Universal Amplification-Free RNA Detection by Integrating CRISPR-Cas10 with Aptameric Graphene Field-Effect Transistor
Corresponding Author: Yu Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 242
Abstract
Amplification-free, highly sensitive, and specific nucleic acid detection is crucial for health monitoring and diagnosis. The type III CRISPR-Cas10 system, which provides viral immunity through CRISPR-associated protein effectors, enables a new amplification-free nucleic acid diagnostic tool. In this study, we develop a CRISPR-graphene field-effect transistors (GFETs) biosensor by combining the type III CRISPR-Cas10 system with GFETs for direct nucleic acid detection. This biosensor exploits the target RNA-activated continuous ssDNA cleavage activity of the dCsm3 CRISPR-Cas10 effector and the high charge density of a hairpin DNA reporter on the GFET channel to achieve label-free, amplification-free, highly sensitive, and specific RNA detection. The CRISPR-GFET biosensor exhibits excellent performance in detecting medium-length RNAs and miRNAs, with detection limits at the aM level and a broad linear range of 10−15 to 10−11 M for RNAs and 10−15 to 10−9 M for miRNAs. It shows high sensitivity in throat swabs and serum samples, distinguishing between healthy individuals (N = 5) and breast cancer patients (N = 6) without the need for extraction, purification, or amplification. This platform mitigates risks associated with nucleic acid amplification and cross-contamination, making it a versatile and scalable diagnostic tool for molecular diagnostics in human health.
Highlights:
1 A collaborative biosensing system is developed for amplification-free RNA/miRNA detection by integrating Type III CRISPR-Cas10 system with a graphene field-effect transistor (GFET).
2 Continuous cleavage of ssDNA by the mutant CRISPR-Cas10 effector complexes and high charge density of hairpin DNA reporters on the GFET channel enable the detection limit to reach the level of aM.
3 A universal sensing detection platform is established to directly detect the medium-length RNAs and miRNAs in clinical samples with the recognition capability of single nucleic acid.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Suea-Ngam, L. Bezinge, B. Mateescu, P.D. Howes, A.J. DeMello et al., Enzyme-assisted nucleic acid detection for infectious disease diagnostics: moving toward the point-of-care. ACS Sens. 5(9), 2701–2723 (2020). https://doi.org/10.1021/acssensors.0c01488
- H. Shibata, D. Nakajima, R. Konno, A. Hijikata, M. Higashiguchi et al., A non-targeted proteomics newborn screening platform for inborn errors of immunity. J. Clin. Immunol. 45(1), 33 (2024). https://doi.org/10.1007/s10875-024-01821-7
- D. Sidransky, Nucleic acid-based methods for the detection of cancer. Science 278(5340), 1054–1059 (1997). https://doi.org/10.1126/science.278.5340.1054
- L. Zhang, B. Ding, Q. Chen, Q. Feng, L. Lin et al., Point-of-care-testing of nucleic acids by microfluidics. Trac Trends Anal. Chem. 94, 106–116 (2017). https://doi.org/10.1016/j.trac.2017.07.013
- J.S. Park, T. Pisanic, Y. Zhang, T.H. Wang, Ligation-enabled fluorescence-coding PCR for high-dimensional fluorescence-based nucleic acid detection. Anal. Chem. 93(4), 2351–2358 (2021). https://doi.org/10.1021/acs.analchem.0c04221
- K. Jiang, J. Wu, J.-E. Kim, S. An, J.-M. Nam et al., Plasmonic cross-linking colorimetric PCR for simple and sensitive nucleic acid detection. Nano Lett. 23(9), 3897–3903 (2023). https://doi.org/10.1021/acs.nanolett.3c00533
- H. Wu, X. Cao, Y. Meng, D. Richards, J. Wu et al., DropCRISPR: a LAMP-Cas12a based digital method for ultrasensitive detection of nucleic acid. Biosens. Bioelectron. 211, 114377 (2022). https://doi.org/10.1016/j.bios.2022.114377
- F.-T. Wang, Y.-Y. Hou, X. Tan, K.-J. Huang, J. Xu et al., Real-time multiple signal amplification self-powered biosensing platform for ultrasensitive detection of microRNA. Biosens. Bioelectron. 222, 114933 (2023). https://doi.org/10.1016/j.bios.2022.114933
- D. Tang, J. Shi, Y. Wu, H. Luo, J. Yan et al., Flexible self-powered sensing system based on novel DNA circuit strategy and graphdiyne for thalassemia gene by rapid naked-eye tracking and open-circuit voltage. Anal. Chem. 95(44), 16374–16382 (2023). https://doi.org/10.1021/acs.analchem.3c03841
- Y.-Y. Hou, J. Xu, F.-T. Wang, Z. Dong, X. Tan et al., Construction of an integrated device of a self-powered biosensor and matching capacitor based on graphdiyne and multiple signal amplification: ultrasensitive method for microRNA detection. Anal. Chem. 93(46), 15225–15230 (2021). https://doi.org/10.1021/acs.analchem.1c03521
