1002/adma.202314242
- L.N. Tripathi, O. Iff, S. Betzold, Ł Dusanowski, M. Emmerling et al., Spontaneous emission enhancement in strain-induced WSe2 monolayer-based quantum light sources on metallic surfaces. ACS Photonics 5, 1919–1926 (2018). https://doi.org/10.1021/acsphotonics.7b01053
- T. Cai, J.-H. Kim, Z. Yang, S. Dutta, S. Aghaeimeibodi et al., Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nanopillars. ACS Photonics 5, 3466–3471 (2018). https://doi.org/10.1021/acsphotonics.8b00580
- M. Blauth, M. Jürgensen, G. Vest, O. Hartwig, M. Prechtl et al., Coupling single photons from discrete quantum emitters in WSe2 to lithographically defined plasmonic slot waveguides. Nano Lett. 18, 6812–6819 (2018). https://doi.org/10.1021/acs.nanolett.8b02687
- P. Tonndorf, O. Del Pozo-Zamudio, N. Gruhler, J. Kern, R. Schmidt et al., On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett. 17, 5446–5451 (2017). https://doi.org/10.1021/acs.nanolett.7b02092
- F. Peyskens, C. Chakraborty, M. Muneeb, D. Van Thourhout, D. Englund, Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019). https://doi.org/10.1038/s41467-019-12421-0
- P. Tonndorf, O. Del Pozo-Zamudio, N. Gruhler, J. Kern, R. Schmidt et al., Chemomechanical modification of quantum emission in monolayer WSe2. Nat. Commun. 14, 2193 (2023). https://doi.org/10.1038/s41467-023-37892-0
- C. Palacios-Berraquero, D.M. Kara, A.R.-P. Montblanch, M. Barbone, P. Latawiec et al., Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017). https://doi.org/10.1038/ncomms15093
- Y. Luo, G.D. Shepard, J.V. Ardelean, D.A. Rhodes, B. Kim et al., Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018). https://doi.org/10.1038/s41565-018-0275-z
- T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah et al., Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Lett. 17, 6564–6568 (2017). https://doi.org/10.1021/acs.nanolett.7b02222
- D. White, A. Branny, R.J. Chapman, R. Picard, M. Brotons-Gisbert et al., Atomically-thin quantum dots integrated with lithium niobate photonic chips. Opt. Mater. Express 9, 441–448 (2019). https://doi.org/10.1364/OME.9.000441
- C. Palacios-Berraquero, M. Barbone, D.M. Kara, X.L. Chen, I. Goykhman et al., Atomically thin quantum light-emitting diodes. Nat. Commun. (2016). https://doi.org/10.1007/978-3-030-01482-7_4
- H. Yu, G.-B. Liu, J. Tang, X. Xu, W. Yao, Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017). https://doi.org/10.1126/sciadv.1701696
- K.L. Seyler, P. Rivera, H. Yu, N.P. Wilson, E.L. Ray et al., Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019). https://doi.org/10.1038/s41586-019-0957-1
- A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea et al., Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013). https://doi.org/10.1021/nl402875m
- K.P. Dhakal, S. Roy, H. Jang, X. Chen, W.S. Yun et al., Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater. 29, 5124–5133 (2017). https://doi.org/10.1021/acs.chemmater.7b00453
- J. Quereda, P. San-Jose, V. Parente, L. Vaquero-Garzon, A.J. Molina-Mendoza et al., Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 16, 2931–2937 (2016). https://doi.org/10.1021/acs.nanolett.5b04670
- M. Pandey, C. Pandey, R. Ahuja, R. Kumar, Straining techniques for strain engineering of 2D materials towards flexible straintronic applications. Nano Energy 109, 108278 (2023). https://doi.org/10.1016/j.nanoen.2023.108278
- A.R. Khan, T. Lu, W. Ma, Y. Lu, Y. Liu, Tunable optoelectronic properties of WS2 by local strain engineering and folding. Adv. Electron. Mater. 6, 1901381 (2020). https://doi.org/10.1002/aelm.201901381
- S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li et al., Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15, 1660–1666 (2015). https://doi.org/10.1021/nl504276u
- S. Manzeli, A. Allain, A. Ghadimi, A. Kis, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15, 5330–5335 (2015). https://doi.org/10.1021/acs.nanolett.5b01689
- M.R. Rosenberger, C.K. Dass, H.-J. Chuang, S.V. Sivaram, K.M. McCreary et al., Quantum calligraphy: writing single-photon emitters in a two-dimensional materials platform. ACS Nano 13, 904–912 (2019). https://doi.org/10.1021/acsnano.8b08730
- X. Liu, A.K. Sachan, S.T. Howell, A. Conde-Rubio, A.W. Knoll et al., Thermomechanical nanostraining of two-dimensional materials. Nano Lett. 20, 8250–8257 (2020). https://doi.org/10.1021/acs.nanolett.0c03358
- P. Chaudhary, H. Lu, M. Loes, A. Lipatov, A. Sinitskii et al., Mechanical stress modulation of resistance in MoS2 junctions. Nano Lett. 22, 1047–1052 (2022). https://doi.org/10.1021/acs.nanolett.1c04019
- H. Lu, C.-W. Bark, D. Esque De Los Ojos, J. Alcala, C.-B. Eom et al., Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012). https://doi.org/10.1126/science.1218693
- A.N. Abramov, I.Y. Chestnov, E.S. Alimova, T. Ivanova, I.S. Mukhin et al., Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2. Nat. Commun. 14, 5737 (2023). https://doi.org/10.1038/s41467-023-41292-9
- A.G. Milekhin, M. Rahaman, E.E. Rodyakina, A.V. Latyshev, V.M. Dzhagan et al., Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays. Nanoscale 10, 2755–2763 (2018). https://doi.org/10.1039/C7NR06640F
- M. Rahaman, R.D. Rodriguez, G. Plechinger, S. Moras, C. Schüller et al., Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy. Nano Lett. 17, 6027–6033 (2017). https://doi.org/10.1021/acs.nanolett.7b02322
- K.-D. Park, O. Khatib, V. Kravtsov, G. Clark, X. Xu et al., Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe2 with local strain control. Nano Lett. 16, 2621–2627 (2016). https://doi.org/10.1021/acs.nanolett.6b00238
- Y. Koo, Y. Kim, S.H. Choi, H. Lee, J. Choi et al., Tip-induced nano-engineering of strain, bandgap, and exciton funneling in 2D semiconductors. Adv. Mater. 33, 2008234 (2021). https://doi.org/10.1002/adma.202008234
- Y. Koo, Y. Kim, S.H. Choi, H. Lee, J. Choi et al., Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 6, 7430 (2015). https://doi.org/10.1038/ncomms8430
- X. Liu, S.T. Howell, A. Conde-Rubio, G. Boero, J. Brugger, Thermomechanical nanocutting of 2D materials. Adv. Mater. 32, 2001232 (2020). https://doi.org/10.1002/adma.202001232
- S. Chang, Y. Yan, Y. Geng, Local nanostrain engineering of monolayer MoS2 using atomic force microscopy-based thermomechanical nanoindentation. Nano Lett. 23, 9219–9226 (2023). https://doi.org/10.1021/acs.nanolett.3c01809
- R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014). https://doi.org/10.1038/nnano.2014.157
- H. Hu, H.J. Kim, S. Somnath, Tip-based nanofabrication for scalable manufacturing. Micromachines 8, 90 (2017). https://doi.org/10.3390/mi8030090
- S.T. Howell, A. Grushina, F. Holzner, J. Brugger, Thermal scanning probe lithography–a review. Microsyst. Nanoeng. 6, 21 (2020). https://doi.org/10.1038/s41378-019-0124-8
- Y. Huang, X. Wang, X. Zhang, X. Chen, B. Li et al., Raman spectral band oscillations in large graphene bubbles. Phys. Rev. Lett. 120, 186104 (2018). https://doi.org/10.1103/PhysRevLett.120.186104
- Z. Zong, C.-L. Chen, M.R. Dokmeci, K.-T. Wan, Direct measurement of graphene adhesion on silicon surface by intercalation of nanops. J. Appl. Phys. 107, 026104 (2010). https://doi.org/10.1063/1.3294960
- C. Carmesin, M. Lorke, M. Florian, D. Erben, A. Schulz et al., Quantum-dot-like states in molybdenum disulfide nanostructures due to the interplay of local surface wrinkling, strain, and dielectric confinement. Nano Lett. 19, 3182–3186 (2019). https://doi.org/10.1021/acs.nanolett.9b00641
- P. Ares, T. Cea, M. Holwill, Y.B. Wang, R. Roldán et al., Piezoelectricity in monolayer hexagonal boron nitride. Adv. Mater. 32, 1905504 (2020). https://doi.org/10.1002/adma.201905504
- T.P. Darlington, C. Carmesin, M. Florian, E. Yanev, O. Ajayi et al., Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020). https://doi.org/10.1038/s41565-020-0730-5
- E. Blundo, T. Yildirim, G. Pettinari, A. Polimeni, Experimental adhesion energy in van der Waals crystals and heterostructures from atomically thin bubbles. Phys. Rev. Lett. 127, 046101 (2021). https://doi.org/10.1103/PhysRevLett.127.046101
- W. Wang, X. Ma, Z. Dai, S. Zhang, Y. Hou et al., Mechanical behavior of blisters spontaneously formed by multilayer 2D materials. Adv. Mater. Interfaces 9, 2101939 (2022). https://doi.org/10.1002/admi.202101939
- E. Khestanova, F. Guinea, L. Fumagalli, A. Geim, I. Grigorieva, Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016). https://doi.org/10.1038/ncomms12587
- H.H. Kim, J.W. Yang, S.B. Jo, B. Kang, S.K. Lee et al., Substrate-induced solvent intercalation for stable graphene doping. ACS Nano 7, 1155–1162 (2013). https://doi.org/10.1021/nn306012p
- Y. Li, B. Wang, W. Li, K. Xu, Dynamic, spontaneous blistering of substrate-supported graphene in acidic solutions. ACS Nano 16, 6145–6152 (2022). https://doi.org/10.1021/acsnano.1c11616
- D. Tedeschi, E. Blundo, M. Felici, G. Pettinari, B. Liu et al., Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides. Adv. Mater. 31, 1903795 (2019). https://doi.org/10.1002/adma.201903795
- E. Blundo, C. Di Giorgio, G. Pettinari, T. Yildirim, M. Felici et al., Engineered creation of periodic giant, nonuniform strains in MoS2 monolayers. Adv. Mater. Interfaces 7, 2000621 (2020). https://doi.org/10.1002/admi.202000621
- B. Liu, T. Yildirim, T. Lü, E. Blundo, L. Wang et al., Variant Plateau’s law in atomically thin transition metal dichalcogenide dome networks. Nat. Commun. 14, 1050 (2023). https://doi.org/10.1038/s41467-023-36565-2
- C.D. Giorgio, E. Blundo, G. Pettinari, M. Felici, Y. Lu et al., Nanoscale measurements of elastic properties and hydrostatic pressure in H2-bulged MoS2 membranes. Adv. Mater. Interfaces 7, 2001024 (2020). https://doi.org/10.1002/admi.202001024
- J. Wang, D.C. Sorescu, S. Jeon, A. Belianinov, S.V. Kalinin et al., Atomic intercalation to measure adhesion of graphene on graphite. Nat. Commun. 7, 13263 (2016). https://doi.org/10.1038/ncomms13263
- R. Larciprete, S. Colonna, F. Ronci, R. Flammini, P. Lacovig et al., Self-assembly of graphene nanoblisters sealed to a bare metal surface. Nano Lett. 16, 1808–1817 (2016). https://doi.org/10.1021/acs.nanolett.5b04849
- D. Lloyd, X. Liu, N. Boddeti, L. Cantley, R. Long et al., Adhesion, stiffness, and instability in atomically thin MoS2 bubbles. Nano Lett. 17, 5329–5334 (2017). https://doi.org/10.1021/acs.nanolett.7b01735
- N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl et al., Strain-induced pseudo–magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544–547 (2010). https://doi.org/10.1126/science.1191700
- P. Jia, W. Chen, J. Qiao, M. Zhang, X. Zheng et al., Programmable graphene nanobubbles with three-fold symmetric pseudo-magnetic fields. Nat. Commun. 10, 3127 (2019). https://doi.org/10.1038/s41467-019-11038-7
- S. Kamboj, P.S. Rana, A. Sirohi, A. Vasdev, M. Mandal et al., Generation of strain-induced pseudo-magnetic field in a doped type-II Weyl semimetal. Phys. Rev. B 100, 115105 (2019). https://doi.org/10.1103/PhysRevB.100.115105
- M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface. Science 349, 524–528 (2015). https://doi.org/10.1126/science.aab4097
- S. Xie, L. Tu, Y. Han, L. Huang, K. Kang et al., Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018). https://doi.org/10.1126/science.aao5360
- F. Pang, F. Cao, L. Lei, L. Meng, S. Ye et al., Strain-engineered rippling and manipulation of single-layer WS2 by atomic force microscopy. J. Phys. Chem. C 125, 8696–8703 (2021). https://doi.org/10.1021/acs.jpcc.1c01179
- J. Wang, M. Han, Q. Wang, Y. Ji, X. Zhang et al., Strained epitaxy of monolayer transition metal dichalcogenides for wrinkle arrays. ACS Nano 15, 6633–6644 (2021). https://doi.org/10.1021/acsnano.0c09983
- C. Kuo, S. Vong, R. Cohen, G. Stringfellow, Effect of mismatch strain on band gap in III-V semiconductors. J. Appl. Phys. 57, 5428–5432 (1985). https://doi.org/10.1063/1.334817
- S. Li, D. Ouyang, N. Zhang, Y. Zhang, A. Murthy et al., Substrate engineering for chemical vapor deposition growth of large-scale 2D transition metal dichalcogenides. Adv. Mater. 35, 2211855 (2023). https://doi.org/10.1002/adma.202211855
- J. Lu, L.C. Gomes, R.W. Nunes, A. Castro Neto, K.P. Loh, Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride. Nano Lett. 14, 5133–5139 (2014). https://doi.org/10.1021/nl501900x
- Y. Han, M.-Y. Li, G.-S. Jung, M.A. Marsalis, Z. Qin et al., Sub-nanometre channels embedded in two-dimensional materials. Nat. Mater. 17, 129–133 (2018). https://doi.org/10.1038/nmat5038
- S. Yang, Y. Chen, C. Jiang, Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat 3, 397–420 (2021). https://doi.org/10.1002/inf2.12177
- T.H. Ly, S.J. Yun, Q.H. Thi, J. Zhao, Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 11, 7534–7541 (2017). https://doi.org/10.1021/acsnano.7b04287
- G.H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J.P. Mastandrea et al., Strain-engineered growth of two-dimensional materials. Nat. Commun. 8, 608 (2017). https://doi.org/10.1038/s41467-017-00516-5
- W.H. Chae, J.D. Cain, E.D. Hanson, A.A. Murthy, V.P. Dravid, Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Appl. Phys. Lett. 111, 143106 (2017). https://doi.org/10.1063/1.4998284
