Three-dimensional Patterning Super-Black Silica-Based Nanocomposite Aerogels
Corresponding Author: Shanyu Zhao
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 36
Abstract
Aerogels are ultra-lightweight, porous materials defined by a complex network of interconnected pores and nanostructures, which effectively suppress heat transfer, making them exceptional for thermal insulation. Furthermore, their porous architecture can trap and scatter light via multiple internal reflections, extending the optical path within the material. When combined with suitable light-absorbing materials, this feature significantly enhances light absorption (darkness). To validate this concept, mesoporous silica aerogel particles were incorporated into a resorcinol–formaldehyde (RF) sol, and the silica-to-RF ratio was optimized to achieve uniform carbon compound coatings on the silica pore walls. Notably, increasing silica loading raised the sol viscosity, enabling formulations ideal for direct ink writing processes with excellent shape fidelity for super-black topographical designs. The printed silica–RF green bodies exhibited remarkable mechanical strength and ultra-low thermal conductivity (15.8 mW m–1 K–1) prior to pyrolysis. Following pyrolysis, the composites maintained structural integrity and printed microcellular geometries while achieving super-black coloration (abs. 99.56% in the 280–2500 nm range) and high photothermal conversion efficiency (94.2%). Additionally, these silica–carbon aerogel microcellulars demonstrated stable electrical conductivity and low electrochemical impedance. The synergistic combination of 3D printability and super-black photothermal features makes these composites highly versatile for multifunctional applications, including on-demand thermal management, and efficient solar-driven water production.
Highlights:
1 The 3D printed aerogel has an ultra-low thermal conductivity (15.8 mW m–1 K–1), make it an ideal insulation material in extreme environment (The surface temperature of a 1 cm thickness green body maintained at ≈60 °C after being placed at 300 °C for 30 min).
2 The super-black silica-carbon aerogel exhibits surprising light absorption feature (as high as 99.56%), and shows rapid evaporation rate (2.25 kg m-2 h-1) and excellent energy conversion efficiency (94.2%).
3 The combination of super-black and super-insulation features, offering immense potential for multifunctional, high-performance applications across thermal and optical domains.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.L. Davis, H.F. Nijhout, S. Johnsen, Diverse nanostructures underlie thin ultra-black scales in butterflies. Nat. Commun. 11(1), 1294 (2020). https://doi.org/10.1038/s41467-020-15033-1
- B.C. Murray, J.A. Westphal, Infrared astronomy. Sci. Am. 213(2), 20–29 (1965). https://doi.org/10.1038/scientificamerican0865-20
- X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett 16(1), 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
- H. Wang, C. Zhang, B. Zhou, Z. Zhang, J. Shen et al., Ultra-black carbon@silica core-shell aerogels with controllable electrical conductivities. Adv. Compos. Hybrid Mater. 2(4), 743–752 (2019). https://doi.org/10.1007/s42114-019-00123-6
- C. Liu, S. Wang, N. Wang, J. Yu, Y.-T. Liu et al., From 1D nanofibers to 3D nanofibrous aerogels: a marvellous evolution of electrospun SiO2 nanofibers for emerging applications. Nano-Micro Lett. 14(1), 194 (2022). https://doi.org/10.1007/s40820-022-00937-y
