Mechanisms and Mitigation Strategies of Gas Generation in Sodium-Ion Batteries
Corresponding Author: Qianling Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 177
Abstract
The transition to renewable energy sources has elevated the importance of SIBs (SIBs) as cost-effective alternatives to lithium-ion batteries (LIBs) for large-scale energy storage. This review examines the mechanisms of gas generation in SIBs, identifying sources from cathode materials, anode materials, and electrolytes, which pose safety risks like swelling, leakage, and explosions. Gases such as CO2, H2, and O2 primarily arise from the instability of cathode materials, side reactions between electrode and electrolyte, and electrolyte decomposition under high temperatures or voltages. Enhanced mitigation strategies, encompassing electrolyte design, buffer layer construction, and electrode material optimization, are deliberated upon. Accordingly, subsequent research endeavors should prioritize long-term high-precision gas detection to bolster the safety and performance of SIBs, thereby fortifying their commercial viability and furnishing dependable solutions for large-scale energy storage and electric vehicles.
Highlights:
1 The mechanisms and main sources of gas generation in sodium-ion batteries (SIBs) are discussed.
2 In order to effectively improve the safety of SIBs, various strategies to inhibit gas generation are proposed.
3 The future development direction to enhance the safety and performance of SIBs is emphasized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.M. Csernica, S.S. Kalirai, W.E. Gent, K. Lim, Y.-S. Yu et al., Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat. Energy 6, 642–652 (2021). https://doi.org/10.1038/s41560-021-00832-7
- F. Lin, I.M. Markus, D. Nordlund, T.-C. Weng, M.D. Asta et al., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014). https://doi.org/10.1038/ncomms4529
- W. Song, X. Ji, Y. Zhu, H. Zhu, F. Li et al., Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode. ChemElectroChem 1, 871–876 (2014). https://doi.org/10.1002/celc.201300248
- K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004). https://doi.org/10.1021/cr030203g
- E. Hu, X. Yu, R. Lin, X. Bi, J. Lu et al., Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018). https://doi.org/10.1038/s41560-018-0207-z
- K. Luo, M.R. Roberts, N. Guerrini, N. Tapia-Ruiz, R. Hao, F. Massel, D.M. Pickup, S. Ramos, Y.-S. Liu, J. Guo, A.V. Chadwick, L.C. Duda, P.G. Bruce, Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2 Ni0.2 Mn0.6]O2. J. Am. Chem. Soc. 138(35), 11211–11218 (2016). https://doi.org/10.1021/jacs.6b05111
- K. Luo, M.R. Roberts, R. Hao, N. Guerrini, D.M. Pickup et al., Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016). https://doi.org/10.1038/nchem.2471
- X. Li, Y. Qiao, S. Guo, Z. Xu, H. Zhu et al., Direct visualization of the reversible O2-/O- redox process in Li-rich cathode materials. Adv. Mater. 30, e1705197 (2018). https://doi.org/10.1002/adma.201705197
- Y. Li, X. Liu, L. Wang, X. Feng, D. Ren et al., Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy 85, 105878 (2021). https://doi.org/10.1016/j.nanoen.2021.105878
- K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv. Energy Mater. 10, 2001310 (2020). https://doi.org/10.1002/aenm.202001310
- L. Chen, M. Fiore, J.E. Wang, R. Ruffo, D.-K. Kim et al., Readiness level of sodium-ion battery technology: a materials review. Adv. Sustain. Syst. 2, 1700153 (2018). https://doi.org/10.1002/adsu.201700153
- C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020). https://doi.org/10.1126/science.aay9972
- J. Tarascon, Na-ion versus Li-ion batteries: complementarity rather than competitiveness. Joule 4, 1616–1620 (2022). https://doi.org/10.1016/j.joule.2020.06.003
- J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
- X. Xia, C.-F. Du, S. Zhong, Y. Jiang, H. Yu et al., Homogeneous Na deposition enabling high-energy Na-metal batteries. Adv. Funct. Mater. 32, 2110280 (2022). https://doi.org/10.1002/adfm.202110280
- B. Yang, Z. Yang, X. Zhang, Y. Zhao, Y. Wang et al., High modulus Na2SiO3-rich solid electrolyte interphase enable long-cycle and energy-dense sodium metal battery. Adv. Funct. Mater. 34, 2407783 (2024). https://doi.org/10.1002/adfm.202407783
- L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao et al., Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11, 2310–2340 (2018). https://doi.org/10.1039/c8ee01023d
- H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338 (2013). https://doi.org/10.1039/c3ee40847g
- K. Kawai, X.-M. Shi, N. Takenaka, J. Jang, B.M. de Boisse et al., Kinetic square scheme in oxygen-redox battery electrodes. Energy Environ. Sci. 15, 2591–2600 (2022). https://doi.org/10.1039/d1ee03503g
- C. Zuo, D. Dong, H. Wang, Y. Sun, Y.-C. Lu, Bromide-based nonflammable electrolyte for safe and long-life sodium metal batteries. Energy Environ. Sci. 17, 791–799 (2024). https://doi.org/10.1039/d3ee03332e
- M. Jia, Y. Qiao, X. Li, K. Jiang, H. Zhou, Unraveling the anionic oxygen loss and related structural evolution within O3- type Na layered oxide cathodes. J. Mater. Chem. A 7, 20405–20413 (2019). https://doi.org/10.1039/C9TA06186J
- H. Kumar, E. Detsi, D.P. Abraham, V.B. Shenoy, Fundamental mechanisms of solvent decomposition involved in solid-electrolyte interphase formation in sodium ion batteries. Chem. Mater. 28, 8930–8941 (2016). https://doi.org/10.1021/acs.chemmater.6b03403
- J. Wang, L. Li, S. Zuo, Y. Zhang, L. Lv et al., Synchronous crystal growth and etching optimization of Prussian blue from a single iron-source as high-rate cathode for sodium-ion batteries. Electrochim. Acta 341, 136057 (2020). https://doi.org/10.1016/j.electacta.2020.136057
