Superhydrated Zwitterionic Hydrogel with Dedicated Water Channels Enables Nonfouling Solar Desalination
Corresponding Author: Liangti Qu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 87
Abstract
Solar-driven interfacial desalination (SID) offers a sustainable route for freshwater production, yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions. Zwitterionic polymers offer promising nonfouling capabilities, but current zwitterionic hydrogel-based solar evaporators (HSEs) suffer from inadequate hydration and salt vulnerability. Inspired by the natural marine environmental adaptive characteristics of saltwater fish, we report a superhydrated zwitterionic poly(trimethylamine N-oxide, PTMAO)/polyacrylamide (PAAm)/polypyrrole (PPy) hydrogel (PTAP) with dedicated water channels for efficient, durable, and nonfouling SID. The directly linked N⁺ and O⁻ groups in PTMAO establish a robust hydration shell that facilitates rapid water transport while resisting salt and microbial adhesion. Integrated PAAm and PPy networks enhance mechanical strength and photothermal conversion. PTAP achieves a high evaporation rate of 2.35 kg m−2 h−1 under 1 kW m–2 in 10 wt% NaCl solution, maintaining stable operation over 100 h without salt accumulation. Furthermore, PTAP effectively resists various foulants including proteins, bacterial, and algal adhesion. Molecular dynamics simulations reveal that the exceptional hydration capacity supports its nonfouling properties. This work advances the development of nonfouling HSEs for sustainable solar desalination in real-world marine environments.
Highlights:
1 A superhydrated zwitterionic poly(trimethylamine N-oxide, PTMAO)/polyacrylamide/polypyrrole hydrogel (PTAP) with dedicated water channels is proposed for nonfouling solar desalination.
2 The directly linked N⁺ and O⁻ groups in PTMAO establish a robust hydration shell that facilitates rapid water transport while resisting salt and microbial adhesion.
3 PTAP achieves a high evaporation rate of 2.35 kg m−2 h−1 under 1 kW m–2 in 10 wt% NaCl solution for 100 h without salt accumulation, and can resists various foulants including proteins, bacterial, and algal adhesion.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Dolan, J. Lamontagne, R. Link, M. Hejazi, P. Reed et al., Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12(1), 1915 (2021). https://doi.org/10.1038/s41467-021-22194-0
- Z. Zheng, W. Li, H. Liu, X. Wang, Sustainable interfacial evaporation system based on hierarchical MXene/polydopamine/magnetic phase-change microcapsule composites for solar-driven seawater desalination. ACS Appl. Mater. Interfaces 14(45), 50966–50981 (2022). https://doi.org/10.1021/acsami.2c15212
- S. Chen, Z. Zheng, H. Liu, X. Wang, Highly efficient, antibacterial, and salt-resistant strategy based on carbon black/chitosan-decorated phase-change microcapsules for solar-powered seawater desalination. ACS Appl. Mater. Interfaces 15(13), 16640–16653 (2023). https://doi.org/10.1021/acsami.2c21298
- P. Zhang, F. Liu, Q. Liao, H. Yao, H. Geng et al., A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew. Chem. Int. Ed. 57(50), 16343–16347 (2018). https://doi.org/10.1002/anie.201810345
- H. Liang, Q. Liao, N. Chen, Y. Liang, G. Lv et al., Thermal efficiency of solar steam generation approaching 100 % through capillary water transport. Angew. Chem. Int. Ed. 58(52), 19041–19046 (2019). https://doi.org/10.1002/anie.201911457
- P. Zhang, H. Wang, J. Wang, Z. Ji, L. Qu, Boosting the viable water harvesting in solar vapor generation: from interfacial engineering to devices design. Adv. Mater. 36(5), 2303976 (2024). https://doi.org/10.1002/adma.202303976
- H. Zou, X. Meng, X. Zhao, J. Qiu, Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 35(5), 2207262 (2023). https://doi.org/10.1002/adma.202207262
