“Proton-Iodine” Regulation of Protonated Polyaniline Catalyst for High-Performance Electrolytic Zn-I2 Batteries
Corresponding Author: Yi Zhao
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 79
Abstract
Low-cost and high-safety aqueous Zn-I2 batteries attract extensive attention for large-scale energy storage systems. However, polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay. Herein, a three-dimensional polyaniline is wrapped by carboxyl-carbon nanotubes (denoted as C-PANI) which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling, thereby improving Zn-I2 batteries. Specifically, carboxyl-carbon nanotubes serve as a proton reservoir for more protonated –NH+ = sites in PANI chains, achieving a direct I0/I− reaction for suppressed polyiodide generation and Zn corrosion. Attributing to this “proton-iodine” regulation, catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible –N = /–NH+– reaction. Therefore, the electrolytic Zn-I2 battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g−1 and ultra-long lifespan over 40,000 cycles. Additionally, a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles, providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.
Highlights:
1 A three-dimensional polyaniline wrapped by carboxyl-carbon nanotubes (denoted as C-PANI) is designed as a catalytic cathode to effectively boost direct I0/I− conversion for improved Zn-I2 batteries.
2 Carboxyl-carbon nanotubes serve as a proton reservoir for more protonated –NH+ = sites in PANI chains, achieving “proton-iodine” regulation for suppressed polyiodide shuttling and Zn corrosion.
3 Electrolytic Zn-I2 battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g−1 and ultra-long lifespan over 40,000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. 122(22), 16610–16751 (2022). https://doi.org/10.1021/acs.chemrev.2c00289
- Q. Li, K.K. Abdalla, J.W. Xiong, Z.H. Song, Y.Y. Wang et al., High-energy and durable aqueous Zn batteries enabled by multi-electron transfer reactions. Energy Mater. 4(4), 400040 (2024). https://doi.org/10.20517/energymater.2024.12
- S. Chen, C. Peng, D. Zhu, C. Zhi, Bifunctionally electrocatalytic bromine redox reaction by single-atom catalysts for high-performance zinc batteries. Adv. Mater. 36(46), 2409810 (2024). https://doi.org/10.1002/adma.202409810
- Z. Xie, Z. Liu, H. Hong, K. Du, R. Luo et al., Discovery of high-capacity asymmetric three-stage redox reactions of iodine for aqueous batteries. J. Am. Chem. Soc. 147(25), 21686–21696 (2025). https://doi.org/10.1021/jacs.5c03581
- J. He, Y. Mu, B. Wu, F. Wu, R. Liao et al., Synergistic effects of Lewis acid–base and Coulombic interactions for high-performance Zn–I2 batteries. Energy Environ. Sci. 17(1), 323–331 (2024). https://doi.org/10.1039/D3EE03297C
- X. Liu, H. Wang, J. Zhong, Z. Ma, W. Liu et al., Cathode material design of static aqueous ZnI2 batteries. J. Energy Storage 84, 110765 (2024). https://doi.org/10.1016/j.est.2024.110765
- Z. Gong, C. Song, C. Bai, X. Zhao, Z. Luo et al., Anchoring high-mass iodine to nanoporous carbon with large-volume micropores and rich pyridine-N sites for high-energy-density and long-life Zn-I2 aqueous battery. Sci. China Mater. 66(2), 556–566 (2023). https://doi.org/10.1007/s40843-022-2195-6