- R.A. House, U. Maitra, M.A. Pérez-Osorio, J.G. Lozano, L. Jin et al., Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020). https://doi.org/10.1038/s41586-019-1854-3
- L. Sun, Z. Wu, M. Hou, Y. Ni, H. Sun et al., Unraveling and suppressing the voltage decay of high-capacity cathode materials for sodium-ion batteries. Energy Environ. Sci. 17, 210–218 (2024). https://doi.org/10.1039/d3ee02817h
- G. Assat, J.-M. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018). https://doi.org/10.1038/s41560-018-0097-0
- X. Wang, Q. Zhang, C. Zhao, H. Li, B. Zhang et al., Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox. Nat. Energy 9, 184–196 (2024). https://doi.org/10.1038/s41560-023-01425-2
- Y. Fang, L. Xiao, Z. Chen, X. Ai, Y. Cao et al., Recent advances in sodium-ion battery materials. Electrochem. Energ. Rev. 1, 294–323 (2018). https://doi.org/10.1007/s41918-018-0008-x
- J. Peters, D. Buchholz, S. Passerini, M. Weil, Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 9, 1744–1751 (2016). https://doi.org/10.1039/c6ee00640j
- E. de la Llave, E. Talaie, E. Levi, P.K. Nayak, M. Dixit et al., Improving energy density and structural stability of manganese oxide cathodes for Na-ion batteries by structural lithium substitution. Chem. Mater. 28, 9064–9076 (2016). https://doi.org/10.1021/acs.chemmater.6b04078
- Z. Xu, J. Chen, M. Wu, C. Chen, Y. Song et al., Effects of different atmosphere on electrochemical performance of hard carbon electrode in sodium ion battery. Electron. Mater. Lett. 15, 428–436 (2019). https://doi.org/10.1007/s13391-019-00143-w
- B. Sayahpour, W. Li, S. Bai, B. Lu, B. Han et al., Quantitative analysis of sodium metal deposition and interphase in Na metal batteries. Energy Environ. Sci. 17, 1216–1228 (2024). https://doi.org/10.1039/D3EE03141A
- C. Gong, S.D. Pu, S. Zhang, Y. Yuan, Z. Ning et al., The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes. Energy Environ. Sci. 16, 535–545 (2023). https://doi.org/10.1039/d2ee02606f
- Y.-J. Guo, P.-F. Wang, Y.-B. Niu, X.-D. Zhang, Q. Li et al., Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nat. Commun. 12, 5267 (2021). https://doi.org/10.1038/s41467-021-25610-7
- V. Kiran Kumar, S. Ghosh, S. Biswas, S.K. Martha, Practical realization of O3-type NaNi0.5Mn0.3Co0.2O2 cathodes for sodium-ion batteries. J. Electrochem. Soc. 167(8), 080531 (2020). https://doi.org/10.1149/1945-7111/ab8ed5
- C. Li, F. Geng, B. Hu, B. Hu, Anionic redox in Na-based layered oxide cathodes: a review with focus on mechanism studies. Mater. Today Energy 17, 100474 (2020). https://doi.org/10.1016/j.mtener.2020.100474
- Y. Wang, J. Jin, X. Zhao, Q. Shen, X. Qu et al., Unexpected elevated working voltage by Na+/vacancy ordering and stabilized sodium-ion storage by transition-metal honeycomb ordering. Angew. Chem. Int. Ed. 63, e202409152 (2024). https://doi.org/10.1002/anie.202409152
- Y. Zhao, Q. Liu, X. Zhao, D. Mu, G. Tan et al., Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries: Issues, mechanism and strategies. Mater. Today 62, 271–295 (2023). https://doi.org/10.1016/j.mattod.2022.11.024
- S. Zhang, X. Li, Y. Su, Y. Yang, H. Yu et al., Four-In-one strategy to boost the performance of Nax[Ni, Mn]O2. Adv. Funct. Mater. 33, 2301568 (2023). https://doi.org/10.1002/adfm.202301568
- J. Do, I. Kim, H. Kim, Y. Jung, Towards stable Na-rich layered transition metal oxides for high energy density sodium-ion batteries. Energy Storage Mater. 25, 62–69 (2020). https://doi.org/10.1016/j.ensm.2019.10.031
- Y. Wang, X. Wang, X. Li, Yu. Ruizhi, M. Chen, K. Tang, X. Zhang, The novel P3-type layered Na0.65Mn0.75Ni0.25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries. Chem. Eng. J. 360, 139–147 (2019). https://doi.org/10.1016/j.cej.2018.11.214
- Z. Wu, Y. Ni, S. Tan, E. Hu, L. He et al., Realizing high capacity and zero strain in layered oxide cathodes via lithium dual-site substitution for sodium-ion batteries. J. Am. Chem. Soc. 145, 9596–9606 (2023). https://doi.org/10.1021/jacs.3c00117
- R. Mogensen, D. Brandell, R. Younesi, Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries. ACS Energy Lett. 1, 1173–1178 (2016). https://doi.org/10.1021/acsenergylett.6b00491
- B. Lee, E. Paek, D. Mitlin, S.W. Lee, Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119, 5416–5460 (2019). https://doi.org/10.1021/acs.chemrev.8b00642
- T. Cai, M. Cai, J. Mu, S. Zhao, H. Bi et al., High-entropy layered oxide cathode enabling high-rate for solid-state sodium-ion batteries. Nano-Micro Lett. 16, 10 (2023). https://doi.org/10.1007/s40820-023-01232-0
- X. Chen, X. Shen, B. Li, H.-J. Peng, X.-B. Cheng et al., Ion–solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew. Chem. Int. Ed. 57, 734–737 (2018). https://doi.org/10.1002/anie.201711552
- X. Zheng, L. Huang, X. Ye, J. Zhang, F. Min et al., Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 7, 2312–2346 (2021). https://doi.org/10.1016/j.chempr.2021.02.025
- S. Lin, H. Zhang, C. Shu, W. Hua, X. Wang et al., Research progress and perspectives on pre-sodiation strategies for sodium-ion batteries. Adv. Funct. Mater. 34, 2409628 (2024). https://doi.org/10.1002/adfm.202409628
- F. Wang, N. Zhang, X. Zhao, L. Wang, J. Zhang et al., Realizing a high-performance Na-storage cathode by tailoring ultrasmall Na2FePO4F nanops with facilitated reaction kinetics. Adv. Sci. 6, 1900649 (2019). https://doi.org/10.1002/advs.201900649
- Z. Lu, H. Yang, Y. Guo, P. He, S. Wu et al., Electrolyte sieving chemistry in suppressing gas evolution of sodium-metal batteries. Angew. Chem. Int. Ed. 61, e202206340 (2022). https://doi.org/10.1002/anie.202206340