- J. Lin, Y. Peng, J. Luo, Z. Xiong, J. Huang et al., One-click to 3D: helical carbon nanotube-mediated MXene hierarchical aerogel with layer spacing engineering for broadband electromagnetic wave absorption. Small Methods 9(5), 2401665 (2025). https://doi.org/10.1002/smtd.202401665
- C. Li, G. Zhang, L. Lin, T. Wu, S. Brunner et al., Silica aerogels: from materials research to industrial applications. Int. Mater. Rev. 68(7), 862–900 (2023). https://doi.org/10.1080/09506608.2023.2167547
- B. Xu, M. Ganesan, R.K. Devi, X. Ruan, W. Chen et al., Hierarchically promoted light harvesting and management in photothermal solar steam generation. Adv. Mater. 37(5), 2406666 (2025). https://doi.org/10.1002/adma.202406666
- D. Wang, T. Ping, Z. Du, X. Liu, Y. Zhang, Lessons from nature: advances and perspectives in bionic microwave absorption materials. Nano-Micro Lett 17(1), 100 (2024). https://doi.org/10.1007/s40820-024-01591-2
- L. Song, F. Zhang, Y. Chen, L. Guan, Y. Zhu et al., Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 14(1), 152 (2022). https://doi.org/10.1007/s40820-022-00905-6
- Y. Wu, C. An, Y. Guo, Y. Zong, N. Jiang et al., Highly aligned graphene aerogels for multifunctional composites. Nano-Micro Lett 16(1), 118 (2024). https://doi.org/10.1007/s40820-024-01357-w
- M. Zhu, G. Li, W. Gong, L. Yan, X. Zhang, Calcium-doped boron nitride aerogel enables infrared stealth at high temperature up to 1300 °C. Nano-Micro Lett. 14(1), 18 (2021). https://doi.org/10.1007/s40820-021-00754-9
- Z. Feng, C. Liu, X. Li, G. Luo, N. Zhai et al., Designing electronic structures of multiscale helical converters for tailored ultrabroad electromagnetic absorption. Nano-Micro Lett. 17(1), 20 (2024). https://doi.org/10.1007/s40820-024-01513-2
- N. Li, K. Shao, J. He, S. Wang, S. Li et al., Solar-powered interfacial evaporation and deicing based on a 3D-printed multiscale hierarchical design. Small 19(33), 2301474 (2023). https://doi.org/10.1002/smll.202301474
- J. Sun, T. Wu, H. Wu, W. Li, L. Li et al., Aerogel-based solar-powered water production from atmosphere and ocean: a review. Mater. Sci. Eng. R. Rep. 154, 100735 (2023). https://doi.org/10.1016/j.mser.2023.100735
- P. Vukusic, J.R. Sambles, C.R. Lawrence, Structurally assisted blackness in butterfly scales. Proc. R. Soc. Lond. B 271(suppl_4), S237–S239 (2004). https://doi.org/10.1098/rsbl.2003.0150
- D.E. McCoy, T. Feo, T.A. Harvey, R.O. Prum, Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9(1), 1 (2018). https://doi.org/10.1038/s41467-017-02088-w
- X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269
- R. Koshani, M.L. Pitcher, J. Yu, C.L. Mahajan, S.H. Kim et al., Plant cell wall-like soft materials: micro- and nanoengineering, properties, and applications. Nano-Micro Lett 17(1), 103 (2025). https://doi.org/10.1007/s40820-024-01569-0
- K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia et al., 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17(1), 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
- R. Civioc, W.J. Malfait, M. Lattuada, M.M. Koebel, S. Galmarini, Silica-resorcinol-melamine-formaldehyde composite aerogels as high-performance thermal insulators. ACS Omega 7(17), 14478–14489 (2022). https://doi.org/10.1021/acsomega.1c04462
- R. Civioc, Silica-resorcinol-melamine formaldehyde composite aerogels and their pyrolyzed silica-carbon counterparts. University of Fribourg, May, 2024.
