Constructing Double Heterojunctions on 1T/2H-MoS2@Co3S4 Electrocatalysts for Regulating Li2O2 Formation in Lithium-Oxygen Batteries
Corresponding Author: Jun Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 51
Abstract
Co3S4 electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction (OER) activity, yet challenges remain in fabricating rechargeable lithium-oxygen batteries (LOBs) due to their poor OER performance, resulting from poor electrical conductivity and overly strong intermediate adsorption. In this work, fancy double heterojunctions on 1T/2H-MoS2@Co3S4 (1T/2H-MCS) were constructed derived from the charge donation from Co to Mo ions, thus inducing the phase transformation of MoS2 from 2H to 1T. The unique features of these double heterojunctions endow the 1T/2H-MCS with complementary catalysis during charging and discharging processes. It is worth noting that 1T-MoS2@Co3S4 could provide fast Co–S–Mo electron transport channels to promote ORR/OER kinetics, and 2H-MoS2@Co3S4 contributed to enabling moderate eg orbital occupancy when adsorbed with oxygen-containing intermediates. On the basis, the Li2O2 nucleation route was changed to solution and surface dual pathways, improving reversible deposition and decomposition kinetics. As a result, 1T/2H-MCS cathodes exhibit an improved electrocatalytic performance compared with those of Co3S4 and MoS2 cathodes. This innovative heterostructure design provides a reliable strategy to construct efficient transition metal sulfide catalysts by improving electrical conductivity and modulating adsorption toward oxygenated intermediates for LOBs.
Highlights:
1 1T/2H-MoS2@Co3S4 electrocatalysts were constructed by interfacial charge donation from Co to Mo atoms, resulting in formation of double heterojunctions including 1T-MoS2@Co3S4 and 2H-MoS2@Co3S4.
2 Complementary effect from double heterojunctions not only triggered fast charge transport on Co–S–Mo couplings, but also enabled moderate eg orbital occupancy to adsorb oxygen-containing intermediates for efficient oxygen electrocatalysis.
3 Optimal adsorption energies for solution and surface dual reaction pathways were achieved, forming two kinds of discharge product morphologies during cycling to enhance performance of Li–O2 batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Han, L. Zhao, J. Wang, Y. Liang, J. Zhang, Delocalized electronic engineering of Ni5P4 nanoroses for durable Li–O2 batteries. Adv. Mater. 35(35), 2301897 (2023). https://doi.org/10.1002/adma.202301897
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012). https://doi.org/10.1038/nmat3191
- L. Ma, T. Yu, E. Tzoganakis, K. Amine, T. Wu et al., Fundamental understanding and material challenges in rechargeable nonaqueous Li–O2 batteries: recent progress and perspective. Adv. Energy Mater. 8(22), 1800348 (2018). https://doi.org/10.1002/aenm.201800348
- Y. Zhou, S. Guo, Recent advances in cathode catalyst architecture for lithium–oxygen batteries. eScience 3(4), 100123 (2023). https://doi.org/10.1016/j.esci.2023.100123
- T. Jian, W. Ma, C. Xu, H. Liu, J. Wang, Intermetallic-driven highly reversible electrocatalysis in Li–CO2 battery over nanoporous Ni3Al/Ni heterostructure. eScience 3(3), 100114 (2023). https://doi.org/10.1016/j.esci.2023.100114
- G. Yue, Z. Hong, Y. Xia, T. Yang, Y. Wu, Bifunctional electrocatalysts materials for non-aqueous Li–air batteries. Coatings 12(8), 1227 (2022). https://doi.org/10.3390/coatings12081227
- N. Sahu, J.N. Behera, MOF-derived Co3S4 nanops embedded in nitrogen-doped carbon for electrochemical oxygen production. ACS Appl. Nano Mater. 6(9), 7686–7693 (2023). https://doi.org/10.1021/acsanm.3c00845
- M. Chauhan, K.P. Reddy, C.S. Gopinath, S. Deka, Copper cobalt sulfide nanosheets realizing a promising electrocatalytic oxygen evolution reaction. ACS Catal. 7(9), 5871–5879 (2017). https://doi.org/10.1021/acscatal.7b01831
