Saturated Alcohols Electrocatalytic Oxidations on Ni-Co Bimetal Oxide Featuring Balanced B- and L-Acidic Active Sites
Corresponding Author: Xiangzhi Cui
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 39
Abstract
Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols. Herein, we report efficient electrocatalytic oxidations of saturated alcohols (C1-C6) to selectively form formate using NiCo hydroxide (NiCo–OH) derived NiCo2O4 solid-acid electrocatalysts with balanced Lewis acid (LASs) and Brønsted acid sites (BASs). Thermal treatment transforms BASs-rich (89.6%) NiCo–OH into NiCo2O4 with nearly equal distribution of LASs (53.1%) and BASs (46.9%) which synergistically promote adsorption and activation of OH− and alcohol molecules for enhanced oxidation activity. In contrast, BASs-enriched NiCo–OH facilitates formation of higher valence metal sites, beneficial for water oxidation. The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6 alcohols increases as increased number of hydroxyl groups and decreased HOMO–LUMO gaps: methanol (C1) < ethylene glycol (C2) < glycerol (C3) < meso-erythritol (C4) < xylitol (C5) < sorbitol (C6), while the formate selectivity shows the opposite trend from 100 to 80%. This study unveils synergistic roles of LASs and BASs, as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts.
Highlights:
1 NiCo–OH has a relatively high Brønsted acid sites (BASs) content (89.6%), which can promote the adsorption of OH− and inhibit the co-adsorption of OH− and alcohols, resulting in poor alcohol oxidation reaction (AOR) activity but higher oxygen evolution reaction activity.
2 NiCo–OH-derived NiCo2O4 solid-acid electrocatalysts with balanced BASs (46.9%) and Lewis acid sites (53.1%) facilitates co-adsorption of alcohols molecules and OH−, thereby favoring the AOR.
3 In the AOR on NiCo2O4, as the number of hydroxyl groups in C1-C6 saturated alcohols increases, the activity shows an increasing trend: C1<C2<C3<C4<C5<C6.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Badalyan, S.S. Stahl, Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 535(7612), 406–410 (2016). https://doi.org/10.1038/nature18008
- L.S. Sharninghausen, J. Campos, M.G. Manas, R.H. Crabtree, Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nat. Commun. 5, 5084 (2014). https://doi.org/10.1038/ncomms6084
- X. Hu, J. Lu, Y. Liu, L. Chen, X. Zhang et al., Sustainable catalytic oxidation of glycerol: a review. Environ. Chem. Lett. 21(5), 2825–2861 (2023). https://doi.org/10.1007/s10311-023-01608-z
- Y. Yan, H. Zhou, S.-M. Xu, J. Yang, P. Hao et al., Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities. J. Am. Chem. Soc. 145(11), 6144–6155 (2023). https://doi.org/10.1021/jacs.2c11861
- W. Chen, L. Zhang, L. Xu, Y. He, H. Pang et al., Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid. Nat. Commun. 15(1), 1–11 (2024). https://doi.org/10.1038/s41467-024-46752-4
- S. Li, P. Ma, C. Gao, L. Liu, X. Wang et al., Reconstruction-induced NiCu-based catalysts towards paired electrochemical refining. Energy Environ. Sci. 15(7), 3004–3014 (2022). https://doi.org/10.1039/d2ee00461e
- Y. Yang, R. Zou, J. Gan, Y. Wei, Z. Chen et al., Integrating electrocatalytic seawater splitting and biomass upgrading via bifunctional nickel cobalt phosphide nanorods. Green Chem. 25(10), 4104–4112 (2023). https://doi.org/10.1039/D3GC00684K