- Y. Ma, X. Meng, K. Li, L. Zhang, Y. Du et al., Scrutinizing synergy and active site of nitrogen and selenium dual-doped porous carbon for efficient triiodide reduction. ACS Catal. 13(2), 1290–1298 (2023). https://doi.org/10.1021/acscatal.2c05024
- Y. Li, P. Liu, P. Li, Y. Feng, Y. Gao et al., Neural network-inspired hybrid aerogel boosting solar thermal storage and microwave absorption. Nano Res. Energy 3(3), e9120120 (2024). https://doi.org/10.26599/nre.2024.9120120
- W. Li, J. Li, L. Ding, X. Zhu, R. Sun et al., Interfacial assembled hydrogel evaporator for highly efficient thermal management and photothermal coupled water splitting reaction. Adv. Funct. Mater. 34(52), 2411387 (2024). https://doi.org/10.1002/adfm.202411387
- Z. Gong, A. Suwardi, J. Cao, Electricity generation from ambient water evaporation in the absence of sunlight via PVA-based porous hydrogels. Adv. Funct. Mater., 2423371 (2025). https://doi.org/10.1002/adfm.202423371
- J. Hu, M.-M. Pazuki, R. Li, M. Salimi, H. Cai et al., Biomimetic design of breathable 2D photothermal fabric with three-layered structure for efficient four-plane evaporation of seawater. Adv. Mater. 37(14), 2420482 (2025). https://doi.org/10.1002/adma.202420482
- Y. Chen, J. He, C. Ye, S. Tang, Achieving ultrahigh voltage over 100 V and remarkable freshwater harvesting based on thermodiffusion enhanced hydrovoltaic generator. Adv. Energy Mater. 14(24), 2400529 (2024). https://doi.org/10.1002/aenm.202400529
- Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu et al., Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 15(6), 10366–10376 (2021). https://doi.org/10.1021/acsnano.1c02578
- X. Liu, Y. Tian, Y. Wu, A. Caratenuto, F. Chen et al., Seawater desalination derived entirely from ocean biomass. J. Mater. Chem. A 9(39), 22313–22324 (2021). https://doi.org/10.1039/d1ta05068k
- P. Zhang, F. Zhao, W. Shi, H. Lu, X. Zhou et al., Super water-extracting gels for solar-powered volatile organic compounds management in the hydrological cycle. Adv. Mater. 34(12), 2110548 (2022). https://doi.org/10.1002/adma.202110548
- M. Lejars, A. Margaillan, C. Bressy, Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 112(8), 4347–4390 (2012). https://doi.org/10.1021/cr200350v
- C.A. Del Grosso, C. Leng, K. Zhang, H.-C. Hung, S. Jiang et al., Surface hydration for antifouling and bio-adhesion. Chem. Sci. 11(38), 10367–10377 (2020). https://doi.org/10.1039/d0sc03690k
- C. Piyadasa, H.F. Ridgway, T.R. Yeager, M.B. Stewart, C. Pelekani et al., The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes—a review. Desalination 418, 19–34 (2017). https://doi.org/10.1016/j.desal.2017.05.017
- Y. Wang, J. Hu, L. Yu, X. Wu, Y. Zhang et al., Recent strategies for constructing efficient interfacial solar evaporation systems. Nano Res. Energy 2, e9120062 (2023). https://doi.org/10.26599/nre.2023.9120062
- S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu et al., Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12(5), 1558–1567 (2019). https://doi.org/10.1039/C9EE00945K
- X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269
- Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang et al., A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31(23), e1900498 (2019). https://doi.org/10.1002/adma.201900498
- F. Lv, J. Miao, Z. Wang, J. Hu, D. Orejon, Polyanionic electrolyte ionization desalination empowers continuous solar evaporation performance. Adv. Mater. 37(6), 2410290 (2025). https://doi.org/10.1002/adma.202410290
- W. Zhao, H. Gong, Y. Song, B. Li, N. Xu et al., Hierarchically designed salt-resistant solar evaporator based on donnan effect for stable and high-performance brine treatment. Adv. Funct. Mater. 31(23), 2100025 (2021). https://doi.org/10.1002/adfm.202100025