- S.-J. Zhang, J. Hao, H. Li, P.-F. Zhang, Z.-W. Yin et al., Polyiodide confinement by starch enables shuttle-free Zn–iodine batteries. Adv. Mater. 34(23), 2201716 (2022). https://doi.org/10.1002/adma.202201716
- P. Hei, Y. Sai, W. Li, J. Meng, Y. Lin et al., Diatomic catalysts for aqueous zinc-iodine batteries: mechanistic insights and design strategies. Angew. Chem. Int. Ed. 63(49), e202410848 (2024). https://doi.org/10.1002/anie.202410848
- T. Shi, Z. Song, C. Hu, Q. Huang, Y. Lv et al., Low-redox-barrier two-electron p-type phenoselenazine cathode for superior zinc-organic batteries. Angew. Chem. Int. Ed. 64(25), e202501278 (2025). https://doi.org/10.1002/anie.202501278
- W. Cao, T. Hu, Y. Zhao, Z. Li, Y. Hu et al., Tailoring C3N4 host to enable a high-loading iodine electrode for high energy and long cycling Zn–iodine battery. ACS Energy Lett. 10(1), 320–329 (2025). https://doi.org/10.1021/acsenergylett.4c02930
- Y. Zhao, Y. Wang, J. Li, J. Xiong, Q. Li et al., Thermodynamic and kinetic insights for manipulating aqueous Zn battery chemistry: towards future grid-scale renewable energy storage systems. eScience 5(4), 100331 (2025). https://doi.org/10.1016/j.esci.2024.100331
- X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15(1), 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
- H. Sun, P. La, Z. Zhu, W. Liang, B. Yang et al., Capture and reversible storage of volatile iodine by porous carbon with high capacity. J. Mater. Sci. 50(22), 7326–7332 (2015). https://doi.org/10.1007/s10853-015-9289-1
- W. Du, Q. Huang, X. Zheng, Y. Lv, L. Miao et al., High-conversion-efficiency and stable six-electron Zn–I2 batteries enabled by organic iodide/thiazole-linked covalent organic frameworks. Energy Environ. Sci. 18(13), 6540–6547 (2025). https://doi.org/10.1039/D5EE00365B
- G. Chen, Y. Kang, H. Yang, M. Zhang, J. Yang et al., Toward forty thousand-cycle aqueous zinc-iodine battery: simultaneously inhibiting polyiodides shuttle and stabilizing zinc anode through a suspension electrolyte. Adv. Funct. Mater. 33(28), 2300656 (2023). https://doi.org/10.1002/adfm.202300656
- D. Zhang, Y. Chen, X. Zheng, P. Liu, L. Miao et al., Low strain mediated Zn (0002) plane epitaxial plating for highly stable zinc metal batteries. Angew. Chem. Int. Ed. 64(22), e202500380 (2025). https://doi.org/10.1002/anie.202500380
- Y. Kang, G. Chen, H. Hua, M. Zhang, J. Yang et al., A Janus separator based on cation exchange resin and Fe nanops-decorated single-wall carbon nanotubes with triply synergistic effects for high-areal capacity Zn−I2 batteries. Angew. Chem. Int. Ed. 62(22), e202300418 (2023). https://doi.org/10.1002/anie.202300418
- M. Wang, Y. Meng, M. Sajid, Z. Xie, P. Tong et al., Bidentate coordination structure facilitates high-voltage and high-utilization aqueous Zn-I2 batteries. Angew. Chem. Int. Ed. 63(39), e202404784 (2024). https://doi.org/10.1002/anie.202404784
- S. Chen, Y. Ying, S. Wang, L. Ma, H. Huang et al., Solid interhalogen compounds with effective Br0 fixing for stable high-energy zinc batteries. Angew. Chem. Int. Ed. 62(19), e202301467 (2023). https://doi.org/10.1002/anie.202301467
- S. Chen, S. Li, L. Ma, Y. Ying, Z. Wu et al., Asymmetric anion zinc salt derived solid electrolyte interphase enabled long-lifespan aqueous zinc bromine batteries. Angew. Chem. Int. Ed. 63(11), e202319125 (2024). https://doi.org/10.1002/anie.202319125