- Y. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai et al., Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew. Chem. 127(38), 11383–11387 (2015). https://doi.org/10.1002/ange.201505320
- Q. Wang, H. Xu, X. Qian, G. He, H. Chen, Sulfur vacancies engineered self-supported Co3S4 nanoflowers as an efficient bifunctional catalyst for electrochemical water splitting. Appl. Catal. B Environ. 322, 122104 (2023). https://doi.org/10.1016/j.apcatb.2022.122104
- B. Yang, C. Gu, Q. Zhao, G. Zhou, L. Xu et al., Reactive template-engaged synthesis of Ni-doped Co3S4 hollow and porous nanospheres with optimal electronic modulation toward high-efficiency electrochemical oxygen evolution. Inorg. Chem. Front. 9(15), 3924–3932 (2022). https://doi.org/10.1039/D2QI00896C
- X. Wang, M. Yu, X. Feng, Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis. eScience 3(4), 100141 (2023). https://doi.org/10.1016/j.esci.2023.100141
- L. Bo, W. Shi, F. Nian, Y. Hu, L. Pu et al., Interface engineering of Co3S4@Co3O4/N, S-doped carbon core@shell nanostructures serve as an excellent bifunctional ORR/OER electrocatalyst for rechargeable Zn-air battery. Sep. Purif. Technol. 307, 122536 (2023). https://doi.org/10.1016/j.seppur.2022.122536
- S. Kumar, R. Kumar, N. Goyal, A. Vazhayil, A. Yadav et al., N-doped carbon nanotubes nucleated through cobalt nanops as bifunctional catalysts for zinc–air batteries. ACS Appl. Nano Mater. 7(7), 7865–7882 (2024). https://doi.org/10.1021/acsanm.4c00479
- H. He, D. Huang, Q. Gan, J. Hao, S. Liu et al., Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 13(10), 11843–11852 (2019). https://doi.org/10.1021/acsnano.9b05865
- S. Zhang, L. Sun, L. Yu, G. Zhai, L. Li et al., Core–shell CoSe2/WSe2 heterostructures@carbon in porous carbon nanosheets as advanced anode for sodium ion batteries. Small 17(49), 2103005 (2021). https://doi.org/10.1002/smll.202103005
- G. Zhang, H. Liu, J. Qu, J. Li, Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ. Sci. 9(4), 1190–1209 (2016). https://doi.org/10.1039/c5ee03761a
- D. Tan, M. Willatzen, Z.L. Wang, Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures. Nano Energy 56, 512–515 (2019). https://doi.org/10.1016/j.nanoen.2018.11.073
- R. Suzuki, M. Sakano, Y.J. Zhang, R. Akashi, D. Morikawa et al., Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9(8), 611–617 (2014). https://doi.org/10.1038/nnano.2014.148
- A. Hu, J. Long, C. Shu, R. Liang, J. Li, Three-dimensional interconnected network architecture with homogeneously dispersed carbon nanotubes and layered MoS2 as a highly efficient cathode catalyst for lithium-oxygen battery. ACS Appl. Mater. Interfaces 10(40), 34077–34086 (2018). https://doi.org/10.1021/acsami.8b06912
- Z.-L. Wang, D. Xu, J.-J. Xu, L.-L. Zhang, X.-B. Zhang, Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 22(17), 3699–3705 (2012). https://doi.org/10.1002/adfm.201200403
- X. Wang, Y. Li, X. Bi, L. Ma, T. Wu et al., Hybrid li-ion and li-O2 battery enabled by oxyhalogen-sulfur electrochemistry. Joule 2(11), 2381–2392 (2018). https://doi.org/10.1016/j.joule.2018.07.019
- A. Hu, C. Shu, X. Qiu, M. Li, R. Zheng et al., Improved cyclability of lithium–oxygen batteries by synergistic catalytic effects of two-dimensional MoS2 nanosheets anchored on hollow carbon spheres. ACS Sustainable Chem. Eng. 7(7), 6929–6938 (2019). https://doi.org/10.1021/acssuschemeng.8b06496
- X. Cao, Z. Chen, N. Wang, Z. Han, X. Zheng et al., Defected molybdenum disulfide catalyst engineered by nitrogen doping for advanced lithium–oxygen battery. Electrochim. Acta 383, 138369 (2021). https://doi.org/10.1016/j.electacta.2021.138369
- X. Cao, Y. Zhang, C. Lu, K. Fang, L. Chen et al., Synergistic dual atomic sites with localized electronic modulation enable high-performance lithium–oxygen batteries. Chem. Eng. J. 466, 143351 (2023). https://doi.org/10.1016/j.cej.2023.143351