- W. Liu, X. Chen, C. Zhang, H. Xu, X. Sun et al., Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na. ACS Appl. Mater. Interfaces 11, 23207–23212 (2019). https://doi.org/10.1021/acsami.9b05005
- H.-R. Yao, X.-G. Yuan, X.-D. Zhang, Y.-J. Guo, L. Zheng et al., Excellent air storage stability of Na-based transition metal oxide cathodes benefiting from enhanced Na−O binding energy. Energy Storage Mater. 54, 661–667 (2023). https://doi.org/10.1016/j.ensm.2022.11.005
- X. Wu, Z. Piao, M. Zhang, G. Lu, C. Li et al., In situ construction of a multifunctional interphase enabling continuous capture of unstable lattice oxygen under ultrahigh voltages. J. Am. Chem. Soc. 146, 14036–14047 (2024). https://doi.org/10.1021/jacs.4c02345
- G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney et al., Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 7, 1053–1058 (2014). https://doi.org/10.1039/c3ee43357a
- H. Wang, Y. Chen, Z.D. Hood, G. Sahu, A.S. Pandian et al., An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure. Angew. Chem. Int. Ed. 55, 8551–8555 (2016). https://doi.org/10.1002/anie.201601546
- Z. Liu, Z. Lu, S. Guo, Q.-H. Yang, H. Zhou, Toward high performance anodes for sodium-ion batteries: from hard carbons to anode-free systems. ACS Cent. Sci. 9, 1076–1087 (2023). https://doi.org/10.1021/acscentsci.3c00301
- Z. Song, G. Zhang, X. Deng, Y. Tian, X. Xiao et al., Strongly coupled interfacial engineering inspired by robotic arms enable high-performance sodium-ion capacitors. Adv. Funct. Mater. 32, 2205453 (2022). https://doi.org/10.1002/adfm.202205453
- X. Xiao, X. Duan, Z. Song, X. Deng, W. Deng et al., High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv. Funct. Mater. 32, 2110476 (2022). https://doi.org/10.1002/adfm.202110476
- Z. Song, G. Zhang, X. Deng, K. Zou, X. Xiao et al., Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nano-Micro Lett. 14, 53 (2022). https://doi.org/10.1007/s40820-022-00792-x
- X.-L. Li, T. Wang, Y. Yuan, X.-Y. Yue, Q.-C. Wang et al., Whole-voltage-range oxygen redox in P2-layered cathode materials for sodium-ion batteries. Adv. Mater. 33, e2008194 (2021). https://doi.org/10.1002/adma.202008194
- L. Mu, R. Lin, R. Xu, L. Han, S. Xia et al., Oxygen release induced chemomechanical breakdown of layered cathode materials. Nano Lett. 18, 3241–3249 (2018). https://doi.org/10.1021/acs.nanolett.8b01036
- J. Xu, M. Sun, R. Qiao, S.E. Renfrew, L. Ma et al., Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018). https://doi.org/10.1038/s41467-018-03403-9
- T. Cui, L. Liu, Y. Xiang, C. Sheng, X. Li, F. Yongzhu, Facilitating an ultrastable O3-type cathode for 4.5 V sodium-ion batteries via a dual-reductive coupling mechanism. J. Am. Chem. Soc. 146, 13924–13933 (2024). https://doi.org/10.1021/jacs.4c01787
- Y. Zhang, M. Wu, J. Ma, G. Wei, Y. Ling et al., Revisiting the Na2/3Ni1/3Mn2/3O2 cathode: oxygen redox chemistry and oxygen release suppression. ACS Cent. Sci. 6, 232–240 (2020). https://doi.org/10.1021/acscentsci.9b01166
- Y. Wang, X. Zhao, J. Jin, Q. Shen, Y. Hu et al., Boosting the reversibility and kinetics of anionic redox chemistry in sodium-ion oxide cathodes via reductive coupling mechanism. J. Am. Chem. Soc. 145, 22708–22719 (2023). https://doi.org/10.1021/jacs.3c08070
- J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou et al., Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, e2108384 (2022). https://doi.org/10.1002/adma.202108384
- J.F. Peters, M. Weil, Aqueous hybrid ion batteries–An environmentally friendly alternative for stationary energy storage? J. Power Sources 364, 258–265 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.041
- J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang et al., Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8, 1702619 (2018). https://doi.org/10.1002/aenm.201702619
- F. Feng, S. Chen, X.-Z. Liao, Z.-F. Ma, Hierarchical hollow Prussian blue rods synthesized via self-sacrifice template as cathode for high performance sodium ion battery. Small Meth. 3, 1800259 (2019). https://doi.org/10.1002/smtd.201800259
- Y. You, X.-L. Wu, Y.-X. Yin, Y.-G. Guo, High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647 (2014). https://doi.org/10.1039/C3EE44004D
- S.L. Dreyer, F.M. Maddar, A. Kondrakov, J. Janek, I. Hasa et al., Elucidating gas evolution of Prussian white cathodes for sodium-ion battery application: the effect of electrolyte and moisture. Batter. Supercaps 7, e202300595 (2024). https://doi.org/10.1002/batt.202300595
- L. Zhang, C. Tsolakidou, S. Mariyappan, J.-M. Tarascon, S. Trabesinger, Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry. Energy Storage Mater. 42, 12–21 (2021). https://doi.org/10.1016/j.ensm.2021.07.005
- H. Zhang, X. Tan, H. Li, S. Passerini, W. Huang, Assessment and progress of polyanionic cathodes in aqueous sodium batteries. Energy Environ. Sci. 14, 5788–5800 (2021). https://doi.org/10.1039/d1ee01392k
- S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang et al., Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29, 1700431 (2017). https://doi.org/10.1002/adma.201700431
- H. Li, T. Wang, X. Wang, G. Li, J. Shen et al., MOF-derived Al-doped Na2FePO4F/mesoporous carbon nanonetwork composites as high-performance cathode material for sodium-ion batteries. Electrochim. Acta 373, 137905 (2021). https://doi.org/10.1016/j.electacta.2021.137905
- Z. Xiong, X. Nie, B. Zhang, Z. Wei, Na2S cathodes enabling safety room temperature sodium sulfur batteries. Batter. Supercaps 7, e202300503 (2024). https://doi.org/10.1002/batt.202300503
- H.A. Adeoye, S. Tennison, J.F. Watts, C. Lekakou, An investigation into electrolytes and cathodes for room-temperature sodium–sulfur batteries. Batteries 10, 216 (2024). https://doi.org/10.3390/batteries10060216