- Y. Feng, X. Wang, J. Ma, N. Wang, Q. Liu et al., A solid-solution with asymmetric Ni-O-Cr sites for boosting protonation toward anodic oxidation. Adv. Energy Mater. 14(38), 2401501 (2024). https://doi.org/10.1002/aenm.202401501
- Z. Fan, W. Zhang, L. Li, Y. Wang, Y. Zou et al., Recent developments in electrode materials for the selective upgrade of biomass-derived platform molecules into high-value-added chemicals and fuels. Green Chem. 24(20), 7818–7868 (2022). https://doi.org/10.1039/D2GC02956A
- V. Bambagioni, M. Bevilacqua, C. Bianchini, J. Filippi, A. Lavacchi et al., Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis. Chemsuschem 3(7), 851–855 (2010). https://doi.org/10.1002/cssc.201000103
- C. Zhou, J. Chen, J. Zhao, Y. Meng, Z. Li et al., Glycerol electrooxidation to value-added C1–C3 chemicals: mechanism analyses, influencing factors, catalytic regulation, and paired valorization. Renewables 2(2), 89–110 (2024). https://doi.org/10.31635/renewables.024.202400052
- T. Wang, X. Cao, L. Jiao, Progress in hydrogen production coupled with electrochemical oxidation of small molecules. Angew. Chem. Int. Ed. 61(51), e202213328 (2022). https://doi.org/10.1002/anie.202213328
- R. Ge, J. Li, H. Duan, Recent advances in non-noble electrocatalysts for oxidative valorization of biomass derivatives. Sci. China Mater. 65(12), 3273–3301 (2022). https://doi.org/10.1007/s40843-022-2076-y
- Y. Li, X. Wei, R. Pan, Y. Wang, J. Luo et al., PtAu alloying-modulated hydroxyl and substrate adsorption for glycerol electrooxidation to C3 products. Energy Environ. Sci. 17(12), 4205–4215 (2024). https://doi.org/10.1039/D4EE00485J
- J. Kang, X. Qiu, Q. Hu, J. Zhong, X. Gao et al., Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat. Catal. 4(12), 1050–1058 (2021). https://doi.org/10.1038/s41929-021-00715-w
- Z.-H. Yin, Y. Huang, K. Song, T.-T. Li, J.-Y. Cui et al., Ir single atoms boost metal–oxygen covalency on selenide-derived NiOOH for direct intramolecular oxygen coupling. J. Am. Chem. Soc. 146(10), 6846–6855 (2024). https://doi.org/10.1021/jacs.3c13746
- L. Fan, Y. Ji, G. Wang, J. Chen, K. Chen et al., High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144(16), 7224–7235 (2022). https://doi.org/10.1021/jacs.1c13740
- Y. Yu, J. Ma, L. Zhang, T. Sun, M. Wang et al., Selective electrooxidation of 5-hydroxymethylfurfural to value-added 2, 5-furanodiformic acid: mechanism, electrolyzer system, and electrocatalyst regulation. Chem. Commun. 61(43), 7751–7769 (2025). https://doi.org/10.1039/D5CC01853F
- H. Du, T. Sun, M. Wang, Y. Tang, Y. Yu et al., Impact of harmful ions in seawater on electrolysis catalysts: challenges and mitigation strategies. Chem. Commun. 61(31), 5719–5730 (2025). https://doi.org/10.1039/D5CC00844A
- X. Zhang, X. Wang, T. Sun, M. Wang, J. Zhu et al., Design of alternative oxidation processes for hybrid water electrolysis systems: recent progress and perspective. Chem. Commun. 61, 11353–11363 (2025). https://doi.org/10.1039/d5cc02862k
- Z. He, J. Hwang, Z. Gong, M. Zhou, N. Zhang et al., Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide. Nat. Commun. 13(1), 3777 (2022). https://doi.org/10.1038/s41467-022-31484-0
- J. Ma, X. Wang, J. Song, Y. Tang, T. Sun et al., Synergistic lewis and Brønsted acid sites promote OH* formation and enhance formate selectivity: towards high-efficiency glycerol valorization. Angew. Chem. Int. Ed. 63(14), e202319153 (2024). https://doi.org/10.1002/anie.202319153