- X. Liao, Z. Zhu, Y. Liao, K. Fu, Y. Duan et al., Cation adsorption engineering enables dual stabilizations for fast-charging Zn─I2 batteries. Adv. Energy Mater. 14(47), 2402306 (2024). https://doi.org/10.1002/aenm.202402306
- Y. Wang, X. Jin, J. Xiong, Q. Zhu, Q. Li et al., Ultrastable electrolytic Zn–I2 batteries based on nanocarbon wrapped by highly efficient single-atom Fe-NC iodine catalysts. Adv. Mater. 36(30), 2404093 (2024). https://doi.org/10.1002/adma.202404093
- R. Yang, W. Yao, L. Zhou, F. Zhang, Y. Zheng et al., Secondary amines functionalized organocatalytic iodine redox for high-performance aqueous dual-ion batteries. Adv. Mater. 36(23), 2314247 (2024). https://doi.org/10.1002/adma.202314247
- Y. Tan, Z. Chen, Z. Tao, A. Wang, S. Lai et al., A two-dimensional porphyrin coordination supramolecular network cathode for high-performance aqueous dual-ion battery. Angew. Chem. Int. Ed. 62(12), e202217744 (2023). https://doi.org/10.1002/anie.202217744
- Z. Song, Y. Zhao, H. Wang, A. Zhou, X. Jin et al., Dual mechanism with graded energy storage in long-term aqueous zinc-ion batteries achieved using a polymer/vanadium dioxide cathode. Energy Environ. Sci. 17(18), 6666–6675 (2024). https://doi.org/10.1039/D4EE02557A
- Q. Zhang, Y. Ma, Y. Lu, Y. Ni, L. Lin et al., Halogenated Zn2+ solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 144(40), 18435–18443 (2022). https://doi.org/10.1021/jacs.2c06927
- W. Wu, C. Li, Z. Wang, H.-Y. Shi, Y. Song et al., Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries. Chem. Eng. J. 428, 131283 (2022). https://doi.org/10.1016/j.cej.2021.131283
- H.-Y. Shi, Y.-J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57(50), 16359–16363 (2018). https://doi.org/10.1002/anie.201808886
- D. Feng, Y. Jiao, P. Wu, Proton-reservoir hydrogel electrolyte for long-term cycling Zn/PANI batteries in wide temperature range. Angew. Chem. Int. Ed. 62(1), e202215060 (2023). https://doi.org/10.1002/anie.202215060
- K. Gao, S. Ju, S. Li, S. Zhang, J. Liu et al., Decoupling electrochromism and energy storage for flexible quasi-solid-state aqueous electrochromic batteries with high energy density. ACS Nano 17(18), 18359–18371 (2023). https://doi.org/10.1021/acsnano.3c05702
- M.J. Almasi, T. Fanaei Sheikholeslami, M.R. Naghdi, Band gap study of polyaniline and polyaniline/MWNT nanocomposites with in situ polymerization method. Compos. Part B Eng. 96, 63–68 (2016). https://doi.org/10.1016/j.compositesb.2016.04.032
- T.-M. Wu, Y.-W. Lin, C.-S. Liao, Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 43(4), 734–740 (2005). https://doi.org/10.1016/j.carbon.2004.10.043
- Z.-Z. Zhu, G.-C. Wang, M.-Q. Sun, X.-W. Li, C.-Z. Li, Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochim. Acta 56(3), 1366–1372 (2011). https://doi.org/10.1016/j.electacta.2010.10.070
- M. Wang, Y. Cheng, H. Zhao, J. Gao, J. Li et al., A multifunctional organic electrolyte additive for aqueous zinc ion batteries based on polyaniline cathode. Small 19(29), 2302105 (2023). https://doi.org/10.1002/smll.202302105
- L. Zhang, M. Zhang, H. Guo, Z. Tian, L. Ge et al., A universal polyiodide regulation using quaternization engineering toward high value-added and ultra-stable zinc-iodine batteries. Adv. Sci. 9(13), 2105598 (2022). https://doi.org/10.1002/advs.202105598