- F. Gong, S. Ye, M. Liu, J. Zhang, L. Gong et al., Boosting electrochemical oxygen evolution over yolk-shell structured O-MoS2 nanoreactors with sulfur vacancy and decorated Pt nanops. Nano Energy 78, 105284 (2020). https://doi.org/10.1016/j.nanoen.2020.105284
- Z. Sun, J. He, M. Yuan, L. Lin, Z. Zhang et al., Li+-clipping for edge S-vacancy MoS2 quantum dots as an efficient bifunctional electrocatalyst enabling discharge growth of amorphous Li2O2 film. Nano Energy 65, 103996 (2019). https://doi.org/10.1016/j.nanoen.2019.103996
- Y. Huang, Y. Sun, X. Zheng, T. Aoki, B. Pattengale et al., Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 10(1), 982 (2019). https://doi.org/10.1038/s41467-019-08877-9
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen et al., Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6(8), 7311–7317 (2012). https://doi.org/10.1021/nn302422x
- S. Feng, J.R. Lunger, J.A. Johnson, Y. Shao-Horn, Hot lithium-oxygen batteries charge ahead. Science 361(6404), 758 (2018). https://doi.org/10.1126/science.aau4792
- S.S. Chou, N. Sai, P. Lu, E.N. Coker, S. Liu et al., Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat. Commun. 6, 8311 (2015). https://doi.org/10.1038/ncomms9311
- Y. Feng, T. Zhang, J. Zhang, H. Fan, C. He et al., 3D 1T-MoS2/CoS2 heterostructure via interface engineering for ultrafast hydrogen evolution reaction. Small 16(33), 2002850 (2020). https://doi.org/10.1002/smll.202002850
- S.M. Abdel-Azim, M.M. Younus, A.S. Dhmees, M. Pannipara, S. Wageh et al., Facile synthesis of ZnS/1T-2H MoS2nanocomposite for boosted adsorption/photocatalytic degradation of methylene blue under visiblelight. Environ. Sci. Pollut. Res. Int. 29(57), 86825–86839 (2022). https://doi.org/10.1007/s11356-022-21255-1
- D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Fei et al., Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 5(6), 2681–2688 (2017). https://doi.org/10.1039/C6TA09409K
- Z. Zhou, L. Zhao, J. Wang, Y. Zhang, Y. Li et al., Optimizing eg orbital occupancy of transition metal sulfides by building internal electric fields to adjust the adsorption of oxygenated intermediates for Li-O2 batteries. Small 19(41), 2302598 (2023). https://doi.org/10.1002/smll.202302598
- Z. Lei, J. Zhan, L. Tang, Y. Zhang, Y. Wang, Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 8(19), 1703482 (2018). https://doi.org/10.1002/aenm.201703482
- C.-H. Li, C.-Z. Yuan, X. Huang, H. Zhao, F. Wu et al., Tailoring the electron redistribution of RuO2 by constructing a Ru-O-La asymmetric configuration for efficient acidic oxygen evolution. eScience 5(1), 100307 (2025). https://doi.org/10.1016/j.esci.2024.100307
- D.W. Kim, J. Kim, J.H. Choi, D.H. Jung, J.K. Kang, Trifunctional graphene-sandwiched heterojunction-embedded layered lattice electrocatalyst for high performance in Zn-air battery-driven water splitting. Adv. Sci. 11(42), 2408869 (2024). https://doi.org/10.1002/advs.202408869
- O. Peng, R. Shi, J. Wang, X. Zhang, J. Miao et al., Hierarchical heterostructured nickle foam–supported Co3S4 nanorod arrays embellished with edge-exposed MoS2 nanoflakes for enhanced alkaline hydrogen evolution reaction. Mater. Today Energy 18, 100513 (2020). https://doi.org/10.1016/j.mtener.2020.100513
- J. Sun, Z. Zhang, G. Lian, Y. Li, L. Jing et al., Electron-injection and atomic-interface engineering toward stabilized defected 1T-rich MoS2 as high rate anode for sodium storage. ACS Nano 16(8), 12425–12436 (2022). https://doi.org/10.1021/acsnano.2c03623
- S. Wang, D. Zhang, B. Li, C. Zhang, Z. Du et al., Ultrastable in-plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 8(25), 1801345 (2018). https://doi.org/10.1002/aenm.201801345
- S. Kim, O. Kwon, C. Kim, O. Gwon, H.Y. Jeong et al., Strategy for enhancing interfacial effect of bifunctional electrocatalyst: infiltration of cobalt nanooxide on perovskite. Adv. Mater. Interfaces 5(12), 1800123 (2018). https://doi.org/10.1002/admi.201800123
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
- J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 3(7), 546–550 (2011). https://doi.org/10.1038/nchem.1069