- J. Wu, Z. Cui, Y. Su, D. Wu, J. Hu et al., Tuning on passive interfacial cooling of covalent organic framework hydrogel for enhancing freshwater and electricity generation. SusMat 4(5), e231 (2024). https://doi.org/10.1002/sus2.231
- J. Zeng, Q. Wang, Y. Shi, P. Liu, R. Chen, Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination. Adv. Energy Mater. 9(38), 1900552 (2019). https://doi.org/10.1002/aenm.201900552
- Y. Fang, H. Gao, K. Cheng, L. Bai, Z. Li et al., An overview of photothermal materials for solar-driven interfacial evaporation. Chin. Chem. Lett. 36(3), 109925 (2025). https://doi.org/10.1016/j.cclet.2024.109925
- C. Wen, H. Guo, J. Yang, Q. Li, X. Zhang et al., Zwitterionic hydrogel coated superhydrophilic hierarchical antifouling floater enables unimpeded interfacial steam generation and multi-contamination resistance in complex conditions. Chem. Eng. J. 421, 130344 (2021). https://doi.org/10.1016/j.cej.2021.130344
- Y. Liu, D. Zhang, B. Ren, X. Gong, L. Xu et al., Molecular simulations and understanding of antifouling zwitterionic polymer brushes. J. Mater. Chem. B 8(17), 3814–3828 (2020). https://doi.org/10.1039/d0tb00520g
- C. Lei, W. Guan, Y. Guo, W. Shi, Y. Wang et al., Polyzwitterionic hydrogels for highly efficient high salinity solar desalination. Angew. Chem. Int. Ed. 61(36), e202208487 (2022). https://doi.org/10.1002/anie.202208487
- S.Y. Zheng, J. Zhou, M. Si, S. Wang, F. Zhu et al., A molecularly engineered zwitterionic hydrogel with strengthened anti-polyelectrolyte effect: from high-rate solar desalination to efficient electricity generation. Adv. Funct. Mater. 33(43), 2303272 (2023). https://doi.org/10.1002/adfm.202303272
- H. Yang, Z. Hu, Z. Huang, S. Wu, J. Yan et al., Three-dimensional zwitterionic hydrogel-based evaporators with simultaneous ultrahigh evaporation rates and anti-fouling performance. Nano Energy 127, 109784 (2024). https://doi.org/10.1016/j.nanoen.2024.109784
- B. Li, P. Jain, J. Ma, J.K. Smith, Z. Yuan et al., Trimethylamine N-oxide-derived zwitterionic polymers: a new class of ultralow fouling bioinspired materials. Sci. Adv. 5(6), eaaw9562 (2019). https://doi.org/10.1126/sciadv.aaw9562
- Z. Yu, X. Li, X. Li, B. Zheng, D. Li et al., Nacre-inspired metal-organic framework coatings reinforced by multiscale hierarchical cross-linking for integrated antifouling and anti-microbial corrosion. Adv. Funct. Mater. 33(47), 2305995 (2023). https://doi.org/10.1002/adfm.202305995
- X. Li, C. Tang, D. Liu, Z. Yuan, H.-C. Hung et al., High-strength and nonfouling zwitterionic triple-network hydrogel in saline environments. Adv. Mater. 33(39), e2102479 (2021). https://doi.org/10.1002/adma.202102479
- P. Zhang, H. Wang, Z. Xia, S. Xing, J. Li et al., Hydrogen-bond-repairing solar evaporator with reconstructed large-width channels for durable solarizing seawater. Nano Lett. 24(37), 11615–11623 (2024). https://doi.org/10.1021/acs.nanolett.4c03179
- H. Yao, H. Cheng, Q. Liao, X. Hao, K. Zhu et al., Integrated radiative and evaporative cooling beyond daytime passive cooling power limit. Nano Res. Energy 2, e9120060 (2023). https://doi.org/10.26599/nre.2023.9120060
- Z. Li, L. Li, M. Yue, Q. Peng, X. Pu et al., Tracing immunological interaction in trimethylamine N-oxide hydrogel-derived zwitterionic microenvironment during promoted diabetic wound regeneration. Adv. Mater. 36(33), 2402738 (2024). https://doi.org/10.1002/adma.202402738
- H. Li, J. Sun, S. Qin, Y. Song, Z. Liu et al., Zwitterion functionalized graphene oxide/polyacrylamide/polyacrylic acid hydrogels with photothermal conversion and antibacterial properties for highly efficient uranium extraction from seawater. Adv. Funct. Mater. 33(32), 2301773 (2023). https://doi.org/10.1002/adfm.202301773
- Y. Liu, G. Li, Q. Han, H. Lin, Q. Li et al., Construction of electro-neutral surface on dialysis membrane for improved toxin clearance and anti-coagulation/inflammation through saltwater fish inspired trimethylamine N-oxide (TMAO). J. Membr. Sci. 641, 119900 (2022). https://doi.org/10.1016/j.memsci.2021.119900