- Y. Kwon, S.C.S. Lai, P. Rodriguez, M.T.M. Koper, Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J. Am. Chem. Soc. 133(18), 6914–6917 (2011). https://doi.org/10.1021/ja200976j
- R. Holze, T. Łuczak, M. Bełtowska-Brzezinska, A comparative study of the adsorption and electrooxidation of isomer butanediols on a gold electrode. Electrochim. Acta 35(9), 1345–1350 (1990). https://doi.org/10.1016/0013-4686(90)85005-8
- S. Sun, C. Dai, L. Sun, Z.W. Seh, Y. Sun et al., The effect of the hydroxyl group position on the electrochemical reactivity and product selectivity of butanediol electro-oxidation. Dalton Trans. 51(38), 14491–14497 (2022). https://doi.org/10.1039/D2DT02450K
- C.A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141(2), 347–354 (1993). https://doi.org/10.1006/jcat.1993.1145
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- K.-Q. Lu, Y.-H. Li, F. Zhang, M.-Y. Qi, X. Chen et al., Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nat. Commun. 11(1), 5181 (2020). https://doi.org/10.1038/s41467-020-18944-1
- J. Yin, J. Jin, H. Liu, B. Huang, M. Lu et al., NiCo2O4-based nanosheets with uniform 4 nm mesopores for excellent Zn–air battery performance. Adv. Mater. 32(39), 2001651 (2020). https://doi.org/10.1002/adma.202001651
- Z. Chen, W. Gong, J. Wang, S. Hou, G. Yang et al., Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte. Nat. Commun. 14(1), 1–12 (2023). https://doi.org/10.1038/s41467-023-41097-w
- Y. Qi, X. Xiao, Y. Mei, L. Xiong, L. Chen et al., Modulation of Brønsted and lewis acid centers for NixCo3−xO4 spinel catalysts: towards efficient catalytic conversion of lignin. Adv. Funct. Mater. 32(15), 2111615 (2022). https://doi.org/10.1002/adfm.202111615
- H. Zhu, J.J. Wang, Z. Xu, Y. Tan, J. Wang, Pd nanop size-dependent H* coverage for Cu-catalyzed nitrate electro-reduction to ammonia in neutral electrolyte. Small 20(46), 2404919 (2024). https://doi.org/10.1002/smll.202404919
- X. Wang, R. Ma, S. Li, M. Xu, L. Liu et al., In situ electrochemical oxyanion steering of water oxidation electrocatalysts for optimized activity and stability. Adv. Energy Mater. 13(24), 2300765 (2023). https://doi.org/10.1002/aenm.202300765
- Y. Feng, N. Ran, X. Wang, Q. Liu, J. Wang et al., Nanoparticulate WN/Ni3C coupling in ceramic coatings for boosted urea electro-oxidation. Adv. Energy Mater. 13(42), 2302452 (2023). https://doi.org/10.1002/aenm.202302452
- J. Wang, W. He, Y. Zong, Y. Tang, J. Wang et al., Electronic redistribution induced by interaction between ruthenium nanops and Ni-N(O)-C sites boosts alkaline water electrolysis. Chem. Commun. 60(70), 9444–9447 (2024). https://doi.org/10.1039/d4cc02851a
- C. Rao, H. Wang, K. Chen, H. Chen, S. Ci et al., Hybrid acid/base electrolytic cell for hydrogen generation and methanol conversion implemented by bifunctional Ni/MoN nanorod electrocatalyst. Small 20(7), 2303300 (2024). https://doi.org/10.1002/smll.202303300
- S. Zheng, J. Wu, K. Wang, M. Hu, H. Wen et al., Electronic modulation of Ni-Mo-O porous nanorods by co doping for selective oxidation of 5-hydroxymethylfurfural coupled with hydrogen evolution. Acta Phys.-Chim. Sin. 39(12), 2301032 (2023). https://doi.org/10.3866/pku.whxb202301032
- L. Wu, Q. Wu, Y. Han, D. Zhang, R. Zhang et al., Strengthening the synergy between oxygen vacancies in electrocatalysts for efficient glycerol electrooxidation. Adv. Mater. 36(26), 2401857 (2024). https://doi.org/10.1002/adma.202401857