- J. Shi, S. Liu, P. Li, Y. Lin, H. Luo et al., Self-powered dual-mode sensing strategy based on graphdiyne and DNA nanoring for sensitive detection of tumor biomarker. Biosens. Bioelectron. 237, 115557 (2023). https://doi.org/10.1016/j.bios.2023.115557
- M. Li, Z. Liu, Y. Liu, H. Luo, K.-J. Huang et al., Capacitor-parallel-amplified decoupled photoelectrochemical/electrochromic dual-mode bioassay for sensitive detection of microRNA with high reliability. Biosens. Bioelectron. 232, 115310 (2023). https://doi.org/10.1016/j.bios.2023.115310
- M. Sun, S. Wang, Y. Zhang, Z. Zhang, S. Wang et al., An ultrasensitive flexible biosensor enabled by high-performance graphene field-effect transistors with defect-free van der Waals contacts for breast cancer miRNA fast detection. Talanta 287, 127637 (2025). https://doi.org/10.1016/j.talanta.2025.127637
- Q. Xu, F. Ma, S.-Q. Huang, B. Tang, C.-Y. Zhang, Nucleic acid amplification-free bioluminescent detection of microRNAs with high sensitivity and accuracy based on controlled target degradation. Anal. Chem. 89(13), 7077–7083 (2017). https://doi.org/10.1021/acs.analchem.7b00892
- B. Cai, L. Huang, H. Zhang, Z. Sun, Z. Zhang et al., Gold nanops-decorated graphene field-effect transistor biosensor for femtomolar microRNA detection. Biosens. Bioelectron. 74, 329–334 (2015). https://doi.org/10.1016/j.bios.2015.06.068
- M.M. Kaminski, O.O. Abudayyeh, J.S. Gootenberg, F. Zhang, J.J. Collins, CRISPR-based diagnostics. Nat. Biomed. Eng. 5(7), 643–656 (2021). https://doi.org/10.1038/s41551-021-00760-7
- Y. Tang, L. Gao, W. Feng, C. Guo, Q. Yang et al., The CRISPR-Cas toolbox for analytical and diagnostic assay development. Chem. Soc. Rev. 50(21), 11844–11869 (2021). https://doi.org/10.1039/d1cs00098e
- M. Karlikow, E. Amalfitano, X. Yang, J. Doucet, A. Chapman et al., CRISPR-induced DNA reorganization for multiplexed nucleic acid detection. Nat. Commun. 14(1), 1505 (2023). https://doi.org/10.1038/s41467-023-36874-6
- S. Mantena, P.P. Pillai, B.A. Petros, N.L. Welch, C. Myhrvold et al., Model-directed generation of artificial CRISPR-Cas13a guide RNA sequences improves nucleic acid detection. Nat. Biotechnol. (2024). https://doi.org/10.1038/s41587-024-02422-w
- C. Jiao, S. Sharma, G. Dugar, N.L. Peeck, T. Bischler et al., Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science 372(6545), 941–948 (2021). https://doi.org/10.1126/science.abe7106
- R. Hajian, S. Balderston, T. Tran, T. DeBoer, J. Etienne et al., Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 3(6), 427–437 (2019). https://doi.org/10.1038/s41551-019-0371-x
- J.S. Gootenberg, O.O. Abudayyeh, J.W. Lee, P. Essletzbichler, A.J. Dy et al., Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356(6336), 438–442 (2017). https://doi.org/10.1126/science.aam9321
- J.S. Gootenberg, O.O. Abudayyeh, M.J. Kellner, J. Joung, J.J. Collins et al., Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360(6387), 439–444 (2018). https://doi.org/10.1126/science.aaq0179
- J.S. Chen, E. Ma, L.B. Harrington, M. Da Costa, X. Tian et al., CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360(6387), 436–439 (2018). https://doi.org/10.1126/science.aar6245
- J. Lin, M. Feng, H. Zhang, Q. She, Characterization of a novel type III CRISPR-Cas effector provides new insights into the allosteric activation and suppression of the Cas10 DNase. Cell Discov. 6, 29 (2020). https://doi.org/10.1038/s41421-020-0160-4
- C.R. Hale, P. Zhao, S. Olson, M.O. Duff, B.R. Graveley et al., RNA-guided RNA cleavage by a CRISPR RNA-cas protein complex. Cell 139(5), 945–956 (2009). https://doi.org/10.1016/j.cell.2009.07.040
- L. You, J. Ma, J. Wang, D. Artamonova, M. Wang et al., Structure studies of the CRISPR-CSM complex reveal mechanism of co-transcriptional interference. Cell 176(1), 239-253.e216 (2019). https://doi.org/10.1016/j.cell.2018.10.052
- Z. Yu, J. Xu, Q. She, Harnessing the LdCsm RNA detection platform for efficient microRNA detection. Int. J. Mol. Sci. 24(3), 2857 (2023). https://doi.org/10.3390/ijms24032857
- M. Kazlauskiene, G. Kostiuk, Č Venclovas, G. Tamulaitis, V. Siksnys, A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357(6351), 605–609 (2017). https://doi.org/10.1126/science.aao0100
- Y. Cui, S. Fan, Z. Yuan, M. Song, J. Hu et al., Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly. Talanta 224, 121878 (2021). https://doi.org/10.1016/j.talanta.2020.121878