- G. Zhang, H. Yu, X. Li, X. Zhang, C. Hou et al., Construction of MnS/MoS2 heterostructure on two-dimensional MoS2 surface to regulate the reaction pathways for high-performance Li-O2 batteries. J. Energy Chem. 93, 443–452 (2024). https://doi.org/10.1016/j.jechem.2024.01.076
- Y. Xia, T. Yang, Z. Wang, T. Mao, Z. Hong et al., Van der Waals forces between S and P ions at the CoP-C@MoS2/C heterointerface with enhanced lithium/sodium storage. Adv. Funct. Mater. 33(35), 2302830 (2023). https://doi.org/10.1002/adfm.202302830
- X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu et al., Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4(8), 690–699 (2019). https://doi.org/10.1038/s41560-019-0431-1
- X. Wang, Y. Zhang, H. Si, Q. Zhang, J. Wu et al., Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 142(9), 4298–4308 (2020). https://doi.org/10.1021/jacs.9b12113
- X. Han, L. Zhao, Y. Liang, J. Wang, Y. Long et al., Interfacial electron redistribution on lattice-matching NiS2/NiSe2 homologous heterocages with dual-phase synergy to tune the formation routes of Li2O2. Adv. Energy Mater. 12(47), 2202747 (2022). https://doi.org/10.1002/aenm.202202747
- W. Song, S. Zhou, S. Hu, W. Lai, Y. Lian et al., Surface engineering of CoMoS nanosulfide for hydrodeoxygenation of lignin-derived phenols to arenes. ACS Catal. 9(1), 259–268 (2019). https://doi.org/10.1021/acscatal.8b03402
- J. Liu, Y. Zhao, X. Li, C. Wang, Y. Zeng et al., CuCr2O4@rGO nanocomposites as high-performance cathode catalyst for rechargeable lithium-oxygen batteries. Nano-Micro Lett. 10(2), 22 (2018). https://doi.org/10.1007/s40820-017-0175-z
- X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo et al., Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 7, 10672 (2016). https://doi.org/10.1038/ncomms10672
- M.-Q. Wang, C. Ye, S.-J. Bao, Z.-Y. Chen, H. Liu et al., Ternary NixCo3−xS4 with a fine hollow nanostructure as a robust electrocatalyst for hydrogen evolution. ChemCatChem 9(22), 4169–4174 (2017). https://doi.org/10.1002/cctc.201700935
- Y. Xia, Z. Hong, L. Wang, X. Jin, S. Lin et al., Constructing the double oxygen vacancy in Ni-doped Co3O4 to enhance the electrochemical performance in lithium-oxygen batteries. J. Power. Sources 635, 236542 (2025). https://doi.org/10.1016/j.jpowsour.2025.236542
- X. Chen, Y. Zhang, C. Chen, H. Li, Y. Lin et al., Atomically dispersed ruthenium catalysts with open hollow structure for lithium-oxygen batteries. Nano-Micro Lett. 16(1), 27 (2023). https://doi.org/10.1007/s40820-023-01240-0
- Y. Xia, L. Wang, G. Gao, T. Mao, Z. Wang et al., Constructed Mott-schottky heterostructure catalyst to trigger interface disturbance and manipulate redox kinetics in Li-O2 battery. Nano-Micro Lett. 16(1), 258 (2024). https://doi.org/10.1007/s40820-024-01476-4
- C.A.F. Nason, A.P. Vijaya Kumar Saroja, Y. Lu, R. Wei, Y. Han et al., Layered potassium titanium niobate/reduced graphene oxide nanocomposite as a potassium-ion battery anode. Nano-Micro Lett. 16(1), 1 (2023). https://doi.org/10.1007/s40820-023-01222-2
- T. Yang, Y. Xia, T. Mao, Q. Ding, Z. Wang et al., Phosphorus vacancies and heterojunction interface as effective lithium-peroxide promoter for long-cycle life lithium–oxygen batteries. Adv. Funct. Mater. 32(49), 2209876 (2022). https://doi.org/10.1002/adfm.202209876
- S. Ma, Y. Wu, J. Wang, Y. Zhang, Y. Zhang et al., Reversibility of noble metal-catalyzed aprotic Li-O₂ batteries. Nano Lett. 15(12), 8084–8090 (2015). https://doi.org/10.1021/acs.nanolett.5b03510
- T. Bai, J. Wang, H. Zhang, F. Ji, W. Song et al., Atomic Ni-catalyzed cathode and stabilized Li metal anode for high-performance Li–O2 batteries. eScience 5(1), 100310 (2025). https://doi.org/10.1016/j.esci.2024.100310
- Z. Lian, Y. Lu, S. Zhao, Z. Li, Q. Liu, Engineering the electronic interaction between atomically dispersed Fe and RuO2 attaining high catalytic activity and durability catalyst for Li-O2 battery. Adv. Sci. 10(9), 2205975 (2023). https://doi.org/10.1002/advs.202205975