- X. Zhang, J. Song, T. Sun, M. Wang, J. Zhu et al., Constructing nanoneedle arrays of heterostructured RuO2-Co3O4 with tip-effect-induced enrichment of reactants for enhanced water oxidation. Chem. Commun. 61(48), 8723–8726 (2025). https://doi.org/10.1039/d5cc01933h
- J. Huang, X. Xu, Y. Yan, Y. Zheng, Y. Yao et al., Facile microwave synthesis of kilogram-scale electrocatalysts with nanocarbons bridged cobalt active sites for enhanced oxygen electrocatalysis. Adv. Energy Mater. 15(27), 2500360 (2025). https://doi.org/10.1002/aenm.202500360
- W. Luo, H. Tian, Q. Li, G. Meng, Z. Chang et al., Controllable electron distribution reconstruction of spinel NiCo2O4 boosting glycerol oxidation at elevated current density. Adv. Funct. Mater. 34(3), 2306995 (2024). https://doi.org/10.1002/adfm.202306995
- Z. Xia, C. Ma, Y. Fan, Y. Lu, Y.-C. Huang et al., Vacancy optimized coordination on nickel oxide for selective electrocatalytic oxidation of glycerol. ACS Catal. 14(3), 1930–1938 (2024). https://doi.org/10.1021/acscatal.3c04568
- W. Yang, Z. Chang, X. Yu, R. Shen, L. Wang et al., Triple regulations via Fe redox boosting nitrate reduction to ammonia at industrial current densities. Angew. Chem. Int. Ed. 64(3), e202415300 (2025). https://doi.org/10.1002/anie.202415300
- L.S. Oh, M. Park, Y.S. Park, Y. Kim, W. Yoon et al., How to change the reaction chemistry on nonprecious metal oxide nanostructure materials for electrocatalytic oxidation of biomass-derived glycerol to renewable chemicals. Adv. Mater. 35(4), 2203285 (2023). https://doi.org/10.1002/adma.202203285
- P. Cai, J. Zhao, X. Zhang, T. Zhang, G. Yin et al., Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Appl. Catal. B Environ. 306, 121091 (2022). https://doi.org/10.1016/j.apcatb.2022.121091
- Y. Wang, Y.-Q. Zhu, Z. Xie, S.-M. Xu, M. Xu et al., Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4. ACS Catal. 12(19), 12432–12443 (2022). https://doi.org/10.1021/acscatal.2c03162
- Y. Lu, T. Liu, Y.-C. Huang, L. Zhou, Y. Li et al., Integrated catalytic sites for highly efficient electrochemical oxidation of the aldehyde and hydroxyl groups in 5-hydroxymethylfurfural. ACS Catal. 12(7), 4242–4251 (2022). https://doi.org/10.1021/acscatal.2c00174
- H. Du, H. Hu, X. Wang, N. Ran, W. Chen et al., Vertical cross-alignments of 2D semiconductors with steered internal electric field for urea electrooxidation via balancing intermediates adsorption. Small 20(34), 2401053 (2024). https://doi.org/10.1002/smll.202401053
- Y. Han, C. Yu, H. Huang, Q. Wei, J. Dong et al., Controllable surface reconstruction of copper foam for electrooxidation of benzyl alcohol integrated with pure hydrogen production. SmartMat 5(1), e1206 (2024). https://doi.org/10.1002/smm2.1206
- X. Zhao, W. Sun, X. Liu, Z. Lu, K. Chen et al., High-entropy phosphide catalyst-based hybrid electrolyzer: a cost-effective and mild-condition approach for H2 liberation from methanol. Adv. Energy Mater. 15(12), 2404114 (2025). https://doi.org/10.1002/aenm.202404114
- X. Wang, J. Song, J. Ma, H. Du, J.J. Wang et al., Surface-bound formate oxyanions destabilize hydration layers to pave OH–transport pathways for oxygen evolution. ACS Catal. 14(14), 10871–10881 (2024). https://doi.org/10.1021/acscatal.4c02369