- R. Bruch, J. Baaske, C. Chatelle, M. Meirich, S. Madlener et al., CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv. Mater. 31(51), e1905311 (2019). https://doi.org/10.1002/adma.201905311
- Y. Dai, R.A. Somoza, L. Wang, J.F. Welter, Y. Li et al., Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew. Chem. Int. Ed. 58(48), 17399–17405 (2019). https://doi.org/10.1002/anie.201910772
- D. Zhang, Y. Yan, H. Que, T. Yang, X. Cheng et al., CRISPR/Cas12a-mediated interfacial cleaving of hairpin DNA reporter for electrochemical nucleic acid sensing. ACS Sens. 5(2), 557–562 (2020). https://doi.org/10.1021/acssensors.9b02461
- P. Fozouni, S. Son, M.D. de León Derby, G.J. Knott, C.N. Gray et al., Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 184(2), 323–333.e9 (2021). https://doi.org/10.1016/j.cell.2020.12.001
- C. Dai, Y. Liu, D. Wei, Two-dimensional field-effect transistor sensors: the road toward commercialization. Chem. Rev. 122(11), 10319–10392 (2022). https://doi.org/10.1021/acs.chemrev.1c00924
- I. Fakih, O. Durnan, F. Mahvash, I. Napal, A. Centeno et al., Selective ion sensing with high resolution large area graphene field effect transistor arrays. Nat. Commun. 11(1), 3226 (2020). https://doi.org/10.1038/s41467-020-16979-y
- Z. Wang, K. Yi, Q. Lin, L. Yang, X. Chen et al., Free radical sensors based on inner-cutting graphene field-effect transistors. Nat. Commun. 10(1), 1544 (2019). https://doi.org/10.1038/s41467-019-09573-4
- M. Sun, C. Zhang, S. Lu, S. Mahmood, J. Wang et al., Recent advances in graphene field-effect transistor toward biological detection. Adv. Funct. Mater. 34(44), 2405471 (2024). https://doi.org/10.1002/adfm.202405471
- A. Pannone, A. Raj, H. Ravichandran, S. Das, Z. Chen et al., Robust chemical analysis with graphene chemosensors and machine learning. Nature 634(8034), 572–578 (2024). https://doi.org/10.1038/s41586-024-08003-w
- H. Li, J. Yang, G. Wu, Z. Weng, Y. Song et al., Amplification-free detection of SARS-CoV-2 and respiratory syncytial virus using CRISPR Cas13a and graphene field-effect transistors. Angew. Chem. Int. Ed. 61(32), e202203826 (2022). https://doi.org/10.1002/anie.202203826
- X. Zhang, Q. Jing, S. Ao, G.F. Schneider, D. Kireev et al., Ultrasensitive field-effect biosensors enabled by the unique electronic properties of graphene. Small 16(15), e1902820 (2020). https://doi.org/10.1002/smll.201902820
- X. Zhang, T. Liu, A. Boyle, A. Bahreman, L. Bao et al., Dielectric-modulated biosensing with ultrahigh-frequency-operated graphene field-effect transistors. Adv. Mater. 34(7), e2106666 (2022). https://doi.org/10.1002/adma.202106666
- M. Sun, S. Wang, Y. Liang, C. Wang, Y. Zhang et al., Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Lett. 17(1), 34 (2024). https://doi.org/10.1007/s40820-024-01534-x
- B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang et al., Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8(3), 2632–2638 (2014). https://doi.org/10.1021/nn4063424
- J. Gao, C. Wang, C. Wang, Y. Chu, S. Wang et al., Poly-l-lysine-modified graphene field-effect transistor biosensors for ultrasensitive breast cancer miRNAs and SARS-CoV-2 RNA detection. Anal. Chem. 94(3), 1626–1636 (2022). https://doi.org/10.1021/acs.analchem.1c03786
- D. Kong, X. Wang, C. Gu, M. Guo, Y. Wang et al., Direct SARS-CoV-2 nucleic acid detection by Y-shaped DNA dual-probe transistor assay. J. Am. Chem. Soc. 143(41), 17004–17014 (2021). https://doi.org/10.1021/jacs.1c06325
- L. Wang, X. Wang, Y. Wu, M. Guo, C. Gu et al., Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 6(3), 276–285 (2022). https://doi.org/10.1038/s41551-021-00833-7
- A. Ganguli, V. Faramarzi, A. Mostafa, M.T. Hwang, S. You et al., High sensitivity graphene field effect transistor-based detection of DNA amplification. Adv. Funct. Mater. 30(28), 2001031 (2020). https://doi.org/10.1002/adfm.202001031
- I. Park, J. Lim, S. You, M.T. Hwang, J. Kwon et al., Detection of SARS-CoV-2 virus amplification using a crumpled graphene field-effect transistor biosensor. ACS Sens. 6(12), 4461–4470 (2021). https://doi.org/10.1021/acssensors.1c01937
- D.J. O’Sullivan, T.R. Klaenhammer, High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene 137(2), 227–231 (1993). https://doi.org/10.1016/0378-1119(93)90011-q