- S. Zhao, G. Siqueira, S. Drdova, D. Norris, C. Ubert et al., Additive manufacturing of silica aerogels. Nature 584(7821), 387–392 (2020). https://doi.org/10.1038/s41586-020-2594-0
- J.M. Kronenfeld, L. Rother, M.A. Saccone, M.T. Dulay, J.M. DeSimone, Roll-to-roll, high-resolution 3D printing of shape-specific ps. Nature 627(8003), 306–312 (2024). https://doi.org/10.1038/s41586-024-07061-4
- H. Chen, T. Ran, Y. Gan, J. Zhou, Y. Zhang et al., Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 17(10), 935–942 (2018). https://doi.org/10.1038/s41563-018-0171-9
- G.M. Pajonk, E. Elaloui, P. Achard, B. Chevalier, J.-L. Chevalier et al., Physical properties of silica gels and aerogels prepared with new polymeric precursors. J. Non Cryst. Solids 186, 1–8 (1995). https://doi.org/10.1016/0022-3093(95)00210-3
- T. Stahl, S. Brunner, M. Zimmermann, K. Ghazi Wakili, Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications. Energy Build 44, 114–117 (2012). https://doi.org/10.1016/j.enbuild.2011.09.041
- X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14(1), 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
- A. Mahdavi-Shakib, T.N. Whittaker, T.Y. Yun, K.B.S. Kumar, L.C. Rich et al., The role of surface hydroxyls in the entropy-driven adsorption and spillover of H2 on Au/TiO2 catalysts. Nat. Catal. 6(8), 710–719 (2023). https://doi.org/10.1038/s41929-023-00996-3
- M. Tang, Z. Zhong, C. Ke, Advanced supramolecular design for direct ink writing of soft materials. Chem. Soc. Rev. 52(5), 1614–1649 (2023). https://doi.org/10.1039/d2cs01011a
- H. Yuk, X. Zhao, A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv. Mater. 30(6), 1704028 (2018). https://doi.org/10.1002/adma.201704028
- J. Jiang, H. Oguzlu, F. Jiang, 3D printing of lightweight, super-strong yet flexible all-cellulose structure. Chem. Eng. J. 405, 126668 (2021). https://doi.org/10.1016/j.cej.2020.126668
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15(1), 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- R. Ueoka, Y. Hara, A. Maeno, H. Kaji, K. Nakanishi et al., Unusual flexibility of transparent poly(methylsilsesquioxane) aerogels by surfactant-induced mesoscopic fiber-like assembly. Nat. Commun. 15(1), 461 (2024). https://doi.org/10.1038/s41467-024-44713-5
- D. Sivaraman, S. Zhao, S. Iswar, M. Lattuada, W.J. Malfait, Aerogel spring-back correlates with strain recovery: effect of silica concentration and aging. Adv. Eng. Mater. 23(10), 2100376 (2021). https://doi.org/10.1002/adem.202100376
- L. Huber, S.B. Hauser, C.J. Ubert, M. Rees, B. Fischer et al., Surfactant-free, flexible polymethylsilsesquioxane foams. J. Non Cryst. Solids 597, 121887 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121887
- D. Sivaraman, Y. Nagel, G. Siqueira, P. Chansoria, J. Avaro et al., Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties. Adv. Sci. 11(24), 2307921 (2024). https://doi.org/10.1002/advs.202307921
- D. Sivaraman, G. Siqueira, A.K. Maurya, S. Zhao, M.M. Koebel et al., Superinsulating nanocellulose aerogels: effect of density and nanofiber alignment. Carbohydr. Polym. 292, 119675 (2022). https://doi.org/10.1016/j.carbpol.2022.119675
- A. Tripathi, B. Tardy, S.A. Khan, F. Liebner, O.J. Rojas, Expanding the upper limits of robustness of cellulose nanocrystal aerogels: outstanding mechanical performance and associated pore compression response of chiral-nematic architectures. J. Mater. Chem. A 7(25), 15309–15319 (2019). https://doi.org/10.1039/C9TA03950C
- N. Guerrero-Alburquerque, S. Zhao, N. Adilien, M.M. Koebel, M. Lattuada et al., Strong, machinable, and insulating chitosan-urea aerogels: toward ambient pressure drying of biopolymer aerogel monoliths. ACS Appl. Mater. Interfaces 12(19), 22037–22049 (2020). https://doi.org/10.1021/acsami.0c03047