- S. Guan, X. Li, Y. Zhao, G. Han, S. Lou et al., Single-atom tailored transition metal oxide enhances d-p hybridization in catalytic conversion for lithium-oxygen batteries. Chem. Eng. J. 488, 151064 (2024). https://doi.org/10.1016/j.cej.2024.151064
- Q. Lv, Z. Zhu, Y. Ni, J. Geng, F. Li, Spin-state manipulation of two-dimensional metal–organic framework with enhanced metal–oxygen covalency for lithium-oxygen batteries. Angew. Chem. Int. Ed. 61(8), e202114293 (2022). https://doi.org/10.1002/anie.202114293
- A.J. Medford, A. Vojvodic, J.S. Hummelshøj, J. Voss, F. Abild-Pedersen et al., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015). https://doi.org/10.1016/j.jcat.2014.12.033
- J. Tian, Y. Rao, W. Shi, J. Yang, W. Ning et al., Sabatier relations in electrocatalysts based on high-entropy alloys with wide-distributed d-band centers for Li-O2 batteries. Angew. Chem. Int. Ed. 62(44), e202310894 (2023). https://doi.org/10.1002/anie.202310894
- Y. Liu, J. Cai, J. Zhou, Y. Zang, X. Zheng et al., Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li–O2 batteries. eScience 2(4), 389–398 (2022). https://doi.org/10.1016/j.esci.2022.06.002
References
X. Han, L. Zhao, J. Wang, Y. Liang, J. Zhang, Delocalized electronic engineering of Ni5P4 nanoroses for durable Li–O2 batteries. Adv. Mater. 35(35), 2301897 (2023). https://doi.org/10.1002/adma.202301897
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012). https://doi.org/10.1038/nmat3191
L. Ma, T. Yu, E. Tzoganakis, K. Amine, T. Wu et al., Fundamental understanding and material challenges in rechargeable nonaqueous Li–O2 batteries: recent progress and perspective. Adv. Energy Mater. 8(22), 1800348 (2018). https://doi.org/10.1002/aenm.201800348
Y. Zhou, S. Guo, Recent advances in cathode catalyst architecture for lithium–oxygen batteries. eScience 3(4), 100123 (2023). https://doi.org/10.1016/j.esci.2023.100123
T. Jian, W. Ma, C. Xu, H. Liu, J. Wang, Intermetallic-driven highly reversible electrocatalysis in Li–CO2 battery over nanoporous Ni3Al/Ni heterostructure. eScience 3(3), 100114 (2023). https://doi.org/10.1016/j.esci.2023.100114
G. Yue, Z. Hong, Y. Xia, T. Yang, Y. Wu, Bifunctional electrocatalysts materials for non-aqueous Li–air batteries. Coatings 12(8), 1227 (2022). https://doi.org/10.3390/coatings12081227
N. Sahu, J.N. Behera, MOF-derived Co3S4 nanops embedded in nitrogen-doped carbon for electrochemical oxygen production. ACS Appl. Nano Mater. 6(9), 7686–7693 (2023). https://doi.org/10.1021/acsanm.3c00845
M. Chauhan, K.P. Reddy, C.S. Gopinath, S. Deka, Copper cobalt sulfide nanosheets realizing a promising electrocatalytic oxygen evolution reaction. ACS Catal. 7(9), 5871–5879 (2017). https://doi.org/10.1021/acscatal.7b01831
Y. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai et al., Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew. Chem. 127(38), 11383–11387 (2015). https://doi.org/10.1002/ange.201505320
Q. Wang, H. Xu, X. Qian, G. He, H. Chen, Sulfur vacancies engineered self-supported Co3S4 nanoflowers as an efficient bifunctional catalyst for electrochemical water splitting. Appl. Catal. B Environ. 322, 122104 (2023). https://doi.org/10.1016/j.apcatb.2022.122104
B. Yang, C. Gu, Q. Zhao, G. Zhou, L. Xu et al., Reactive template-engaged synthesis of Ni-doped Co3S4 hollow and porous nanospheres with optimal electronic modulation toward high-efficiency electrochemical oxygen evolution. Inorg. Chem. Front. 9(15), 3924–3932 (2022). https://doi.org/10.1039/D2QI00896C
X. Wang, M. Yu, X. Feng, Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis. eScience 3(4), 100141 (2023). https://doi.org/10.1016/j.esci.2023.100141
L. Bo, W. Shi, F. Nian, Y. Hu, L. Pu et al., Interface engineering of Co3S4@Co3O4/N, S-doped carbon core@shell nanostructures serve as an excellent bifunctional ORR/OER electrocatalyst for rechargeable Zn-air battery. Sep. Purif. Technol. 307, 122536 (2023). https://doi.org/10.1016/j.seppur.2022.122536