- Y. Liu, J. Song, Z. Liu, J. Chen, D. Wang et al., Anti-swelling polyelectrolyte hydrogel with submillimeter lateral confinement for osmotic energy conversion. Nano-Micro Lett. 17(1), 81 (2024). https://doi.org/10.1007/s40820-024-01577-0
- H. Guo, P. Yan, X. Sun, J. Song, F. Zhu et al., Ion-engineered solar desalination: enhancing salt resistance and activated water yield. Chem. Eng. J. 485, 149918 (2024). https://doi.org/10.1016/j.cej.2024.149918
- Z. Zheng, H. Liu, X. Wang, Double-layered hydrogels based on phase change material and pen ink for continuous and efficient solar-driven seawater desalination. Desalination 574, 117276 (2024). https://doi.org/10.1016/j.desal.2023.117276
- W. Li, Z. Zheng, Z. Qian, H. Liu, X. Wang, Phase change material boosting electricity output and freshwater production through hierarchical-structured 3D solar evaporator. Adv. Funct. Mater. 34(26), 2316504 (2024). https://doi.org/10.1002/adfm.202316504
- F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13(6), 489–495 (2018). https://doi.org/10.1038/s41565-018-0097-z
- X. Zhao, X. Meng, H. Zou, Z. Wang, Y. Du et al., Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation. Adv. Funct. Mater. 33(7), 2209207 (2023). https://doi.org/10.1002/adfm.202209207
- X. Zhou, Y. Guo, F. Zhao, W. Shi, G. Yu, Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 32(52), 2007012 (2020). https://doi.org/10.1002/adma.202007012
- F. Wang, J. He, J. Hu, Z. Chen, Y. Shi et al., Photothermal properties of Cu@polycarbonate composites with strong localized surface plasmon resonances. Nano Res. 17(9), 8513–8520 (2024). https://doi.org/10.1007/s12274-024-6805-0
- Y. Xia, Q. Hou, H. Jubaer, Y. Li, Y. Kang et al., Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12(6), 1840–1847 (2019). https://doi.org/10.1039/C9EE00692C
- K. Yang, T. Pan, S. Dang, Q. Gan, Y. Han, Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency. Nat. Commun. 13(1), 6653 (2022). https://doi.org/10.1038/s41467-022-34528-7
- H. Huang, C. Zhang, R. Crisci, T. Lu, H.-C. Hung et al., Strong surface hydration and salt resistant mechanism of a new nonfouling zwitterionic polymer based on protein stabilizer TMAO. J. Am. Chem. Soc. 143(40), 16786–16795 (2021). https://doi.org/10.1021/jacs.1c08280
- Q. Lyu, D.-Y. Kang, S. Hu, L.-C. Lin, Exploiting interior surface functionalization in reverse osmosis desalination membranes to mitigate permeability–selectivity trade-off: molecular simulations of nanotube-based membranes. Desalination 491, 114537 (2020). https://doi.org/10.1016/j.desal.2020.114537
- A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown et al., LAMMPS - a flexible simulation tool for p-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.108171
- X. Hao, H. Yao, P. Zhang, Q. Liao, K. Zhu et al., Multifunctional solar water harvester with high transport selectivity and fouling rejection capacity. Nat. Water. 1(11), 982–991 (2023). https://doi.org/10.1038/s44221-023-00152-y
References
F. Dolan, J. Lamontagne, R. Link, M. Hejazi, P. Reed et al., Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12(1), 1915 (2021). https://doi.org/10.1038/s41467-021-22194-0
Z. Zheng, W. Li, H. Liu, X. Wang, Sustainable interfacial evaporation system based on hierarchical MXene/polydopamine/magnetic phase-change microcapsule composites for solar-driven seawater desalination. ACS Appl. Mater. Interfaces 14(45), 50966–50981 (2022). https://doi.org/10.1021/acsami.2c15212
S. Chen, Z. Zheng, H. Liu, X. Wang, Highly efficient, antibacterial, and salt-resistant strategy based on carbon black/chitosan-decorated phase-change microcapsules for solar-powered seawater desalination. ACS Appl. Mater. Interfaces 15(13), 16640–16653 (2023). https://doi.org/10.1021/acsami.2c21298