- L. Lentz, D.A. Mayer, M. Dogenski, S.R.S. Ferreira, Hybrid aerogels of sodium alginate/graphene oxide as efficient adsorbents for wastewater treatment. Mater. Chem. Phys. 283, 125981 (2022). https://doi.org/10.1016/j.matchemphys.2022.125981
- H. Akhlaghi, E. Roohi, S. Stefanov, A comprehensive review on micro- and nano-scale gas flow effects: slip-jump phenomena, Knudsen paradox, thermally-driven flows, and Knudsen pumps. Phys. Rep. 997, 1–60 (2023). https://doi.org/10.1016/j.physrep.2022.10.004
- Z. Zhao, Y. Cui, Y. Kong, J. Ren, X. Jiang et al., Thermal and mechanical performances of the superflexible, hydrophobic, silica-based aerogel for thermal insulation at ultralow temperature. ACS Appl. Mater. Interfaces 13(18), 21286–21298 (2021). https://doi.org/10.1021/acsami.1c02910
- H. Ni, D. Lu, L. Zhuang, P. Guo, L. Xu et al., Tailoring mechanical properties of a ceramic nanowire aerogel with pyrolytic carbon for in situ resilience at 1400 °C. ACS Nano 18(24), 15950–15957 (2024). https://doi.org/10.1021/acsnano.4c03816
- G. Shao, R. Xu, Y. Chen, G. Yu, X. Wu et al., Miniaturized hard carbon nanofiber aerogels: from multiscale electromagnetic response manipulation to integrated multifunctional absorbers. Adv. Funct. Mater. 34(48), 2408252 (2024). https://doi.org/10.1002/adfm.202408252
- P. Hu, X. Hu, L. Liu, M. Li, Z. Zhao et al., Dimensional upgrading of 0D silica nanospheres to 3D networking toward robust aerogels for fire resistance and low-carbon applications. Mater. Sci. Eng. R. Rep. 161, 100842 (2024). https://doi.org/10.1016/j.mser.2024.100842
- X. Wang, Y. Wang, Z. Zhang, Z. Zhao, T. Liu et al., Strong and ultrahigh temperature-resistant metal oxide nanobelt aerogels. Adv. Funct. Mater. 35(5), 2414592 (2025). https://doi.org/10.1002/adfm.202414592
- J. Luo, L. Wu, J. Yan, X. Lv, Y. Luo et al., Radar-stealth and thermal-insulating MOF-derived cellulose-carbon aerogels for broadband electromagnetic wave absorption. Chin. Chem. Lett. 36(7), 111065 (2025). https://doi.org/10.1016/j.cclet.2025.111065
- S. Lin, J. Lin, Z. Xiong, X. He, X. Li et al., Micro-helical Ni3Fe chain encapsulated in ultralight MXene/C aerogel to realize multi-functionality: radar stealth, thermal insulation, fire resistance, and mechanical properties. Chem. Eng. J. 492, 152248 (2024). https://doi.org/10.1016/j.cej.2024.152248
- J. Wang, D. Yuan, P. Hu, Y. Wang, J. Wang et al., Optical design of silica aerogels for on-demand thermal management. Adv. Funct. Mater. 33(32), 2300441 (2023). https://doi.org/10.1002/adfm.202300441
- B. Zhao, X. Shi, S. Khakalo, Y. Meng, A. Miettinen et al., Wood-based superblack. Nat. Commun. 14, 7875 (2023). https://doi.org/10.1038/s41467-023-43594-4
- W. Sun, A. Du, Y. Feng, J. Shen, S. Huang et al., Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 10(10), 9123–9128 (2016). https://doi.org/10.1021/acsnano.6b02039
- F. Xu, Y. Wang, F. Tang, X. Dai, Z. Zhao et al., Synergistic enhancement of structure and function in carbonaceous SiC aerogels for improved microwave absorption. Carbon 233, 119854 (2025). https://doi.org/10.1016/j.carbon.2024.119854
- S. Wang, X. Zhang, S. Hao, J. Qiao, Z. Wang et al., Nitrogen-doped magnetic-dielectric-carbon aerogel for high-efficiency electromagnetic wave absorption. Nano-Micro Lett. 16(1), 16 (2023). https://doi.org/10.1007/s40820-023-01244-w
- W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13(1), 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
References
A.L. Davis, H.F. Nijhout, S. Johnsen, Diverse nanostructures underlie thin ultra-black scales in butterflies. Nat. Commun. 11(1), 1294 (2020). https://doi.org/10.1038/s41467-020-15033-1
B.C. Murray, J.A. Westphal, Infrared astronomy. Sci. Am. 213(2), 20–29 (1965). https://doi.org/10.1038/scientificamerican0865-20
X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett 16(1), 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