- K. Xu, L. Liang, T. Li, M. Bao, Z. Yu et al., Pt1.8Pd0.2CuGa intermetallic nanocatalysts with enhanced methanol oxidation performance for efficient hybrid seawater electrolysis. Adv. Mater. 36(31), 2403792 (2024). https://doi.org/10.1002/adma.202403792
- L. Wu, J. Feng, L. Zhang, S. Jia, X. Song et al., Boosting electrocatalytic nitrate-to-ammonia via tuning of N-intermediate adsorption on a Zn−Cu catalyst. Angew. Chem. Int. Ed. 62(43), e202307952 (2023). https://doi.org/10.1002/anie.202307952
- Y. Li, X. Wei, S. Han, L. Chen, J. Shi, MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic solutions. Angew. Chem. Int. Ed. 60(39), 21464–21472 (2021). https://doi.org/10.1002/anie.202107510
- Q. Qian, X. He, Z. Li, Y. Chen, Y. Feng et al., Electrochemical biomass upgrading coupled with hydrogen production under industrial-level current density. Adv. Mater. 35(25), 2300935 (2023). https://doi.org/10.1002/adma.202300935
- H. Wang, W. Ye, B. Yin, K. Wang, M.S. Riaz et al., Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes. Angew. Chem. Int. Ed. 62(10), e202218872 (2023). https://doi.org/10.1002/anie.202218872
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
References
A. Badalyan, S.S. Stahl, Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 535(7612), 406–410 (2016). https://doi.org/10.1038/nature18008
L.S. Sharninghausen, J. Campos, M.G. Manas, R.H. Crabtree, Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nat. Commun. 5, 5084 (2014). https://doi.org/10.1038/ncomms6084
X. Hu, J. Lu, Y. Liu, L. Chen, X. Zhang et al., Sustainable catalytic oxidation of glycerol: a review. Environ. Chem. Lett. 21(5), 2825–2861 (2023). https://doi.org/10.1007/s10311-023-01608-z
Y. Yan, H. Zhou, S.-M. Xu, J. Yang, P. Hao et al., Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities. J. Am. Chem. Soc. 145(11), 6144–6155 (2023). https://doi.org/10.1021/jacs.2c11861
W. Chen, L. Zhang, L. Xu, Y. He, H. Pang et al., Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid. Nat. Commun. 15(1), 1–11 (2024). https://doi.org/10.1038/s41467-024-46752-4
S. Li, P. Ma, C. Gao, L. Liu, X. Wang et al., Reconstruction-induced NiCu-based catalysts towards paired electrochemical refining. Energy Environ. Sci. 15(7), 3004–3014 (2022). https://doi.org/10.1039/d2ee00461e
Y. Yang, R. Zou, J. Gan, Y. Wei, Z. Chen et al., Integrating electrocatalytic seawater splitting and biomass upgrading via bifunctional nickel cobalt phosphide nanorods. Green Chem. 25(10), 4104–4112 (2023). https://doi.org/10.1039/D3GC00684K
Y. Feng, X. Wang, J. Ma, N. Wang, Q. Liu et al., A solid-solution with asymmetric Ni-O-Cr sites for boosting protonation toward anodic oxidation. Adv. Energy Mater. 14(38), 2401501 (2024). https://doi.org/10.1002/aenm.202401501
Z. Fan, W. Zhang, L. Li, Y. Wang, Y. Zou et al., Recent developments in electrode materials for the selective upgrade of biomass-derived platform molecules into high-value-added chemicals and fuels. Green Chem. 24(20), 7818–7868 (2022). https://doi.org/10.1039/D2GC02956A
V. Bambagioni, M. Bevilacqua, C. Bianchini, J. Filippi, A. Lavacchi et al., Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis. Chemsuschem 3(7), 851–855 (2010). https://doi.org/10.1002/cssc.201000103
C. Zhou, J. Chen, J. Zhao, Y. Meng, Z. Li et al., Glycerol electrooxidation to value-added C1–C3 chemicals: mechanism analyses, influencing factors, catalytic regulation, and paired valorization. Renewables 2(2), 89–110 (2024). https://doi.org/10.31635/renewables.024.202400052