- S.I. Kim, W.I. Park, K. Jung, C.-S. Kim, An innovative electronically-conducting matrix of the cathode for sodium sulfur battery. J. Power Sources 320, 37–42 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.041
- S. Lu, Y. Liu, J. Xu, S. Weng, J. Xue et al., Design towards recyclable micron-sized Na2S cathode with self-refinement mechanism. Nat. Commun. 15, 9995 (2024). https://doi.org/10.1038/s41467-024-54316-9
- D.P. DiVincenzo, E.J. Mele, Cohesion and structure in stage-1 graphite intercalation compounds. Phys. Rev. B Condens. Matter 32, 2538–2553 (1985). https://doi.org/10.1103/physrevb.32.2538
- R. Alcántara, J. Jiménez-Mateos, P. Lavela, J. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3, 639–642 (2014). https://doi.org/10.1016/S1388-2481(01)00244-2
- P. Thomas, J. Ghanbaja, D. Billaud, Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte. Electrochim. Acta 45, 423–430 (1999). https://doi.org/10.1016/S0013-4686(99)00276-5
- D.A. Stevens, J.R. Dahn, An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J. Electrochem. Soc. 147, 4428 (2000). https://doi.org/10.1149/1.1394081
- Y. Wang, M. Li, Y. Zhang, N. Zhang, Hard carbon for sodium storage: mechanism and performance optimization. Nano Res. 17, 6038–6057 (2024). https://doi.org/10.1007/s12274-024-6546-0
- N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi et al., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012). https://doi.org/10.1038/nmat3309
- Q. Liu, D. Mu, B. Wu, L. Wang, L. Gai et al., Density functional theory research into the reduction mechanism for the solvent/additive in a sodium-ion battery. ChemSusChem 10, 786–796 (2017). https://doi.org/10.1002/cssc.201601356
- X. Deng, Y. Huang, Y. Han, J. Du, J. Tian et al., Abnormal gas generation during first discharge process of sodium ion battery. Angew. Chem. Int. Ed. 63, e202412222 (2024). https://doi.org/10.1002/anie.202412222
- J. Luo, M. Yang, D. Wang, J. Zhang, K. Song et al., A fast Na-ion conduction polymer electrolyte via triangular synergy strategy for quasi-solid-state batteries. Angew. Chem. Int. Ed. 62, e202315076 (2023). https://doi.org/10.1002/anie.202315076
- J. Ge, C. Ma, Y. Zhang, P. Ma, J. Zhang et al., Edge electron effect induced high-entropy SEI for durable anode-free sodium batteries. Adv. Mater. (2024). https://doi.org/10.1002/adma.202413253
- J. Xue, H. Zhang, J. Chen, K. Fang, Y. Chen et al., Unlocking the Na-storage behavior in hard carbon anode by mass spectrometry. Nano Lett. 24, 9839–9845 (2024). https://doi.org/10.1021/acs.nanolett.4c01620
- W. Zhang, F. Zhang, F. Ming, H.N. Alshareef, Sodium-ion battery anodes: status and future trends. EnergyChem 1, 100012 (2019). https://doi.org/10.1016/j.enchem.2019.100012
- S. Lin, Z. Yang, J. Chen, Y. Qiao, L. Li et al., Functional electrolyte additives for sodium-ion and sodium-metal batteries: progress and perspectives. Adv. Funct. Mater. 34, 2400731 (2024). https://doi.org/10.1002/adfm.202400731
- Y. Lee, J. Lee, J. Lee, K. Kim, A. Cha et al., Fluoroethylene carbonate-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide enables high-performance sodium metal electrodes. ACS Appl. Mater. Interfaces 10, 15270–15280 (2018). https://doi.org/10.1021/acsami.8b02446
- G. Deysher, J.A.S. Oh, Y.-T. Chen, B. Sayahpour, S.-Y. Ham et al., Design principles for enabling an anode-free sodium all-solid-state battery. Nat. Energy 9, 1161–1172 (2024). https://doi.org/10.1038/s41560-024-01569-9
- D. Aurbach, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002). https://doi.org/10.1016/s0167-2738(02)00080-2
- C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu et al., Solid-state sodium batteries. Adv. Energy Mater. 8, 1703012 (2018). https://doi.org/10.1002/aenm.201703012
- N. Yabuuchi, R. Hara, M. Kajiyama, K. Kubota, T. Ishigaki et al., New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries. Adv. Energy Mater. 4, 1301453 (2014). https://doi.org/10.1002/aenm.201301453
- K. Du, J. Zhu, G. Hu, H. Gao, Y. Li et al., Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575–2577 (2016). https://doi.org/10.1039/c6ee01367h
- L. Yu, X. He, B. Peng, F. Wang, N. Ahmad et al., Nonmetal substitution in interstitial site of O3- NaNi0.5Mn0.5O2 induces the generation of a nearly zero strain P2&O3 biphasic structure as ultrastable sodium-ion cathode. Adv. Funct. Mater. 34, 2406771 (2024). https://doi.org/10.1002/adfm.202406771
- Y. Zhu, Z. Zhang, J. Bao, S. Zeng, W. Nie et al., Multi-metal doped high capacity and stable Prussian blue analogue for sodium ion batteries. Int. J. Energy Res. 44, 9205–9212 (2020). https://doi.org/10.1002/er.5576
- M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao et al., Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2013). https://doi.org/10.1021/nn305065u
- Y. Liu, X. Fang, A. Zhang, C. Shen, Q. Liu et al., Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification. Nano Energy 27, 27–34 (2016). https://doi.org/10.1016/j.nanoen.2016.06.026
- R. Rodriguez, K.E. Loeffler, S.S. Nathan, J.K. Sheavly, A. Dolocan et al., In situ optical imaging of sodium electrodeposition: effects of fluoroethylene carbonate. ACS Energy Lett. 2, 2051–2057 (2017). https://doi.org/10.1021/acsenergylett.7b00500
- M. Xia, H. Chen, Z. Zheng, Q. Meng, A. Zhao et al., Sodium-difluoro(oxalato)borate-based electrolytes for long-term cycle life and enhanced low-temperature sodium-ion batteries. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202403306
- M. Li, J. Jiang, Y. Chen, S. Huang, X. Liu et al., A novel anion receptor additive for-40 °C sodium metal batteries by anion/cation solvation engineering. Angew. Chem. Int. Ed. 64, e202413806 (2025). https://doi.org/10.1002/anie.202413806