- F. Wang, B. Zhou, H. Sun, A. Cui, T. Jiang et al., Difference analysis model for the mismatch effect and substrate-induced lattice deformation in atomically thin materials. Phys. Rev. B 98, 245403 (2018). https://doi.org/10.1103/PhysRevB.98.245403
- J. Wang, L. He, Y. Zhang, H. Nong, S. Li et al., Locally strained 2D materials: preparation, properties, and applications. Adv. Mater. 36, 2314145 (2024). https://doi.org/10.1002/adma.202314145
- S. Liu, Q. Liao, S. Lu, Z. Zhang, G. Zhang et al., Strain modulation in graphene/ZnO nanorod film schottky junction for enhanced photosensing performance. Adv. Funct. Mater. 26, 1347–1353 (2016). https://doi.org/10.1002/adfm.201503905
- L. Sortino, M. Gülmüs, B. Tilmann, L. de S Menezes, S.A. Maier, Radiative suppression of exciton–exciton annihilation in a two-dimensional semiconductor. Light: Sci. Appl. 12, 202 (2023). https://doi.org/10.1038/s41377-023-01249-5
- E.S. Yanev, T.P. Darlington, S.A. Ladyzhets, M.C. Strasbourg, C. Trovatello et al., Programmable nanowrinkle-induced room-temperature exciton localization in monolayer WSe2. Nat. Commun. 15, 1543 (2024). https://doi.org/10.1038/s41467-024-45936-2
- T. Chowdhury, K. Jo, S.B. Anantharaman, T.H. Brintlinger, D. Jariwala et al., Anomalous room-temperature photoluminescence from nanostrained MoSe2 monolayers. ACS Photonics 8, 2220–2226 (2021). https://doi.org/10.1021/acsphotonics.1c00640
- J.-P. So, K.-Y. Jeong, J.M. Lee, K.-H. Kim, S.-J. Lee et al., Polarization control of deterministic single-photon emitters in monolayer WSe2. Nano Lett. 21, 1546–1554 (2021). https://doi.org/10.1021/acs.nanolett.1c00078
- Y. Luo, N. Liu, X. Li, J.C. Hone, S. Strauf, Single photon emission in WSe2 up 160 K by quantum yield control. 2D Mater. 6, 035017 (2019). https://doi.org/10.1021/acs.nanolett.1c00078
- S.S. Li, K.K. Chui, F. Shen, H. Huang, S. Wen et al., Generation and detection of strain-localized excitons in WS2 monolayer by plasmonic metal nanocrystals. ACS Nano 16, 10647–10656 (2022). https://doi.org/10.1021/acsnano.2c02300
- H. Zhang, Y. Chen, K.K. Chui, J. Zheng, Y. Ma et al., Synthesis of bitten gold nanops with single-p chiroptical responses. Small 19, 2301476 (2023). https://doi.org/10.1002/smll.202301476
- X.M. Cui, Q.F. Ruan, X.L. Zhuo, X.Y. Xia, J.T. Hu et al., Photothermal nanomaterials: a powerful light-to-heat converter. Chem. Rev. 123, 6891–6952 (2023). https://doi.org/10.1021/acs.chemrev.3c00159
- O. Iff, N. Lundt, S. Betzold, L.N. Tripathi, M. Emmerling et al., Deterministic coupling of quantum emitters in WSe2 monolayers to plasmonic nanocavities. Opt. Express 26, 25944–25951 (2018). https://doi.org/10.1364/OE.26.025944
- L. Peng, H. Chan, P. Choo, T.W. Odom, S.K. Sankaranarayanan et al., Creation of single-photon emitters in WSe2 monolayers using nanometer-sized gold tips. Nano Lett. 20, 5866–5872 (2020). https://doi.org/10.1021/acs.nanolett.0c01789
- M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk et al., Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6, 7915 (2015). https://doi.org/10.1038/ncomms8915
- Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis et al., Detection of heating in current-carrying molecular junctions by Raman scattering. Nat. Nanotechnol. 3, 727–732 (2008). https://doi.org/10.1038/nnano.2008.304
- D.R. Ward, D.A. Corley, J.M. Tour, D. Natelson, Vibrational and electronic heating in nanoscale junctions. Nat. Nanotechnol. 6, 33–38 (2011). https://doi.org/10.1038/nnano.2010.240
- J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés et al., Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas. Nano Lett. 17, 1219–1225 (2017). https://doi.org/10.1021/acs.nanolett.6b05026
- L. Sortino, P.G. Zotev, S. Mignuzzi, J. Cambiasso, D. Schmidt et al., Enhanced light-matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas. Nat. Commun. 10, 5119 (2019). https://doi.org/10.1038/s41467-019-12963-3
- L. Sortino, P.G. Zotev, C.L. Phillips, A.J. Brash, J. Cambiasso et al., Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat. Commun. 12, 6063 (2021). https://doi.org/10.1038/s41467-021-26262-3
- K. Koshelev, Y. Kivshar, Dielectric resonant metaphotonics. ACS Photonics 8, 102–112 (2020). https://doi.org/10.1021/acsphotonics.0c01315
- S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu et al., Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light–matter interaction toward excellent photodetectors. ACS Nano 11, 8768–8776 (2017). https://doi.org/10.1021/acsnano.7b02444
- K. Wang, A.A. Puretzky, Z. Hu, B.R. Srijanto, X. Li et al., Strain tolerance of two-dimensional crystal growth on curved surfaces. Sci. Adv. 5, eaav4028 (2019). https://doi.org/10.1126/sciadv.aav4028
- F. Liu, J. Xu, Y. Yan, J. Shi, S. Ahmad et al., Highly sensitive phototransistors based on partially suspended monolayer WS2. ACS Photonics 10, 1126–1135 (2023). https://doi.org/10.1021/acsphotonics.2c01861
- A. Zhang, H. Kim, J. Cheng, Y.-H. Lo, Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. Nano Lett. 10, 2117–2120 (2010). https://doi.org/10.1021/nl1006432
- C. Cho, J. Wong, A. Taqieddin, S. Biswas, N.R. Aluru et al., Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers. Nano Lett. 21, 3956–3964 (2021). https://doi.org/10.1021/acs.nanolett.1c00724
- A. Chaves, J.G. Azadani, H. Alsalman, D. Da Costa, R. Frisenda et al., Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020). https://doi.org/10.1038/s41699-020-00162-4
- I. Niehues, R. Schmidt, M. Druppel, P. Marauhn, D. Christiansen et al., Strain control of exciton–phonon coupling in atomically thin semiconductors. Nano Lett. 18, 1751–1757 (2018). https://doi.org/10.1038/s41699-020-00162-4
- R. Rosati, S. Brem, R. Perea-Causín, R. Schmidt, I. Niehues et al., Strain-dependent exciton diffusion in transition metal dichalcogenides. 2D Mater. 8, 015030 (2020). https://doi.org/10.1088/2053-1583/abbd51
- R. Schmidt, I. Niehues, R. Schneider, M. Drueppel, T. Deilmann et al., Reversible uniaxial strain tuning in atomically thin WSe2. 2D Mater. 3, 021011 (2016). https://doi.org/10.1088/2053-1583/3/2/021011
- R. Frisenda, M. Drüppel, R. Schmidt, S. Michaelis de Vasconcellos, D. Perez de Lara et al., Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides. npj 2D Mater. Appl. 1, 10 (2017). https://doi.org/10.1038/s41699-017-0013-7
- H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund Jr., S.T. Pantelides et al., Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013). https://doi.org/10.1021/nl4014748
- H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong et al., Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015). https://doi.org/10.1038/ncomms8381
- J. Feng, X. Qian, C.-W. Huang, J. Li, Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866–872 (2012). https://doi.org/10.1038/nphoton.2012.285
- E. Blundo, M. Felici, T. Yildirim, G. Pettinari, D. Tedeschi et al., Evidence of the direct-to-indirect band gap transition in strained two-dimensional WS2, MoS2, and WSe2. Phys. Rev. Res. 2, 012024 (2020). https://doi.org/10.1103/PhysRevResearch.2.012024
- D.F. Cordovilla Leon, Z. Li, S.W. Jang, C.-H. Cheng, P.B. Deotare, Exciton transport in strained monolayer WSe2. Appl. Phys. Lett. 113, 252101 (2018). https://doi.org/10.1063/1.5063263
- V.S. Mangu, M. Zamiri, S. Brueck, F. Cavallo, Strain engineering, efficient excitonic photoluminescence, and exciton funnelling in unmodified MoS2 nanosheets. Nanoscale 9, 16602–16606 (2017). https://doi.org/10.1039/C7NR03537C
- K. Hasz, Z. Hu, K.-D. Park, M.B. Raschke, Tip-enhanced dark exciton nanoimaging and local strain control in monolayer WSe2. Nano Lett. 23, 198–204 (2022). https://doi.org/10.1021/acs.nanolett.2c03959
- R. Rosati, R. Schmidt, S. Brem, R. Perea-Causín, I. Niehues et al., Dark exciton anti-funneling in atomically thin semiconductors. Nat. Commun. 12, 7221 (2021). https://doi.org/10.1038/s41467-021-27425-y
- K. Datta, Z. Lyu, Z. Li, T. Taniguchi, K. Watanabe et al., Spatiotemporally controlled room-temperature exciton transport under dynamic strain. Nat. Photonics 16, 242–247 (2022). https://doi.org/10.1038/s41566-021-00951-3
- H. Su, D. Xu, S.-W. Cheng, B. Li, S. Liu et al., Dark-exciton driven energy funneling into dielectric inhomogeneities in two-dimensional semiconductors. Nano Lett. 22, 2843–2850 (2022). https://doi.org/10.1021/acs.nanolett.1c04997
- H. Lee, Y. Koo, S. Kumar, Y. Jeong, D.G. Heo et al., All-optical control of high-purity trions in nanoscale waveguide. Nat. Commun. 14, 1891 (2023). https://doi.org/10.1038/s41467-023-37481-1
- Y. Koo, H. Lee, T. Ivanova, A. Kefayati, V. Perebeinos et al., Tunable interlayer excitons and switchable interlayer trions via dynamic near-field cavity. Light: Sci. Appl. 12, 59 (2023). https://doi.org/10.1038/s41377-023-01087-5
- P. Hernández López, S. Heeg, C. Schattauer, S. Kovalchuk, A. Kumar et al., Strain control of hybridization between dark and localized excitons in a 2D semiconductor. Nat. Commun. 13, 7691 (2022). https://doi.org/10.1038/s41467-022-35352-9
- E. Blundo, P.E.F. Junior, A. Surrente, G. Pettinari, M.A. Prosnikov et al., Strain-induced exciton hybridization in WS2 monolayers unveiled by Zeeman-splitting measurements. Phys. Rev. Lett. 129, 067402 (2022). https://doi.org/10.1103/PhysRevLett.129.067402
- C. Zhang, Y. Chen, A. Johnson, M.-Y. Li, L.-J. Li et al., Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe2. Nano Lett. 15, 6494–6500 (2015). https://doi.org/10.1021/acs.nanolett.5b01968
- B. Aslan, M. Deng, T.F. Heinz, Strain tuning of excitons in monolayer WSe2. Phys. Rev. B 98, 115308 (2018). https://doi.org/10.1103/PhysRevB.98.115308
- T. Deilmann, K.S. Thygesen, Finite-momentum exciton landscape in mono- and bilayer transition metal dichalcogenides. 2D Mater. 6, 035003 (2019). https://doi.org/10.1088/2053-1583/ab0e1d
- H. Shi, H. Pan, Y.-W. Zhang, B.I. Yakobson, Quasip band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 87, 155304 (2013). https://doi.org/10.1103/PhysRevB.87.155304
- C. Robert, T. Amand, F. Cadiz, D. Lagarde, E. Courtade et al., Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B 96, 155423 (2017). https://doi.org/10.1103/PhysRevB.96.155423
- L. Linhart, M. Paur, V. Smejkal, J. Burgdörfer, T. Mueller et al., Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 123, 146401 (2019). https://doi.org/10.1103/PhysRevLett.123.146401
- D. Yang, X. Fan, F. Zhang, Y. Hu, Z. Luo, Electronic and magnetic properties of defected monolayer WSe2 with vacancies. Nanoscale Res. Lett. 14, 1–9 (2019). https://doi.org/10.1186/s11671-019-3002-2
- H. Huang, X. Fan, D.J. Singh, W. Zheng, Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247–1268 (2020). https://doi.org/10.1039/C9NR08313H
- L. Sun, X. Yan, J. Zheng, H. Yu, Z. Lu et al., Layer-dependent chemically induced phase transition of two-dimensional MoS2. Nano Lett. 18, 3435–3440 (2018). https://doi.org/10.1021/acs.nanolett.8b00452
- K.-A.N. Duerloo, Y. Li, E.J. Reed, Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014). https://doi.org/10.1038/ncomms5214
- S. Song, D.H. Keum, S. Cho, D. Perello, Y. Kim et al., Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188–193 (2016). https://doi.org/10.1021/acs.nanolett.5b03481
- H.H. Huang, X.F. Fan, D.J. Singh, H. Chen, Q. Jiang et al., Controlling phase transition for single-layer MTe2 (M = Mo and W): modulation of the potential barrier under strain. Phys. Chem. Chem. Phys. 18, 4086 (2016). https://doi.org/10.1039/C5CP06706E
- A. Apte, V. Kochat, P. Rajak, A. Krishnamoorthy, P. Manimunda et al., Structural phase transformation in strained monolayer MoWSe2 alloy. ACS Nano 12, 3468–3476 (2018). https://doi.org/10.1021/acsnano.8b00248
- C. Zhao, M. Hu, J. Qin, B. Xia, C. Liu et al., Strain tunable semimetal-topological-insulator transition in monolayer 1T’-WTe2. Phys. Rev. Lett. 125, 046801 (2020). https://doi.org/10.1103/PhysRevLett.125.046801
- A.R. Khan, B. Liu, T. Lü, L. Zhang, A. Sharma et al., Direct measurement of folding angle and strain vector in atomically thin WS2 using second-harmonic generation. ACS Nano 14, 15806–15815 (2020). https://doi.org/10.1021/acsnano.0c06901
- D. Li, C. Wei, J. Song, X. Huang, F. Wang et al., Anisotropic enhancement of second-harmonic generation in monolayer and bilayer MoS2 by integrating with TiO2 nanowires. Nano Lett. 19, 4195–4204 (2019). https://doi.org/10.1021/acs.nanolett.9b01933
- J.H. Chen, J. Tan, G.X. Wu, X.J. Zhang, F. Xu et al., Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light: Sci. Appl. 8, 8 (2019). https://doi.org/10.1038/s41377-018-0115-9
- D. Li, W. Xiong, L. Jiang, Z. Xiao, H. Rabiee Golgir et al., Multimodal nonlinear optical imaging of MoS2 and MoS2-based van der Waals heterostructures. ACS Nano 10, 3766–3775 (2016). https://doi.org/10.1021/acsnano.6b00371
- D. Li, Z. Xiao, S. Mu, F. Wang, Y. Liu et al., A facile space-confined solid-phase sulfurization strategy for growth of high-quality ultrathin molybdenum disulfide single crystals. Nano Lett. 18, 2021–2032 (2018). https://doi.org/10.1021/acs.nanolett.7b05473
- M. Weismann, N.C. Panoiu, Theoretical and computational analysis of second-and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers. Phys. Rev. B 94, 035435 (2016). https://doi.org/10.1103/PhysRevB.94.035435
- H. Liu, Y. Li, Y.S. You, S. Ghimire, T.F. Heinz et al., High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017). https://doi.org/10.1038/nphys3946