P. Zhang, F. Liu, Q. Liao, H. Yao, H. Geng et al., A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew. Chem. Int. Ed. 57(50), 16343–16347 (2018). https://doi.org/10.1002/anie.201810345
H. Liang, Q. Liao, N. Chen, Y. Liang, G. Lv et al., Thermal efficiency of solar steam generation approaching 100 % through capillary water transport. Angew. Chem. Int. Ed. 58(52), 19041–19046 (2019). https://doi.org/10.1002/anie.201911457
P. Zhang, H. Wang, J. Wang, Z. Ji, L. Qu, Boosting the viable water harvesting in solar vapor generation: from interfacial engineering to devices design. Adv. Mater. 36(5), 2303976 (2024). https://doi.org/10.1002/adma.202303976
H. Zou, X. Meng, X. Zhao, J. Qiu, Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 35(5), 2207262 (2023). https://doi.org/10.1002/adma.202207262
Y. Ma, X. Meng, K. Li, L. Zhang, Y. Du et al., Scrutinizing synergy and active site of nitrogen and selenium dual-doped porous carbon for efficient triiodide reduction. ACS Catal. 13(2), 1290–1298 (2023). https://doi.org/10.1021/acscatal.2c05024
Y. Li, P. Liu, P. Li, Y. Feng, Y. Gao et al., Neural network-inspired hybrid aerogel boosting solar thermal storage and microwave absorption. Nano Res. Energy 3(3), e9120120 (2024). https://doi.org/10.26599/nre.2024.9120120
W. Li, J. Li, L. Ding, X. Zhu, R. Sun et al., Interfacial assembled hydrogel evaporator for highly efficient thermal management and photothermal coupled water splitting reaction. Adv. Funct. Mater. 34(52), 2411387 (2024). https://doi.org/10.1002/adfm.202411387
Z. Gong, A. Suwardi, J. Cao, Electricity generation from ambient water evaporation in the absence of sunlight via PVA-based porous hydrogels. Adv. Funct. Mater., 2423371 (2025). https://doi.org/10.1002/adfm.202423371
J. Hu, M.-M. Pazuki, R. Li, M. Salimi, H. Cai et al., Biomimetic design of breathable 2D photothermal fabric with three-layered structure for efficient four-plane evaporation of seawater. Adv. Mater. 37(14), 2420482 (2025). https://doi.org/10.1002/adma.202420482
Y. Chen, J. He, C. Ye, S. Tang, Achieving ultrahigh voltage over 100 V and remarkable freshwater harvesting based on thermodiffusion enhanced hydrovoltaic generator. Adv. Energy Mater. 14(24), 2400529 (2024). https://doi.org/10.1002/aenm.202400529
Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu et al., Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 15(6), 10366–10376 (2021). https://doi.org/10.1021/acsnano.1c02578
X. Liu, Y. Tian, Y. Wu, A. Caratenuto, F. Chen et al., Seawater desalination derived entirely from ocean biomass. J. Mater. Chem. A 9(39), 22313–22324 (2021). https://doi.org/10.1039/d1ta05068k
P. Zhang, F. Zhao, W. Shi, H. Lu, X. Zhou et al., Super water-extracting gels for solar-powered volatile organic compounds management in the hydrological cycle. Adv. Mater. 34(12), 2110548 (2022). https://doi.org/10.1002/adma.202110548
M. Lejars, A. Margaillan, C. Bressy, Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 112(8), 4347–4390 (2012). https://doi.org/10.1021/cr200350v
C.A. Del Grosso, C. Leng, K. Zhang, H.-C. Hung, S. Jiang et al., Surface hydration for antifouling and bio-adhesion. Chem. Sci. 11(38), 10367–10377 (2020). https://doi.org/10.1039/d0sc03690k
C. Piyadasa, H.F. Ridgway, T.R. Yeager, M.B. Stewart, C. Pelekani et al., The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes—a review. Desalination 418, 19–34 (2017). https://doi.org/10.1016/j.desal.2017.05.017
Y. Wang, J. Hu, L. Yu, X. Wu, Y. Zhang et al., Recent strategies for constructing efficient interfacial solar evaporation systems. Nano Res. Energy 2, e9120062 (2023). https://doi.org/10.26599/nre.2023.9120062
S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu et al., Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12(5), 1558–1567 (2019). https://doi.org/10.1039/C9EE00945K