- Q. Lu, A. Omar, L. Ding, S. Oswald, M. Hantusch et al., A facile method to stabilize sodium metal anodes towards high-performance sodium batteries. J. Mater. Chem. A 9, 9038–9047 (2021). https://doi.org/10.1039/d1ta00066g
- Y. Chen, X. Li, K. Park, W. Lu, C. Wang et al., Nitrogen-doped carbon for sodium-ion battery anode by self-etching and graphitization of bimetallic MOF-based composite. Chem 3, 152–163 (2017). https://doi.org/10.1016/j.chempr.2017.05.021
- P. Xu, G. Li, Y. Zheng, J.C.H. Fung, A. Chen et al., Fertilizer management for global ammonia emission reduction. Nature 626, 792–798 (2024). https://doi.org/10.1038/s41586-024-07020-z
- J. Yue, L. Lin, L. Jiang, Q. Zhang, Y. Tong et al., Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv. Energy Mater. 10, 2000665 (2020). https://doi.org/10.1002/aenm.202000665
References
P.M. Csernica, S.S. Kalirai, W.E. Gent, K. Lim, Y.-S. Yu et al., Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat. Energy 6, 642–652 (2021). https://doi.org/10.1038/s41560-021-00832-7
F. Lin, I.M. Markus, D. Nordlund, T.-C. Weng, M.D. Asta et al., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014). https://doi.org/10.1038/ncomms4529
W. Song, X. Ji, Y. Zhu, H. Zhu, F. Li et al., Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode. ChemElectroChem 1, 871–876 (2014). https://doi.org/10.1002/celc.201300248
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004). https://doi.org/10.1021/cr030203g
E. Hu, X. Yu, R. Lin, X. Bi, J. Lu et al., Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018). https://doi.org/10.1038/s41560-018-0207-z
K. Luo, M.R. Roberts, N. Guerrini, N. Tapia-Ruiz, R. Hao, F. Massel, D.M. Pickup, S. Ramos, Y.-S. Liu, J. Guo, A.V. Chadwick, L.C. Duda, P.G. Bruce, Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2 Ni0.2 Mn0.6]O2. J. Am. Chem. Soc. 138(35), 11211–11218 (2016). https://doi.org/10.1021/jacs.6b05111
K. Luo, M.R. Roberts, R. Hao, N. Guerrini, D.M. Pickup et al., Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016). https://doi.org/10.1038/nchem.2471
X. Li, Y. Qiao, S. Guo, Z. Xu, H. Zhu et al., Direct visualization of the reversible O2-/O- redox process in Li-rich cathode materials. Adv. Mater. 30, e1705197 (2018). https://doi.org/10.1002/adma.201705197
Y. Li, X. Liu, L. Wang, X. Feng, D. Ren et al., Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy 85, 105878 (2021). https://doi.org/10.1016/j.nanoen.2021.105878
K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv. Energy Mater. 10, 2001310 (2020). https://doi.org/10.1002/aenm.202001310
L. Chen, M. Fiore, J.E. Wang, R. Ruffo, D.-K. Kim et al., Readiness level of sodium-ion battery technology: a materials review. Adv. Sustain. Syst. 2, 1700153 (2018). https://doi.org/10.1002/adsu.201700153
C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020). https://doi.org/10.1126/science.aay9972
J. Tarascon, Na-ion versus Li-ion batteries: complementarity rather than competitiveness. Joule 4, 1616–1620 (2022). https://doi.org/10.1016/j.joule.2020.06.003
J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
X. Xia, C.-F. Du, S. Zhong, Y. Jiang, H. Yu et al., Homogeneous Na deposition enabling high-energy Na-metal batteries. Adv. Funct. Mater. 32, 2110280 (2022). https://doi.org/10.1002/adfm.202110280
B. Yang, Z. Yang, X. Zhang, Y. Zhao, Y. Wang et al., High modulus Na2SiO3-rich solid electrolyte interphase enable long-cycle and energy-dense sodium metal battery. Adv. Funct. Mater. 34, 2407783 (2024). https://doi.org/10.1002/adfm.202407783
L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao et al., Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11, 2310–2340 (2018). https://doi.org/10.1039/c8ee01023d
H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338 (2013). https://doi.org/10.1039/c3ee40847g
K. Kawai, X.-M. Shi, N. Takenaka, J. Jang, B.M. de Boisse et al., Kinetic square scheme in oxygen-redox battery electrodes. Energy Environ. Sci. 15, 2591–2600 (2022). https://doi.org/10.1039/d1ee03503g
C. Zuo, D. Dong, H. Wang, Y. Sun, Y.-C. Lu, Bromide-based nonflammable electrolyte for safe and long-life sodium metal batteries. Energy Environ. Sci. 17, 791–799 (2024). https://doi.org/10.1039/d3ee03332e
M. Jia, Y. Qiao, X. Li, K. Jiang, H. Zhou, Unraveling the anionic oxygen loss and related structural evolution within O3- type Na layered oxide cathodes. J. Mater. Chem. A 7, 20405–20413 (2019). https://doi.org/10.1039/C9TA06186J
H. Kumar, E. Detsi, D.P. Abraham, V.B. Shenoy, Fundamental mechanisms of solvent decomposition involved in solid-electrolyte interphase formation in sodium ion batteries. Chem. Mater. 28, 8930–8941 (2016). https://doi.org/10.1021/acs.chemmater.6b03403
J. Wang, L. Li, S. Zuo, Y. Zhang, L. Lv et al., Synchronous crystal growth and etching optimization of Prussian blue from a single iron-source as high-rate cathode for sodium-ion batteries. Electrochim. Acta 341, 136057 (2020). https://doi.org/10.1016/j.electacta.2020.136057
R.A. House, U. Maitra, M.A. Pérez-Osorio, J.G. Lozano, L. Jin et al., Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020). https://doi.org/10.1038/s41586-019-1854-3
L. Sun, Z. Wu, M. Hou, Y. Ni, H. Sun et al., Unraveling and suppressing the voltage decay of high-capacity cathode materials for sodium-ion batteries. Energy Environ. Sci. 17, 210–218 (2024). https://doi.org/10.1039/d3ee02817h
G. Assat, J.-M. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018). https://doi.org/10.1038/s41560-018-0097-0
X. Wang, Q. Zhang, C. Zhao, H. Li, B. Zhang et al., Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox. Nat. Energy 9, 184–196 (2024). https://doi.org/10.1038/s41560-023-01425-2