S. Kumar, R. Kumar, N. Goyal, A. Vazhayil, A. Yadav et al., N-doped carbon nanotubes nucleated through cobalt nanops as bifunctional catalysts for zinc–air batteries. ACS Appl. Nano Mater. 7(7), 7865–7882 (2024). https://doi.org/10.1021/acsanm.4c00479
H. He, D. Huang, Q. Gan, J. Hao, S. Liu et al., Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 13(10), 11843–11852 (2019). https://doi.org/10.1021/acsnano.9b05865
S. Zhang, L. Sun, L. Yu, G. Zhai, L. Li et al., Core–shell CoSe2/WSe2 heterostructures@carbon in porous carbon nanosheets as advanced anode for sodium ion batteries. Small 17(49), 2103005 (2021). https://doi.org/10.1002/smll.202103005
G. Zhang, H. Liu, J. Qu, J. Li, Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ. Sci. 9(4), 1190–1209 (2016). https://doi.org/10.1039/c5ee03761a
D. Tan, M. Willatzen, Z.L. Wang, Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures. Nano Energy 56, 512–515 (2019). https://doi.org/10.1016/j.nanoen.2018.11.073
R. Suzuki, M. Sakano, Y.J. Zhang, R. Akashi, D. Morikawa et al., Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9(8), 611–617 (2014). https://doi.org/10.1038/nnano.2014.148
A. Hu, J. Long, C. Shu, R. Liang, J. Li, Three-dimensional interconnected network architecture with homogeneously dispersed carbon nanotubes and layered MoS2 as a highly efficient cathode catalyst for lithium-oxygen battery. ACS Appl. Mater. Interfaces 10(40), 34077–34086 (2018). https://doi.org/10.1021/acsami.8b06912
Z.-L. Wang, D. Xu, J.-J. Xu, L.-L. Zhang, X.-B. Zhang, Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 22(17), 3699–3705 (2012). https://doi.org/10.1002/adfm.201200403
X. Wang, Y. Li, X. Bi, L. Ma, T. Wu et al., Hybrid li-ion and li-O2 battery enabled by oxyhalogen-sulfur electrochemistry. Joule 2(11), 2381–2392 (2018). https://doi.org/10.1016/j.joule.2018.07.019
A. Hu, C. Shu, X. Qiu, M. Li, R. Zheng et al., Improved cyclability of lithium–oxygen batteries by synergistic catalytic effects of two-dimensional MoS2 nanosheets anchored on hollow carbon spheres. ACS Sustainable Chem. Eng. 7(7), 6929–6938 (2019). https://doi.org/10.1021/acssuschemeng.8b06496
X. Cao, Z. Chen, N. Wang, Z. Han, X. Zheng et al., Defected molybdenum disulfide catalyst engineered by nitrogen doping for advanced lithium–oxygen battery. Electrochim. Acta 383, 138369 (2021). https://doi.org/10.1016/j.electacta.2021.138369
X. Cao, Y. Zhang, C. Lu, K. Fang, L. Chen et al., Synergistic dual atomic sites with localized electronic modulation enable high-performance lithium–oxygen batteries. Chem. Eng. J. 466, 143351 (2023). https://doi.org/10.1016/j.cej.2023.143351
F. Gong, S. Ye, M. Liu, J. Zhang, L. Gong et al., Boosting electrochemical oxygen evolution over yolk-shell structured O-MoS2 nanoreactors with sulfur vacancy and decorated Pt nanops. Nano Energy 78, 105284 (2020). https://doi.org/10.1016/j.nanoen.2020.105284
Z. Sun, J. He, M. Yuan, L. Lin, Z. Zhang et al., Li+-clipping for edge S-vacancy MoS2 quantum dots as an efficient bifunctional electrocatalyst enabling discharge growth of amorphous Li2O2 film. Nano Energy 65, 103996 (2019). https://doi.org/10.1016/j.nanoen.2019.103996
Y. Huang, Y. Sun, X. Zheng, T. Aoki, B. Pattengale et al., Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 10(1), 982 (2019). https://doi.org/10.1038/s41467-019-08877-9
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen et al., Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6(8), 7311–7317 (2012). https://doi.org/10.1021/nn302422x
S. Feng, J.R. Lunger, J.A. Johnson, Y. Shao-Horn, Hot lithium-oxygen batteries charge ahead. Science 361(6404), 758 (2018). https://doi.org/10.1126/science.aau4792
S.S. Chou, N. Sai, P. Lu, E.N. Coker, S. Liu et al., Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat. Commun. 6, 8311 (2015). https://doi.org/10.1038/ncomms9311