T. Wang, X. Cao, L. Jiao, Progress in hydrogen production coupled with electrochemical oxidation of small molecules. Angew. Chem. Int. Ed. 61(51), e202213328 (2022). https://doi.org/10.1002/anie.202213328
R. Ge, J. Li, H. Duan, Recent advances in non-noble electrocatalysts for oxidative valorization of biomass derivatives. Sci. China Mater. 65(12), 3273–3301 (2022). https://doi.org/10.1007/s40843-022-2076-y
Y. Li, X. Wei, R. Pan, Y. Wang, J. Luo et al., PtAu alloying-modulated hydroxyl and substrate adsorption for glycerol electrooxidation to C3 products. Energy Environ. Sci. 17(12), 4205–4215 (2024). https://doi.org/10.1039/D4EE00485J
J. Kang, X. Qiu, Q. Hu, J. Zhong, X. Gao et al., Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat. Catal. 4(12), 1050–1058 (2021). https://doi.org/10.1038/s41929-021-00715-w
Z.-H. Yin, Y. Huang, K. Song, T.-T. Li, J.-Y. Cui et al., Ir single atoms boost metal–oxygen covalency on selenide-derived NiOOH for direct intramolecular oxygen coupling. J. Am. Chem. Soc. 146(10), 6846–6855 (2024). https://doi.org/10.1021/jacs.3c13746
L. Fan, Y. Ji, G. Wang, J. Chen, K. Chen et al., High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144(16), 7224–7235 (2022). https://doi.org/10.1021/jacs.1c13740
Y. Yu, J. Ma, L. Zhang, T. Sun, M. Wang et al., Selective electrooxidation of 5-hydroxymethylfurfural to value-added 2, 5-furanodiformic acid: mechanism, electrolyzer system, and electrocatalyst regulation. Chem. Commun. 61(43), 7751–7769 (2025). https://doi.org/10.1039/D5CC01853F
H. Du, T. Sun, M. Wang, Y. Tang, Y. Yu et al., Impact of harmful ions in seawater on electrolysis catalysts: challenges and mitigation strategies. Chem. Commun. 61(31), 5719–5730 (2025). https://doi.org/10.1039/D5CC00844A
X. Zhang, X. Wang, T. Sun, M. Wang, J. Zhu et al., Design of alternative oxidation processes for hybrid water electrolysis systems: recent progress and perspective. Chem. Commun. 61, 11353–11363 (2025). https://doi.org/10.1039/d5cc02862k
Z. He, J. Hwang, Z. Gong, M. Zhou, N. Zhang et al., Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide. Nat. Commun. 13(1), 3777 (2022). https://doi.org/10.1038/s41467-022-31484-0
J. Ma, X. Wang, J. Song, Y. Tang, T. Sun et al., Synergistic lewis and Brønsted acid sites promote OH* formation and enhance formate selectivity: towards high-efficiency glycerol valorization. Angew. Chem. Int. Ed. 63(14), e202319153 (2024). https://doi.org/10.1002/anie.202319153
Y. Kwon, S.C.S. Lai, P. Rodriguez, M.T.M. Koper, Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J. Am. Chem. Soc. 133(18), 6914–6917 (2011). https://doi.org/10.1021/ja200976j
R. Holze, T. Łuczak, M. Bełtowska-Brzezinska, A comparative study of the adsorption and electrooxidation of isomer butanediols on a gold electrode. Electrochim. Acta 35(9), 1345–1350 (1990). https://doi.org/10.1016/0013-4686(90)85005-8
S. Sun, C. Dai, L. Sun, Z.W. Seh, Y. Sun et al., The effect of the hydroxyl group position on the electrochemical reactivity and product selectivity of butanediol electro-oxidation. Dalton Trans. 51(38), 14491–14497 (2022). https://doi.org/10.1039/D2DT02450K
C.A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141(2), 347–354 (1993). https://doi.org/10.1006/jcat.1993.1145
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
K.-Q. Lu, Y.-H. Li, F. Zhang, M.-Y. Qi, X. Chen et al., Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nat. Commun. 11(1), 5181 (2020). https://doi.org/10.1038/s41467-020-18944-1