Y. Fang, L. Xiao, Z. Chen, X. Ai, Y. Cao et al., Recent advances in sodium-ion battery materials. Electrochem. Energ. Rev. 1, 294–323 (2018). https://doi.org/10.1007/s41918-018-0008-x
J. Peters, D. Buchholz, S. Passerini, M. Weil, Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 9, 1744–1751 (2016). https://doi.org/10.1039/c6ee00640j
E. de la Llave, E. Talaie, E. Levi, P.K. Nayak, M. Dixit et al., Improving energy density and structural stability of manganese oxide cathodes for Na-ion batteries by structural lithium substitution. Chem. Mater. 28, 9064–9076 (2016). https://doi.org/10.1021/acs.chemmater.6b04078
Z. Xu, J. Chen, M. Wu, C. Chen, Y. Song et al., Effects of different atmosphere on electrochemical performance of hard carbon electrode in sodium ion battery. Electron. Mater. Lett. 15, 428–436 (2019). https://doi.org/10.1007/s13391-019-00143-w
B. Sayahpour, W. Li, S. Bai, B. Lu, B. Han et al., Quantitative analysis of sodium metal deposition and interphase in Na metal batteries. Energy Environ. Sci. 17, 1216–1228 (2024). https://doi.org/10.1039/D3EE03141A
C. Gong, S.D. Pu, S. Zhang, Y. Yuan, Z. Ning et al., The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes. Energy Environ. Sci. 16, 535–545 (2023). https://doi.org/10.1039/d2ee02606f
Y.-J. Guo, P.-F. Wang, Y.-B. Niu, X.-D. Zhang, Q. Li et al., Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nat. Commun. 12, 5267 (2021). https://doi.org/10.1038/s41467-021-25610-7
V. Kiran Kumar, S. Ghosh, S. Biswas, S.K. Martha, Practical realization of O3-type NaNi0.5Mn0.3Co0.2O2 cathodes for sodium-ion batteries. J. Electrochem. Soc. 167(8), 080531 (2020). https://doi.org/10.1149/1945-7111/ab8ed5
C. Li, F. Geng, B. Hu, B. Hu, Anionic redox in Na-based layered oxide cathodes: a review with focus on mechanism studies. Mater. Today Energy 17, 100474 (2020). https://doi.org/10.1016/j.mtener.2020.100474
Y. Wang, J. Jin, X. Zhao, Q. Shen, X. Qu et al., Unexpected elevated working voltage by Na+/vacancy ordering and stabilized sodium-ion storage by transition-metal honeycomb ordering. Angew. Chem. Int. Ed. 63, e202409152 (2024). https://doi.org/10.1002/anie.202409152
Y. Zhao, Q. Liu, X. Zhao, D. Mu, G. Tan et al., Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries: Issues, mechanism and strategies. Mater. Today 62, 271–295 (2023). https://doi.org/10.1016/j.mattod.2022.11.024
S. Zhang, X. Li, Y. Su, Y. Yang, H. Yu et al., Four-In-one strategy to boost the performance of Nax[Ni, Mn]O2. Adv. Funct. Mater. 33, 2301568 (2023). https://doi.org/10.1002/adfm.202301568
J. Do, I. Kim, H. Kim, Y. Jung, Towards stable Na-rich layered transition metal oxides for high energy density sodium-ion batteries. Energy Storage Mater. 25, 62–69 (2020). https://doi.org/10.1016/j.ensm.2019.10.031
Y. Wang, X. Wang, X. Li, Yu. Ruizhi, M. Chen, K. Tang, X. Zhang, The novel P3-type layered Na0.65Mn0.75Ni0.25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries. Chem. Eng. J. 360, 139–147 (2019). https://doi.org/10.1016/j.cej.2018.11.214
Z. Wu, Y. Ni, S. Tan, E. Hu, L. He et al., Realizing high capacity and zero strain in layered oxide cathodes via lithium dual-site substitution for sodium-ion batteries. J. Am. Chem. Soc. 145, 9596–9606 (2023). https://doi.org/10.1021/jacs.3c00117
R. Mogensen, D. Brandell, R. Younesi, Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries. ACS Energy Lett. 1, 1173–1178 (2016). https://doi.org/10.1021/acsenergylett.6b00491
B. Lee, E. Paek, D. Mitlin, S.W. Lee, Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119, 5416–5460 (2019). https://doi.org/10.1021/acs.chemrev.8b00642
T. Cai, M. Cai, J. Mu, S. Zhao, H. Bi et al., High-entropy layered oxide cathode enabling high-rate for solid-state sodium-ion batteries. Nano-Micro Lett. 16, 10 (2023). https://doi.org/10.1007/s40820-023-01232-0
X. Chen, X. Shen, B. Li, H.-J. Peng, X.-B. Cheng et al., Ion–solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew. Chem. Int. Ed. 57, 734–737 (2018). https://doi.org/10.1002/anie.201711552
X. Zheng, L. Huang, X. Ye, J. Zhang, F. Min et al., Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 7, 2312–2346 (2021). https://doi.org/10.1016/j.chempr.2021.02.025
S. Lin, H. Zhang, C. Shu, W. Hua, X. Wang et al., Research progress and perspectives on pre-sodiation strategies for sodium-ion batteries. Adv. Funct. Mater. 34, 2409628 (2024). https://doi.org/10.1002/adfm.202409628
F. Wang, N. Zhang, X. Zhao, L. Wang, J. Zhang et al., Realizing a high-performance Na-storage cathode by tailoring ultrasmall Na2FePO4F nanops with facilitated reaction kinetics. Adv. Sci. 6, 1900649 (2019). https://doi.org/10.1002/advs.201900649
Z. Lu, H. Yang, Y. Guo, P. He, S. Wu et al., Electrolyte sieving chemistry in suppressing gas evolution of sodium-metal batteries. Angew. Chem. Int. Ed. 61, e202206340 (2022). https://doi.org/10.1002/anie.202206340
W. Liu, X. Chen, C. Zhang, H. Xu, X. Sun et al., Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na. ACS Appl. Mater. Interfaces 11, 23207–23212 (2019). https://doi.org/10.1021/acsami.9b05005
H.-R. Yao, X.-G. Yuan, X.-D. Zhang, Y.-J. Guo, L. Zheng et al., Excellent air storage stability of Na-based transition metal oxide cathodes benefiting from enhanced Na−O binding energy. Energy Storage Mater. 54, 661–667 (2023). https://doi.org/10.1016/j.ensm.2022.11.005
X. Wu, Z. Piao, M. Zhang, G. Lu, C. Li et al., In situ construction of a multifunctional interphase enabling continuous capture of unstable lattice oxygen under ultrahigh voltages. J. Am. Chem. Soc. 146, 14036–14047 (2024). https://doi.org/10.1021/jacs.4c02345