- M. Sun, Y. Zhang, S. Wang, S. Wang, L. Gao et al., Laser-induced graphene van der Waals contact-enabled high-performance 2D-materials-based field-effect transistor. Carbon 225, 119151 (2024). https://doi.org/10.1016/j.carbon.2024.119151
- S. Bai, L. Ruan, H. Chen, Y. Du, H. Deng et al., Laser-induced graphene: carbon precursors, fabrication mechanisms, material characteristics, and applications in energy storage. Chem. Eng. J. 493, 152805 (2024). https://doi.org/10.1016/j.cej.2024.152805
- J. Li, L. Tang, T. Li, K. Li, Y. Zhang et al., Tandem Cas13a/crRNA-mediated CRISPR-FET biosensor: a one-for-all check station for virus without amplification. ACS Sens. 7(9), 2680–2690 (2022). https://doi.org/10.1021/acssensors.2c01200
- E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy et al., Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 7(11), 3405–3409 (2007). https://doi.org/10.1021/nl071792z
- W. Fu, L. Jiang, E.P. van Geest, L.M. Lima, G.F. Schneider, Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29(6), 1603610 (2017). https://doi.org/10.1002/adma.201603610
- Y. Chu, J. Qiu, Y. Wang, M. Wang, Y. Zhang et al., Rapid and high-throughput SARS-CoV-2 RNA detection without RNA extraction and amplification by using a microfluidic biochip. Chemistry 28(18), e202104054 (2022). https://doi.org/10.1002/chem.202104054
- Y. Han, Y. Han, Y. Huang, C. Wang, H. Liu et al., Laser-induced graphene superhydrophobic surface transition from pinning to rolling for multiple applications. Small Methods 6(4), e2200096 (2022). https://doi.org/10.1002/smtd.202200096
- M.T. Hwang, M. Heiranian, Y. Kim, S. You, J. Leem et al., Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 11(1), 1543 (2020). https://doi.org/10.1038/s41467-020-15330-9
- D. Samanta, S.B. Ebrahimi, N. Ramani, C.A. Mirkin, Enhancing CRISPR-Cas-mediated detection of nucleic acid and non-nucleic acid targets using enzyme-labeled reporters. J. Am. Chem. Soc. 144(36), 16310–16315 (2022). https://doi.org/10.1021/jacs.2c07625
- W. Wang, H. Du, C. Dai, H. Ma, S. Luo et al., Amplification-free detection of Mycobacterium tuberculosis using CRISPR-Cas12a and graphene field-effect transistors. Nanoscale 17(8), 4603–4609 (2025). https://doi.org/10.1039/d4nr03852e
- J. Liang, P. Teng, W. Xiao, G. He, Q. Song et al., Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples. J. Nanobiotechnol. 19(1), 273 (2021). https://doi.org/10.1186/s12951-021-01021-0
- A. Nemudraia, A. Nemudryi, M. Buyukyoruk, A.M. Scherffius, T. Zahl et al., Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. Nat. Commun. 13(1), 7762 (2022). https://doi.org/10.1038/s41467-022-35445-5
- P.-F. Liu, K.-R. Zhao, Z.-J. Liu, L. Wang, S.-Y. Ye et al., Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection. Biosens. Bioelectron. 176, 112954 (2021). https://doi.org/10.1016/j.bios.2020.112954
- K.-R. Zhao, L. Wang, P.-F. Liu, X.-M. Hang, H.-Y. Wang et al., A signal-switchable electrochemiluminescence biosensor based on the integration of spherical nucleic acid and CRISPR/Cas12a for multiplex detection of HIV/HPV DNAs. Sens. Actuat. B Chem. 346, 130485 (2021). https://doi.org/10.1016/j.snb.2021.130485
- Y. Xu, C. Wang, G. Liu, X. Zhao, Q. Qian et al., Tetrahedral DNA framework based CRISPR electrochemical biosensor for amplification-free miRNA detection. Biosens. Bioelectron. 217, 114671 (2022). https://doi.org/10.1016/j.bios.2022.114671
- J. Wang, J. Wu, Role of miR-155 in breast cancer. Front Biosci 17(6), 2350–2355 (2012). https://doi.org/10.2741/4056
- M.F. Czyzyk-Krzeska, X. Zhang, miR-155 at the heart of oncogenic pathways. Oncogene 33(6), 677–678 (2014). https://doi.org/10.1038/onc.2013.26
- J. Lin, Y. Shen, J. Ni, Q. She, A type III-a CRISPR-Cas system mediates co-transcriptional DNA cleavage at the transcriptional bubbles in close proximity to active effectors. Nucleic Acids Res. 49(13), 7628–7643 (2021). https://doi.org/10.1093/nar/gkab590
- K. Johnson, B.A. Learn, M.A. Estrella, S. Bailey, Target sequence requirements of a type III-B CRISPR-Cas immune system. J. Biol. Chem. 294(26), 10290–10299 (2019). https://doi.org/10.1074/jbc.RA119.008728
- S. Pan, Q. Li, L. Deng, S. Jiang, X. Jin et al., A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system. RNA Biol. 16(9), 1166–1178 (2019). https://doi.org/10.1080/15476286.2019.1618693
- X. Liu, Y. Wang, Y. Du, J. Zhang, Y. Wang et al., Laser-induced graphene (LIG)-based electrochemical microfluidic chip for simultaneous analysis of multiplex microRNAs. Chem. Eng. J. 486, 150233 (2024). https://doi.org/10.1016/j.cej.2024.150233