- W. Huang, Y. Xiao, F. Xia, X. Chen, T. Zhai, Second harmonic generation control in 2D layered materials: status and outlook. Adv. Funct. Mater. 34, 2310726 (2024). https://doi.org/10.1002/adfm.202310726
- R. Ma, D.S. Sutherland, Y. Shi, Harmonic generation in transition metal dichalcogenides and their heterostructures. Mater. Today 50, 570–586 (2021). https://doi.org/10.1016/j.mattod.2021.07.023
- J. You, J. Pan, S.-L. Shang, X. Xu, Z. Liu et al., Salt-assisted selective growth of H-phase monolayer VSe2 with apparent hole transport behavior. Nano Lett. 22, 10167–10175 (2022). https://doi.org/10.1021/acs.nanolett.2c04133
- J.-H. Chen, Y.-F. Xiong, F. Xu, Y.-Q. Lu, Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light: Sci. Appl. 10, 78 (2021). https://doi.org/10.1038/s41377-021-00520-x
- Y. Zuo, W. Yu, C. Liu, X. Cheng, R. Qiao et al., Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat. Nanotechnol. 15, 987–991 (2020). https://doi.org/10.1038/s41565-020-0770-x
- Y. Meng, Y. Chen, L. Lu, Y.M. Ding, A. Cusano et al., Optical meta-waveguides for integrated photonics and beyond. Light: Sci. Appl. 10, 235 (2021). https://doi.org/10.1038/s41377-021-00655-x
- Z.M. Wei, B. Li, C.X. Xia, Y. Cui, J. He et al., Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2, 1800094 (2018). https://doi.org/10.1002/smtd.201800094
- J. Du, H. Yu, B. Liu, M. Hong, Q. Liao et al., Strain engineering in 2D material-based flexible optoelectronics. Small Methods 5, 2000919 (2021). https://doi.org/10.1002/smtd.202000919
- C. Zhang, L. Cheng, Y. Liu, Understanding high-field electron transport properties and strain effects of monolayer transition metal dichalcogenides. Phys. Rev. B 102, 115405 (2020). https://doi.org/10.1103/PhysRevB.102.115405
- Y. Ge, W. Wan, W. Feng, D. Xiao, Y. Yao, Effect of doping and strain modulations on electron transport in monolayer MoS2. Phys. Rev. B 90, 035414 (2014). https://doi.org/10.1103/PhysRevB.90.035414
- J.A. Yang, R.K. Bennett, L. Hoang, Z. Zhang, K.J. Thompson et al., Biaxial tensile strain enhances electron mobility of monolayer transition metal dichalcogenides. ACS Nano 18, 18151–18159 (2024). https://doi.org/10.1021/acsnano.3c08996
- M. Hosseini, M. Elahi, M. Pourfath, D. Esseni, Strain induced mobility modulation in single-layer MoS2. J. Phys. D-Appl. Phys. 48, 375104 (2015). https://doi.org/10.1088/0022-3727/48/37/375104
- A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124, 318–419 (2023). https://doi.org/10.1021/acs.chemrev.3c00302
- I.M. Datye, A. Daus, R.W. Grady, K. Brenner, S. Vaziri et al., Strain-enhanced mobility of monolayer MoS2. Nano Lett. 22, 8052–8059 (2022). https://doi.org/10.1021/acs.nanolett.2c01707
- R. Zhang, Y. Lai, W. Chen, C. Teng, Y. Sun et al., Carrier trapping in wrinkled 2D monolayer MoS2 for ultrathin memory. ACS Nano 16, 6309–6316 (2022). https://doi.org/10.1021/acsnano.2c00350
- B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin et al., Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017). https://doi.org/10.1126/science.aam7127
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- J. van Wezel, P. Nahai-Williamson, S.S. Saxena, Exciton-phonon-driven charge density wave in TiSe2. Phys. Rev. B 81, 165109 (2010). https://doi.org/10.1103/PhysRevB.81.165109
- X. Wang, H. Liu, J. Wu, J. Lin, W. He et al., Chemical growth of 1T-TaS2 monolayer and thin films: robust charge density wave transitions and high bolometric responsivity. Adv. Mater. 30, 1800074 (2018). https://doi.org/10.1002/adma.201800074
- Y. Chen, L. Wu, H. Xu, C. Cong, S. Li et al., Visualizing the anomalous charge density wave states in Graphene/NbSe2 heterostructures. Adv. Mater. 32, 2003746 (2020). https://doi.org/10.1002/adma.202003746
- D. Cho, S. Cheon, K.-S. Kim, S.-H. Lee, Y.-H. Cho et al., Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2. Nat. Commun. 7, 10453 (2016). https://doi.org/10.1038/ncomms10453
- S. Gao, F. Flicker, R. Sankar, H. Zhao, Z. Ren et al., Atomic-scale strain manipulation of a charge density wave. Proc. Natl. Acad. Sci. U.S.A. 115, 6986–6990 (2018). https://doi.org/10.1073/pnas.1718931115
- A. Soumyanarayanan, M.M. Yee, Y. He, J. Van Wezel, D.J. Rahn et al., Quantum phase transition from triangular to stripe charge order in NbSe2. Proc. Natl. Acad. Sci. U.S.A. 110, 1623–1627 (2013). https://doi.org/10.1073/pnas.1211387110
- F. Cossu, K. Palotás, S. Sarkar, I. Di Marco, A. Akbari, Strain-induced stripe phase in charge-ordered single layer NbSe2. npg Asia Mater. 12, 24 (2020). https://doi.org/10.1038/s41427-020-0207-x
- H. Jin, J. Chen, Y. Li, B. Shao, B. Huang, Generating two-dimensional ferromagnetic charge density waves via external fields. Phys. Rev. B 106, 165112 (2022). https://doi.org/10.1103/PhysRevB.106.165112
- G.R. Wang, H. Hou, Y.F. Yan, R. Jagatramka, A. Shirsalimian et al., Recent advances in the mechanics of 2D materials. Int. J. Extrem. Manuf. 5, 032002 (2023). https://doi.org/10.1088/2631-7990/accda2
- Z. Xiong, L. Zhong, H. Wang, X. Li, Structural defects, mechanical behaviors, and properties of two-dimensional materials. Materials 14, 1192 (2021). https://doi.org/10.3390/ma14051192
- J. Pető, G. Dobrik, G. Kukucska, P. Vancsó, A.A. Koós et al., Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities. 2D Mater. 11, 042004 (2024). https://doi.org/10.1088/2053-1583/ad63b6
- J. Pető, G. Dobrik, G. Kukucska, P. Vancsó, A.A. Koós et al., Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers. npj 2D Mater. Appl. 3, 39 (2019). https://doi.org/10.1038/s41699-019-0123-5
- J. Berry, S. Zhou, J. Han, D.J. Srolovitz, M.P. Haataja, Dynamic phase engineering of bendable transition metal dichalcogenide monolayers. Nano Lett. 17, 2473–2481 (2017). https://doi.org/10.1021/acs.nanolett.7b00165
- S. Ghaderzadeh, V. Ladygin, M. Ghorbani-Asl, G. Hlawacek, M. Schleberger et al., Freestanding and supported MoS2 monolayers under cluster irradiation: insights from molecular dynamics simulations. ACS Appl. Mater. Interfaces 12, 37454–37463 (2020). https://doi.org/10.1021/acsami.0c09255
- J. Los, J. Kroes, K. Albe, R. Gordillo, M. Katsnelson, Extended Tersoff potential for boron nitride: energetics and elastic properties of pristine and defective ℎ-BN. Phys. Rev. B 96, 184108 (2017). https://doi.org/10.1103/PhysRevB.96.184108
- B. Mortazavi, G. Cuniberti, Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Adv. 4, 19137–19143 (2014). https://doi.org/10.1039/C4RA01103A
- K. Momeni, Y. Ji, Y. Wang, S. Paul, S. Neshani et al., Multiscale computational understanding and growth of 2D materials: a review. npj Comput. Mater. 6, 22 (2020). https://doi.org/10.1038/s41524-020-0280-2
- X. Zhang, H. Nguyen, J.T. Paci, S.K. Sankaranarayanan, J.L. Mendoza-Cortes et al., Multi-objective parametrization of interatomic potentials for large deformation pathways and fracture of two-dimensional materials. npj Comput. Mater. 7, 113 (2021). https://doi.org/10.1038/s41524-021-00573-x
- M. Kues, C. Reimer, J.M. Lukens, W.J. Munro, A.M. Weiner et al., Quantum optical microcombs. Nat. Photonics 13, 170–179 (2019). https://doi.org/10.1038/s41566-019-0363-0
- P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017). https://doi.org/10.1038/nnano.2017.218
- N. Spagnolo, C. Vitelli, M. Bentivegna, D.J. Brod, A. Crespi et al., Experimental validation of photonic boson sampling. Nat. Photonics 8, 615–620 (2014). https://doi.org/10.1038/nphoton.2014.135
- C. Portmann, R. Renner, Security in quantum cryptography. Rev. Mod. Phys. 94, 025008 (2022). https://doi.org/10.1103/RevModPhys.94.025008
- N.P. De Leon, K.M. Itoh, D. Kim, K.K. Mehta, T.E. Northup et al., Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021). https://doi.org/10.1126/science.abb2823
- Y.-M. He, G. Clark, J.R. Schaibley, Y. He, M.-C. Chen et al., Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015). https://doi.org/10.1038/nnano.2015.75
- A. Srivastava, M. Sidler, A.V. Allain, D.S. Lembke, A. Kis et al., Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015). https://doi.org/10.1038/nnano.2015.60
- M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet et al., Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015). https://doi.org/10.1038/nnano.2015.67
- S. Kumar, A. Kaczmarczyk, B.D. Gerardot, Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015). https://doi.org/10.1021/acs.nanolett.5b03312
- A. Branny, G. Wang, S. Kumar, C. Robert, B. Lassagne et al., Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016). https://doi.org/10.1063/1.4945268
- L. Yu, M. Deng, J.L. Zhang, S. Borghardt, B. Kardynal et al., Site-controlled quantum emitters in monolayer MoSe2. Nano Lett. 21, 2376–2381 (2021). https://doi.org/10.1021/acs.nanolett.0c04282
- S. Cianci, E. Blundo, F. Tuzi, G. Pettinari, K. Olkowska-Pucko et al., Solid-state single-photon sources: recent advances for novel quantum materials. Adv. Opt. Mater. 11, 2202953 (2023). https://doi.org/10.1002/adom.202202953
- H. Zhao, M.T. Pettes, Y. Zheng, H. Htoon, Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2. Nat. Commun. 12, 6753 (2021). https://doi.org/10.1038/s41467-021-27033-w
- K. Parto, S.I. Azzam, N. Lewis, S.D. Patel, S. Umezawa et al., Cavity-enhanced 2D material quantum emitters deterministically integrated with silicon nitride microresonators. Nano Lett. 22, 9748–9756 (2022). https://doi.org/10.1021/acs.nanolett.2c03151
- H.-J. Chuang, C.E. Stevens, M.R. Rosenberger, S.-J. Lee, K.M. McCreary et al., Enhancing single photon emission purity via design of van der Waals heterostructures. Nano Lett. 24, 5529–5535 (2024). https://doi.org/10.1021/acs.nanolett.4c00683
- C.E. Stevens, H.-J. Chuang, M.R. Rosenberger, K.M. McCreary, C.K. Dass et al., Enhancing the purity of deterministically placed quantum emitters in monolayer WSe2. ACS Nano 16, 20956–20963 (2022). https://doi.org/10.1021/acsnano.2c08553
- M. Esmann, S.C. Wein, C. Antón-Solanas, Solid-state single-photon sources: recent advances for novel quantum materials. Adv. Funct. Mater. 34, 2315936 (2024). https://doi.org/10.1002/adfm.202315936
- X.D. Xu, W. Yao, D. Xiao, T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014). https://doi.org/10.1038/nphys2942
- G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie et al., Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018). https://doi.org/10.1103/RevModPhys.90.021001
- K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
- Y. Tang, K.F. Mak, J. Shan, Long valley lifetime of dark excitons in single-layer WSe2. Nat. Commun. 10, 4047 (2019). https://doi.org/10.1038/s41467-019-12129-1
- Z.Y. Zhu, Y.C. Cheng, U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011). https://doi.org/10.1103/PhysRevB.84.153402
- O. Iff, Q. Buchinger, M. Moczała-Dusanowska, M. Kamp, S. Betzold et al., Purcell-enhanced single photon source based on a deterministically placed WSe2 monolayer quantum dot in a circular Bragg grating cavity. Nano Lett. 21, 4715–4720 (2021). https://doi.org/10.1021/acs.nanolett.1c00978
- G. Kim, H.M. Kim, P. Kumar, M. Rahaman, C.E. Stevens et al., High-density, localized quantum emitters in strained 2D semiconductors. ACS Nano 16, 9651–9659 (2022). https://doi.org/10.1021/acsnano.2c02974
- S.Y. Chen, C. Wang, H.B. Cai, L.J. Ma, Y.S. Qu et al., Realization of single-photon emitters with high brightness and high stability and excellent monochromaticity. Matter 7, 1106 (2024). https://doi.org/10.1016/j.matt.2023.12.026
- S. Kumar, M. Brotóns-Gisbert, R. Al-Khuzheyri, A. Branny, G. Ballesteros-Garcia et al., Resonant laser spectroscopy of localized excitons in monolayer WSe2. Optica 3, 882–886 (2016). https://doi.org/10.1364/OPTICA.3.000882
- D. Gammon, E. Snow, B. Shanabrook, D. Katzer, D. Park, Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005 (1996). https://doi.org/10.1103/PhysRevLett.76.3005
- M. Bayer, G. Ortner, O. Stern, A. Kuther, A. Gorbunov et al., Fine structure of neutral and charged excitons in self-assembled In (Ga) As/(Al) GaAs quantum dots. Phys. Rev. B 65, 195315 (2002). https://doi.org/10.1103/PhysRevB.65.195315
- W. Wang, L.O. Jones, J.-S. Chen, G.C. Schatz, X. Ma, Utilizing ultraviolet photons to generate single-photon emitters in semiconductor monolayers. ACS Nano 16, 21240–21247 (2022). https://doi.org/10.1021/acsnano.2c09209
- J. Klein, L. Sigl, S. Gyger, K. Barthelmi, M. Florian et al., Engineering the luminescence and generation of individual defect emitters in atomically thin MoS2. ACS Photonics 8, 669–677 (2021). https://doi.org/10.1021/acsphotonics.0c01907
- A. Hötger, J. Klein, K. Barthelmi, L. Sigl, F. Sigger et al., Gate-switchable arrays of quantum light emitters in contacted monolayer MoS2 van der Waals heterodevices. Nano Lett. 21, 1040–1046 (2021). https://doi.org/10.1021/acs.nanolett.0c04222
- S.J. Liang, B. Cheng, X. Cui, F. Miao, Van der Waals heterostructures for high-performance device applications: challenges and opportunities. Adv. Mater. 32, 1903800 (2020). https://doi.org/10.1002/adma.201903800
- J.L. Qi, Z.X. Wu, W.B. Wang, K. Bao, L.Z. Wang et al., Fabrication and applications of van der Waals heterostructures. Int. J. Extrem. Manuf. 5, 022007 (2023). https://doi.org/10.1088/2631-7990/acc8a1