- Y. Tan, Z. Tao, Y. Zhu, Z. Chen, A. Wang et al., Anchoring I3–via charge-transfer interaction by a coordination supramolecular network cathode for a high-performance aqueous dual-ion battery. ACS Appl. Mater. Interfaces 14(42), 47716–47724 (2022). https://doi.org/10.1021/acsami.2c12962
- X. Miao, Q. Chen, Y. Liu, X. Zhang, Y. Chen et al., Performance comparison of electro-polymerized polypyrrole and polyaniline as cathodes for iodine redox reaction in zinc-iodine batteries. Electrochim. Acta 415, 140206 (2022). https://doi.org/10.1016/j.electacta.2022.140206
- S.-J. Zhang, J. Hao, Y. Zhu, H. Li, Z. Lin et al., pH-triggered molecular switch toward texture-regulated Zn anode. Angew. Chem. Int. Ed. 62(17), e202301570 (2023). https://doi.org/10.1002/anie.202301570
- Y. Liu, Z. Dai, W. Zhang, Y. Jiang, J. Peng et al., Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano 15(5), 9065–9075 (2021). https://doi.org/10.1021/acsnano.1c02215
- X. Zeng, X. Meng, W. Jiang, J. Liu, M. Ling et al., Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc–iodine batteries. ACS Sustainable Chem. Eng. 8(38), 14280–14285 (2020). https://doi.org/10.1021/acssuschemeng.0c05283
- X. Zhang, F. Wu, D. Fang, R. Chen, L. Li, Fluorinated surface engineering towards high-rate and durable potassium-ion battery. Angew. Chem. Int. Ed. 63(28), e202404332 (2024). https://doi.org/10.1002/anie.202404332
- C. Guo, T. Liu, Z. Wang, Y.-X. Wang, M. Steven et al., Regulating the spin-state of cobalt in three-dimensional covalent organic frameworks for high-performance sodium-iodine rechargeable batteries. Angew. Chem. Int. Ed. 64(3), e202415759 (2025). https://doi.org/10.1002/anie.202415759
- X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
- Z. Liu, M. Xi, R. Sheng, Y. Huang, J. Ding et al., Zn(TFSI)2-mediated ring-opening polymerization for electrolyte engineering toward stable aqueous zinc metal batteries. Nano-Micro Lett. 17(1), 120 (2025). https://doi.org/10.1007/s40820-025-01649-9
- C. Zhou, Z. Ding, S. Ying, H. Jiang, Y. Wang et al., Electrode/electrolyte optimization-induced double-layered architecture for high-performance aqueous zinc-(dual) halogen batteries. Nano-Micro Lett. 17(1), 58 (2024). https://doi.org/10.1007/s40820-024-01551-w
- W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I(2) battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14(1), 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
- X. Guo, H. Xu, Y. Tang, Z. Yang, F. Dou et al., Confining iodine into metal-organic framework derived metal-nitrogen-carbon for long-life aqueous zinc-iodine batteries. Adv. Mater. 36(38), 2408317 (2024). https://doi.org/10.1002/adma.202408317
- D. Shen, A.M. Rao, J. Zhou, B. Lu, High-potential cathodes with nitrogen active centres for quasi-solid proton-ion batteries. Angew. Chem. Int. Ed. 61(22), e202201972 (2022). https://doi.org/10.1002/anie.202201972
- N.S.W. Gamage, Y. Shi, C.J. Mudugamuwa, J. Santos-Peña, D.A. Lewis et al., Converting a low-cost industrial polymer into organic cathodes for high mass-loading aqueous zinc-ion batteries. Energy Storage Mater. 72, 103731 (2024). https://doi.org/10.1016/j.ensm.2024.103731