Y. Feng, T. Zhang, J. Zhang, H. Fan, C. He et al., 3D 1T-MoS2/CoS2 heterostructure via interface engineering for ultrafast hydrogen evolution reaction. Small 16(33), 2002850 (2020). https://doi.org/10.1002/smll.202002850
S.M. Abdel-Azim, M.M. Younus, A.S. Dhmees, M. Pannipara, S. Wageh et al., Facile synthesis of ZnS/1T-2H MoS2nanocomposite for boosted adsorption/photocatalytic degradation of methylene blue under visiblelight. Environ. Sci. Pollut. Res. Int. 29(57), 86825–86839 (2022). https://doi.org/10.1007/s11356-022-21255-1
D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Fei et al., Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 5(6), 2681–2688 (2017). https://doi.org/10.1039/C6TA09409K
Z. Zhou, L. Zhao, J. Wang, Y. Zhang, Y. Li et al., Optimizing eg orbital occupancy of transition metal sulfides by building internal electric fields to adjust the adsorption of oxygenated intermediates for Li-O2 batteries. Small 19(41), 2302598 (2023). https://doi.org/10.1002/smll.202302598
Z. Lei, J. Zhan, L. Tang, Y. Zhang, Y. Wang, Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 8(19), 1703482 (2018). https://doi.org/10.1002/aenm.201703482
C.-H. Li, C.-Z. Yuan, X. Huang, H. Zhao, F. Wu et al., Tailoring the electron redistribution of RuO2 by constructing a Ru-O-La asymmetric configuration for efficient acidic oxygen evolution. eScience 5(1), 100307 (2025). https://doi.org/10.1016/j.esci.2024.100307
D.W. Kim, J. Kim, J.H. Choi, D.H. Jung, J.K. Kang, Trifunctional graphene-sandwiched heterojunction-embedded layered lattice electrocatalyst for high performance in Zn-air battery-driven water splitting. Adv. Sci. 11(42), 2408869 (2024). https://doi.org/10.1002/advs.202408869
O. Peng, R. Shi, J. Wang, X. Zhang, J. Miao et al., Hierarchical heterostructured nickle foam–supported Co3S4 nanorod arrays embellished with edge-exposed MoS2 nanoflakes for enhanced alkaline hydrogen evolution reaction. Mater. Today Energy 18, 100513 (2020). https://doi.org/10.1016/j.mtener.2020.100513
J. Sun, Z. Zhang, G. Lian, Y. Li, L. Jing et al., Electron-injection and atomic-interface engineering toward stabilized defected 1T-rich MoS2 as high rate anode for sodium storage. ACS Nano 16(8), 12425–12436 (2022). https://doi.org/10.1021/acsnano.2c03623
S. Wang, D. Zhang, B. Li, C. Zhang, Z. Du et al., Ultrastable in-plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 8(25), 1801345 (2018). https://doi.org/10.1002/aenm.201801345
S. Kim, O. Kwon, C. Kim, O. Gwon, H.Y. Jeong et al., Strategy for enhancing interfacial effect of bifunctional electrocatalyst: infiltration of cobalt nanooxide on perovskite. Adv. Mater. Interfaces 5(12), 1800123 (2018). https://doi.org/10.1002/admi.201800123
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 3(7), 546–550 (2011). https://doi.org/10.1038/nchem.1069
G. Zhang, H. Yu, X. Li, X. Zhang, C. Hou et al., Construction of MnS/MoS2 heterostructure on two-dimensional MoS2 surface to regulate the reaction pathways for high-performance Li-O2 batteries. J. Energy Chem. 93, 443–452 (2024). https://doi.org/10.1016/j.jechem.2024.01.076
Y. Xia, T. Yang, Z. Wang, T. Mao, Z. Hong et al., Van der Waals forces between S and P ions at the CoP-C@MoS2/C heterointerface with enhanced lithium/sodium storage. Adv. Funct. Mater. 33(35), 2302830 (2023). https://doi.org/10.1002/adfm.202302830
X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu et al., Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4(8), 690–699 (2019). https://doi.org/10.1038/s41560-019-0431-1
X. Wang, Y. Zhang, H. Si, Q. Zhang, J. Wu et al., Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 142(9), 4298–4308 (2020). https://doi.org/10.1021/jacs.9b12113
X. Han, L. Zhao, Y. Liang, J. Wang, Y. Long et al., Interfacial electron redistribution on lattice-matching NiS2/NiSe2 homologous heterocages with dual-phase synergy to tune the formation routes of Li2O2. Adv. Energy Mater. 12(47), 2202747 (2022). https://doi.org/10.1002/aenm.202202747