- K. Li, J. Wang, Y. Xie, Z. Lu, W. Sun et al., Reactive oxygen species/glutathione dual sensitive nanops with encapsulation of miR155 and curcumin for synergized cancer immunotherapy. J. Nanobiotechnol. 22(1), 400 (2024). https://doi.org/10.1186/s12951-024-02575-5
- I. Novodchuk, M. Bajcsy, M. Yavuz, Graphene-based field effect transistor biosensors for breast cancer detection: a review on biosensing strategies. Carbon 172, 431–453 (2021). https://doi.org/10.1016/j.carbon.2020.10.048
- J.A. Steens, Y. Zhu, D.W. Taylor, J.P.K. Bravo, S.H.P. Prinsen et al., SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation. Nat. Commun. 12, 5033 (2021). https://doi.org/10.1038/s41467-021-25337-5
- A. Santiago-Frangos, L.N. Hall, A. Nemudraia, A. Nemudryi, P. Krishna et al., Intrinsic signal amplification by type III CRISPR-Cas systems provides a sequence-specific SARS-CoV-2 diagnostic. Cell Rep. Med. 2(6), 100319 (2021). https://doi.org/10.1016/j.xcrm.2021.100319
- S. Grüschow, C.S. Adamson, M.F. White, Specificity and sensitivity of an RNA targeting type III CRISPR complex coupled with a NucC endonuclease effector. Nucleic Acids Res. 49(22), 13122–13134 (2021). https://doi.org/10.1093/nar/gkab1190
References
A. Suea-Ngam, L. Bezinge, B. Mateescu, P.D. Howes, A.J. DeMello et al., Enzyme-assisted nucleic acid detection for infectious disease diagnostics: moving toward the point-of-care. ACS Sens. 5(9), 2701–2723 (2020). https://doi.org/10.1021/acssensors.0c01488
H. Shibata, D. Nakajima, R. Konno, A. Hijikata, M. Higashiguchi et al., A non-targeted proteomics newborn screening platform for inborn errors of immunity. J. Clin. Immunol. 45(1), 33 (2024). https://doi.org/10.1007/s10875-024-01821-7
D. Sidransky, Nucleic acid-based methods for the detection of cancer. Science 278(5340), 1054–1059 (1997). https://doi.org/10.1126/science.278.5340.1054
L. Zhang, B. Ding, Q. Chen, Q. Feng, L. Lin et al., Point-of-care-testing of nucleic acids by microfluidics. Trac Trends Anal. Chem. 94, 106–116 (2017). https://doi.org/10.1016/j.trac.2017.07.013
J.S. Park, T. Pisanic, Y. Zhang, T.H. Wang, Ligation-enabled fluorescence-coding PCR for high-dimensional fluorescence-based nucleic acid detection. Anal. Chem. 93(4), 2351–2358 (2021). https://doi.org/10.1021/acs.analchem.0c04221
K. Jiang, J. Wu, J.-E. Kim, S. An, J.-M. Nam et al., Plasmonic cross-linking colorimetric PCR for simple and sensitive nucleic acid detection. Nano Lett. 23(9), 3897–3903 (2023). https://doi.org/10.1021/acs.nanolett.3c00533
H. Wu, X. Cao, Y. Meng, D. Richards, J. Wu et al., DropCRISPR: a LAMP-Cas12a based digital method for ultrasensitive detection of nucleic acid. Biosens. Bioelectron. 211, 114377 (2022). https://doi.org/10.1016/j.bios.2022.114377
F.-T. Wang, Y.-Y. Hou, X. Tan, K.-J. Huang, J. Xu et al., Real-time multiple signal amplification self-powered biosensing platform for ultrasensitive detection of microRNA. Biosens. Bioelectron. 222, 114933 (2023). https://doi.org/10.1016/j.bios.2022.114933
D. Tang, J. Shi, Y. Wu, H. Luo, J. Yan et al., Flexible self-powered sensing system based on novel DNA circuit strategy and graphdiyne for thalassemia gene by rapid naked-eye tracking and open-circuit voltage. Anal. Chem. 95(44), 16374–16382 (2023). https://doi.org/10.1021/acs.analchem.3c03841
Y.-Y. Hou, J. Xu, F.-T. Wang, Z. Dong, X. Tan et al., Construction of an integrated device of a self-powered biosensor and matching capacitor based on graphdiyne and multiple signal amplification: ultrasensitive method for microRNA detection. Anal. Chem. 93(46), 15225–15230 (2021). https://doi.org/10.1021/acs.analchem.1c03521
J. Shi, S. Liu, P. Li, Y. Lin, H. Luo et al., Self-powered dual-mode sensing strategy based on graphdiyne and DNA nanoring for sensitive detection of tumor biomarker. Biosens. Bioelectron. 237, 115557 (2023). https://doi.org/10.1016/j.bios.2023.115557
M. Li, Z. Liu, Y. Liu, H. Luo, K.-J. Huang et al., Capacitor-parallel-amplified decoupled photoelectrochemical/electrochromic dual-mode bioassay for sensitive detection of microRNA with high reliability. Biosens. Bioelectron. 232, 115310 (2023). https://doi.org/10.1016/j.bios.2023.115310
M. Sun, S. Wang, Y. Zhang, Z. Zhang, S. Wang et al., An ultrasensitive flexible biosensor enabled by high-performance graphene field-effect transistors with defect-free van der Waals contacts for breast cancer miRNA fast detection. Talanta 287, 127637 (2025). https://doi.org/10.1016/j.talanta.2025.127637