- Y. Bai, L. Zhou, J. Wang, W. Wu, L.J. McGilly et al., Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020). https://doi.org/10.1038/s41563-020-0730-8
- H. Baek, M. Brotons-Gisbert, Z.X. Koong, A. Campbell, M. Rambach et al., Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020). https://doi.org/10.1126/sciadv.aba8526
- M. Kremser, M. Brotons-Gisbert, J. Knörzer, J. Gückelhorn, M. Meyer et al., Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020). https://doi.org/10.1038/s41699-020-0141-3
- E.M. Alexeev, N. Mullin, P. Ares, H. Nevison-Andrews, O. Skrypka et al., Emergence of highly linearly polarized interlayer exciton emission in MoSe2/WSe2 heterobilayers with transfer-induced layer corrugation. ACS Nano 14, 11110–11119 (2020). https://doi.org/10.1021/acsnano.0c01146
- X. Liu, M.C. Hersam, 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019). https://doi.org/10.1038/s41578-019-0136-x
- A.R.-P. Montblanch, M. Barbone, I. Aharonovich, M. Atatüre, A.C. Ferrari, Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 18, 555–571 (2023). https://doi.org/10.1038/s41565-023-01354-x
- M. Brotons-Gisbert, H. Baek, A. Molina-Sánchez, A. Campbell, E. Scerri et al., Spin–layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630–636 (2020). https://doi.org/10.1038/s41563-020-0687-7
- M. Brotons-Gisbert, A. Branny, S. Kumar, R. Picard, R. Proux et al., Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir. Nat. Nanotechnol. 14, 442–446 (2019). https://doi.org/10.1038/s41565-019-0402-5
- A.H. Liu, X.W. Zhang, Z.Y. Liu, Y.N. Li, X.Y. Peng et al., The roadmap of 2D materials and devices toward chips. Nano-Micro Lett. 16, 119 (2024). https://doi.org/10.1007/s40820-023-01273-5
- J.J. Baumberg, J. Aizpurua, M.H. Mikkelsen, D.R. Smith, Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019). https://doi.org/10.1038/s41563-019-0290-y
- R. Chikkaraddy, B. de Nijs, F. Benz, S.J. Barrow, O.A. Scherman et al., Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016). https://doi.org/10.1038/nature17974
- G.M. Akselrod, C. Argyropoulos, T.B. Hoang, C. Ciracì, C. Fang et al., Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 8, 835–840 (2014). https://doi.org/10.1038/nphoton.2014.228
- A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Science 354, aag2472 (2016). https://doi.org/10.1126/science.aag2472
- T.T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth et al., Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017). https://doi.org/10.1021/acs.nanolett.7b00444
- A.S. Bandyopadhyay, A.B. Puthirath, P.M. Ajayan, H.Y. Zhu, Y. Lin et al., Intrinsic and strain-dependent properties of suspended WSe2 crystallites toward next-generation nanoelectronics and quantum-enabled sensors. ACS Appl. Mater. Interfaces 16, 3640–3653 (2024). https://doi.org/10.1021/acsami.3c13603
- S.I. Azzam, K. Parto, G. Moody, Purcell enhancement and polarization control of single-photon emitters in monolayer WSe2 using dielectric nanoantennas. Nanophotonics 12, 477–484 (2023). https://doi.org/10.1515/nanoph-2022-0628
- S. Dutta, T. Cai, M.A. Buyukkaya, S. Barik, S. Aghaeimeibodi et al., Coupling quantum emitters in WSe2 monolayers to a metal-insulator-metal waveguide. Appl. Phys. Lett. 113, 191105 (2018). https://doi.org/10.1063/1.5045727
- J.J. Fonseca, A.L. Yeats, B. Blue, M.K. Zalalutdinov, T. Brintlinger et al., Enabling remote quantum emission in 2D semiconductors via porous metallic networks. Nat. Commun. 11, 5 (2020). https://doi.org/10.1038/s41467-019-13857-0
- H. Cai, A. Rasmita, R. He, Z. Zhang, Q. Tan et al., Charge-depletion-enhanced WSe2 quantum emitters on gold nanogap arrays with near-unity quantum efficiency. Nat. Photonics 18, 842–847 (2024). https://doi.org/10.1038/s41566-024-01460-9
- H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: evolution of atomic structure under electron irradiation. Phys. Rev. B 88, 035301 (2013). https://doi.org/10.1103/PhysRevB.88.035301
- G. Moody, K. Tran, X. Lu, T. Autry, J.M. Fraser et al., Microsecond valley lifetime of defect-bound excitons in monolayer WSe2. Phys. Rev. Lett. 121, 057403 (2018). https://doi.org/10.1103/PhysRevLett.121.057403
- J. Klein, M. Lorke, M. Florian, F. Sigger, L. Sigl et al., Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation. Nat. Commun. 10, 2755 (2019). https://doi.org/10.1038/s41467-019-10632-z
- D.D. Xu, A.F. Vong, D. Lebedev, R. Ananth, A.M. Wong et al., Conversion of classical light emission from a nanop-strained WSe2 monolayer into quantum light emission via electron beam irradiation. Adv. Mater. 35, 2208066 (2023). https://doi.org/10.1002/adma.202208066
- X. Xie, J. Kang, W. Cao, J.H. Chu, Y. Gong et al., Designing artificial 2D crystals with site and size controlled quantum dots. Sci. Rep. 7, 9965 (2017). https://doi.org/10.1038/s41598-017-08776-3
- Y. Luo, N. Liu, B. Kim, J. Hone, S. Strauf, Exciton dipole orientation of strain-induced quantum emitters in WSe2. Nano Lett. 20, 5119–5126 (2020). https://doi.org/10.1021/acs.nanolett.0c01358
- H. Moon, E. Bersin, C. Chakraborty, A.-Y. Lu, G. Grosso et al., Strain-correlated localized exciton energy in atomically thin semiconductors. ACS Photonics 7, 1135–1140 (2020). https://doi.org/10.1021/acsphotonics.0c00626
- J. Dang, S. Sun, X. Xie, Y. Yu, K. Peng et al., Identifying defect-related quantum emitters in monolayer WSe2. npj 2D Mater. Appl. 4, 2 (2020). https://doi.org/10.1038/s41699-020-0136-0
- D. Rhodes, S.H. Chae, R. Ribeiro-Palau, J. Hone, Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019). https://doi.org/10.1038/s41563-019-0366-8
- J. Kim, H. Park, S. Yoo, Y.H. Im, K. Kang et al., Defect-engineered n-doping of WSe2 via argon plasma treatment and its application in field-effect transistors. Adv. Mater. Interfaces 8, 2100718 (2021). https://doi.org/10.1002/admi.202100718
- E. Kim, C. Ko, K. Kim, Y. Chen, J. Suh et al., Site selective doping of ultrathin metal dichalcogenides by laser-assisted reaction. Adv. Mater. 28, 341–346 (2016). https://doi.org/10.1002/adma.201503945
- C.R. Ryder, J.D. Wood, S.A. Wells, M.C. Hersam, Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10, 3900–3917 (2016). https://doi.org/10.1021/acsnano.6b01091
- X. Liu, M.C. Hersam, Interface characterization and control of 2D materials and heterostructures. Adv. Mater. 30, 1801586 (2018). https://doi.org/10.1002/adma.201801586
- H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012). https://doi.org/10.1038/nnano.2012.95
- K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012). https://doi.org/10.1038/nnano.2012.96
- J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones et al., Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013). https://doi.org/10.1038/ncomms2498
- D. Xiao, W. Yao, Q. Niu, Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). https://doi.org/10.1103/PhysRevLett.99.236809
- X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li et al., Optical initialization of a single spin-valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019). https://doi.org/10.1038/s41565-019-0394-1
- L. Yang, Y. Yuan, B. Fu, J. Yang, D. Dai et al., Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities. Nat. Commun. 14, 4265 (2023). https://doi.org/10.1038/s41467-023-39972-7
- X. Chen, X. Lu, S. Dubey, Q. Yao, S. Liu et al., Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat. Phys. 15, 221–227 (2019). https://doi.org/10.1038/s41567-018-0366-7
- S.-J. Lee, J.-P. So, R.M. Kim, K.-H. Kim, H.-H. Rha et al., Spin angular momentum–encoded single-photon emitters in a chiral nanop–coupled WSe2 monolayer. Sci. Adv. 10, eadn7210 (2024). https://doi.org/10.1126/sciadv.adn7210
- X. Li, A.C. Jones, J. Choi, H. Zhao, V. Chandrasekaran et al., Proximity-induced chiral quantum light generation in strain-engineered WSe2/NiPS3 heterostructures. Nat. Mater. 22, 1311–1316 (2023). https://doi.org/10.1038/s41563-023-01645-7
- J.-P. So, H.-R. Kim, H. Baek, K.-Y. Jeong, H.-C. Lee et al., Electrically driven strain-induced deterministic single-photon emitters in a van der Waals heterostructure. Sci. Adv. 7, eabj3176 (2021). https://doi.org/10.1126/sciadv.abj3176
- E.J. Lenferink, T. LaMountain, T.K. Stanev, E. Garvey, K. Watanabe et al., Tunable emission from localized excitons deterministically positioned in monolayer p–n junctions. ACS Photonics 9, 3067–3074 (2022). https://doi.org/10.1021/acsphotonics.2c00811
- I. Žutić, A. Matos-Abiague, B. Scharf, H. Dery, K. Belashchenko, Proximitized materials. Mater. Today 22, 85–107 (2019). https://doi.org/10.1016/j.mattod.2018.05.003
- B. Scharf, G. Xu, A. Matos-Abiague, I. Žutić, Magnetic proximity effects in transition-metal dichalcogenides: converting excitons. Phys. Rev. Lett. 119, 127403 (2017). https://doi.org/10.1103/PhysRevLett.119.127403
- L. Ciorciaro, M. Kroner, K. Watanabe, T. Taniguchi, A. Imamoglu, Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe2/CrBr3 heterostructure. Phys. Rev. Lett. 124, 197401 (2020). https://doi.org/10.1103/PhysRevLett.124.197401
- K. Shayan, N. Liu, A. Cupo, Y. Ma, Y. Luo et al., Magnetic proximity coupling of quantum emitters in WSe2 to van der Waals ferromagnets. Nano Lett. 19, 7301–7308 (2019). https://doi.org/10.1021/acs.nanolett.9b02920
- A. Mukherjee, K. Shayan, L. Li, J. Shan, K.F. Mak et al., Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures. Nat. Commun. 11, 5502 (2020). https://doi.org/10.1038/s41467-020-19262-2
- C. Chakraborty, K.M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier et al., Quantum-confined Stark effect of individual defects in a van der Waals heterostructure. Nano Lett. 17, 2253–2258 (2017). https://doi.org/10.1021/acs.nanolett.6b04889
- B.W. Baugher, H.O. Churchill, Y. Yang, P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014). https://doi.org/10.1038/nnano.2014.25
- J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014). https://doi.org/10.1038/nnano.2014.26
- G. Clark, J.R. Schaibley, J. Ross, T. Taniguchi, K. Watanabe et al., Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett. 16, 3944–3948 (2016). https://doi.org/10.1021/acs.nanolett.6b01580
- S. Schwarz, A. Kozikov, F. Withers, J. Maguire, A. Foster et al., Electrically pumped single-defect light emitters in WSe2. 2D Mater. 3, 025038 (2016). https://doi.org/10.1088/2053-1583/3/2/025038
- P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema et al., Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015). https://doi.org/10.1364/OPTICA.2.000347
- C. Chakraborty, N.R. Jungwirth, G.D. Fuchs, A.N. Vamivakas, Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters. Phys. Rev. B 99, 045308 (2019). https://doi.org/10.1103/PhysRevB.99.045308
- G. Wang, M. Zhang, D. Chen, Q. Guo, X. Feng et al., Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors. Nat. Commun. 9, 5168 (2018). https://doi.org/10.1038/s41467-018-07555-6
- A. Grubisic-Cabo, M. Michiardi, C.E. Sanders, M. Bianchi, D. Curcio et al., In situ exfoliation method of large-area 2D materials. Adv. Sci. 10, 2301243 (2023). https://doi.org/10.1002/advs.202301243
- Z.M. Ye, C. Tan, X.L. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15, 38 (2023). https://doi.org/10.1007/s40820-022-01010-4
- K.W. Tang, W.H. Qi, Y.R. Wei, G.L. Ru, W.M. Liu, High-throughput calculation of interlayer van der Waals forces validated with experimental measurements. Research 2022, 9765121 (2022). https://doi.org/10.34133/2022/9765121
- Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou et al., Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014). https://doi.org/10.1038/ncomms6246
- Y. Zhang, Y. Yao, M.G. Sendeku, L. Yin, X. Zhan et al., Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 31, 1901694 (2019). https://doi.org/10.1002/adma.201901694
- A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, et al., Excitons in atomically thin transition-metal dichalcogenides. in 2014 Conference on Lasers and Electro-Optics (CLEO)-Laser Science to Photonic Applications (IEEE), pp. 1–2. https://doi.org/10.1364/CLEO_QELS.2014.FTu2B.6
- C. Couteau, S. Barz, T. Durt, T. Gerrits, J. Huwer et al., Applications of single photons to quantum communication and computing. Nat. Rev. Phys. 5, 326–338 (2023). https://doi.org/10.1038/s42254-023-00583-2
- F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen et al., Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017). https://doi.org/10.1103/PhysRevX.7.021026
- O.A. Ajayi, J.V. Ardelean, G.D. Shepard, J. Wang, A. Antony et al., Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. Mater. 4, 031011 (2017). https://doi.org/10.1088/2053-1583/aa6aa1
- L.J. McGilly, A. Kerelsky, N.R. Finney, K. Shapovalov, E.-M. Shih et al., Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020). https://doi.org/10.1038/s41565-020-0708-3
- A. Ciarrocchi, F. Tagarelli, A. Avsar, A. Kis, Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nat. Rev. Mater. 7, 449–464 (2022). https://doi.org/10.1038/s41578-021-00408-7
- X. Sun, M. Suriyage, A.R. Khan, M. Gao, J. Zhao et al., Twisted van der Waals quantum materials: fundamentals, tunability, and applications. Chem. Rev. 124, 1992–2079 (2024). https://doi.org/10.1021/acs.chemrev.3c00627
- X.G. Yang, L. Wen, J.H. Yan, Y.J. Bao, Q. Chen et al., Energy dissipation and asymmetric excitation in hybrid waveguides for routing and coloring. J. Phys. Chem. Lett. 12, 7034–7040 (2021).
