Ammonia Borane All-In-One Modification Strategy Enables High-Performance Perovskite Solar Cells
Corresponding Author: Jizheng Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 93
Abstract
Perovskite solar cells have achieved remarkable progress in photovoltaic efficiency. However, interfacial defects at the buried and upper interfaces of perovskite layer remain a critical challenge, leading to charge recombination, ion migration, and iodine oxidation. To address this, we propose a novel all-in-one modification strategy employing ammonia borane (BNH6) as a multifunctional complex. By incorporating BNH6 at both buried and upper interfaces simultaneously, we achieve dual-interfacial defect passivation and iodide oxidation suppression through three key mechanisms: (1) hydrolysis-induced interaction with SnO2, (2) coordination with Pb2+, and (3) inhibition of I− oxidation. This approach significantly enhances device performance, yielding a champion power conversion efficiency (PCE) of 26.43% (certified 25.98%). Furthermore, the unencapsulated device demonstrates prominent enhanced operation stability, maintaining 90% of its initial PCE after 500 h under continuous illumination. Notably, our strategy eliminates the need for separate interface treatments, streamlining fabrication and offering a scalable route toward high-performance perovskite photovoltaics.
Highlights:
1 An all-in-one modification strategy was developed by introducing a multifunctional complex ammonia borane (BNH6) into the buried and upper interfaces simultaneously.
2 BNH6 uniquely realizes dual-interfacial defect passivation and iodide oxidation suppression by interacting with SnO2 through hydrolysis, coordinating with Pb2+ and inhibiting the oxidation of I−.
3 The optimized perovskite solar cells achieve a champion efficiency of 26.43% (certified, 25.98%) with negligible current density–voltage hysteresis and significantly improved thermal and light stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
- J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). https://doi.org/10.1038/nature12509
- M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- National Renewable Energy Laboratory (NREL). Research Cell Efficiency Records. http://www.nrel.gov/ncpv/images/efficiencychart.jpg (Accessed: June 2025).
- Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12(5), 1495–1511 (2019). https://doi.org/10.1039/C8EE03559H
- J.T. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber et al., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724–730 (2014). https://doi.org/10.1021/nl403997a
- D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8(2), 133–138 (2014). https://doi.org/10.1038/nphoton.2013.342
- Y. Wu, Q. Wang, Y. Chen, W. Qiu, Q. Peng, Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy Environ. Sci. 15(11), 4700–4709 (2022). https://doi.org/10.1039/D2EE02277J
- W. Shao, H. Wang, F. Ye, C. Wang, C. Wang et al., Modulation of nucleation and crystallization in PbI2 films promoting preferential perovskite orientation growth for efficient solar cells. Energy Environ. Sci. 16(1), 252–264 (2023). https://doi.org/10.1039/D2EE03342A
- H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu et al., Controllable heterogenous seeding-induced crystallization for high-efficiency FAPbI(3)-based perovskite solar cells over 24. Adv. Mater. 34(36), e2204366 (2022). https://doi.org/10.1002/adma.202204366
- P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle et al., Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620(7973), 323–327 (2023). https://doi.org/10.1038/s41586-023-06208-z
- C. Shao, J. He, G. Niu, Y. Dong, K. Yang et al., 2D BA2PbI4 regulating PbI2 crystallization to induce perovskite growth for efficient solar cells. Small 20(22), 2309009 (2024). https://doi.org/10.1002/smll.202309009
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
- K. Wojciechowski, S.D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala et al., Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8(12), 12701–12709 (2014). https://doi.org/10.1021/nn505723h
- L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu et al., Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137(7), 2674–2679 (2015). https://doi.org/10.1021/ja512518r