G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney et al., Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 7, 1053–1058 (2014). https://doi.org/10.1039/c3ee43357a
H. Wang, Y. Chen, Z.D. Hood, G. Sahu, A.S. Pandian et al., An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure. Angew. Chem. Int. Ed. 55, 8551–8555 (2016). https://doi.org/10.1002/anie.201601546
Z. Liu, Z. Lu, S. Guo, Q.-H. Yang, H. Zhou, Toward high performance anodes for sodium-ion batteries: from hard carbons to anode-free systems. ACS Cent. Sci. 9, 1076–1087 (2023). https://doi.org/10.1021/acscentsci.3c00301
Z. Song, G. Zhang, X. Deng, Y. Tian, X. Xiao et al., Strongly coupled interfacial engineering inspired by robotic arms enable high-performance sodium-ion capacitors. Adv. Funct. Mater. 32, 2205453 (2022). https://doi.org/10.1002/adfm.202205453
X. Xiao, X. Duan, Z. Song, X. Deng, W. Deng et al., High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv. Funct. Mater. 32, 2110476 (2022). https://doi.org/10.1002/adfm.202110476
Z. Song, G. Zhang, X. Deng, K. Zou, X. Xiao et al., Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nano-Micro Lett. 14, 53 (2022). https://doi.org/10.1007/s40820-022-00792-x
X.-L. Li, T. Wang, Y. Yuan, X.-Y. Yue, Q.-C. Wang et al., Whole-voltage-range oxygen redox in P2-layered cathode materials for sodium-ion batteries. Adv. Mater. 33, e2008194 (2021). https://doi.org/10.1002/adma.202008194
L. Mu, R. Lin, R. Xu, L. Han, S. Xia et al., Oxygen release induced chemomechanical breakdown of layered cathode materials. Nano Lett. 18, 3241–3249 (2018). https://doi.org/10.1021/acs.nanolett.8b01036
J. Xu, M. Sun, R. Qiao, S.E. Renfrew, L. Ma et al., Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018). https://doi.org/10.1038/s41467-018-03403-9
T. Cui, L. Liu, Y. Xiang, C. Sheng, X. Li, F. Yongzhu, Facilitating an ultrastable O3-type cathode for 4.5 V sodium-ion batteries via a dual-reductive coupling mechanism. J. Am. Chem. Soc. 146, 13924–13933 (2024). https://doi.org/10.1021/jacs.4c01787
Y. Zhang, M. Wu, J. Ma, G. Wei, Y. Ling et al., Revisiting the Na2/3Ni1/3Mn2/3O2 cathode: oxygen redox chemistry and oxygen release suppression. ACS Cent. Sci. 6, 232–240 (2020). https://doi.org/10.1021/acscentsci.9b01166
Y. Wang, X. Zhao, J. Jin, Q. Shen, Y. Hu et al., Boosting the reversibility and kinetics of anionic redox chemistry in sodium-ion oxide cathodes via reductive coupling mechanism. J. Am. Chem. Soc. 145, 22708–22719 (2023). https://doi.org/10.1021/jacs.3c08070
J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou et al., Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, e2108384 (2022). https://doi.org/10.1002/adma.202108384
J.F. Peters, M. Weil, Aqueous hybrid ion batteries–An environmentally friendly alternative for stationary energy storage? J. Power Sources 364, 258–265 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.041
J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang et al., Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8, 1702619 (2018). https://doi.org/10.1002/aenm.201702619
F. Feng, S. Chen, X.-Z. Liao, Z.-F. Ma, Hierarchical hollow Prussian blue rods synthesized via self-sacrifice template as cathode for high performance sodium ion battery. Small Meth. 3, 1800259 (2019). https://doi.org/10.1002/smtd.201800259
Y. You, X.-L. Wu, Y.-X. Yin, Y.-G. Guo, High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647 (2014). https://doi.org/10.1039/C3EE44004D
S.L. Dreyer, F.M. Maddar, A. Kondrakov, J. Janek, I. Hasa et al., Elucidating gas evolution of Prussian white cathodes for sodium-ion battery application: the effect of electrolyte and moisture. Batter. Supercaps 7, e202300595 (2024). https://doi.org/10.1002/batt.202300595
L. Zhang, C. Tsolakidou, S. Mariyappan, J.-M. Tarascon, S. Trabesinger, Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry. Energy Storage Mater. 42, 12–21 (2021). https://doi.org/10.1016/j.ensm.2021.07.005
H. Zhang, X. Tan, H. Li, S. Passerini, W. Huang, Assessment and progress of polyanionic cathodes in aqueous sodium batteries. Energy Environ. Sci. 14, 5788–5800 (2021). https://doi.org/10.1039/d1ee01392k
S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang et al., Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29, 1700431 (2017). https://doi.org/10.1002/adma.201700431
H. Li, T. Wang, X. Wang, G. Li, J. Shen et al., MOF-derived Al-doped Na2FePO4F/mesoporous carbon nanonetwork composites as high-performance cathode material for sodium-ion batteries. Electrochim. Acta 373, 137905 (2021). https://doi.org/10.1016/j.electacta.2021.137905
Z. Xiong, X. Nie, B. Zhang, Z. Wei, Na2S cathodes enabling safety room temperature sodium sulfur batteries. Batter. Supercaps 7, e202300503 (2024). https://doi.org/10.1002/batt.202300503
H.A. Adeoye, S. Tennison, J.F. Watts, C. Lekakou, An investigation into electrolytes and cathodes for room-temperature sodium–sulfur batteries. Batteries 10, 216 (2024). https://doi.org/10.3390/batteries10060216
S.I. Kim, W.I. Park, K. Jung, C.-S. Kim, An innovative electronically-conducting matrix of the cathode for sodium sulfur battery. J. Power Sources 320, 37–42 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.041
S. Lu, Y. Liu, J. Xu, S. Weng, J. Xue et al., Design towards recyclable micron-sized Na2S cathode with self-refinement mechanism. Nat. Commun. 15, 9995 (2024). https://doi.org/10.1038/s41467-024-54316-9
D.P. DiVincenzo, E.J. Mele, Cohesion and structure in stage-1 graphite intercalation compounds. Phys. Rev. B Condens. Matter 32, 2538–2553 (1985). https://doi.org/10.1103/physrevb.32.2538
R. Alcántara, J. Jiménez-Mateos, P. Lavela, J. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3, 639–642 (2014). https://doi.org/10.1016/S1388-2481(01)00244-2