References
X.D. Duan, C. Wang, A.L. Pan, R. Yu, X.F. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015). https://doi.org/10.1039/C5CS00507H
K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). https://doi.org/10.1038/nature14417
H. Zhang, B. Abhiraman, Q. Zhang, J. Miao, K. Jo et al., Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings. Nat. Commun. 11, 3552 (2020). https://doi.org/10.1038/s41467-020-17313-2
L.H. Zeng, S.H. Lin, Z.J. Li, Z.X. Zhang, T.F. Zhang et al., Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 28, 1705970 (2018). https://doi.org/10.1002/adfm.201705970
X. Xu, T. Schultz, Z. Qin, N. Severin, B. Haas et al., Microstructure and elastic constants of transition metal dichalcogenide monolayers from friction and shear force microscopy. Adv. Mater. 30, 1803748 (2018). https://doi.org/10.1002/adma.201803748
S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia et al., Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592–4597 (2014). https://doi.org/10.1021/nl501638a
Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo et al., Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 8, 2562–2572 (2015). https://doi.org/10.1007/s12274-015-0762-6
M. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng et al., Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 3, 362–396 (2021). https://doi.org/10.1002/inf2.12161
J.R. Schaibley, H. Yu, G. Clark, P. Rivera, J.S. Ross et al., Valleytronics in 2D materials. Nat. Rev. Mater. 1, 1–15 (2016). https://doi.org/10.1038/natrevmats.2016.55
A. Piacentini, A. Daus, Z. Wang, M.C. Lemme, D. Neumaier, Potential of transition metal dichalcogenide transistors for flexible electronics applications. Adv. Electron. Mater. 9, 2300181 (2023). https://doi.org/10.1002/aelm.202300181
X. Wu, H. Zhang, J. Zhang, X.W. Lou, Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater. 33, 2008376 (2021). https://doi.org/10.1002/adma.202008376
J.-K. Qin, C. Sui, Z. Qin, J. Wu, H. Guo et al., Mechanical anisotropy in two-dimensional selenium atomic layers. Nano Lett. 21, 8043–8050 (2021). https://doi.org/10.1021/acs.nanolett.1c02294
A. Falin, M. Holwill, H. Lv, W. Gan, J. Cheng et al., Mechanical properties of atomically thin tungsten dichalcogenides: WS2, WSe2, and WTe2. ACS Nano 15, 2600–2610 (2021). https://doi.org/10.1021/acsnano.0c07430
Y. Yang, X. Li, M. Wen, E. Hacopian, W. Chen et al., Brittle fracture of 2D MoSe2. Adv. Mater. 29, 1604201 (2016). https://doi.org/10.1002/adma.201604201
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
J.M. Kim, M.F. Haque, E.Y. Hsieh, S.M. Nahid, I. Zarin et al., Strain engineering of low-dimensional materials for emerging quantum phenomena and functionalities. Adv. Mater. 35, 2107362 (2023). https://doi.org/10.1002/adma.202107362
Z. Peng, X. Chen, Y. Fan, D.J. Srolovitz, D. Lei, Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light: Sci. Appl. 9, 190 (2020). https://doi.org/10.1038/s41377-020-00421-5
E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5, 43–48 (2012). https://doi.org/10.1007/s12274-011-0183-0
M. Ghorbani-Asl, S. Borini, A. Kuc, T. Heine, Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 87, 235434 (2013). https://doi.org/10.1103/PhysRevB.87.235434
R.J. Gelly, D. Renaud, X. Liao, B. Pingault, S. Bogdanovic et al., Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer. Nat. Commun. 13, 232 (2022). https://doi.org/10.1038/s41467-021-27877-2
H. Moon, G. Grosso, C. Chakraborty, C. Peng, T. Taniguchi et al., Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Lett. 20, 6791–6797 (2020). https://doi.org/10.1021/acs.nanolett.0c02757
M.G. Harats, J.N. Kirchhof, M. Qiao, K. Greben, K.I. Bolotin, Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2. Nat. Photonics 14, 324–329 (2020). https://doi.org/10.1038/s41566-019-0581-5
H. Lee, Y. Koo, J. Choi, S. Kumar, H.-T. Lee et al., Drift-dominant exciton funneling and trion conversion in 2D semiconductors on the nanogap. Sci. Adv. 8, eabm5236 (2022). https://doi.org/10.1126/sciadv.abm5236
C. Chakraborty, L. Kinnischtzke, K.M. Goodfellow, R. Beams, A.N. Vamivakas, Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015). https://doi.org/10.1038/nnano.2015.79
J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger et al., Nanoscale positioning of single-photon emitters in atomically thin WSe2. Adv. Mater. 28, 7101–7105 (2016). https://doi.org/10.1002/adma.201600560
A. Branny, S. Kumar, R. Proux, B.D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017). https://doi.org/10.1038/ncomms15053
N.V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen et al., Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 5, 1128–1134 (2018). https://doi.org/10.1364/OPTICA.5.001128
M. Turunen, M. Brotons-Gisbert, Y. Dai, Y. Wang, E. Scerri et al., Quantum photonics with layered 2D materials. Nat. Rev. Phys. 4, 219–236 (2022). https://doi.org/10.1038/s42254-021-00408-0
I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016). https://doi.org/10.1038/nphoton.2016.186
K. Parto, S.I. Azzam, K. Banerjee, G. Moody, Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021). https://doi.org/10.1038/s41467-021-23709-5
D.D. Xu, A.F. Vong, M.I.B. Utama, D. Lebedev, R. Ananth et al., Sub-diffraction correlation of quantum emitters and local strain fields in strain-engineered WSe2 monolayers. Adv. Mater. 36, 2314242 (2024). https://doi.org/10.1002/adma.202314242
L.N. Tripathi, O. Iff, S. Betzold, Ł Dusanowski, M. Emmerling et al., Spontaneous emission enhancement in strain-induced WSe2 monolayer-based quantum light sources on metallic surfaces. ACS Photonics 5, 1919–1926 (2018). https://doi.org/10.1021/acsphotonics.7b01053
T. Cai, J.-H. Kim, Z. Yang, S. Dutta, S. Aghaeimeibodi et al., Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nanopillars. ACS Photonics 5, 3466–3471 (2018). https://doi.org/10.1021/acsphotonics.8b00580
M. Blauth, M. Jürgensen, G. Vest, O. Hartwig, M. Prechtl et al., Coupling single photons from discrete quantum emitters in WSe2 to lithographically defined plasmonic slot waveguides. Nano Lett. 18, 6812–6819 (2018). https://doi.org/10.1021/acs.nanolett.8b02687
P. Tonndorf, O. Del Pozo-Zamudio, N. Gruhler, J. Kern, R. Schmidt et al., On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett. 17, 5446–5451 (2017). https://doi.org/10.1021/acs.nanolett.7b02092
F. Peyskens, C. Chakraborty, M. Muneeb, D. Van Thourhout, D. Englund, Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019). https://doi.org/10.1038/s41467-019-12421-0
P. Tonndorf, O. Del Pozo-Zamudio, N. Gruhler, J. Kern, R. Schmidt et al., Chemomechanical modification of quantum emission in monolayer WSe2. Nat. Commun. 14, 2193 (2023). https://doi.org/10.1038/s41467-023-37892-0
C. Palacios-Berraquero, D.M. Kara, A.R.-P. Montblanch, M. Barbone, P. Latawiec et al., Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017). https://doi.org/10.1038/ncomms15093
Y. Luo, G.D. Shepard, J.V. Ardelean, D.A. Rhodes, B. Kim et al., Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018). https://doi.org/10.1038/s41565-018-0275-z
T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah et al., Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Lett. 17, 6564–6568 (2017). https://doi.org/10.1021/acs.nanolett.7b02222
D. White, A. Branny, R.J. Chapman, R. Picard, M. Brotons-Gisbert et al., Atomically-thin quantum dots integrated with lithium niobate photonic chips. Opt. Mater. Express 9, 441–448 (2019). https://doi.org/10.1364/OME.9.000441
C. Palacios-Berraquero, M. Barbone, D.M. Kara, X.L. Chen, I. Goykhman et al., Atomically thin quantum light-emitting diodes. Nat. Commun. (2016). https://doi.org/10.1007/978-3-030-01482-7_4
H. Yu, G.-B. Liu, J. Tang, X. Xu, W. Yao, Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017). https://doi.org/10.1126/sciadv.1701696
K.L. Seyler, P. Rivera, H. Yu, N.P. Wilson, E.L. Ray et al., Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019). https://doi.org/10.1038/s41586-019-0957-1
A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea et al., Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013). https://doi.org/10.1021/nl402875m
K.P. Dhakal, S. Roy, H. Jang, X. Chen, W.S. Yun et al., Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater. 29, 5124–5133 (2017). https://doi.org/10.1021/acs.chemmater.7b00453
J. Quereda, P. San-Jose, V. Parente, L. Vaquero-Garzon, A.J. Molina-Mendoza et al., Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 16, 2931–2937 (2016). https://doi.org/10.1021/acs.nanolett.5b04670
M. Pandey, C. Pandey, R. Ahuja, R. Kumar, Straining techniques for strain engineering of 2D materials towards flexible straintronic applications. Nano Energy 109, 108278 (2023). https://doi.org/10.1016/j.nanoen.2023.108278
A.R. Khan, T. Lu, W. Ma, Y. Lu, Y. Liu, Tunable optoelectronic properties of WS2 by local strain engineering and folding. Adv. Electron. Mater. 6, 1901381 (2020). https://doi.org/10.1002/aelm.201901381
S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li et al., Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15, 1660–1666 (2015). https://doi.org/10.1021/nl504276u
S. Manzeli, A. Allain, A. Ghadimi, A. Kis, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15, 5330–5335 (2015). https://doi.org/10.1021/acs.nanolett.5b01689
M.R. Rosenberger, C.K. Dass, H.-J. Chuang, S.V. Sivaram, K.M. McCreary et al., Quantum calligraphy: writing single-photon emitters in a two-dimensional materials platform. ACS Nano 13, 904–912 (2019). https://doi.org/10.1021/acsnano.8b08730
X. Liu, A.K. Sachan, S.T. Howell, A. Conde-Rubio, A.W. Knoll et al., Thermomechanical nanostraining of two-dimensional materials. Nano Lett. 20, 8250–8257 (2020). https://doi.org/10.1021/acs.nanolett.0c03358
P. Chaudhary, H. Lu, M. Loes, A. Lipatov, A. Sinitskii et al., Mechanical stress modulation of resistance in MoS2 junctions. Nano Lett. 22, 1047–1052 (2022). https://doi.org/10.1021/acs.nanolett.1c04019
H. Lu, C.-W. Bark, D. Esque De Los Ojos, J. Alcala, C.-B. Eom et al., Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012). https://doi.org/10.1126/science.1218693
A.N. Abramov, I.Y. Chestnov, E.S. Alimova, T. Ivanova, I.S. Mukhin et al., Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2. Nat. Commun. 14, 5737 (2023). https://doi.org/10.1038/s41467-023-41292-9
A.G. Milekhin, M. Rahaman, E.E. Rodyakina, A.V. Latyshev, V.M. Dzhagan et al., Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays. Nanoscale 10, 2755–2763 (2018). https://doi.org/10.1039/C7NR06640F
M. Rahaman, R.D. Rodriguez, G. Plechinger, S. Moras, C. Schüller et al., Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy. Nano Lett. 17, 6027–6033 (2017). https://doi.org/10.1021/acs.nanolett.7b02322
K.-D. Park, O. Khatib, V. Kravtsov, G. Clark, X. Xu et al., Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe2 with local strain control. Nano Lett. 16, 2621–2627 (2016). https://doi.org/10.1021/acs.nanolett.6b00238
Y. Koo, Y. Kim, S.H. Choi, H. Lee, J. Choi et al., Tip-induced nano-engineering of strain, bandgap, and exciton funneling in 2D semiconductors. Adv. Mater. 33, 2008234 (2021). https://doi.org/10.1002/adma.202008234
Y. Koo, Y. Kim, S.H. Choi, H. Lee, J. Choi et al., Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 6, 7430 (2015). https://doi.org/10.1038/ncomms8430
X. Liu, S.T. Howell, A. Conde-Rubio, G. Boero, J. Brugger, Thermomechanical nanocutting of 2D materials. Adv. Mater. 32, 2001232 (2020). https://doi.org/10.1002/adma.202001232
S. Chang, Y. Yan, Y. Geng, Local nanostrain engineering of monolayer MoS2 using atomic force microscopy-based thermomechanical nanoindentation. Nano Lett. 23, 9219–9226 (2023). https://doi.org/10.1021/acs.nanolett.3c01809
R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014). https://doi.org/10.1038/nnano.2014.157
H. Hu, H.J. Kim, S. Somnath, Tip-based nanofabrication for scalable manufacturing. Micromachines 8, 90 (2017). https://doi.org/10.3390/mi8030090
S.T. Howell, A. Grushina, F. Holzner, J. Brugger, Thermal scanning probe lithography–a review. Microsyst. Nanoeng. 6, 21 (2020). https://doi.org/10.1038/s41378-019-0124-8
Y. Huang, X. Wang, X. Zhang, X. Chen, B. Li et al., Raman spectral band oscillations in large graphene bubbles. Phys. Rev. Lett. 120, 186104 (2018). https://doi.org/10.1103/PhysRevLett.120.186104
Z. Zong, C.-L. Chen, M.R. Dokmeci, K.-T. Wan, Direct measurement of graphene adhesion on silicon surface by intercalation of nanops. J. Appl. Phys. 107, 026104 (2010). https://doi.org/10.1063/1.3294960
C. Carmesin, M. Lorke, M. Florian, D. Erben, A. Schulz et al., Quantum-dot-like states in molybdenum disulfide nanostructures due to the interplay of local surface wrinkling, strain, and dielectric confinement. Nano Lett. 19, 3182–3186 (2019). https://doi.org/10.1021/acs.nanolett.9b00641
P. Ares, T. Cea, M. Holwill, Y.B. Wang, R. Roldán et al., Piezoelectricity in monolayer hexagonal boron nitride. Adv. Mater. 32, 1905504 (2020). https://doi.org/10.1002/adma.201905504
T.P. Darlington, C. Carmesin, M. Florian, E. Yanev, O. Ajayi et al., Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020). https://doi.org/10.1038/s41565-020-0730-5
E. Blundo, T. Yildirim, G. Pettinari, A. Polimeni, Experimental adhesion energy in van der Waals crystals and heterostructures from atomically thin bubbles. Phys. Rev. Lett. 127, 046101 (2021). https://doi.org/10.1103/PhysRevLett.127.046101
W. Wang, X. Ma, Z. Dai, S. Zhang, Y. Hou et al., Mechanical behavior of blisters spontaneously formed by multilayer 2D materials. Adv. Mater. Interfaces 9, 2101939 (2022). https://doi.org/10.1002/admi.202101939
E. Khestanova, F. Guinea, L. Fumagalli, A. Geim, I. Grigorieva, Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016). https://doi.org/10.1038/ncomms12587
H.H. Kim, J.W. Yang, S.B. Jo, B. Kang, S.K. Lee et al., Substrate-induced solvent intercalation for stable graphene doping. ACS Nano 7, 1155–1162 (2013). https://doi.org/10.1021/nn306012p
Y. Li, B. Wang, W. Li, K. Xu, Dynamic, spontaneous blistering of substrate-supported graphene in acidic solutions. ACS Nano 16, 6145–6152 (2022). https://doi.org/10.1021/acsnano.1c11616
D. Tedeschi, E. Blundo, M. Felici, G. Pettinari, B. Liu et al., Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides. Adv. Mater. 31, 1903795 (2019). https://doi.org/10.1002/adma.201903795
E. Blundo, C. Di Giorgio, G. Pettinari, T. Yildirim, M. Felici et al., Engineered creation of periodic giant, nonuniform strains in MoS2 monolayers. Adv. Mater. Interfaces 7, 2000621 (2020). https://doi.org/10.1002/admi.202000621