- J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang et al., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9(1), 3021 (2018). https://doi.org/10.1038/s41467-018-05454-4
- H. Hysmith, S.Y. Park, J. Yang, A.V. Ievlev, Y. Liu et al., The role of SnO2 processing on ionic distribution in double-cation–double halide perovskites. ACS Appl. Mater. Interfaces 15(30), 36856–36865 (2023). https://doi.org/10.1021/acsami.3c03520
- C. Li, X. Wang, E. Bi, F. Jiang, S.M. Park et al., Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379(6633), 690–694 (2023). https://doi.org/10.1126/science.ade3970
- S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang et al., Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 32(43), 2003990 (2020). https://doi.org/10.1002/adma.202003990
- T. Duan, S. You, M. Chen, W. Yu, Y. Li et al., Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384(6698), 878–884 (2024). https://doi.org/10.1126/science.ado5172
- S. You, F.T. Eickemeyer, J. Gao, J.-H. Yum, X. Zheng et al., Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat. Energy 8(5), 515–525 (2023). https://doi.org/10.1038/s41560-023-01249-0
- H. Zhu, B. Shao, Z. Shen, S. You, J. Yin et al., In situ energetics modulation enables high-efficiency and stable inverted perovskite solar cells. Nat. Photon. 19(1), 28–35 (2025). https://doi.org/10.1038/s41566-024-01542-8
- S. You, H. Zhu, Z. Shen, X. Wang, B. Shao et al., C(60)-based ionic salt electron shuttle for high-performance inverted perovskite solar modules. Science 388(6750), 964–968 (2025). https://doi.org/10.1126/science.adv4701
- W. Xiang, Y. Gao, B. Yuan, S. Xiao, R. Wu et al., Surface-deprotonated ultra-small SnO2 quantum dots for high-performance perovskite solar cells. Energy Environ. Sci. 18(1), 406–417 (2025). https://doi.org/10.1039/d4ee03193h
- S. Xiao, J. Gao, B. Ding, B. Yuan, Y. Gao et al., Multi-hydroxyl and chloric buried interface bridges enable synergistically high-efficiency perovskite solar cells. Small 21(17), 2500174 (2025). https://doi.org/10.1002/smll.202500174
- R. Wu, B. Ding, S. Xiao, W. Xiang, Y. Gao et al., Eco-friendly small molecule with polyhydroxyl ketone as buried interface chelator for enhanced carrier dynamics toward high-performance perovskite solar cells. Sci. China Mater. 68(4), 1249–1258 (2025). https://doi.org/10.1007/s40843-024-3228-1
- Z. Wang, C. Shi, Z. Wang, L. Xiao, T. Wu et al., Solution-processed Fe2-xMgxO3 ternary oxides for interface passivation in efficient perovskite solar cells. Chem. Eng. J. 441, 136118 (2022). https://doi.org/10.1016/j.cej.2022.136118
- Z. Yi, X. Li, B. Xiao, Q. Jiang, Y. Luo et al., Dual-interface engineering induced by silane coupling agents with different functional groups constructing high-performance flexible perovskite solar cells. Chem. Eng. J. 469, 143790 (2023). https://doi.org/10.1016/j.cej.2023.143790
- Y. Zheng, C. Tian, X. Wu, A. Sun, R. Zhuang et al., Dual-interface modification for inverted methylammonium-free perovskite solar cells of 25.35% efficiency with balanced crystallization. Adv. Energy Mater. 14(20), 2304486 (2024). https://doi.org/10.1002/aenm.202304486
- X. Gu, W. Xiang, Q. Tian, S. Liu, Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 60(43), 23164–23170 (2021). https://doi.org/10.1002/anie.202109724
- L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun et al., A Eu(3+)-Eu(2+) ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363(6424), 265–270 (2019). https://doi.org/10.1126/science.aau5701
- Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong et al., Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14(2), 193–198 (2015). https://doi.org/10.1038/nmat4150
- C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O’Regan, A. Walsh et al., Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497
- S. Chen, X. Xiao, H. Gu, J. Huang, Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 7(10), eabe8130 (2021). https://doi.org/10.1126/sciadv.abe8130
- N. Wu, T. Yang, Z. Wang, Y. Wu, Y. Wang et al., Stabilizing precursor solution and controlling crystallization kinetics simultaneously for high-performance perovskite solar cells. Adv. Mater. 35(44), 2304809 (2023). https://doi.org/10.1002/adma.202304809