- T. Jiang, D. Shen, Z. Zhang, H. Liu, G. Zhao et al., Battery technologies for grid-scale energy storage. Nat. Rev. Clean Technol. 1(7), 474–492 (2025). https://doi.org/10.1038/s44359-025-00067-9
- M. Wang, J. Ma, Y. Meng, P. Tong, R. Luo et al., In situ formation of solid electrolyte interphase facilitates anode-free aqueous zinc battery. eScience (2025). https://doi.org/10.1016/j.esci.2025.100397
- Y. Meng, M. Wang, J. Wang, X. Huang, X. Zhou et al., Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency. Nat. Commun. 15, 8431 (2024). https://doi.org/10.1038/s41467-024-52611-z
- S. Wang, C. Zhi, A rechargeable Ca/Cl2 battery. Sci. China Chem. 67(9), 2794–2795 (2024). https://doi.org/10.1007/s11426-024-1977-x
- X. Xia, Y. Zhao, Y. Zhao, M. Xu, W. Liu et al., Mo doping provokes two electron reaction in MnO2 with ultrahigh capacity for aqueous zinc ion batteries. Nano Res. 16(2), 2511–2518 (2023). https://doi.org/10.1007/s12274-022-5057-0
References
Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. 122(22), 16610–16751 (2022). https://doi.org/10.1021/acs.chemrev.2c00289
Q. Li, K.K. Abdalla, J.W. Xiong, Z.H. Song, Y.Y. Wang et al., High-energy and durable aqueous Zn batteries enabled by multi-electron transfer reactions. Energy Mater. 4(4), 400040 (2024). https://doi.org/10.20517/energymater.2024.12
S. Chen, C. Peng, D. Zhu, C. Zhi, Bifunctionally electrocatalytic bromine redox reaction by single-atom catalysts for high-performance zinc batteries. Adv. Mater. 36(46), 2409810 (2024). https://doi.org/10.1002/adma.202409810
Z. Xie, Z. Liu, H. Hong, K. Du, R. Luo et al., Discovery of high-capacity asymmetric three-stage redox reactions of iodine for aqueous batteries. J. Am. Chem. Soc. 147(25), 21686–21696 (2025). https://doi.org/10.1021/jacs.5c03581
J. He, Y. Mu, B. Wu, F. Wu, R. Liao et al., Synergistic effects of Lewis acid–base and Coulombic interactions for high-performance Zn–I2 batteries. Energy Environ. Sci. 17(1), 323–331 (2024). https://doi.org/10.1039/D3EE03297C
X. Liu, H. Wang, J. Zhong, Z. Ma, W. Liu et al., Cathode material design of static aqueous ZnI2 batteries. J. Energy Storage 84, 110765 (2024). https://doi.org/10.1016/j.est.2024.110765
Z. Gong, C. Song, C. Bai, X. Zhao, Z. Luo et al., Anchoring high-mass iodine to nanoporous carbon with large-volume micropores and rich pyridine-N sites for high-energy-density and long-life Zn-I2 aqueous battery. Sci. China Mater. 66(2), 556–566 (2023). https://doi.org/10.1007/s40843-022-2195-6
S.-J. Zhang, J. Hao, H. Li, P.-F. Zhang, Z.-W. Yin et al., Polyiodide confinement by starch enables shuttle-free Zn–iodine batteries. Adv. Mater. 34(23), 2201716 (2022). https://doi.org/10.1002/adma.202201716
P. Hei, Y. Sai, W. Li, J. Meng, Y. Lin et al., Diatomic catalysts for aqueous zinc-iodine batteries: mechanistic insights and design strategies. Angew. Chem. Int. Ed. 63(49), e202410848 (2024). https://doi.org/10.1002/anie.202410848
T. Shi, Z. Song, C. Hu, Q. Huang, Y. Lv et al., Low-redox-barrier two-electron p-type phenoselenazine cathode for superior zinc-organic batteries. Angew. Chem. Int. Ed. 64(25), e202501278 (2025). https://doi.org/10.1002/anie.202501278
W. Cao, T. Hu, Y. Zhao, Z. Li, Y. Hu et al., Tailoring C3N4 host to enable a high-loading iodine electrode for high energy and long cycling Zn–iodine battery. ACS Energy Lett. 10(1), 320–329 (2025). https://doi.org/10.1021/acsenergylett.4c02930