Q. Xu, F. Ma, S.-Q. Huang, B. Tang, C.-Y. Zhang, Nucleic acid amplification-free bioluminescent detection of microRNAs with high sensitivity and accuracy based on controlled target degradation. Anal. Chem. 89(13), 7077–7083 (2017). https://doi.org/10.1021/acs.analchem.7b00892
B. Cai, L. Huang, H. Zhang, Z. Sun, Z. Zhang et al., Gold nanops-decorated graphene field-effect transistor biosensor for femtomolar microRNA detection. Biosens. Bioelectron. 74, 329–334 (2015). https://doi.org/10.1016/j.bios.2015.06.068
M.M. Kaminski, O.O. Abudayyeh, J.S. Gootenberg, F. Zhang, J.J. Collins, CRISPR-based diagnostics. Nat. Biomed. Eng. 5(7), 643–656 (2021). https://doi.org/10.1038/s41551-021-00760-7
Y. Tang, L. Gao, W. Feng, C. Guo, Q. Yang et al., The CRISPR-Cas toolbox for analytical and diagnostic assay development. Chem. Soc. Rev. 50(21), 11844–11869 (2021). https://doi.org/10.1039/d1cs00098e
M. Karlikow, E. Amalfitano, X. Yang, J. Doucet, A. Chapman et al., CRISPR-induced DNA reorganization for multiplexed nucleic acid detection. Nat. Commun. 14(1), 1505 (2023). https://doi.org/10.1038/s41467-023-36874-6
S. Mantena, P.P. Pillai, B.A. Petros, N.L. Welch, C. Myhrvold et al., Model-directed generation of artificial CRISPR-Cas13a guide RNA sequences improves nucleic acid detection. Nat. Biotechnol. (2024). https://doi.org/10.1038/s41587-024-02422-w
C. Jiao, S. Sharma, G. Dugar, N.L. Peeck, T. Bischler et al., Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science 372(6545), 941–948 (2021). https://doi.org/10.1126/science.abe7106
R. Hajian, S. Balderston, T. Tran, T. DeBoer, J. Etienne et al., Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 3(6), 427–437 (2019). https://doi.org/10.1038/s41551-019-0371-x
J.S. Gootenberg, O.O. Abudayyeh, J.W. Lee, P. Essletzbichler, A.J. Dy et al., Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356(6336), 438–442 (2017). https://doi.org/10.1126/science.aam9321
J.S. Gootenberg, O.O. Abudayyeh, M.J. Kellner, J. Joung, J.J. Collins et al., Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360(6387), 439–444 (2018). https://doi.org/10.1126/science.aaq0179
J.S. Chen, E. Ma, L.B. Harrington, M. Da Costa, X. Tian et al., CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360(6387), 436–439 (2018). https://doi.org/10.1126/science.aar6245
J. Lin, M. Feng, H. Zhang, Q. She, Characterization of a novel type III CRISPR-Cas effector provides new insights into the allosteric activation and suppression of the Cas10 DNase. Cell Discov. 6, 29 (2020). https://doi.org/10.1038/s41421-020-0160-4
C.R. Hale, P. Zhao, S. Olson, M.O. Duff, B.R. Graveley et al., RNA-guided RNA cleavage by a CRISPR RNA-cas protein complex. Cell 139(5), 945–956 (2009). https://doi.org/10.1016/j.cell.2009.07.040
L. You, J. Ma, J. Wang, D. Artamonova, M. Wang et al., Structure studies of the CRISPR-CSM complex reveal mechanism of co-transcriptional interference. Cell 176(1), 239-253.e216 (2019). https://doi.org/10.1016/j.cell.2018.10.052
Z. Yu, J. Xu, Q. She, Harnessing the LdCsm RNA detection platform for efficient microRNA detection. Int. J. Mol. Sci. 24(3), 2857 (2023). https://doi.org/10.3390/ijms24032857
M. Kazlauskiene, G. Kostiuk, Č Venclovas, G. Tamulaitis, V. Siksnys, A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357(6351), 605–609 (2017). https://doi.org/10.1126/science.aao0100
Y. Cui, S. Fan, Z. Yuan, M. Song, J. Hu et al., Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly. Talanta 224, 121878 (2021). https://doi.org/10.1016/j.talanta.2020.121878
R. Bruch, J. Baaske, C. Chatelle, M. Meirich, S. Madlener et al., CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv. Mater. 31(51), e1905311 (2019). https://doi.org/10.1002/adma.201905311
Y. Dai, R.A. Somoza, L. Wang, J.F. Welter, Y. Li et al., Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew. Chem. Int. Ed. 58(48), 17399–17405 (2019). https://doi.org/10.1002/anie.201910772
D. Zhang, Y. Yan, H. Que, T. Yang, X. Cheng et al., CRISPR/Cas12a-mediated interfacial cleaving of hairpin DNA reporter for electrochemical nucleic acid sensing. ACS Sens. 5(2), 557–562 (2020). https://doi.org/10.1021/acssensors.9b02461
P. Fozouni, S. Son, M.D. de León Derby, G.J. Knott, C.N. Gray et al., Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 184(2), 323–333.e9 (2021). https://doi.org/10.1016/j.cell.2020.12.001
C. Dai, Y. Liu, D. Wei, Two-dimensional field-effect transistor sensors: the road toward commercialization. Chem. Rev. 122(11), 10319–10392 (2022). https://doi.org/10.1021/acs.chemrev.1c00924