X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269
Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang et al., A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31(23), e1900498 (2019). https://doi.org/10.1002/adma.201900498
F. Lv, J. Miao, Z. Wang, J. Hu, D. Orejon, Polyanionic electrolyte ionization desalination empowers continuous solar evaporation performance. Adv. Mater. 37(6), 2410290 (2025). https://doi.org/10.1002/adma.202410290
W. Zhao, H. Gong, Y. Song, B. Li, N. Xu et al., Hierarchically designed salt-resistant solar evaporator based on donnan effect for stable and high-performance brine treatment. Adv. Funct. Mater. 31(23), 2100025 (2021). https://doi.org/10.1002/adfm.202100025
J. Wu, Z. Cui, Y. Su, D. Wu, J. Hu et al., Tuning on passive interfacial cooling of covalent organic framework hydrogel for enhancing freshwater and electricity generation. SusMat 4(5), e231 (2024). https://doi.org/10.1002/sus2.231
J. Zeng, Q. Wang, Y. Shi, P. Liu, R. Chen, Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination. Adv. Energy Mater. 9(38), 1900552 (2019). https://doi.org/10.1002/aenm.201900552
Y. Fang, H. Gao, K. Cheng, L. Bai, Z. Li et al., An overview of photothermal materials for solar-driven interfacial evaporation. Chin. Chem. Lett. 36(3), 109925 (2025). https://doi.org/10.1016/j.cclet.2024.109925
C. Wen, H. Guo, J. Yang, Q. Li, X. Zhang et al., Zwitterionic hydrogel coated superhydrophilic hierarchical antifouling floater enables unimpeded interfacial steam generation and multi-contamination resistance in complex conditions. Chem. Eng. J. 421, 130344 (2021). https://doi.org/10.1016/j.cej.2021.130344
Y. Liu, D. Zhang, B. Ren, X. Gong, L. Xu et al., Molecular simulations and understanding of antifouling zwitterionic polymer brushes. J. Mater. Chem. B 8(17), 3814–3828 (2020). https://doi.org/10.1039/d0tb00520g
C. Lei, W. Guan, Y. Guo, W. Shi, Y. Wang et al., Polyzwitterionic hydrogels for highly efficient high salinity solar desalination. Angew. Chem. Int. Ed. 61(36), e202208487 (2022). https://doi.org/10.1002/anie.202208487
S.Y. Zheng, J. Zhou, M. Si, S. Wang, F. Zhu et al., A molecularly engineered zwitterionic hydrogel with strengthened anti-polyelectrolyte effect: from high-rate solar desalination to efficient electricity generation. Adv. Funct. Mater. 33(43), 2303272 (2023). https://doi.org/10.1002/adfm.202303272
H. Yang, Z. Hu, Z. Huang, S. Wu, J. Yan et al., Three-dimensional zwitterionic hydrogel-based evaporators with simultaneous ultrahigh evaporation rates and anti-fouling performance. Nano Energy 127, 109784 (2024). https://doi.org/10.1016/j.nanoen.2024.109784
B. Li, P. Jain, J. Ma, J.K. Smith, Z. Yuan et al., Trimethylamine N-oxide-derived zwitterionic polymers: a new class of ultralow fouling bioinspired materials. Sci. Adv. 5(6), eaaw9562 (2019). https://doi.org/10.1126/sciadv.aaw9562
Z. Yu, X. Li, X. Li, B. Zheng, D. Li et al., Nacre-inspired metal-organic framework coatings reinforced by multiscale hierarchical cross-linking for integrated antifouling and anti-microbial corrosion. Adv. Funct. Mater. 33(47), 2305995 (2023). https://doi.org/10.1002/adfm.202305995
X. Li, C. Tang, D. Liu, Z. Yuan, H.-C. Hung et al., High-strength and nonfouling zwitterionic triple-network hydrogel in saline environments. Adv. Mater. 33(39), e2102479 (2021). https://doi.org/10.1002/adma.202102479
P. Zhang, H. Wang, Z. Xia, S. Xing, J. Li et al., Hydrogen-bond-repairing solar evaporator with reconstructed large-width channels for durable solarizing seawater. Nano Lett. 24(37), 11615–11623 (2024). https://doi.org/10.1021/acs.nanolett.4c03179
H. Yao, H. Cheng, Q. Liao, X. Hao, K. Zhu et al., Integrated radiative and evaporative cooling beyond daytime passive cooling power limit. Nano Res. Energy 2, e9120060 (2023). https://doi.org/10.26599/nre.2023.9120060