Y. Zhao, Y. Wang, J. Li, J. Xiong, Q. Li et al., Thermodynamic and kinetic insights for manipulating aqueous Zn battery chemistry: towards future grid-scale renewable energy storage systems. eScience 5(4), 100331 (2025). https://doi.org/10.1016/j.esci.2024.100331
X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15(1), 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
H. Sun, P. La, Z. Zhu, W. Liang, B. Yang et al., Capture and reversible storage of volatile iodine by porous carbon with high capacity. J. Mater. Sci. 50(22), 7326–7332 (2015). https://doi.org/10.1007/s10853-015-9289-1
W. Du, Q. Huang, X. Zheng, Y. Lv, L. Miao et al., High-conversion-efficiency and stable six-electron Zn–I2 batteries enabled by organic iodide/thiazole-linked covalent organic frameworks. Energy Environ. Sci. 18(13), 6540–6547 (2025). https://doi.org/10.1039/D5EE00365B
G. Chen, Y. Kang, H. Yang, M. Zhang, J. Yang et al., Toward forty thousand-cycle aqueous zinc-iodine battery: simultaneously inhibiting polyiodides shuttle and stabilizing zinc anode through a suspension electrolyte. Adv. Funct. Mater. 33(28), 2300656 (2023). https://doi.org/10.1002/adfm.202300656
D. Zhang, Y. Chen, X. Zheng, P. Liu, L. Miao et al., Low strain mediated Zn (0002) plane epitaxial plating for highly stable zinc metal batteries. Angew. Chem. Int. Ed. 64(22), e202500380 (2025). https://doi.org/10.1002/anie.202500380
Y. Kang, G. Chen, H. Hua, M. Zhang, J. Yang et al., A Janus separator based on cation exchange resin and Fe nanops-decorated single-wall carbon nanotubes with triply synergistic effects for high-areal capacity Zn−I2 batteries. Angew. Chem. Int. Ed. 62(22), e202300418 (2023). https://doi.org/10.1002/anie.202300418
M. Wang, Y. Meng, M. Sajid, Z. Xie, P. Tong et al., Bidentate coordination structure facilitates high-voltage and high-utilization aqueous Zn-I2 batteries. Angew. Chem. Int. Ed. 63(39), e202404784 (2024). https://doi.org/10.1002/anie.202404784
S. Chen, Y. Ying, S. Wang, L. Ma, H. Huang et al., Solid interhalogen compounds with effective Br0 fixing for stable high-energy zinc batteries. Angew. Chem. Int. Ed. 62(19), e202301467 (2023). https://doi.org/10.1002/anie.202301467
S. Chen, S. Li, L. Ma, Y. Ying, Z. Wu et al., Asymmetric anion zinc salt derived solid electrolyte interphase enabled long-lifespan aqueous zinc bromine batteries. Angew. Chem. Int. Ed. 63(11), e202319125 (2024). https://doi.org/10.1002/anie.202319125
X. Liao, Z. Zhu, Y. Liao, K. Fu, Y. Duan et al., Cation adsorption engineering enables dual stabilizations for fast-charging Zn─I2 batteries. Adv. Energy Mater. 14(47), 2402306 (2024). https://doi.org/10.1002/aenm.202402306
Y. Wang, X. Jin, J. Xiong, Q. Zhu, Q. Li et al., Ultrastable electrolytic Zn–I2 batteries based on nanocarbon wrapped by highly efficient single-atom Fe-NC iodine catalysts. Adv. Mater. 36(30), 2404093 (2024). https://doi.org/10.1002/adma.202404093
R. Yang, W. Yao, L. Zhou, F. Zhang, Y. Zheng et al., Secondary amines functionalized organocatalytic iodine redox for high-performance aqueous dual-ion batteries. Adv. Mater. 36(23), 2314247 (2024). https://doi.org/10.1002/adma.202314247