I. Fakih, O. Durnan, F. Mahvash, I. Napal, A. Centeno et al., Selective ion sensing with high resolution large area graphene field effect transistor arrays. Nat. Commun. 11(1), 3226 (2020). https://doi.org/10.1038/s41467-020-16979-y
Z. Wang, K. Yi, Q. Lin, L. Yang, X. Chen et al., Free radical sensors based on inner-cutting graphene field-effect transistors. Nat. Commun. 10(1), 1544 (2019). https://doi.org/10.1038/s41467-019-09573-4
M. Sun, C. Zhang, S. Lu, S. Mahmood, J. Wang et al., Recent advances in graphene field-effect transistor toward biological detection. Adv. Funct. Mater. 34(44), 2405471 (2024). https://doi.org/10.1002/adfm.202405471
A. Pannone, A. Raj, H. Ravichandran, S. Das, Z. Chen et al., Robust chemical analysis with graphene chemosensors and machine learning. Nature 634(8034), 572–578 (2024). https://doi.org/10.1038/s41586-024-08003-w
H. Li, J. Yang, G. Wu, Z. Weng, Y. Song et al., Amplification-free detection of SARS-CoV-2 and respiratory syncytial virus using CRISPR Cas13a and graphene field-effect transistors. Angew. Chem. Int. Ed. 61(32), e202203826 (2022). https://doi.org/10.1002/anie.202203826
X. Zhang, Q. Jing, S. Ao, G.F. Schneider, D. Kireev et al., Ultrasensitive field-effect biosensors enabled by the unique electronic properties of graphene. Small 16(15), e1902820 (2020). https://doi.org/10.1002/smll.201902820
X. Zhang, T. Liu, A. Boyle, A. Bahreman, L. Bao et al., Dielectric-modulated biosensing with ultrahigh-frequency-operated graphene field-effect transistors. Adv. Mater. 34(7), e2106666 (2022). https://doi.org/10.1002/adma.202106666
M. Sun, S. Wang, Y. Liang, C. Wang, Y. Zhang et al., Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Lett. 17(1), 34 (2024). https://doi.org/10.1007/s40820-024-01534-x
B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang et al., Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8(3), 2632–2638 (2014). https://doi.org/10.1021/nn4063424
J. Gao, C. Wang, C. Wang, Y. Chu, S. Wang et al., Poly-l-lysine-modified graphene field-effect transistor biosensors for ultrasensitive breast cancer miRNAs and SARS-CoV-2 RNA detection. Anal. Chem. 94(3), 1626–1636 (2022). https://doi.org/10.1021/acs.analchem.1c03786
D. Kong, X. Wang, C. Gu, M. Guo, Y. Wang et al., Direct SARS-CoV-2 nucleic acid detection by Y-shaped DNA dual-probe transistor assay. J. Am. Chem. Soc. 143(41), 17004–17014 (2021). https://doi.org/10.1021/jacs.1c06325
L. Wang, X. Wang, Y. Wu, M. Guo, C. Gu et al., Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 6(3), 276–285 (2022). https://doi.org/10.1038/s41551-021-00833-7
A. Ganguli, V. Faramarzi, A. Mostafa, M.T. Hwang, S. You et al., High sensitivity graphene field effect transistor-based detection of DNA amplification. Adv. Funct. Mater. 30(28), 2001031 (2020). https://doi.org/10.1002/adfm.202001031
I. Park, J. Lim, S. You, M.T. Hwang, J. Kwon et al., Detection of SARS-CoV-2 virus amplification using a crumpled graphene field-effect transistor biosensor. ACS Sens. 6(12), 4461–4470 (2021). https://doi.org/10.1021/acssensors.1c01937
D.J. O’Sullivan, T.R. Klaenhammer, High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene 137(2), 227–231 (1993). https://doi.org/10.1016/0378-1119(93)90011-q
M. Sun, Y. Zhang, S. Wang, S. Wang, L. Gao et al., Laser-induced graphene van der Waals contact-enabled high-performance 2D-materials-based field-effect transistor. Carbon 225, 119151 (2024). https://doi.org/10.1016/j.carbon.2024.119151
S. Bai, L. Ruan, H. Chen, Y. Du, H. Deng et al., Laser-induced graphene: carbon precursors, fabrication mechanisms, material characteristics, and applications in energy storage. Chem. Eng. J. 493, 152805 (2024). https://doi.org/10.1016/j.cej.2024.152805
J. Li, L. Tang, T. Li, K. Li, Y. Zhang et al., Tandem Cas13a/crRNA-mediated CRISPR-FET biosensor: a one-for-all check station for virus without amplification. ACS Sens. 7(9), 2680–2690 (2022). https://doi.org/10.1021/acssensors.2c01200
E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy et al., Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 7(11), 3405–3409 (2007). https://doi.org/10.1021/nl071792z
W. Fu, L. Jiang, E.P. van Geest, L.M. Lima, G.F. Schneider, Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29(6), 1603610 (2017). https://doi.org/10.1002/adma.201603610
Y. Chu, J. Qiu, Y. Wang, M. Wang, Y. Zhang et al., Rapid and high-throughput SARS-CoV-2 RNA detection without RNA extraction and amplification by using a microfluidic biochip. Chemistry 28(18), e202104054 (2022). https://doi.org/10.1002/chem.202104054