H. Wang, C. Zhang, B. Zhou, Z. Zhang, J. Shen et al., Ultra-black carbon@silica core-shell aerogels with controllable electrical conductivities. Adv. Compos. Hybrid Mater. 2(4), 743–752 (2019). https://doi.org/10.1007/s42114-019-00123-6
C. Liu, S. Wang, N. Wang, J. Yu, Y.-T. Liu et al., From 1D nanofibers to 3D nanofibrous aerogels: a marvellous evolution of electrospun SiO2 nanofibers for emerging applications. Nano-Micro Lett. 14(1), 194 (2022). https://doi.org/10.1007/s40820-022-00937-y
J. Lin, Y. Peng, J. Luo, Z. Xiong, J. Huang et al., One-click to 3D: helical carbon nanotube-mediated MXene hierarchical aerogel with layer spacing engineering for broadband electromagnetic wave absorption. Small Methods 9(5), 2401665 (2025). https://doi.org/10.1002/smtd.202401665
C. Li, G. Zhang, L. Lin, T. Wu, S. Brunner et al., Silica aerogels: from materials research to industrial applications. Int. Mater. Rev. 68(7), 862–900 (2023). https://doi.org/10.1080/09506608.2023.2167547
B. Xu, M. Ganesan, R.K. Devi, X. Ruan, W. Chen et al., Hierarchically promoted light harvesting and management in photothermal solar steam generation. Adv. Mater. 37(5), 2406666 (2025). https://doi.org/10.1002/adma.202406666
D. Wang, T. Ping, Z. Du, X. Liu, Y. Zhang, Lessons from nature: advances and perspectives in bionic microwave absorption materials. Nano-Micro Lett 17(1), 100 (2024). https://doi.org/10.1007/s40820-024-01591-2
L. Song, F. Zhang, Y. Chen, L. Guan, Y. Zhu et al., Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 14(1), 152 (2022). https://doi.org/10.1007/s40820-022-00905-6
Y. Wu, C. An, Y. Guo, Y. Zong, N. Jiang et al., Highly aligned graphene aerogels for multifunctional composites. Nano-Micro Lett 16(1), 118 (2024). https://doi.org/10.1007/s40820-024-01357-w
M. Zhu, G. Li, W. Gong, L. Yan, X. Zhang, Calcium-doped boron nitride aerogel enables infrared stealth at high temperature up to 1300 °C. Nano-Micro Lett. 14(1), 18 (2021). https://doi.org/10.1007/s40820-021-00754-9
Z. Feng, C. Liu, X. Li, G. Luo, N. Zhai et al., Designing electronic structures of multiscale helical converters for tailored ultrabroad electromagnetic absorption. Nano-Micro Lett. 17(1), 20 (2024). https://doi.org/10.1007/s40820-024-01513-2
N. Li, K. Shao, J. He, S. Wang, S. Li et al., Solar-powered interfacial evaporation and deicing based on a 3D-printed multiscale hierarchical design. Small 19(33), 2301474 (2023). https://doi.org/10.1002/smll.202301474
J. Sun, T. Wu, H. Wu, W. Li, L. Li et al., Aerogel-based solar-powered water production from atmosphere and ocean: a review. Mater. Sci. Eng. R. Rep. 154, 100735 (2023). https://doi.org/10.1016/j.mser.2023.100735
P. Vukusic, J.R. Sambles, C.R. Lawrence, Structurally assisted blackness in butterfly scales. Proc. R. Soc. Lond. B 271(suppl_4), S237–S239 (2004). https://doi.org/10.1098/rsbl.2003.0150
D.E. McCoy, T. Feo, T.A. Harvey, R.O. Prum, Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9(1), 1 (2018). https://doi.org/10.1038/s41467-017-02088-w
X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269
R. Koshani, M.L. Pitcher, J. Yu, C.L. Mahajan, S.H. Kim et al., Plant cell wall-like soft materials: micro- and nanoengineering, properties, and applications. Nano-Micro Lett 17(1), 103 (2025). https://doi.org/10.1007/s40820-024-01569-0
K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia et al., 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17(1), 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
R. Civioc, W.J. Malfait, M. Lattuada, M.M. Koebel, S. Galmarini, Silica-resorcinol-melamine-formaldehyde composite aerogels as high-performance thermal insulators. ACS Omega 7(17), 14478–14489 (2022). https://doi.org/10.1021/acsomega.1c04462
R. Civioc, Silica-resorcinol-melamine formaldehyde composite aerogels and their pyrolyzed silica-carbon counterparts. University of Fribourg, May, 2024.