- H.-L. Jiang, Q. Xu, Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 170(1), 56–63 (2011). https://doi.org/10.1016/j.cattod.2010.09.019
- K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham et al., Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat. Mater. 10(1), 45–50 (2011). https://doi.org/10.1038/nmat2914
- J. Liu, S. Li, S. Liu, Y. Chu, T. Ye et al., Oxygen vacancy management for high-temperature mesoporous SnO2 electron transport layers in printable perovskite solar cells. Angew. Chem. Int. Ed. 61(26), e202202012 (2022). https://doi.org/10.1002/anie.202202012
- Z. Zheng, F. Li, J. Gong, Y. Ma, J. Gu et al., Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22. Adv. Mater. 34(21), e2109879 (2022). https://doi.org/10.1002/adma.202109879
- C. Gong, H. Li, Z. Xu, Y. Li, H. Wang et al., Efficient and stable inverted perovskite solar cells enabled by homogenized PCBM with enhanced electron transport. Nat. Commun. 15(1), 9154 (2024). https://doi.org/10.1038/s41467-024-53283-5
- F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng et al., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17(6), 478–484 (2023). https://doi.org/10.1038/s41566-023-01180-6
- Y. Lu, H. Zhu, S. Tan, R. Zhang, M.-C. Shih et al., Stabilization of organic cations in lead halide perovskite solar cells using phosphine oxides derivatives. J. Am. Chem. Soc. 146(32), 22387–22395 (2024). https://doi.org/10.1021/jacs.4c05398
- M. Li, R. Sun, J. Chang, J. Dong, Q. Tian et al., Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14(1), 573 (2023). https://doi.org/10.1038/s41467-023-36224-6
- B. Yu, K. Wang, Y. Sun, H. Yu, Minimizing buried interface energy losses with post-assembled chelating molecular bridges for high-performance and stable inverted perovskite solar cells. Adv. Mater. 37(14), 2500708 (2025). https://doi.org/10.1002/adma.202500708
- Y. Wang, Y. Meng, C. Liu, R. Cao, B. Han et al., Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. Joule 8(4), 1120–1141 (2024). https://doi.org/10.1016/j.joule.2024.01.021
- T. Huang, S. Tan, S. Nuryyeva, I. Yavuz, F. Babbe et al., Performance-limiting formation dynamics in mixed-halide perovskites. Sci. Adv. 7(46), eabj1799 (2021). https://doi.org/10.1126/sciadv.abj1799
- K. Wu, A. Bera, C. Ma, Y. Du, Y. Yang et al., Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys. 16(41), 22476–22481 (2014). https://doi.org/10.1039/c4cp03573a
- G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13(5), 476–480 (2014). https://doi.org/10.1038/nmat3911
- Y. Gao, F. Ren, D. Sun, S. Li, G. Zheng et al., Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells. Energy Environ. Sci. 16(5), 2295–2303 (2023). https://doi.org/10.1039/D3EE00293D
- J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616(7958), 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
- R. Wang, J. Xue, K.-L. Wang, Z.-K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366(6472), 1509–1513 (2019). https://doi.org/10.1126/science.aay9698
- S. Zhang, H. Si, W. Fan, M. Shi, M. Li et al., Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew. Chem. Int. Ed. 59(28), 11573–11582 (2020). https://doi.org/10.1002/anie.202003502
- Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu et al., Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624(7992), 557–563 (2023). https://doi.org/10.1038/s41586-023-06784-0
- R. Chen, J. Wang, Z. Liu, F. Ren, S. Liu et al., Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8(8), 839–849 (2023). https://doi.org/10.1038/s41560-023-01288-7
- L. Luo, H. Zeng, Z. Wang, M. Li, S. You et al., Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8(3), 294–303 (2023). https://doi.org/10.1038/s41560-023-01205-y
- Z. Shen, Q. Han, X. Luo, Y. Shen, Y. Wang et al., Efficient and stable perovskite solar cells with regulated depletion region. Nat. Photon. 18(5), 450–457 (2024). https://doi.org/10.1038/s41566-024-01383-5
- M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5(1), 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5
References
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). https://doi.org/10.1038/nature12509
M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
National Renewable Energy Laboratory (NREL). Research Cell Efficiency Records. http://www.nrel.gov/ncpv/images/efficiencychart.jpg (Accessed: June 2025).
Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12(5), 1495–1511 (2019). https://doi.org/10.1039/C8EE03559H
J.T. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber et al., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724–730 (2014). https://doi.org/10.1021/nl403997a
D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8(2), 133–138 (2014). https://doi.org/10.1038/nphoton.2013.342
Y. Wu, Q. Wang, Y. Chen, W. Qiu, Q. Peng, Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy Environ. Sci. 15(11), 4700–4709 (2022). https://doi.org/10.1039/D2EE02277J
W. Shao, H. Wang, F. Ye, C. Wang, C. Wang et al., Modulation of nucleation and crystallization in PbI2 films promoting preferential perovskite orientation growth for efficient solar cells. Energy Environ. Sci. 16(1), 252–264 (2023). https://doi.org/10.1039/D2EE03342A
H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu et al., Controllable heterogenous seeding-induced crystallization for high-efficiency FAPbI(3)-based perovskite solar cells over 24. Adv. Mater. 34(36), e2204366 (2022). https://doi.org/10.1002/adma.202204366
P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle et al., Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620(7973), 323–327 (2023). https://doi.org/10.1038/s41586-023-06208-z
C. Shao, J. He, G. Niu, Y. Dong, K. Yang et al., 2D BA2PbI4 regulating PbI2 crystallization to induce perovskite growth for efficient solar cells. Small 20(22), 2309009 (2024). https://doi.org/10.1002/smll.202309009
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
K. Wojciechowski, S.D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala et al., Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8(12), 12701–12709 (2014). https://doi.org/10.1021/nn505723h
L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu et al., Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137(7), 2674–2679 (2015). https://doi.org/10.1021/ja512518r
J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang et al., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9(1), 3021 (2018). https://doi.org/10.1038/s41467-018-05454-4
H. Hysmith, S.Y. Park, J. Yang, A.V. Ievlev, Y. Liu et al., The role of SnO2 processing on ionic distribution in double-cation–double halide perovskites. ACS Appl. Mater. Interfaces 15(30), 36856–36865 (2023). https://doi.org/10.1021/acsami.3c03520
C. Li, X. Wang, E. Bi, F. Jiang, S.M. Park et al., Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379(6633), 690–694 (2023). https://doi.org/10.1126/science.ade3970
S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang et al., Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 32(43), 2003990 (2020). https://doi.org/10.1002/adma.202003990
T. Duan, S. You, M. Chen, W. Yu, Y. Li et al., Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384(6698), 878–884 (2024). https://doi.org/10.1126/science.ado5172
S. You, F.T. Eickemeyer, J. Gao, J.-H. Yum, X. Zheng et al., Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat. Energy 8(5), 515–525 (2023). https://doi.org/10.1038/s41560-023-01249-0
H. Zhu, B. Shao, Z. Shen, S. You, J. Yin et al., In situ energetics modulation enables high-efficiency and stable inverted perovskite solar cells. Nat. Photon. 19(1), 28–35 (2025). https://doi.org/10.1038/s41566-024-01542-8
S. You, H. Zhu, Z. Shen, X. Wang, B. Shao et al., C(60)-based ionic salt electron shuttle for high-performance inverted perovskite solar modules. Science 388(6750), 964–968 (2025). https://doi.org/10.1126/science.adv4701
W. Xiang, Y. Gao, B. Yuan, S. Xiao, R. Wu et al., Surface-deprotonated ultra-small SnO2 quantum dots for high-performance perovskite solar cells. Energy Environ. Sci. 18(1), 406–417 (2025). https://doi.org/10.1039/d4ee03193h
S. Xiao, J. Gao, B. Ding, B. Yuan, Y. Gao et al., Multi-hydroxyl and chloric buried interface bridges enable synergistically high-efficiency perovskite solar cells. Small 21(17), 2500174 (2025). https://doi.org/10.1002/smll.202500174
R. Wu, B. Ding, S. Xiao, W. Xiang, Y. Gao et al., Eco-friendly small molecule with polyhydroxyl ketone as buried interface chelator for enhanced carrier dynamics toward high-performance perovskite solar cells. Sci. China Mater. 68(4), 1249–1258 (2025). https://doi.org/10.1007/s40843-024-3228-1
Z. Wang, C. Shi, Z. Wang, L. Xiao, T. Wu et al., Solution-processed Fe2-xMgxO3 ternary oxides for interface passivation in efficient perovskite solar cells. Chem. Eng. J. 441, 136118 (2022). https://doi.org/10.1016/j.cej.2022.136118
Z. Yi, X. Li, B. Xiao, Q. Jiang, Y. Luo et al., Dual-interface engineering induced by silane coupling agents with different functional groups constructing high-performance flexible perovskite solar cells. Chem. Eng. J. 469, 143790 (2023). https://doi.org/10.1016/j.cej.2023.143790
Y. Zheng, C. Tian, X. Wu, A. Sun, R. Zhuang et al., Dual-interface modification for inverted methylammonium-free perovskite solar cells of 25.35% efficiency with balanced crystallization. Adv. Energy Mater. 14(20), 2304486 (2024). https://doi.org/10.1002/aenm.202304486