J. Yin, J. Jin, H. Liu, B. Huang, M. Lu et al., NiCo2O4-based nanosheets with uniform 4 nm mesopores for excellent Zn–air battery performance. Adv. Mater. 32(39), 2001651 (2020). https://doi.org/10.1002/adma.202001651
Z. Chen, W. Gong, J. Wang, S. Hou, G. Yang et al., Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte. Nat. Commun. 14(1), 1–12 (2023). https://doi.org/10.1038/s41467-023-41097-w
Y. Qi, X. Xiao, Y. Mei, L. Xiong, L. Chen et al., Modulation of Brønsted and lewis acid centers for NixCo3−xO4 spinel catalysts: towards efficient catalytic conversion of lignin. Adv. Funct. Mater. 32(15), 2111615 (2022). https://doi.org/10.1002/adfm.202111615
H. Zhu, J.J. Wang, Z. Xu, Y. Tan, J. Wang, Pd nanop size-dependent H* coverage for Cu-catalyzed nitrate electro-reduction to ammonia in neutral electrolyte. Small 20(46), 2404919 (2024). https://doi.org/10.1002/smll.202404919
X. Wang, R. Ma, S. Li, M. Xu, L. Liu et al., In situ electrochemical oxyanion steering of water oxidation electrocatalysts for optimized activity and stability. Adv. Energy Mater. 13(24), 2300765 (2023). https://doi.org/10.1002/aenm.202300765
Y. Feng, N. Ran, X. Wang, Q. Liu, J. Wang et al., Nanoparticulate WN/Ni3C coupling in ceramic coatings for boosted urea electro-oxidation. Adv. Energy Mater. 13(42), 2302452 (2023). https://doi.org/10.1002/aenm.202302452
J. Wang, W. He, Y. Zong, Y. Tang, J. Wang et al., Electronic redistribution induced by interaction between ruthenium nanops and Ni-N(O)-C sites boosts alkaline water electrolysis. Chem. Commun. 60(70), 9444–9447 (2024). https://doi.org/10.1039/d4cc02851a
C. Rao, H. Wang, K. Chen, H. Chen, S. Ci et al., Hybrid acid/base electrolytic cell for hydrogen generation and methanol conversion implemented by bifunctional Ni/MoN nanorod electrocatalyst. Small 20(7), 2303300 (2024). https://doi.org/10.1002/smll.202303300
S. Zheng, J. Wu, K. Wang, M. Hu, H. Wen et al., Electronic modulation of Ni-Mo-O porous nanorods by co doping for selective oxidation of 5-hydroxymethylfurfural coupled with hydrogen evolution. Acta Phys.-Chim. Sin. 39(12), 2301032 (2023). https://doi.org/10.3866/pku.whxb202301032
L. Wu, Q. Wu, Y. Han, D. Zhang, R. Zhang et al., Strengthening the synergy between oxygen vacancies in electrocatalysts for efficient glycerol electrooxidation. Adv. Mater. 36(26), 2401857 (2024). https://doi.org/10.1002/adma.202401857
X. Zhang, J. Song, T. Sun, M. Wang, J. Zhu et al., Constructing nanoneedle arrays of heterostructured RuO2-Co3O4 with tip-effect-induced enrichment of reactants for enhanced water oxidation. Chem. Commun. 61(48), 8723–8726 (2025). https://doi.org/10.1039/d5cc01933h
J. Huang, X. Xu, Y. Yan, Y. Zheng, Y. Yao et al., Facile microwave synthesis of kilogram-scale electrocatalysts with nanocarbons bridged cobalt active sites for enhanced oxygen electrocatalysis. Adv. Energy Mater. 15(27), 2500360 (2025). https://doi.org/10.1002/aenm.202500360
W. Luo, H. Tian, Q. Li, G. Meng, Z. Chang et al., Controllable electron distribution reconstruction of spinel NiCo2O4 boosting glycerol oxidation at elevated current density. Adv. Funct. Mater. 34(3), 2306995 (2024). https://doi.org/10.1002/adfm.202306995
Z. Xia, C. Ma, Y. Fan, Y. Lu, Y.-C. Huang et al., Vacancy optimized coordination on nickel oxide for selective electrocatalytic oxidation of glycerol. ACS Catal. 14(3), 1930–1938 (2024). https://doi.org/10.1021/acscatal.3c04568