Y. Tan, Z. Chen, Z. Tao, A. Wang, S. Lai et al., A two-dimensional porphyrin coordination supramolecular network cathode for high-performance aqueous dual-ion battery. Angew. Chem. Int. Ed. 62(12), e202217744 (2023). https://doi.org/10.1002/anie.202217744
Z. Song, Y. Zhao, H. Wang, A. Zhou, X. Jin et al., Dual mechanism with graded energy storage in long-term aqueous zinc-ion batteries achieved using a polymer/vanadium dioxide cathode. Energy Environ. Sci. 17(18), 6666–6675 (2024). https://doi.org/10.1039/D4EE02557A
Q. Zhang, Y. Ma, Y. Lu, Y. Ni, L. Lin et al., Halogenated Zn2+ solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 144(40), 18435–18443 (2022). https://doi.org/10.1021/jacs.2c06927
W. Wu, C. Li, Z. Wang, H.-Y. Shi, Y. Song et al., Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries. Chem. Eng. J. 428, 131283 (2022). https://doi.org/10.1016/j.cej.2021.131283
H.-Y. Shi, Y.-J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57(50), 16359–16363 (2018). https://doi.org/10.1002/anie.201808886
D. Feng, Y. Jiao, P. Wu, Proton-reservoir hydrogel electrolyte for long-term cycling Zn/PANI batteries in wide temperature range. Angew. Chem. Int. Ed. 62(1), e202215060 (2023). https://doi.org/10.1002/anie.202215060
K. Gao, S. Ju, S. Li, S. Zhang, J. Liu et al., Decoupling electrochromism and energy storage for flexible quasi-solid-state aqueous electrochromic batteries with high energy density. ACS Nano 17(18), 18359–18371 (2023). https://doi.org/10.1021/acsnano.3c05702
M.J. Almasi, T. Fanaei Sheikholeslami, M.R. Naghdi, Band gap study of polyaniline and polyaniline/MWNT nanocomposites with in situ polymerization method. Compos. Part B Eng. 96, 63–68 (2016). https://doi.org/10.1016/j.compositesb.2016.04.032
T.-M. Wu, Y.-W. Lin, C.-S. Liao, Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 43(4), 734–740 (2005). https://doi.org/10.1016/j.carbon.2004.10.043
Z.-Z. Zhu, G.-C. Wang, M.-Q. Sun, X.-W. Li, C.-Z. Li, Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochim. Acta 56(3), 1366–1372 (2011). https://doi.org/10.1016/j.electacta.2010.10.070
M. Wang, Y. Cheng, H. Zhao, J. Gao, J. Li et al., A multifunctional organic electrolyte additive for aqueous zinc ion batteries based on polyaniline cathode. Small 19(29), 2302105 (2023). https://doi.org/10.1002/smll.202302105
L. Zhang, M. Zhang, H. Guo, Z. Tian, L. Ge et al., A universal polyiodide regulation using quaternization engineering toward high value-added and ultra-stable zinc-iodine batteries. Adv. Sci. 9(13), 2105598 (2022). https://doi.org/10.1002/advs.202105598
Y. Tan, Z. Tao, Y. Zhu, Z. Chen, A. Wang et al., Anchoring I3–via charge-transfer interaction by a coordination supramolecular network cathode for a high-performance aqueous dual-ion battery. ACS Appl. Mater. Interfaces 14(42), 47716–47724 (2022). https://doi.org/10.1021/acsami.2c12962
X. Miao, Q. Chen, Y. Liu, X. Zhang, Y. Chen et al., Performance comparison of electro-polymerized polypyrrole and polyaniline as cathodes for iodine redox reaction in zinc-iodine batteries. Electrochim. Acta 415, 140206 (2022). https://doi.org/10.1016/j.electacta.2022.140206
S.-J. Zhang, J. Hao, Y. Zhu, H. Li, Z. Lin et al., pH-triggered molecular switch toward texture-regulated Zn anode. Angew. Chem. Int. Ed. 62(17), e202301570 (2023). https://doi.org/10.1002/anie.202301570