B. Liu, T. Yildirim, T. Lü, E. Blundo, L. Wang et al., Variant Plateau’s law in atomically thin transition metal dichalcogenide dome networks. Nat. Commun. 14, 1050 (2023). https://doi.org/10.1038/s41467-023-36565-2
C.D. Giorgio, E. Blundo, G. Pettinari, M. Felici, Y. Lu et al., Nanoscale measurements of elastic properties and hydrostatic pressure in H2-bulged MoS2 membranes. Adv. Mater. Interfaces 7, 2001024 (2020). https://doi.org/10.1002/admi.202001024
J. Wang, D.C. Sorescu, S. Jeon, A. Belianinov, S.V. Kalinin et al., Atomic intercalation to measure adhesion of graphene on graphite. Nat. Commun. 7, 13263 (2016). https://doi.org/10.1038/ncomms13263
R. Larciprete, S. Colonna, F. Ronci, R. Flammini, P. Lacovig et al., Self-assembly of graphene nanoblisters sealed to a bare metal surface. Nano Lett. 16, 1808–1817 (2016). https://doi.org/10.1021/acs.nanolett.5b04849
D. Lloyd, X. Liu, N. Boddeti, L. Cantley, R. Long et al., Adhesion, stiffness, and instability in atomically thin MoS2 bubbles. Nano Lett. 17, 5329–5334 (2017). https://doi.org/10.1021/acs.nanolett.7b01735
N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl et al., Strain-induced pseudo–magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544–547 (2010). https://doi.org/10.1126/science.1191700
P. Jia, W. Chen, J. Qiao, M. Zhang, X. Zheng et al., Programmable graphene nanobubbles with three-fold symmetric pseudo-magnetic fields. Nat. Commun. 10, 3127 (2019). https://doi.org/10.1038/s41467-019-11038-7
S. Kamboj, P.S. Rana, A. Sirohi, A. Vasdev, M. Mandal et al., Generation of strain-induced pseudo-magnetic field in a doped type-II Weyl semimetal. Phys. Rev. B 100, 115105 (2019). https://doi.org/10.1103/PhysRevB.100.115105
M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface. Science 349, 524–528 (2015). https://doi.org/10.1126/science.aab4097
S. Xie, L. Tu, Y. Han, L. Huang, K. Kang et al., Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018). https://doi.org/10.1126/science.aao5360
F. Pang, F. Cao, L. Lei, L. Meng, S. Ye et al., Strain-engineered rippling and manipulation of single-layer WS2 by atomic force microscopy. J. Phys. Chem. C 125, 8696–8703 (2021). https://doi.org/10.1021/acs.jpcc.1c01179
J. Wang, M. Han, Q. Wang, Y. Ji, X. Zhang et al., Strained epitaxy of monolayer transition metal dichalcogenides for wrinkle arrays. ACS Nano 15, 6633–6644 (2021). https://doi.org/10.1021/acsnano.0c09983
C. Kuo, S. Vong, R. Cohen, G. Stringfellow, Effect of mismatch strain on band gap in III-V semiconductors. J. Appl. Phys. 57, 5428–5432 (1985). https://doi.org/10.1063/1.334817
S. Li, D. Ouyang, N. Zhang, Y. Zhang, A. Murthy et al., Substrate engineering for chemical vapor deposition growth of large-scale 2D transition metal dichalcogenides. Adv. Mater. 35, 2211855 (2023). https://doi.org/10.1002/adma.202211855
J. Lu, L.C. Gomes, R.W. Nunes, A. Castro Neto, K.P. Loh, Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride. Nano Lett. 14, 5133–5139 (2014). https://doi.org/10.1021/nl501900x
Y. Han, M.-Y. Li, G.-S. Jung, M.A. Marsalis, Z. Qin et al., Sub-nanometre channels embedded in two-dimensional materials. Nat. Mater. 17, 129–133 (2018). https://doi.org/10.1038/nmat5038
S. Yang, Y. Chen, C. Jiang, Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat 3, 397–420 (2021). https://doi.org/10.1002/inf2.12177
T.H. Ly, S.J. Yun, Q.H. Thi, J. Zhao, Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 11, 7534–7541 (2017). https://doi.org/10.1021/acsnano.7b04287
G.H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J.P. Mastandrea et al., Strain-engineered growth of two-dimensional materials. Nat. Commun. 8, 608 (2017). https://doi.org/10.1038/s41467-017-00516-5
W.H. Chae, J.D. Cain, E.D. Hanson, A.A. Murthy, V.P. Dravid, Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Appl. Phys. Lett. 111, 143106 (2017). https://doi.org/10.1063/1.4998284
F. Wang, B. Zhou, H. Sun, A. Cui, T. Jiang et al., Difference analysis model for the mismatch effect and substrate-induced lattice deformation in atomically thin materials. Phys. Rev. B 98, 245403 (2018). https://doi.org/10.1103/PhysRevB.98.245403
J. Wang, L. He, Y. Zhang, H. Nong, S. Li et al., Locally strained 2D materials: preparation, properties, and applications. Adv. Mater. 36, 2314145 (2024). https://doi.org/10.1002/adma.202314145
S. Liu, Q. Liao, S. Lu, Z. Zhang, G. Zhang et al., Strain modulation in graphene/ZnO nanorod film schottky junction for enhanced photosensing performance. Adv. Funct. Mater. 26, 1347–1353 (2016). https://doi.org/10.1002/adfm.201503905
L. Sortino, M. Gülmüs, B. Tilmann, L. de S Menezes, S.A. Maier, Radiative suppression of exciton–exciton annihilation in a two-dimensional semiconductor. Light: Sci. Appl. 12, 202 (2023). https://doi.org/10.1038/s41377-023-01249-5
E.S. Yanev, T.P. Darlington, S.A. Ladyzhets, M.C. Strasbourg, C. Trovatello et al., Programmable nanowrinkle-induced room-temperature exciton localization in monolayer WSe2. Nat. Commun. 15, 1543 (2024). https://doi.org/10.1038/s41467-024-45936-2
T. Chowdhury, K. Jo, S.B. Anantharaman, T.H. Brintlinger, D. Jariwala et al., Anomalous room-temperature photoluminescence from nanostrained MoSe2 monolayers. ACS Photonics 8, 2220–2226 (2021). https://doi.org/10.1021/acsphotonics.1c00640
J.-P. So, K.-Y. Jeong, J.M. Lee, K.-H. Kim, S.-J. Lee et al., Polarization control of deterministic single-photon emitters in monolayer WSe2. Nano Lett. 21, 1546–1554 (2021). https://doi.org/10.1021/acs.nanolett.1c00078
Y. Luo, N. Liu, X. Li, J.C. Hone, S. Strauf, Single photon emission in WSe2 up 160 K by quantum yield control. 2D Mater. 6, 035017 (2019). https://doi.org/10.1021/acs.nanolett.1c00078
S.S. Li, K.K. Chui, F. Shen, H. Huang, S. Wen et al., Generation and detection of strain-localized excitons in WS2 monolayer by plasmonic metal nanocrystals. ACS Nano 16, 10647–10656 (2022). https://doi.org/10.1021/acsnano.2c02300
H. Zhang, Y. Chen, K.K. Chui, J. Zheng, Y. Ma et al., Synthesis of bitten gold nanops with single-p chiroptical responses. Small 19, 2301476 (2023). https://doi.org/10.1002/smll.202301476
X.M. Cui, Q.F. Ruan, X.L. Zhuo, X.Y. Xia, J.T. Hu et al., Photothermal nanomaterials: a powerful light-to-heat converter. Chem. Rev. 123, 6891–6952 (2023). https://doi.org/10.1021/acs.chemrev.3c00159
O. Iff, N. Lundt, S. Betzold, L.N. Tripathi, M. Emmerling et al., Deterministic coupling of quantum emitters in WSe2 monolayers to plasmonic nanocavities. Opt. Express 26, 25944–25951 (2018). https://doi.org/10.1364/OE.26.025944
L. Peng, H. Chan, P. Choo, T.W. Odom, S.K. Sankaranarayanan et al., Creation of single-photon emitters in WSe2 monolayers using nanometer-sized gold tips. Nano Lett. 20, 5866–5872 (2020). https://doi.org/10.1021/acs.nanolett.0c01789
M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk et al., Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6, 7915 (2015). https://doi.org/10.1038/ncomms8915
Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis et al., Detection of heating in current-carrying molecular junctions by Raman scattering. Nat. Nanotechnol. 3, 727–732 (2008). https://doi.org/10.1038/nnano.2008.304
D.R. Ward, D.A. Corley, J.M. Tour, D. Natelson, Vibrational and electronic heating in nanoscale junctions. Nat. Nanotechnol. 6, 33–38 (2011). https://doi.org/10.1038/nnano.2010.240
J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés et al., Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas. Nano Lett. 17, 1219–1225 (2017). https://doi.org/10.1021/acs.nanolett.6b05026
L. Sortino, P.G. Zotev, S. Mignuzzi, J. Cambiasso, D. Schmidt et al., Enhanced light-matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas. Nat. Commun. 10, 5119 (2019). https://doi.org/10.1038/s41467-019-12963-3
L. Sortino, P.G. Zotev, C.L. Phillips, A.J. Brash, J. Cambiasso et al., Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat. Commun. 12, 6063 (2021). https://doi.org/10.1038/s41467-021-26262-3
K. Koshelev, Y. Kivshar, Dielectric resonant metaphotonics. ACS Photonics 8, 102–112 (2020). https://doi.org/10.1021/acsphotonics.0c01315
S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu et al., Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light–matter interaction toward excellent photodetectors. ACS Nano 11, 8768–8776 (2017). https://doi.org/10.1021/acsnano.7b02444
K. Wang, A.A. Puretzky, Z. Hu, B.R. Srijanto, X. Li et al., Strain tolerance of two-dimensional crystal growth on curved surfaces. Sci. Adv. 5, eaav4028 (2019). https://doi.org/10.1126/sciadv.aav4028
F. Liu, J. Xu, Y. Yan, J. Shi, S. Ahmad et al., Highly sensitive phototransistors based on partially suspended monolayer WS2. ACS Photonics 10, 1126–1135 (2023). https://doi.org/10.1021/acsphotonics.2c01861
A. Zhang, H. Kim, J. Cheng, Y.-H. Lo, Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. Nano Lett. 10, 2117–2120 (2010). https://doi.org/10.1021/nl1006432
C. Cho, J. Wong, A. Taqieddin, S. Biswas, N.R. Aluru et al., Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers. Nano Lett. 21, 3956–3964 (2021). https://doi.org/10.1021/acs.nanolett.1c00724
A. Chaves, J.G. Azadani, H. Alsalman, D. Da Costa, R. Frisenda et al., Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020). https://doi.org/10.1038/s41699-020-00162-4
I. Niehues, R. Schmidt, M. Druppel, P. Marauhn, D. Christiansen et al., Strain control of exciton–phonon coupling in atomically thin semiconductors. Nano Lett. 18, 1751–1757 (2018). https://doi.org/10.1038/s41699-020-00162-4
R. Rosati, S. Brem, R. Perea-Causín, R. Schmidt, I. Niehues et al., Strain-dependent exciton diffusion in transition metal dichalcogenides. 2D Mater. 8, 015030 (2020). https://doi.org/10.1088/2053-1583/abbd51
R. Schmidt, I. Niehues, R. Schneider, M. Drueppel, T. Deilmann et al., Reversible uniaxial strain tuning in atomically thin WSe2. 2D Mater. 3, 021011 (2016). https://doi.org/10.1088/2053-1583/3/2/021011
R. Frisenda, M. Drüppel, R. Schmidt, S. Michaelis de Vasconcellos, D. Perez de Lara et al., Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides. npj 2D Mater. Appl. 1, 10 (2017). https://doi.org/10.1038/s41699-017-0013-7
H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund Jr., S.T. Pantelides et al., Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013). https://doi.org/10.1021/nl4014748
H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong et al., Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015). https://doi.org/10.1038/ncomms8381
J. Feng, X. Qian, C.-W. Huang, J. Li, Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866–872 (2012). https://doi.org/10.1038/nphoton.2012.285
E. Blundo, M. Felici, T. Yildirim, G. Pettinari, D. Tedeschi et al., Evidence of the direct-to-indirect band gap transition in strained two-dimensional WS2, MoS2, and WSe2. Phys. Rev. Res. 2, 012024 (2020). https://doi.org/10.1103/PhysRevResearch.2.012024
D.F. Cordovilla Leon, Z. Li, S.W. Jang, C.-H. Cheng, P.B. Deotare, Exciton transport in strained monolayer WSe2. Appl. Phys. Lett. 113, 252101 (2018). https://doi.org/10.1063/1.5063263
V.S. Mangu, M. Zamiri, S. Brueck, F. Cavallo, Strain engineering, efficient excitonic photoluminescence, and exciton funnelling in unmodified MoS2 nanosheets. Nanoscale 9, 16602–16606 (2017). https://doi.org/10.1039/C7NR03537C
K. Hasz, Z. Hu, K.-D. Park, M.B. Raschke, Tip-enhanced dark exciton nanoimaging and local strain control in monolayer WSe2. Nano Lett. 23, 198–204 (2022). https://doi.org/10.1021/acs.nanolett.2c03959
R. Rosati, R. Schmidt, S. Brem, R. Perea-Causín, I. Niehues et al., Dark exciton anti-funneling in atomically thin semiconductors. Nat. Commun. 12, 7221 (2021). https://doi.org/10.1038/s41467-021-27425-y
K. Datta, Z. Lyu, Z. Li, T. Taniguchi, K. Watanabe et al., Spatiotemporally controlled room-temperature exciton transport under dynamic strain. Nat. Photonics 16, 242–247 (2022). https://doi.org/10.1038/s41566-021-00951-3
H. Su, D. Xu, S.-W. Cheng, B. Li, S. Liu et al., Dark-exciton driven energy funneling into dielectric inhomogeneities in two-dimensional semiconductors. Nano Lett. 22, 2843–2850 (2022). https://doi.org/10.1021/acs.nanolett.1c04997
H. Lee, Y. Koo, S. Kumar, Y. Jeong, D.G. Heo et al., All-optical control of high-purity trions in nanoscale waveguide. Nat. Commun. 14, 1891 (2023). https://doi.org/10.1038/s41467-023-37481-1
Y. Koo, H. Lee, T. Ivanova, A. Kefayati, V. Perebeinos et al., Tunable interlayer excitons and switchable interlayer trions via dynamic near-field cavity. Light: Sci. Appl. 12, 59 (2023). https://doi.org/10.1038/s41377-023-01087-5
P. Hernández López, S. Heeg, C. Schattauer, S. Kovalchuk, A. Kumar et al., Strain control of hybridization between dark and localized excitons in a 2D semiconductor. Nat. Commun. 13, 7691 (2022). https://doi.org/10.1038/s41467-022-35352-9
E. Blundo, P.E.F. Junior, A. Surrente, G. Pettinari, M.A. Prosnikov et al., Strain-induced exciton hybridization in WS2 monolayers unveiled by Zeeman-splitting measurements. Phys. Rev. Lett. 129, 067402 (2022). https://doi.org/10.1103/PhysRevLett.129.067402
C. Zhang, Y. Chen, A. Johnson, M.-Y. Li, L.-J. Li et al., Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe2. Nano Lett. 15, 6494–6500 (2015). https://doi.org/10.1021/acs.nanolett.5b01968
B. Aslan, M. Deng, T.F. Heinz, Strain tuning of excitons in monolayer WSe2. Phys. Rev. B 98, 115308 (2018). https://doi.org/10.1103/PhysRevB.98.115308
T. Deilmann, K.S. Thygesen, Finite-momentum exciton landscape in mono- and bilayer transition metal dichalcogenides. 2D Mater. 6, 035003 (2019). https://doi.org/10.1088/2053-1583/ab0e1d
H. Shi, H. Pan, Y.-W. Zhang, B.I. Yakobson, Quasip band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 87, 155304 (2013). https://doi.org/10.1103/PhysRevB.87.155304
C. Robert, T. Amand, F. Cadiz, D. Lagarde, E. Courtade et al., Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B 96, 155423 (2017). https://doi.org/10.1103/PhysRevB.96.155423
L. Linhart, M. Paur, V. Smejkal, J. Burgdörfer, T. Mueller et al., Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 123, 146401 (2019). https://doi.org/10.1103/PhysRevLett.123.146401
D. Yang, X. Fan, F. Zhang, Y. Hu, Z. Luo, Electronic and magnetic properties of defected monolayer WSe2 with vacancies. Nanoscale Res. Lett. 14, 1–9 (2019). https://doi.org/10.1186/s11671-019-3002-2
H. Huang, X. Fan, D.J. Singh, W. Zheng, Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247–1268 (2020). https://doi.org/10.1039/C9NR08313H