P. Thomas, J. Ghanbaja, D. Billaud, Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte. Electrochim. Acta 45, 423–430 (1999). https://doi.org/10.1016/S0013-4686(99)00276-5
D.A. Stevens, J.R. Dahn, An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J. Electrochem. Soc. 147, 4428 (2000). https://doi.org/10.1149/1.1394081
Y. Wang, M. Li, Y. Zhang, N. Zhang, Hard carbon for sodium storage: mechanism and performance optimization. Nano Res. 17, 6038–6057 (2024). https://doi.org/10.1007/s12274-024-6546-0
N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi et al., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012). https://doi.org/10.1038/nmat3309
Q. Liu, D. Mu, B. Wu, L. Wang, L. Gai et al., Density functional theory research into the reduction mechanism for the solvent/additive in a sodium-ion battery. ChemSusChem 10, 786–796 (2017). https://doi.org/10.1002/cssc.201601356
X. Deng, Y. Huang, Y. Han, J. Du, J. Tian et al., Abnormal gas generation during first discharge process of sodium ion battery. Angew. Chem. Int. Ed. 63, e202412222 (2024). https://doi.org/10.1002/anie.202412222
J. Luo, M. Yang, D. Wang, J. Zhang, K. Song et al., A fast Na-ion conduction polymer electrolyte via triangular synergy strategy for quasi-solid-state batteries. Angew. Chem. Int. Ed. 62, e202315076 (2023). https://doi.org/10.1002/anie.202315076
J. Ge, C. Ma, Y. Zhang, P. Ma, J. Zhang et al., Edge electron effect induced high-entropy SEI for durable anode-free sodium batteries. Adv. Mater. (2024). https://doi.org/10.1002/adma.202413253
J. Xue, H. Zhang, J. Chen, K. Fang, Y. Chen et al., Unlocking the Na-storage behavior in hard carbon anode by mass spectrometry. Nano Lett. 24, 9839–9845 (2024). https://doi.org/10.1021/acs.nanolett.4c01620
W. Zhang, F. Zhang, F. Ming, H.N. Alshareef, Sodium-ion battery anodes: status and future trends. EnergyChem 1, 100012 (2019). https://doi.org/10.1016/j.enchem.2019.100012
S. Lin, Z. Yang, J. Chen, Y. Qiao, L. Li et al., Functional electrolyte additives for sodium-ion and sodium-metal batteries: progress and perspectives. Adv. Funct. Mater. 34, 2400731 (2024). https://doi.org/10.1002/adfm.202400731
Y. Lee, J. Lee, J. Lee, K. Kim, A. Cha et al., Fluoroethylene carbonate-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide enables high-performance sodium metal electrodes. ACS Appl. Mater. Interfaces 10, 15270–15280 (2018). https://doi.org/10.1021/acsami.8b02446
G. Deysher, J.A.S. Oh, Y.-T. Chen, B. Sayahpour, S.-Y. Ham et al., Design principles for enabling an anode-free sodium all-solid-state battery. Nat. Energy 9, 1161–1172 (2024). https://doi.org/10.1038/s41560-024-01569-9
D. Aurbach, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002). https://doi.org/10.1016/s0167-2738(02)00080-2
C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu et al., Solid-state sodium batteries. Adv. Energy Mater. 8, 1703012 (2018). https://doi.org/10.1002/aenm.201703012
N. Yabuuchi, R. Hara, M. Kajiyama, K. Kubota, T. Ishigaki et al., New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries. Adv. Energy Mater. 4, 1301453 (2014). https://doi.org/10.1002/aenm.201301453
K. Du, J. Zhu, G. Hu, H. Gao, Y. Li et al., Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575–2577 (2016). https://doi.org/10.1039/c6ee01367h
L. Yu, X. He, B. Peng, F. Wang, N. Ahmad et al., Nonmetal substitution in interstitial site of O3- NaNi0.5Mn0.5O2 induces the generation of a nearly zero strain P2&O3 biphasic structure as ultrastable sodium-ion cathode. Adv. Funct. Mater. 34, 2406771 (2024). https://doi.org/10.1002/adfm.202406771
Y. Zhu, Z. Zhang, J. Bao, S. Zeng, W. Nie et al., Multi-metal doped high capacity and stable Prussian blue analogue for sodium ion batteries. Int. J. Energy Res. 44, 9205–9212 (2020). https://doi.org/10.1002/er.5576
M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao et al., Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2013). https://doi.org/10.1021/nn305065u
Y. Liu, X. Fang, A. Zhang, C. Shen, Q. Liu et al., Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification. Nano Energy 27, 27–34 (2016). https://doi.org/10.1016/j.nanoen.2016.06.026
R. Rodriguez, K.E. Loeffler, S.S. Nathan, J.K. Sheavly, A. Dolocan et al., In situ optical imaging of sodium electrodeposition: effects of fluoroethylene carbonate. ACS Energy Lett. 2, 2051–2057 (2017). https://doi.org/10.1021/acsenergylett.7b00500
M. Xia, H. Chen, Z. Zheng, Q. Meng, A. Zhao et al., Sodium-difluoro(oxalato)borate-based electrolytes for long-term cycle life and enhanced low-temperature sodium-ion batteries. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202403306
M. Li, J. Jiang, Y. Chen, S. Huang, X. Liu et al., A novel anion receptor additive for-40 °C sodium metal batteries by anion/cation solvation engineering. Angew. Chem. Int. Ed. 64, e202413806 (2025). https://doi.org/10.1002/anie.202413806
Q. Lu, A. Omar, L. Ding, S. Oswald, M. Hantusch et al., A facile method to stabilize sodium metal anodes towards high-performance sodium batteries. J. Mater. Chem. A 9, 9038–9047 (2021). https://doi.org/10.1039/d1ta00066g
Y. Chen, X. Li, K. Park, W. Lu, C. Wang et al., Nitrogen-doped carbon for sodium-ion battery anode by self-etching and graphitization of bimetallic MOF-based composite. Chem 3, 152–163 (2017). https://doi.org/10.1016/j.chempr.2017.05.021
P. Xu, G. Li, Y. Zheng, J.C.H. Fung, A. Chen et al., Fertilizer management for global ammonia emission reduction. Nature 626, 792–798 (2024). https://doi.org/10.1038/s41586-024-07020-z
J. Yue, L. Lin, L. Jiang, Q. Zhang, Y. Tong et al., Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv. Energy Mater. 10, 2000665 (2020). https://doi.org/10.1002/aenm.202000665