S. Zhao, G. Siqueira, S. Drdova, D. Norris, C. Ubert et al., Additive manufacturing of silica aerogels. Nature 584(7821), 387–392 (2020). https://doi.org/10.1038/s41586-020-2594-0
J.M. Kronenfeld, L. Rother, M.A. Saccone, M.T. Dulay, J.M. DeSimone, Roll-to-roll, high-resolution 3D printing of shape-specific ps. Nature 627(8003), 306–312 (2024). https://doi.org/10.1038/s41586-024-07061-4
H. Chen, T. Ran, Y. Gan, J. Zhou, Y. Zhang et al., Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 17(10), 935–942 (2018). https://doi.org/10.1038/s41563-018-0171-9
G.M. Pajonk, E. Elaloui, P. Achard, B. Chevalier, J.-L. Chevalier et al., Physical properties of silica gels and aerogels prepared with new polymeric precursors. J. Non Cryst. Solids 186, 1–8 (1995). https://doi.org/10.1016/0022-3093(95)00210-3
T. Stahl, S. Brunner, M. Zimmermann, K. Ghazi Wakili, Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications. Energy Build 44, 114–117 (2012). https://doi.org/10.1016/j.enbuild.2011.09.041
X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14(1), 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
A. Mahdavi-Shakib, T.N. Whittaker, T.Y. Yun, K.B.S. Kumar, L.C. Rich et al., The role of surface hydroxyls in the entropy-driven adsorption and spillover of H2 on Au/TiO2 catalysts. Nat. Catal. 6(8), 710–719 (2023). https://doi.org/10.1038/s41929-023-00996-3
M. Tang, Z. Zhong, C. Ke, Advanced supramolecular design for direct ink writing of soft materials. Chem. Soc. Rev. 52(5), 1614–1649 (2023). https://doi.org/10.1039/d2cs01011a
H. Yuk, X. Zhao, A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv. Mater. 30(6), 1704028 (2018). https://doi.org/10.1002/adma.201704028
J. Jiang, H. Oguzlu, F. Jiang, 3D printing of lightweight, super-strong yet flexible all-cellulose structure. Chem. Eng. J. 405, 126668 (2021). https://doi.org/10.1016/j.cej.2020.126668
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15(1), 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
R. Ueoka, Y. Hara, A. Maeno, H. Kaji, K. Nakanishi et al., Unusual flexibility of transparent poly(methylsilsesquioxane) aerogels by surfactant-induced mesoscopic fiber-like assembly. Nat. Commun. 15(1), 461 (2024). https://doi.org/10.1038/s41467-024-44713-5
D. Sivaraman, S. Zhao, S. Iswar, M. Lattuada, W.J. Malfait, Aerogel spring-back correlates with strain recovery: effect of silica concentration and aging. Adv. Eng. Mater. 23(10), 2100376 (2021). https://doi.org/10.1002/adem.202100376
L. Huber, S.B. Hauser, C.J. Ubert, M. Rees, B. Fischer et al., Surfactant-free, flexible polymethylsilsesquioxane foams. J. Non Cryst. Solids 597, 121887 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121887
D. Sivaraman, Y. Nagel, G. Siqueira, P. Chansoria, J. Avaro et al., Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties. Adv. Sci. 11(24), 2307921 (2024). https://doi.org/10.1002/advs.202307921
D. Sivaraman, G. Siqueira, A.K. Maurya, S. Zhao, M.M. Koebel et al., Superinsulating nanocellulose aerogels: effect of density and nanofiber alignment. Carbohydr. Polym. 292, 119675 (2022). https://doi.org/10.1016/j.carbpol.2022.119675
A. Tripathi, B. Tardy, S.A. Khan, F. Liebner, O.J. Rojas, Expanding the upper limits of robustness of cellulose nanocrystal aerogels: outstanding mechanical performance and associated pore compression response of chiral-nematic architectures. J. Mater. Chem. A 7(25), 15309–15319 (2019). https://doi.org/10.1039/C9TA03950C
N. Guerrero-Alburquerque, S. Zhao, N. Adilien, M.M. Koebel, M. Lattuada et al., Strong, machinable, and insulating chitosan-urea aerogels: toward ambient pressure drying of biopolymer aerogel monoliths. ACS Appl. Mater. Interfaces 12(19), 22037–22049 (2020). https://doi.org/10.1021/acsami.0c03047