W. Yang, Z. Chang, X. Yu, R. Shen, L. Wang et al., Triple regulations via Fe redox boosting nitrate reduction to ammonia at industrial current densities. Angew. Chem. Int. Ed. 64(3), e202415300 (2025). https://doi.org/10.1002/anie.202415300
L.S. Oh, M. Park, Y.S. Park, Y. Kim, W. Yoon et al., How to change the reaction chemistry on nonprecious metal oxide nanostructure materials for electrocatalytic oxidation of biomass-derived glycerol to renewable chemicals. Adv. Mater. 35(4), 2203285 (2023). https://doi.org/10.1002/adma.202203285
P. Cai, J. Zhao, X. Zhang, T. Zhang, G. Yin et al., Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Appl. Catal. B Environ. 306, 121091 (2022). https://doi.org/10.1016/j.apcatb.2022.121091
Y. Wang, Y.-Q. Zhu, Z. Xie, S.-M. Xu, M. Xu et al., Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4. ACS Catal. 12(19), 12432–12443 (2022). https://doi.org/10.1021/acscatal.2c03162
Y. Lu, T. Liu, Y.-C. Huang, L. Zhou, Y. Li et al., Integrated catalytic sites for highly efficient electrochemical oxidation of the aldehyde and hydroxyl groups in 5-hydroxymethylfurfural. ACS Catal. 12(7), 4242–4251 (2022). https://doi.org/10.1021/acscatal.2c00174
H. Du, H. Hu, X. Wang, N. Ran, W. Chen et al., Vertical cross-alignments of 2D semiconductors with steered internal electric field for urea electrooxidation via balancing intermediates adsorption. Small 20(34), 2401053 (2024). https://doi.org/10.1002/smll.202401053
Y. Han, C. Yu, H. Huang, Q. Wei, J. Dong et al., Controllable surface reconstruction of copper foam for electrooxidation of benzyl alcohol integrated with pure hydrogen production. SmartMat 5(1), e1206 (2024). https://doi.org/10.1002/smm2.1206
X. Zhao, W. Sun, X. Liu, Z. Lu, K. Chen et al., High-entropy phosphide catalyst-based hybrid electrolyzer: a cost-effective and mild-condition approach for H2 liberation from methanol. Adv. Energy Mater. 15(12), 2404114 (2025). https://doi.org/10.1002/aenm.202404114
X. Wang, J. Song, J. Ma, H. Du, J.J. Wang et al., Surface-bound formate oxyanions destabilize hydration layers to pave OH–transport pathways for oxygen evolution. ACS Catal. 14(14), 10871–10881 (2024). https://doi.org/10.1021/acscatal.4c02369
K. Xu, L. Liang, T. Li, M. Bao, Z. Yu et al., Pt1.8Pd0.2CuGa intermetallic nanocatalysts with enhanced methanol oxidation performance for efficient hybrid seawater electrolysis. Adv. Mater. 36(31), 2403792 (2024). https://doi.org/10.1002/adma.202403792
L. Wu, J. Feng, L. Zhang, S. Jia, X. Song et al., Boosting electrocatalytic nitrate-to-ammonia via tuning of N-intermediate adsorption on a Zn−Cu catalyst. Angew. Chem. Int. Ed. 62(43), e202307952 (2023). https://doi.org/10.1002/anie.202307952
Y. Li, X. Wei, S. Han, L. Chen, J. Shi, MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic solutions. Angew. Chem. Int. Ed. 60(39), 21464–21472 (2021). https://doi.org/10.1002/anie.202107510
Q. Qian, X. He, Z. Li, Y. Chen, Y. Feng et al., Electrochemical biomass upgrading coupled with hydrogen production under industrial-level current density. Adv. Mater. 35(25), 2300935 (2023). https://doi.org/10.1002/adma.202300935
H. Wang, W. Ye, B. Yin, K. Wang, M.S. Riaz et al., Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes. Angew. Chem. Int. Ed. 62(10), e202218872 (2023). https://doi.org/10.1002/anie.202218872
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756