Z. Li, L. Li, M. Yue, Q. Peng, X. Pu et al., Tracing immunological interaction in trimethylamine N-oxide hydrogel-derived zwitterionic microenvironment during promoted diabetic wound regeneration. Adv. Mater. 36(33), 2402738 (2024). https://doi.org/10.1002/adma.202402738
H. Li, J. Sun, S. Qin, Y. Song, Z. Liu et al., Zwitterion functionalized graphene oxide/polyacrylamide/polyacrylic acid hydrogels with photothermal conversion and antibacterial properties for highly efficient uranium extraction from seawater. Adv. Funct. Mater. 33(32), 2301773 (2023). https://doi.org/10.1002/adfm.202301773
Y. Liu, G. Li, Q. Han, H. Lin, Q. Li et al., Construction of electro-neutral surface on dialysis membrane for improved toxin clearance and anti-coagulation/inflammation through saltwater fish inspired trimethylamine N-oxide (TMAO). J. Membr. Sci. 641, 119900 (2022). https://doi.org/10.1016/j.memsci.2021.119900
Y. Liu, J. Song, Z. Liu, J. Chen, D. Wang et al., Anti-swelling polyelectrolyte hydrogel with submillimeter lateral confinement for osmotic energy conversion. Nano-Micro Lett. 17(1), 81 (2024). https://doi.org/10.1007/s40820-024-01577-0
H. Guo, P. Yan, X. Sun, J. Song, F. Zhu et al., Ion-engineered solar desalination: enhancing salt resistance and activated water yield. Chem. Eng. J. 485, 149918 (2024). https://doi.org/10.1016/j.cej.2024.149918
Z. Zheng, H. Liu, X. Wang, Double-layered hydrogels based on phase change material and pen ink for continuous and efficient solar-driven seawater desalination. Desalination 574, 117276 (2024). https://doi.org/10.1016/j.desal.2023.117276
W. Li, Z. Zheng, Z. Qian, H. Liu, X. Wang, Phase change material boosting electricity output and freshwater production through hierarchical-structured 3D solar evaporator. Adv. Funct. Mater. 34(26), 2316504 (2024). https://doi.org/10.1002/adfm.202316504
F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13(6), 489–495 (2018). https://doi.org/10.1038/s41565-018-0097-z
X. Zhao, X. Meng, H. Zou, Z. Wang, Y. Du et al., Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation. Adv. Funct. Mater. 33(7), 2209207 (2023). https://doi.org/10.1002/adfm.202209207
X. Zhou, Y. Guo, F. Zhao, W. Shi, G. Yu, Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 32(52), 2007012 (2020). https://doi.org/10.1002/adma.202007012
F. Wang, J. He, J. Hu, Z. Chen, Y. Shi et al., Photothermal properties of Cu@polycarbonate composites with strong localized surface plasmon resonances. Nano Res. 17(9), 8513–8520 (2024). https://doi.org/10.1007/s12274-024-6805-0
Y. Xia, Q. Hou, H. Jubaer, Y. Li, Y. Kang et al., Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12(6), 1840–1847 (2019). https://doi.org/10.1039/C9EE00692C
K. Yang, T. Pan, S. Dang, Q. Gan, Y. Han, Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency. Nat. Commun. 13(1), 6653 (2022). https://doi.org/10.1038/s41467-022-34528-7
H. Huang, C. Zhang, R. Crisci, T. Lu, H.-C. Hung et al., Strong surface hydration and salt resistant mechanism of a new nonfouling zwitterionic polymer based on protein stabilizer TMAO. J. Am. Chem. Soc. 143(40), 16786–16795 (2021). https://doi.org/10.1021/jacs.1c08280
Q. Lyu, D.-Y. Kang, S. Hu, L.-C. Lin, Exploiting interior surface functionalization in reverse osmosis desalination membranes to mitigate permeability–selectivity trade-off: molecular simulations of nanotube-based membranes. Desalination 491, 114537 (2020). https://doi.org/10.1016/j.desal.2020.114537
A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown et al., LAMMPS - a flexible simulation tool for p-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.108171
X. Hao, H. Yao, P. Zhang, Q. Liao, K. Zhu et al., Multifunctional solar water harvester with high transport selectivity and fouling rejection capacity. Nat. Water. 1(11), 982–991 (2023). https://doi.org/10.1038/s44221-023-00152-y