X. Gu, W. Xiang, Q. Tian, S. Liu, Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 60(43), 23164–23170 (2021). https://doi.org/10.1002/anie.202109724
L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun et al., A Eu(3+)-Eu(2+) ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363(6424), 265–270 (2019). https://doi.org/10.1126/science.aau5701
Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong et al., Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14(2), 193–198 (2015). https://doi.org/10.1038/nmat4150
C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O’Regan, A. Walsh et al., Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497
S. Chen, X. Xiao, H. Gu, J. Huang, Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 7(10), eabe8130 (2021). https://doi.org/10.1126/sciadv.abe8130
N. Wu, T. Yang, Z. Wang, Y. Wu, Y. Wang et al., Stabilizing precursor solution and controlling crystallization kinetics simultaneously for high-performance perovskite solar cells. Adv. Mater. 35(44), 2304809 (2023). https://doi.org/10.1002/adma.202304809
H.-L. Jiang, Q. Xu, Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 170(1), 56–63 (2011). https://doi.org/10.1016/j.cattod.2010.09.019
K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham et al., Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat. Mater. 10(1), 45–50 (2011). https://doi.org/10.1038/nmat2914
J. Liu, S. Li, S. Liu, Y. Chu, T. Ye et al., Oxygen vacancy management for high-temperature mesoporous SnO2 electron transport layers in printable perovskite solar cells. Angew. Chem. Int. Ed. 61(26), e202202012 (2022). https://doi.org/10.1002/anie.202202012
Z. Zheng, F. Li, J. Gong, Y. Ma, J. Gu et al., Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22. Adv. Mater. 34(21), e2109879 (2022). https://doi.org/10.1002/adma.202109879
C. Gong, H. Li, Z. Xu, Y. Li, H. Wang et al., Efficient and stable inverted perovskite solar cells enabled by homogenized PCBM with enhanced electron transport. Nat. Commun. 15(1), 9154 (2024). https://doi.org/10.1038/s41467-024-53283-5
F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng et al., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17(6), 478–484 (2023). https://doi.org/10.1038/s41566-023-01180-6
Y. Lu, H. Zhu, S. Tan, R. Zhang, M.-C. Shih et al., Stabilization of organic cations in lead halide perovskite solar cells using phosphine oxides derivatives. J. Am. Chem. Soc. 146(32), 22387–22395 (2024). https://doi.org/10.1021/jacs.4c05398
M. Li, R. Sun, J. Chang, J. Dong, Q. Tian et al., Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14(1), 573 (2023). https://doi.org/10.1038/s41467-023-36224-6
B. Yu, K. Wang, Y. Sun, H. Yu, Minimizing buried interface energy losses with post-assembled chelating molecular bridges for high-performance and stable inverted perovskite solar cells. Adv. Mater. 37(14), 2500708 (2025). https://doi.org/10.1002/adma.202500708
Y. Wang, Y. Meng, C. Liu, R. Cao, B. Han et al., Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. Joule 8(4), 1120–1141 (2024). https://doi.org/10.1016/j.joule.2024.01.021
T. Huang, S. Tan, S. Nuryyeva, I. Yavuz, F. Babbe et al., Performance-limiting formation dynamics in mixed-halide perovskites. Sci. Adv. 7(46), eabj1799 (2021). https://doi.org/10.1126/sciadv.abj1799
K. Wu, A. Bera, C. Ma, Y. Du, Y. Yang et al., Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys. 16(41), 22476–22481 (2014). https://doi.org/10.1039/c4cp03573a
G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13(5), 476–480 (2014). https://doi.org/10.1038/nmat3911
Y. Gao, F. Ren, D. Sun, S. Li, G. Zheng et al., Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells. Energy Environ. Sci. 16(5), 2295–2303 (2023). https://doi.org/10.1039/D3EE00293D
J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616(7958), 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
R. Wang, J. Xue, K.-L. Wang, Z.-K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366(6472), 1509–1513 (2019). https://doi.org/10.1126/science.aay9698
S. Zhang, H. Si, W. Fan, M. Shi, M. Li et al., Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew. Chem. Int. Ed. 59(28), 11573–11582 (2020). https://doi.org/10.1002/anie.202003502
Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu et al., Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624(7992), 557–563 (2023). https://doi.org/10.1038/s41586-023-06784-0
R. Chen, J. Wang, Z. Liu, F. Ren, S. Liu et al., Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8(8), 839–849 (2023). https://doi.org/10.1038/s41560-023-01288-7
L. Luo, H. Zeng, Z. Wang, M. Li, S. You et al., Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8(3), 294–303 (2023). https://doi.org/10.1038/s41560-023-01205-y
Z. Shen, Q. Han, X. Luo, Y. Shen, Y. Wang et al., Efficient and stable perovskite solar cells with regulated depletion region. Nat. Photon. 18(5), 450–457 (2024). https://doi.org/10.1038/s41566-024-01383-5
M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5(1), 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5