Y. Liu, Z. Dai, W. Zhang, Y. Jiang, J. Peng et al., Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano 15(5), 9065–9075 (2021). https://doi.org/10.1021/acsnano.1c02215
X. Zeng, X. Meng, W. Jiang, J. Liu, M. Ling et al., Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc–iodine batteries. ACS Sustainable Chem. Eng. 8(38), 14280–14285 (2020). https://doi.org/10.1021/acssuschemeng.0c05283
X. Zhang, F. Wu, D. Fang, R. Chen, L. Li, Fluorinated surface engineering towards high-rate and durable potassium-ion battery. Angew. Chem. Int. Ed. 63(28), e202404332 (2024). https://doi.org/10.1002/anie.202404332
C. Guo, T. Liu, Z. Wang, Y.-X. Wang, M. Steven et al., Regulating the spin-state of cobalt in three-dimensional covalent organic frameworks for high-performance sodium-iodine rechargeable batteries. Angew. Chem. Int. Ed. 64(3), e202415759 (2025). https://doi.org/10.1002/anie.202415759
X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
Z. Liu, M. Xi, R. Sheng, Y. Huang, J. Ding et al., Zn(TFSI)2-mediated ring-opening polymerization for electrolyte engineering toward stable aqueous zinc metal batteries. Nano-Micro Lett. 17(1), 120 (2025). https://doi.org/10.1007/s40820-025-01649-9
C. Zhou, Z. Ding, S. Ying, H. Jiang, Y. Wang et al., Electrode/electrolyte optimization-induced double-layered architecture for high-performance aqueous zinc-(dual) halogen batteries. Nano-Micro Lett. 17(1), 58 (2024). https://doi.org/10.1007/s40820-024-01551-w
W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I(2) battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14(1), 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
X. Guo, H. Xu, Y. Tang, Z. Yang, F. Dou et al., Confining iodine into metal-organic framework derived metal-nitrogen-carbon for long-life aqueous zinc-iodine batteries. Adv. Mater. 36(38), 2408317 (2024). https://doi.org/10.1002/adma.202408317
D. Shen, A.M. Rao, J. Zhou, B. Lu, High-potential cathodes with nitrogen active centres for quasi-solid proton-ion batteries. Angew. Chem. Int. Ed. 61(22), e202201972 (2022). https://doi.org/10.1002/anie.202201972
N.S.W. Gamage, Y. Shi, C.J. Mudugamuwa, J. Santos-Peña, D.A. Lewis et al., Converting a low-cost industrial polymer into organic cathodes for high mass-loading aqueous zinc-ion batteries. Energy Storage Mater. 72, 103731 (2024). https://doi.org/10.1016/j.ensm.2024.103731
T. Jiang, D. Shen, Z. Zhang, H. Liu, G. Zhao et al., Battery technologies for grid-scale energy storage. Nat. Rev. Clean Technol. 1(7), 474–492 (2025). https://doi.org/10.1038/s44359-025-00067-9
M. Wang, J. Ma, Y. Meng, P. Tong, R. Luo et al., In situ formation of solid electrolyte interphase facilitates anode-free aqueous zinc battery. eScience (2025). https://doi.org/10.1016/j.esci.2025.100397
Y. Meng, M. Wang, J. Wang, X. Huang, X. Zhou et al., Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency. Nat. Commun. 15, 8431 (2024). https://doi.org/10.1038/s41467-024-52611-z
S. Wang, C. Zhi, A rechargeable Ca/Cl2 battery. Sci. China Chem. 67(9), 2794–2795 (2024). https://doi.org/10.1007/s11426-024-1977-x
X. Xia, Y. Zhao, Y. Zhao, M. Xu, W. Liu et al., Mo doping provokes two electron reaction in MnO2 with ultrahigh capacity for aqueous zinc ion batteries. Nano Res. 16(2), 2511–2518 (2023). https://doi.org/10.1007/s12274-022-5057-0