L. Sun, X. Yan, J. Zheng, H. Yu, Z. Lu et al., Layer-dependent chemically induced phase transition of two-dimensional MoS2. Nano Lett. 18, 3435–3440 (2018). https://doi.org/10.1021/acs.nanolett.8b00452
K.-A.N. Duerloo, Y. Li, E.J. Reed, Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014). https://doi.org/10.1038/ncomms5214
S. Song, D.H. Keum, S. Cho, D. Perello, Y. Kim et al., Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188–193 (2016). https://doi.org/10.1021/acs.nanolett.5b03481
H.H. Huang, X.F. Fan, D.J. Singh, H. Chen, Q. Jiang et al., Controlling phase transition for single-layer MTe2 (M = Mo and W): modulation of the potential barrier under strain. Phys. Chem. Chem. Phys. 18, 4086 (2016). https://doi.org/10.1039/C5CP06706E
A. Apte, V. Kochat, P. Rajak, A. Krishnamoorthy, P. Manimunda et al., Structural phase transformation in strained monolayer MoWSe2 alloy. ACS Nano 12, 3468–3476 (2018). https://doi.org/10.1021/acsnano.8b00248
C. Zhao, M. Hu, J. Qin, B. Xia, C. Liu et al., Strain tunable semimetal-topological-insulator transition in monolayer 1T’-WTe2. Phys. Rev. Lett. 125, 046801 (2020). https://doi.org/10.1103/PhysRevLett.125.046801
A.R. Khan, B. Liu, T. Lü, L. Zhang, A. Sharma et al., Direct measurement of folding angle and strain vector in atomically thin WS2 using second-harmonic generation. ACS Nano 14, 15806–15815 (2020). https://doi.org/10.1021/acsnano.0c06901
D. Li, C. Wei, J. Song, X. Huang, F. Wang et al., Anisotropic enhancement of second-harmonic generation in monolayer and bilayer MoS2 by integrating with TiO2 nanowires. Nano Lett. 19, 4195–4204 (2019). https://doi.org/10.1021/acs.nanolett.9b01933
J.H. Chen, J. Tan, G.X. Wu, X.J. Zhang, F. Xu et al., Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light: Sci. Appl. 8, 8 (2019). https://doi.org/10.1038/s41377-018-0115-9
D. Li, W. Xiong, L. Jiang, Z. Xiao, H. Rabiee Golgir et al., Multimodal nonlinear optical imaging of MoS2 and MoS2-based van der Waals heterostructures. ACS Nano 10, 3766–3775 (2016). https://doi.org/10.1021/acsnano.6b00371
D. Li, Z. Xiao, S. Mu, F. Wang, Y. Liu et al., A facile space-confined solid-phase sulfurization strategy for growth of high-quality ultrathin molybdenum disulfide single crystals. Nano Lett. 18, 2021–2032 (2018). https://doi.org/10.1021/acs.nanolett.7b05473
M. Weismann, N.C. Panoiu, Theoretical and computational analysis of second-and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers. Phys. Rev. B 94, 035435 (2016). https://doi.org/10.1103/PhysRevB.94.035435
H. Liu, Y. Li, Y.S. You, S. Ghimire, T.F. Heinz et al., High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017). https://doi.org/10.1038/nphys3946
W. Huang, Y. Xiao, F. Xia, X. Chen, T. Zhai, Second harmonic generation control in 2D layered materials: status and outlook. Adv. Funct. Mater. 34, 2310726 (2024). https://doi.org/10.1002/adfm.202310726
R. Ma, D.S. Sutherland, Y. Shi, Harmonic generation in transition metal dichalcogenides and their heterostructures. Mater. Today 50, 570–586 (2021). https://doi.org/10.1016/j.mattod.2021.07.023
J. You, J. Pan, S.-L. Shang, X. Xu, Z. Liu et al., Salt-assisted selective growth of H-phase monolayer VSe2 with apparent hole transport behavior. Nano Lett. 22, 10167–10175 (2022). https://doi.org/10.1021/acs.nanolett.2c04133
J.-H. Chen, Y.-F. Xiong, F. Xu, Y.-Q. Lu, Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light: Sci. Appl. 10, 78 (2021). https://doi.org/10.1038/s41377-021-00520-x
Y. Zuo, W. Yu, C. Liu, X. Cheng, R. Qiao et al., Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat. Nanotechnol. 15, 987–991 (2020). https://doi.org/10.1038/s41565-020-0770-x
Y. Meng, Y. Chen, L. Lu, Y.M. Ding, A. Cusano et al., Optical meta-waveguides for integrated photonics and beyond. Light: Sci. Appl. 10, 235 (2021). https://doi.org/10.1038/s41377-021-00655-x
Z.M. Wei, B. Li, C.X. Xia, Y. Cui, J. He et al., Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2, 1800094 (2018). https://doi.org/10.1002/smtd.201800094
J. Du, H. Yu, B. Liu, M. Hong, Q. Liao et al., Strain engineering in 2D material-based flexible optoelectronics. Small Methods 5, 2000919 (2021). https://doi.org/10.1002/smtd.202000919
C. Zhang, L. Cheng, Y. Liu, Understanding high-field electron transport properties and strain effects of monolayer transition metal dichalcogenides. Phys. Rev. B 102, 115405 (2020). https://doi.org/10.1103/PhysRevB.102.115405
Y. Ge, W. Wan, W. Feng, D. Xiao, Y. Yao, Effect of doping and strain modulations on electron transport in monolayer MoS2. Phys. Rev. B 90, 035414 (2014). https://doi.org/10.1103/PhysRevB.90.035414
J.A. Yang, R.K. Bennett, L. Hoang, Z. Zhang, K.J. Thompson et al., Biaxial tensile strain enhances electron mobility of monolayer transition metal dichalcogenides. ACS Nano 18, 18151–18159 (2024). https://doi.org/10.1021/acsnano.3c08996
M. Hosseini, M. Elahi, M. Pourfath, D. Esseni, Strain induced mobility modulation in single-layer MoS2. J. Phys. D-Appl. Phys. 48, 375104 (2015). https://doi.org/10.1088/0022-3727/48/37/375104
A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124, 318–419 (2023). https://doi.org/10.1021/acs.chemrev.3c00302
I.M. Datye, A. Daus, R.W. Grady, K. Brenner, S. Vaziri et al., Strain-enhanced mobility of monolayer MoS2. Nano Lett. 22, 8052–8059 (2022). https://doi.org/10.1021/acs.nanolett.2c01707
R. Zhang, Y. Lai, W. Chen, C. Teng, Y. Sun et al., Carrier trapping in wrinkled 2D monolayer MoS2 for ultrathin memory. ACS Nano 16, 6309–6316 (2022). https://doi.org/10.1021/acsnano.2c00350
B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin et al., Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017). https://doi.org/10.1126/science.aam7127
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
J. van Wezel, P. Nahai-Williamson, S.S. Saxena, Exciton-phonon-driven charge density wave in TiSe2. Phys. Rev. B 81, 165109 (2010). https://doi.org/10.1103/PhysRevB.81.165109
X. Wang, H. Liu, J. Wu, J. Lin, W. He et al., Chemical growth of 1T-TaS2 monolayer and thin films: robust charge density wave transitions and high bolometric responsivity. Adv. Mater. 30, 1800074 (2018). https://doi.org/10.1002/adma.201800074
Y. Chen, L. Wu, H. Xu, C. Cong, S. Li et al., Visualizing the anomalous charge density wave states in Graphene/NbSe2 heterostructures. Adv. Mater. 32, 2003746 (2020). https://doi.org/10.1002/adma.202003746
D. Cho, S. Cheon, K.-S. Kim, S.-H. Lee, Y.-H. Cho et al., Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2. Nat. Commun. 7, 10453 (2016). https://doi.org/10.1038/ncomms10453
S. Gao, F. Flicker, R. Sankar, H. Zhao, Z. Ren et al., Atomic-scale strain manipulation of a charge density wave. Proc. Natl. Acad. Sci. U.S.A. 115, 6986–6990 (2018). https://doi.org/10.1073/pnas.1718931115
A. Soumyanarayanan, M.M. Yee, Y. He, J. Van Wezel, D.J. Rahn et al., Quantum phase transition from triangular to stripe charge order in NbSe2. Proc. Natl. Acad. Sci. U.S.A. 110, 1623–1627 (2013). https://doi.org/10.1073/pnas.1211387110
F. Cossu, K. Palotás, S. Sarkar, I. Di Marco, A. Akbari, Strain-induced stripe phase in charge-ordered single layer NbSe2. npg Asia Mater. 12, 24 (2020). https://doi.org/10.1038/s41427-020-0207-x
H. Jin, J. Chen, Y. Li, B. Shao, B. Huang, Generating two-dimensional ferromagnetic charge density waves via external fields. Phys. Rev. B 106, 165112 (2022). https://doi.org/10.1103/PhysRevB.106.165112
G.R. Wang, H. Hou, Y.F. Yan, R. Jagatramka, A. Shirsalimian et al., Recent advances in the mechanics of 2D materials. Int. J. Extrem. Manuf. 5, 032002 (2023). https://doi.org/10.1088/2631-7990/accda2
Z. Xiong, L. Zhong, H. Wang, X. Li, Structural defects, mechanical behaviors, and properties of two-dimensional materials. Materials 14, 1192 (2021). https://doi.org/10.3390/ma14051192
J. Pető, G. Dobrik, G. Kukucska, P. Vancsó, A.A. Koós et al., Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities. 2D Mater. 11, 042004 (2024). https://doi.org/10.1088/2053-1583/ad63b6
J. Pető, G. Dobrik, G. Kukucska, P. Vancsó, A.A. Koós et al., Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers. npj 2D Mater. Appl. 3, 39 (2019). https://doi.org/10.1038/s41699-019-0123-5
J. Berry, S. Zhou, J. Han, D.J. Srolovitz, M.P. Haataja, Dynamic phase engineering of bendable transition metal dichalcogenide monolayers. Nano Lett. 17, 2473–2481 (2017). https://doi.org/10.1021/acs.nanolett.7b00165
S. Ghaderzadeh, V. Ladygin, M. Ghorbani-Asl, G. Hlawacek, M. Schleberger et al., Freestanding and supported MoS2 monolayers under cluster irradiation: insights from molecular dynamics simulations. ACS Appl. Mater. Interfaces 12, 37454–37463 (2020). https://doi.org/10.1021/acsami.0c09255
J. Los, J. Kroes, K. Albe, R. Gordillo, M. Katsnelson, Extended Tersoff potential for boron nitride: energetics and elastic properties of pristine and defective ℎ-BN. Phys. Rev. B 96, 184108 (2017). https://doi.org/10.1103/PhysRevB.96.184108
B. Mortazavi, G. Cuniberti, Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Adv. 4, 19137–19143 (2014). https://doi.org/10.1039/C4RA01103A
K. Momeni, Y. Ji, Y. Wang, S. Paul, S. Neshani et al., Multiscale computational understanding and growth of 2D materials: a review. npj Comput. Mater. 6, 22 (2020). https://doi.org/10.1038/s41524-020-0280-2
X. Zhang, H. Nguyen, J.T. Paci, S.K. Sankaranarayanan, J.L. Mendoza-Cortes et al., Multi-objective parametrization of interatomic potentials for large deformation pathways and fracture of two-dimensional materials. npj Comput. Mater. 7, 113 (2021). https://doi.org/10.1038/s41524-021-00573-x
M. Kues, C. Reimer, J.M. Lukens, W.J. Munro, A.M. Weiner et al., Quantum optical microcombs. Nat. Photonics 13, 170–179 (2019). https://doi.org/10.1038/s41566-019-0363-0
P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017). https://doi.org/10.1038/nnano.2017.218
N. Spagnolo, C. Vitelli, M. Bentivegna, D.J. Brod, A. Crespi et al., Experimental validation of photonic boson sampling. Nat. Photonics 8, 615–620 (2014). https://doi.org/10.1038/nphoton.2014.135
C. Portmann, R. Renner, Security in quantum cryptography. Rev. Mod. Phys. 94, 025008 (2022). https://doi.org/10.1103/RevModPhys.94.025008
N.P. De Leon, K.M. Itoh, D. Kim, K.K. Mehta, T.E. Northup et al., Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021). https://doi.org/10.1126/science.abb2823
Y.-M. He, G. Clark, J.R. Schaibley, Y. He, M.-C. Chen et al., Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015). https://doi.org/10.1038/nnano.2015.75
A. Srivastava, M. Sidler, A.V. Allain, D.S. Lembke, A. Kis et al., Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015). https://doi.org/10.1038/nnano.2015.60
M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet et al., Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015). https://doi.org/10.1038/nnano.2015.67
S. Kumar, A. Kaczmarczyk, B.D. Gerardot, Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015). https://doi.org/10.1021/acs.nanolett.5b03312
A. Branny, G. Wang, S. Kumar, C. Robert, B. Lassagne et al., Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016). https://doi.org/10.1063/1.4945268
L. Yu, M. Deng, J.L. Zhang, S. Borghardt, B. Kardynal et al., Site-controlled quantum emitters in monolayer MoSe2. Nano Lett. 21, 2376–2381 (2021). https://doi.org/10.1021/acs.nanolett.0c04282
S. Cianci, E. Blundo, F. Tuzi, G. Pettinari, K. Olkowska-Pucko et al., Solid-state single-photon sources: recent advances for novel quantum materials. Adv. Opt. Mater. 11, 2202953 (2023). https://doi.org/10.1002/adom.202202953
H. Zhao, M.T. Pettes, Y. Zheng, H. Htoon, Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2. Nat. Commun. 12, 6753 (2021). https://doi.org/10.1038/s41467-021-27033-w
K. Parto, S.I. Azzam, N. Lewis, S.D. Patel, S. Umezawa et al., Cavity-enhanced 2D material quantum emitters deterministically integrated with silicon nitride microresonators. Nano Lett. 22, 9748–9756 (2022). https://doi.org/10.1021/acs.nanolett.2c03151
H.-J. Chuang, C.E. Stevens, M.R. Rosenberger, S.-J. Lee, K.M. McCreary et al., Enhancing single photon emission purity via design of van der Waals heterostructures. Nano Lett. 24, 5529–5535 (2024). https://doi.org/10.1021/acs.nanolett.4c00683
C.E. Stevens, H.-J. Chuang, M.R. Rosenberger, K.M. McCreary, C.K. Dass et al., Enhancing the purity of deterministically placed quantum emitters in monolayer WSe2. ACS Nano 16, 20956–20963 (2022). https://doi.org/10.1021/acsnano.2c08553
M. Esmann, S.C. Wein, C. Antón-Solanas, Solid-state single-photon sources: recent advances for novel quantum materials. Adv. Funct. Mater. 34, 2315936 (2024). https://doi.org/10.1002/adfm.202315936
X.D. Xu, W. Yao, D. Xiao, T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014). https://doi.org/10.1038/nphys2942
G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie et al., Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018). https://doi.org/10.1103/RevModPhys.90.021001
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
Y. Tang, K.F. Mak, J. Shan, Long valley lifetime of dark excitons in single-layer WSe2. Nat. Commun. 10, 4047 (2019). https://doi.org/10.1038/s41467-019-12129-1
Z.Y. Zhu, Y.C. Cheng, U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011). https://doi.org/10.1103/PhysRevB.84.153402
O. Iff, Q. Buchinger, M. Moczała-Dusanowska, M. Kamp, S. Betzold et al., Purcell-enhanced single photon source based on a deterministically placed WSe2 monolayer quantum dot in a circular Bragg grating cavity. Nano Lett. 21, 4715–4720 (2021). https://doi.org/10.1021/acs.nanolett.1c00978
G. Kim, H.M. Kim, P. Kumar, M. Rahaman, C.E. Stevens et al., High-density, localized quantum emitters in strained 2D semiconductors. ACS Nano 16, 9651–9659 (2022). https://doi.org/10.1021/acsnano.2c02974
S.Y. Chen, C. Wang, H.B. Cai, L.J. Ma, Y.S. Qu et al., Realization of single-photon emitters with high brightness and high stability and excellent monochromaticity. Matter 7, 1106 (2024). https://doi.org/10.1016/j.matt.2023.12.026
S. Kumar, M. Brotóns-Gisbert, R. Al-Khuzheyri, A. Branny, G. Ballesteros-Garcia et al., Resonant laser spectroscopy of localized excitons in monolayer WSe2. Optica 3, 882–886 (2016). https://doi.org/10.1364/OPTICA.3.000882
D. Gammon, E. Snow, B. Shanabrook, D. Katzer, D. Park, Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005 (1996). https://doi.org/10.1103/PhysRevLett.76.3005