W. Song, S. Zhou, S. Hu, W. Lai, Y. Lian et al., Surface engineering of CoMoS nanosulfide for hydrodeoxygenation of lignin-derived phenols to arenes. ACS Catal. 9(1), 259–268 (2019). https://doi.org/10.1021/acscatal.8b03402
J. Liu, Y. Zhao, X. Li, C. Wang, Y. Zeng et al., CuCr2O4@rGO nanocomposites as high-performance cathode catalyst for rechargeable lithium-oxygen batteries. Nano-Micro Lett. 10(2), 22 (2018). https://doi.org/10.1007/s40820-017-0175-z
X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo et al., Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 7, 10672 (2016). https://doi.org/10.1038/ncomms10672
M.-Q. Wang, C. Ye, S.-J. Bao, Z.-Y. Chen, H. Liu et al., Ternary NixCo3−xS4 with a fine hollow nanostructure as a robust electrocatalyst for hydrogen evolution. ChemCatChem 9(22), 4169–4174 (2017). https://doi.org/10.1002/cctc.201700935
Y. Xia, Z. Hong, L. Wang, X. Jin, S. Lin et al., Constructing the double oxygen vacancy in Ni-doped Co3O4 to enhance the electrochemical performance in lithium-oxygen batteries. J. Power. Sources 635, 236542 (2025). https://doi.org/10.1016/j.jpowsour.2025.236542
X. Chen, Y. Zhang, C. Chen, H. Li, Y. Lin et al., Atomically dispersed ruthenium catalysts with open hollow structure for lithium-oxygen batteries. Nano-Micro Lett. 16(1), 27 (2023). https://doi.org/10.1007/s40820-023-01240-0
Y. Xia, L. Wang, G. Gao, T. Mao, Z. Wang et al., Constructed Mott-schottky heterostructure catalyst to trigger interface disturbance and manipulate redox kinetics in Li-O2 battery. Nano-Micro Lett. 16(1), 258 (2024). https://doi.org/10.1007/s40820-024-01476-4
C.A.F. Nason, A.P. Vijaya Kumar Saroja, Y. Lu, R. Wei, Y. Han et al., Layered potassium titanium niobate/reduced graphene oxide nanocomposite as a potassium-ion battery anode. Nano-Micro Lett. 16(1), 1 (2023). https://doi.org/10.1007/s40820-023-01222-2
T. Yang, Y. Xia, T. Mao, Q. Ding, Z. Wang et al., Phosphorus vacancies and heterojunction interface as effective lithium-peroxide promoter for long-cycle life lithium–oxygen batteries. Adv. Funct. Mater. 32(49), 2209876 (2022). https://doi.org/10.1002/adfm.202209876
S. Ma, Y. Wu, J. Wang, Y. Zhang, Y. Zhang et al., Reversibility of noble metal-catalyzed aprotic Li-O₂ batteries. Nano Lett. 15(12), 8084–8090 (2015). https://doi.org/10.1021/acs.nanolett.5b03510
T. Bai, J. Wang, H. Zhang, F. Ji, W. Song et al., Atomic Ni-catalyzed cathode and stabilized Li metal anode for high-performance Li–O2 batteries. eScience 5(1), 100310 (2025). https://doi.org/10.1016/j.esci.2024.100310
Z. Lian, Y. Lu, S. Zhao, Z. Li, Q. Liu, Engineering the electronic interaction between atomically dispersed Fe and RuO2 attaining high catalytic activity and durability catalyst for Li-O2 battery. Adv. Sci. 10(9), 2205975 (2023). https://doi.org/10.1002/advs.202205975
S. Guan, X. Li, Y. Zhao, G. Han, S. Lou et al., Single-atom tailored transition metal oxide enhances d-p hybridization in catalytic conversion for lithium-oxygen batteries. Chem. Eng. J. 488, 151064 (2024). https://doi.org/10.1016/j.cej.2024.151064
Q. Lv, Z. Zhu, Y. Ni, J. Geng, F. Li, Spin-state manipulation of two-dimensional metal–organic framework with enhanced metal–oxygen covalency for lithium-oxygen batteries. Angew. Chem. Int. Ed. 61(8), e202114293 (2022). https://doi.org/10.1002/anie.202114293
A.J. Medford, A. Vojvodic, J.S. Hummelshøj, J. Voss, F. Abild-Pedersen et al., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015). https://doi.org/10.1016/j.jcat.2014.12.033
J. Tian, Y. Rao, W. Shi, J. Yang, W. Ning et al., Sabatier relations in electrocatalysts based on high-entropy alloys with wide-distributed d-band centers for Li-O2 batteries. Angew. Chem. Int. Ed. 62(44), e202310894 (2023). https://doi.org/10.1002/anie.202310894
Y. Liu, J. Cai, J. Zhou, Y. Zang, X. Zheng et al., Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li–O2 batteries. eScience 2(4), 389–398 (2022). https://doi.org/10.1016/j.esci.2022.06.002