Y. Han, Y. Han, Y. Huang, C. Wang, H. Liu et al., Laser-induced graphene superhydrophobic surface transition from pinning to rolling for multiple applications. Small Methods 6(4), e2200096 (2022). https://doi.org/10.1002/smtd.202200096
M.T. Hwang, M. Heiranian, Y. Kim, S. You, J. Leem et al., Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 11(1), 1543 (2020). https://doi.org/10.1038/s41467-020-15330-9
D. Samanta, S.B. Ebrahimi, N. Ramani, C.A. Mirkin, Enhancing CRISPR-Cas-mediated detection of nucleic acid and non-nucleic acid targets using enzyme-labeled reporters. J. Am. Chem. Soc. 144(36), 16310–16315 (2022). https://doi.org/10.1021/jacs.2c07625
W. Wang, H. Du, C. Dai, H. Ma, S. Luo et al., Amplification-free detection of Mycobacterium tuberculosis using CRISPR-Cas12a and graphene field-effect transistors. Nanoscale 17(8), 4603–4609 (2025). https://doi.org/10.1039/d4nr03852e
J. Liang, P. Teng, W. Xiao, G. He, Q. Song et al., Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples. J. Nanobiotechnol. 19(1), 273 (2021). https://doi.org/10.1186/s12951-021-01021-0
A. Nemudraia, A. Nemudryi, M. Buyukyoruk, A.M. Scherffius, T. Zahl et al., Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. Nat. Commun. 13(1), 7762 (2022). https://doi.org/10.1038/s41467-022-35445-5
P.-F. Liu, K.-R. Zhao, Z.-J. Liu, L. Wang, S.-Y. Ye et al., Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection. Biosens. Bioelectron. 176, 112954 (2021). https://doi.org/10.1016/j.bios.2020.112954
K.-R. Zhao, L. Wang, P.-F. Liu, X.-M. Hang, H.-Y. Wang et al., A signal-switchable electrochemiluminescence biosensor based on the integration of spherical nucleic acid and CRISPR/Cas12a for multiplex detection of HIV/HPV DNAs. Sens. Actuat. B Chem. 346, 130485 (2021). https://doi.org/10.1016/j.snb.2021.130485
Y. Xu, C. Wang, G. Liu, X. Zhao, Q. Qian et al., Tetrahedral DNA framework based CRISPR electrochemical biosensor for amplification-free miRNA detection. Biosens. Bioelectron. 217, 114671 (2022). https://doi.org/10.1016/j.bios.2022.114671
J. Wang, J. Wu, Role of miR-155 in breast cancer. Front Biosci 17(6), 2350–2355 (2012). https://doi.org/10.2741/4056
M.F. Czyzyk-Krzeska, X. Zhang, miR-155 at the heart of oncogenic pathways. Oncogene 33(6), 677–678 (2014). https://doi.org/10.1038/onc.2013.26
J. Lin, Y. Shen, J. Ni, Q. She, A type III-a CRISPR-Cas system mediates co-transcriptional DNA cleavage at the transcriptional bubbles in close proximity to active effectors. Nucleic Acids Res. 49(13), 7628–7643 (2021). https://doi.org/10.1093/nar/gkab590
K. Johnson, B.A. Learn, M.A. Estrella, S. Bailey, Target sequence requirements of a type III-B CRISPR-Cas immune system. J. Biol. Chem. 294(26), 10290–10299 (2019). https://doi.org/10.1074/jbc.RA119.008728
S. Pan, Q. Li, L. Deng, S. Jiang, X. Jin et al., A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system. RNA Biol. 16(9), 1166–1178 (2019). https://doi.org/10.1080/15476286.2019.1618693
X. Liu, Y. Wang, Y. Du, J. Zhang, Y. Wang et al., Laser-induced graphene (LIG)-based electrochemical microfluidic chip for simultaneous analysis of multiplex microRNAs. Chem. Eng. J. 486, 150233 (2024). https://doi.org/10.1016/j.cej.2024.150233
K. Li, J. Wang, Y. Xie, Z. Lu, W. Sun et al., Reactive oxygen species/glutathione dual sensitive nanops with encapsulation of miR155 and curcumin for synergized cancer immunotherapy. J. Nanobiotechnol. 22(1), 400 (2024). https://doi.org/10.1186/s12951-024-02575-5
I. Novodchuk, M. Bajcsy, M. Yavuz, Graphene-based field effect transistor biosensors for breast cancer detection: a review on biosensing strategies. Carbon 172, 431–453 (2021). https://doi.org/10.1016/j.carbon.2020.10.048
J.A. Steens, Y. Zhu, D.W. Taylor, J.P.K. Bravo, S.H.P. Prinsen et al., SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation. Nat. Commun. 12, 5033 (2021). https://doi.org/10.1038/s41467-021-25337-5
A. Santiago-Frangos, L.N. Hall, A. Nemudraia, A. Nemudryi, P. Krishna et al., Intrinsic signal amplification by type III CRISPR-Cas systems provides a sequence-specific SARS-CoV-2 diagnostic. Cell Rep. Med. 2(6), 100319 (2021). https://doi.org/10.1016/j.xcrm.2021.100319
S. Grüschow, C.S. Adamson, M.F. White, Specificity and sensitivity of an RNA targeting type III CRISPR complex coupled with a NucC endonuclease effector. Nucleic Acids Res. 49(22), 13122–13134 (2021). https://doi.org/10.1093/nar/gkab1190