M. Bayer, G. Ortner, O. Stern, A. Kuther, A. Gorbunov et al., Fine structure of neutral and charged excitons in self-assembled In (Ga) As/(Al) GaAs quantum dots. Phys. Rev. B 65, 195315 (2002). https://doi.org/10.1103/PhysRevB.65.195315
W. Wang, L.O. Jones, J.-S. Chen, G.C. Schatz, X. Ma, Utilizing ultraviolet photons to generate single-photon emitters in semiconductor monolayers. ACS Nano 16, 21240–21247 (2022). https://doi.org/10.1021/acsnano.2c09209
J. Klein, L. Sigl, S. Gyger, K. Barthelmi, M. Florian et al., Engineering the luminescence and generation of individual defect emitters in atomically thin MoS2. ACS Photonics 8, 669–677 (2021). https://doi.org/10.1021/acsphotonics.0c01907
A. Hötger, J. Klein, K. Barthelmi, L. Sigl, F. Sigger et al., Gate-switchable arrays of quantum light emitters in contacted monolayer MoS2 van der Waals heterodevices. Nano Lett. 21, 1040–1046 (2021). https://doi.org/10.1021/acs.nanolett.0c04222
S.J. Liang, B. Cheng, X. Cui, F. Miao, Van der Waals heterostructures for high-performance device applications: challenges and opportunities. Adv. Mater. 32, 1903800 (2020). https://doi.org/10.1002/adma.201903800
J.L. Qi, Z.X. Wu, W.B. Wang, K. Bao, L.Z. Wang et al., Fabrication and applications of van der Waals heterostructures. Int. J. Extrem. Manuf. 5, 022007 (2023). https://doi.org/10.1088/2631-7990/acc8a1
Y. Bai, L. Zhou, J. Wang, W. Wu, L.J. McGilly et al., Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020). https://doi.org/10.1038/s41563-020-0730-8
H. Baek, M. Brotons-Gisbert, Z.X. Koong, A. Campbell, M. Rambach et al., Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020). https://doi.org/10.1126/sciadv.aba8526
M. Kremser, M. Brotons-Gisbert, J. Knörzer, J. Gückelhorn, M. Meyer et al., Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020). https://doi.org/10.1038/s41699-020-0141-3
E.M. Alexeev, N. Mullin, P. Ares, H. Nevison-Andrews, O. Skrypka et al., Emergence of highly linearly polarized interlayer exciton emission in MoSe2/WSe2 heterobilayers with transfer-induced layer corrugation. ACS Nano 14, 11110–11119 (2020). https://doi.org/10.1021/acsnano.0c01146
X. Liu, M.C. Hersam, 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019). https://doi.org/10.1038/s41578-019-0136-x
A.R.-P. Montblanch, M. Barbone, I. Aharonovich, M. Atatüre, A.C. Ferrari, Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 18, 555–571 (2023). https://doi.org/10.1038/s41565-023-01354-x
M. Brotons-Gisbert, H. Baek, A. Molina-Sánchez, A. Campbell, E. Scerri et al., Spin–layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630–636 (2020). https://doi.org/10.1038/s41563-020-0687-7
M. Brotons-Gisbert, A. Branny, S. Kumar, R. Picard, R. Proux et al., Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir. Nat. Nanotechnol. 14, 442–446 (2019). https://doi.org/10.1038/s41565-019-0402-5
A.H. Liu, X.W. Zhang, Z.Y. Liu, Y.N. Li, X.Y. Peng et al., The roadmap of 2D materials and devices toward chips. Nano-Micro Lett. 16, 119 (2024). https://doi.org/10.1007/s40820-023-01273-5
J.J. Baumberg, J. Aizpurua, M.H. Mikkelsen, D.R. Smith, Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019). https://doi.org/10.1038/s41563-019-0290-y
R. Chikkaraddy, B. de Nijs, F. Benz, S.J. Barrow, O.A. Scherman et al., Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016). https://doi.org/10.1038/nature17974
G.M. Akselrod, C. Argyropoulos, T.B. Hoang, C. Ciracì, C. Fang et al., Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 8, 835–840 (2014). https://doi.org/10.1038/nphoton.2014.228
A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Science 354, aag2472 (2016). https://doi.org/10.1126/science.aag2472
T.T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth et al., Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017). https://doi.org/10.1021/acs.nanolett.7b00444
A.S. Bandyopadhyay, A.B. Puthirath, P.M. Ajayan, H.Y. Zhu, Y. Lin et al., Intrinsic and strain-dependent properties of suspended WSe2 crystallites toward next-generation nanoelectronics and quantum-enabled sensors. ACS Appl. Mater. Interfaces 16, 3640–3653 (2024). https://doi.org/10.1021/acsami.3c13603
S.I. Azzam, K. Parto, G. Moody, Purcell enhancement and polarization control of single-photon emitters in monolayer WSe2 using dielectric nanoantennas. Nanophotonics 12, 477–484 (2023). https://doi.org/10.1515/nanoph-2022-0628
S. Dutta, T. Cai, M.A. Buyukkaya, S. Barik, S. Aghaeimeibodi et al., Coupling quantum emitters in WSe2 monolayers to a metal-insulator-metal waveguide. Appl. Phys. Lett. 113, 191105 (2018). https://doi.org/10.1063/1.5045727
J.J. Fonseca, A.L. Yeats, B. Blue, M.K. Zalalutdinov, T. Brintlinger et al., Enabling remote quantum emission in 2D semiconductors via porous metallic networks. Nat. Commun. 11, 5 (2020). https://doi.org/10.1038/s41467-019-13857-0
H. Cai, A. Rasmita, R. He, Z. Zhang, Q. Tan et al., Charge-depletion-enhanced WSe2 quantum emitters on gold nanogap arrays with near-unity quantum efficiency. Nat. Photonics 18, 842–847 (2024). https://doi.org/10.1038/s41566-024-01460-9
H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: evolution of atomic structure under electron irradiation. Phys. Rev. B 88, 035301 (2013). https://doi.org/10.1103/PhysRevB.88.035301
G. Moody, K. Tran, X. Lu, T. Autry, J.M. Fraser et al., Microsecond valley lifetime of defect-bound excitons in monolayer WSe2. Phys. Rev. Lett. 121, 057403 (2018). https://doi.org/10.1103/PhysRevLett.121.057403
J. Klein, M. Lorke, M. Florian, F. Sigger, L. Sigl et al., Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation. Nat. Commun. 10, 2755 (2019). https://doi.org/10.1038/s41467-019-10632-z
D.D. Xu, A.F. Vong, D. Lebedev, R. Ananth, A.M. Wong et al., Conversion of classical light emission from a nanop-strained WSe2 monolayer into quantum light emission via electron beam irradiation. Adv. Mater. 35, 2208066 (2023). https://doi.org/10.1002/adma.202208066
X. Xie, J. Kang, W. Cao, J.H. Chu, Y. Gong et al., Designing artificial 2D crystals with site and size controlled quantum dots. Sci. Rep. 7, 9965 (2017). https://doi.org/10.1038/s41598-017-08776-3
Y. Luo, N. Liu, B. Kim, J. Hone, S. Strauf, Exciton dipole orientation of strain-induced quantum emitters in WSe2. Nano Lett. 20, 5119–5126 (2020). https://doi.org/10.1021/acs.nanolett.0c01358
H. Moon, E. Bersin, C. Chakraborty, A.-Y. Lu, G. Grosso et al., Strain-correlated localized exciton energy in atomically thin semiconductors. ACS Photonics 7, 1135–1140 (2020). https://doi.org/10.1021/acsphotonics.0c00626
J. Dang, S. Sun, X. Xie, Y. Yu, K. Peng et al., Identifying defect-related quantum emitters in monolayer WSe2. npj 2D Mater. Appl. 4, 2 (2020). https://doi.org/10.1038/s41699-020-0136-0
D. Rhodes, S.H. Chae, R. Ribeiro-Palau, J. Hone, Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019). https://doi.org/10.1038/s41563-019-0366-8
J. Kim, H. Park, S. Yoo, Y.H. Im, K. Kang et al., Defect-engineered n-doping of WSe2 via argon plasma treatment and its application in field-effect transistors. Adv. Mater. Interfaces 8, 2100718 (2021). https://doi.org/10.1002/admi.202100718
E. Kim, C. Ko, K. Kim, Y. Chen, J. Suh et al., Site selective doping of ultrathin metal dichalcogenides by laser-assisted reaction. Adv. Mater. 28, 341–346 (2016). https://doi.org/10.1002/adma.201503945
C.R. Ryder, J.D. Wood, S.A. Wells, M.C. Hersam, Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10, 3900–3917 (2016). https://doi.org/10.1021/acsnano.6b01091
X. Liu, M.C. Hersam, Interface characterization and control of 2D materials and heterostructures. Adv. Mater. 30, 1801586 (2018). https://doi.org/10.1002/adma.201801586
H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012). https://doi.org/10.1038/nnano.2012.95
K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012). https://doi.org/10.1038/nnano.2012.96
J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones et al., Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013). https://doi.org/10.1038/ncomms2498
D. Xiao, W. Yao, Q. Niu, Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). https://doi.org/10.1103/PhysRevLett.99.236809
X. Lu, X. Chen, S. Dubey, Q. Yao, W. Li et al., Optical initialization of a single spin-valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019). https://doi.org/10.1038/s41565-019-0394-1
L. Yang, Y. Yuan, B. Fu, J. Yang, D. Dai et al., Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities. Nat. Commun. 14, 4265 (2023). https://doi.org/10.1038/s41467-023-39972-7
X. Chen, X. Lu, S. Dubey, Q. Yao, S. Liu et al., Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat. Phys. 15, 221–227 (2019). https://doi.org/10.1038/s41567-018-0366-7
S.-J. Lee, J.-P. So, R.M. Kim, K.-H. Kim, H.-H. Rha et al., Spin angular momentum–encoded single-photon emitters in a chiral nanop–coupled WSe2 monolayer. Sci. Adv. 10, eadn7210 (2024). https://doi.org/10.1126/sciadv.adn7210
X. Li, A.C. Jones, J. Choi, H. Zhao, V. Chandrasekaran et al., Proximity-induced chiral quantum light generation in strain-engineered WSe2/NiPS3 heterostructures. Nat. Mater. 22, 1311–1316 (2023). https://doi.org/10.1038/s41563-023-01645-7
J.-P. So, H.-R. Kim, H. Baek, K.-Y. Jeong, H.-C. Lee et al., Electrically driven strain-induced deterministic single-photon emitters in a van der Waals heterostructure. Sci. Adv. 7, eabj3176 (2021). https://doi.org/10.1126/sciadv.abj3176
E.J. Lenferink, T. LaMountain, T.K. Stanev, E. Garvey, K. Watanabe et al., Tunable emission from localized excitons deterministically positioned in monolayer p–n junctions. ACS Photonics 9, 3067–3074 (2022). https://doi.org/10.1021/acsphotonics.2c00811
I. Žutić, A. Matos-Abiague, B. Scharf, H. Dery, K. Belashchenko, Proximitized materials. Mater. Today 22, 85–107 (2019). https://doi.org/10.1016/j.mattod.2018.05.003
B. Scharf, G. Xu, A. Matos-Abiague, I. Žutić, Magnetic proximity effects in transition-metal dichalcogenides: converting excitons. Phys. Rev. Lett. 119, 127403 (2017). https://doi.org/10.1103/PhysRevLett.119.127403
L. Ciorciaro, M. Kroner, K. Watanabe, T. Taniguchi, A. Imamoglu, Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe2/CrBr3 heterostructure. Phys. Rev. Lett. 124, 197401 (2020). https://doi.org/10.1103/PhysRevLett.124.197401
K. Shayan, N. Liu, A. Cupo, Y. Ma, Y. Luo et al., Magnetic proximity coupling of quantum emitters in WSe2 to van der Waals ferromagnets. Nano Lett. 19, 7301–7308 (2019). https://doi.org/10.1021/acs.nanolett.9b02920
A. Mukherjee, K. Shayan, L. Li, J. Shan, K.F. Mak et al., Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures. Nat. Commun. 11, 5502 (2020). https://doi.org/10.1038/s41467-020-19262-2
C. Chakraborty, K.M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier et al., Quantum-confined Stark effect of individual defects in a van der Waals heterostructure. Nano Lett. 17, 2253–2258 (2017). https://doi.org/10.1021/acs.nanolett.6b04889
B.W. Baugher, H.O. Churchill, Y. Yang, P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014). https://doi.org/10.1038/nnano.2014.25
J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014). https://doi.org/10.1038/nnano.2014.26
G. Clark, J.R. Schaibley, J. Ross, T. Taniguchi, K. Watanabe et al., Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett. 16, 3944–3948 (2016). https://doi.org/10.1021/acs.nanolett.6b01580
S. Schwarz, A. Kozikov, F. Withers, J. Maguire, A. Foster et al., Electrically pumped single-defect light emitters in WSe2. 2D Mater. 3, 025038 (2016). https://doi.org/10.1088/2053-1583/3/2/025038
P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema et al., Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015). https://doi.org/10.1364/OPTICA.2.000347
C. Chakraborty, N.R. Jungwirth, G.D. Fuchs, A.N. Vamivakas, Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters. Phys. Rev. B 99, 045308 (2019). https://doi.org/10.1103/PhysRevB.99.045308
G. Wang, M. Zhang, D. Chen, Q. Guo, X. Feng et al., Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors. Nat. Commun. 9, 5168 (2018). https://doi.org/10.1038/s41467-018-07555-6
A. Grubisic-Cabo, M. Michiardi, C.E. Sanders, M. Bianchi, D. Curcio et al., In situ exfoliation method of large-area 2D materials. Adv. Sci. 10, 2301243 (2023). https://doi.org/10.1002/advs.202301243
Z.M. Ye, C. Tan, X.L. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15, 38 (2023). https://doi.org/10.1007/s40820-022-01010-4
K.W. Tang, W.H. Qi, Y.R. Wei, G.L. Ru, W.M. Liu, High-throughput calculation of interlayer van der Waals forces validated with experimental measurements. Research 2022, 9765121 (2022). https://doi.org/10.34133/2022/9765121
Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou et al., Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014). https://doi.org/10.1038/ncomms6246
Y. Zhang, Y. Yao, M.G. Sendeku, L. Yin, X. Zhan et al., Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 31, 1901694 (2019). https://doi.org/10.1002/adma.201901694
A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, et al., Excitons in atomically thin transition-metal dichalcogenides. in 2014 Conference on Lasers and Electro-Optics (CLEO)-Laser Science to Photonic Applications (IEEE), pp. 1–2. https://doi.org/10.1364/CLEO_QELS.2014.FTu2B.6
C. Couteau, S. Barz, T. Durt, T. Gerrits, J. Huwer et al., Applications of single photons to quantum communication and computing. Nat. Rev. Phys. 5, 326–338 (2023). https://doi.org/10.1038/s42254-023-00583-2
F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen et al., Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017). https://doi.org/10.1103/PhysRevX.7.021026
O.A. Ajayi, J.V. Ardelean, G.D. Shepard, J. Wang, A. Antony et al., Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. Mater. 4, 031011 (2017). https://doi.org/10.1088/2053-1583/aa6aa1
L.J. McGilly, A. Kerelsky, N.R. Finney, K. Shapovalov, E.-M. Shih et al., Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020). https://doi.org/10.1038/s41565-020-0708-3
A. Ciarrocchi, F. Tagarelli, A. Avsar, A. Kis, Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nat. Rev. Mater. 7, 449–464 (2022). https://doi.org/10.1038/s41578-021-00408-7
X. Sun, M. Suriyage, A.R. Khan, M. Gao, J. Zhao et al., Twisted van der Waals quantum materials: fundamentals, tunability, and applications. Chem. Rev. 124, 1992–2079 (2024). https://doi.org/10.1021/acs.chemrev.3c00627
X.G. Yang, L. Wen, J.H. Yan, Y.J. Bao, Q. Chen et al., Energy dissipation and asymmetric excitation in hybrid waveguides for routing and coloring. J. Phys. Chem. Lett. 12, 7034–7040 (2021).