L. Lentz, D.A. Mayer, M. Dogenski, S.R.S. Ferreira, Hybrid aerogels of sodium alginate/graphene oxide as efficient adsorbents for wastewater treatment. Mater. Chem. Phys. 283, 125981 (2022). https://doi.org/10.1016/j.matchemphys.2022.125981
H. Akhlaghi, E. Roohi, S. Stefanov, A comprehensive review on micro- and nano-scale gas flow effects: slip-jump phenomena, Knudsen paradox, thermally-driven flows, and Knudsen pumps. Phys. Rep. 997, 1–60 (2023). https://doi.org/10.1016/j.physrep.2022.10.004
Z. Zhao, Y. Cui, Y. Kong, J. Ren, X. Jiang et al., Thermal and mechanical performances of the superflexible, hydrophobic, silica-based aerogel for thermal insulation at ultralow temperature. ACS Appl. Mater. Interfaces 13(18), 21286–21298 (2021). https://doi.org/10.1021/acsami.1c02910
H. Ni, D. Lu, L. Zhuang, P. Guo, L. Xu et al., Tailoring mechanical properties of a ceramic nanowire aerogel with pyrolytic carbon for in situ resilience at 1400 °C. ACS Nano 18(24), 15950–15957 (2024). https://doi.org/10.1021/acsnano.4c03816
G. Shao, R. Xu, Y. Chen, G. Yu, X. Wu et al., Miniaturized hard carbon nanofiber aerogels: from multiscale electromagnetic response manipulation to integrated multifunctional absorbers. Adv. Funct. Mater. 34(48), 2408252 (2024). https://doi.org/10.1002/adfm.202408252
P. Hu, X. Hu, L. Liu, M. Li, Z. Zhao et al., Dimensional upgrading of 0D silica nanospheres to 3D networking toward robust aerogels for fire resistance and low-carbon applications. Mater. Sci. Eng. R. Rep. 161, 100842 (2024). https://doi.org/10.1016/j.mser.2024.100842
X. Wang, Y. Wang, Z. Zhang, Z. Zhao, T. Liu et al., Strong and ultrahigh temperature-resistant metal oxide nanobelt aerogels. Adv. Funct. Mater. 35(5), 2414592 (2025). https://doi.org/10.1002/adfm.202414592
J. Luo, L. Wu, J. Yan, X. Lv, Y. Luo et al., Radar-stealth and thermal-insulating MOF-derived cellulose-carbon aerogels for broadband electromagnetic wave absorption. Chin. Chem. Lett. 36(7), 111065 (2025). https://doi.org/10.1016/j.cclet.2025.111065
S. Lin, J. Lin, Z. Xiong, X. He, X. Li et al., Micro-helical Ni3Fe chain encapsulated in ultralight MXene/C aerogel to realize multi-functionality: radar stealth, thermal insulation, fire resistance, and mechanical properties. Chem. Eng. J. 492, 152248 (2024). https://doi.org/10.1016/j.cej.2024.152248
J. Wang, D. Yuan, P. Hu, Y. Wang, J. Wang et al., Optical design of silica aerogels for on-demand thermal management. Adv. Funct. Mater. 33(32), 2300441 (2023). https://doi.org/10.1002/adfm.202300441
B. Zhao, X. Shi, S. Khakalo, Y. Meng, A. Miettinen et al., Wood-based superblack. Nat. Commun. 14, 7875 (2023). https://doi.org/10.1038/s41467-023-43594-4
W. Sun, A. Du, Y. Feng, J. Shen, S. Huang et al., Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 10(10), 9123–9128 (2016). https://doi.org/10.1021/acsnano.6b02039
F. Xu, Y. Wang, F. Tang, X. Dai, Z. Zhao et al., Synergistic enhancement of structure and function in carbonaceous SiC aerogels for improved microwave absorption. Carbon 233, 119854 (2025). https://doi.org/10.1016/j.carbon.2024.119854
S. Wang, X. Zhang, S. Hao, J. Qiao, Z. Wang et al., Nitrogen-doped magnetic-dielectric-carbon aerogel for high-efficiency electromagnetic wave absorption. Nano-Micro Lett. 16(1), 16 (2023). https://doi.org/10.1007/s40820-023-01244-w
W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13(1), 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), 194 (2023). https://doi.org/10.1007/s40820-023-01158-7