A Highly Permeable and Three-Dimensional Integrated Electronic System for Wearable Human–Robot Interaction
Corresponding Author: Anlian Pan
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 128
Abstract
Permeable electronics promise improved physiological comfort, but remain constrained by limited functional integration and poor mechanical robustness. Here, we report a three-dimensional (3D) permeable electronic system that overcomes these challenges by combining electrospun SEBS nanofiber mats, high-resolution liquid metal conductors patterned via thermal imprinting (50 μm), and a strain isolators (SIL) that protects vertical interconnects (VIAs) from stress concentration. This architecture achieves ultrahigh air permeability (> 5.09 mL cm−2 min−1), exceptional stretchability (750% fracture strain), and reliable conductivity maintained through more than 32,500 strain cycles. Leveraging these advances, we have integrated multilayer circuits, strain sensors, and a three-axis accelerometer to achieve a fully integrated, stretchable, permeable wireless real-time gesture recognition glove. The system enables accurate sign language interpretation (98%) and seamless robotic hand control, demonstrating its potential for assistive technologies. By uniting comfort, durability, and high-density integration, this work establishes a versatile platform for next-generation wearable electronics and interactive human–robot interfaces.
Highlights:
1 Breathable and Stretchable 3D Electronics Electrospun SEBS nanofiber mats combined with sub-50 μm liquid metal patterning yield ultrahigh permeability (5.09 mL cm−2 min−1, 2520 g m−2 day−1) and mechanical robustness (750% strain), ensuring zero skin irritation after 1 week.
2 Stable Vertical Interconnects Strain isolators (SIL) decouple substrate deformation from vertical interconnects, maintaining conductivity under 750% strain and >32,500 cycles, surpassing conventional multilayer systems (<250% strain).
3 Gesture Recognition Assistive Glove A wireless glove integrating 5 strain sensors, a three-axis accelerometer, and CNN-based learning (98% accuracy) enables real-time robotic hand control, with direct relevance to rehabilitation, prosthetics, and human–robot collaboration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19(10), 1102–1109 (2020). https://doi.org/10.1038/s41563-020-0699-3
- F. Chun, B. Zhang, Y. Gao, X. Wei, Q. Zhang et al., Multicolour stretchable perovskite electroluminescent devices for user-interactive displays. Nat. Photon. 18(8), 856–863 (2024). https://doi.org/10.1038/s41566-024-01455-6
- J. Lee, H. Sul, W. Lee, K.R. Pyun, I. Ha et al., Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 30(29), 1909171 (2020). https://doi.org/10.1002/adfm.201909171
- D. Zhong, C. Wu, Y. Jiang, Y. Yuan, M.-G. Kim et al., High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627(8003), 313–320 (2024). https://doi.org/10.1038/s41586-024-07096-7
- G. Ge, Y. Zhang, X. Xiao, Y. Gong, C. Liu et al., Rapidly gelling, highly adhesive, and mechanically robust ionogels for stretchable and wireless electronics. Adv. Funct. Mater. 34(21), 2310963 (2024). https://doi.org/10.1002/adfm.202310963
- M. Ha, G.S. Cañón Bermúdez, T. Kosub, I. Mönch, Y. Zabila et al., Printable and stretchable giant magnetoresistive sensors for highly compliant and skin-conformal electronics. Adv. Mater. 33(12), 2005521 (2021). https://doi.org/10.1002/adma.202005521
- S. Choi, S.I. Han, D. Kim, T. Hyeon, D.-H. Kim, High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48(6), 1566–1595 (2019). https://doi.org/10.1039/C8CS00706C
- Z. Xue, H. Song, J.A. Rogers, Y. Zhang, Y. Huang, Mechanically-guided structural designs in stretchable inorganic electronics. Adv. Mater. 32(15), e1902254 (2020). https://doi.org/10.1002/adma.201902254
- Y. Bai, Y. Zhou, X. Wu, M. Yin, L. Yin et al., Flexible strain sensors with ultra-high sensitivity and wide range enabled by crack-modulated electrical pathways. Nano-Micro Lett. 17(1), 64 (2024). https://doi.org/10.1007/s40820-024-01571-6
- X. Yan, R. Zhao, H. Lin, Z. Zhao, S. Song et al., Nucleobase-driven wearable ionogel electronics for long-term human motion detection and electrophysiological signal monitoring. Adv. Funct. Mater. 35(2), 2412244 (2025). https://doi.org/10.1002/adfm.202412244
- Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20(6), 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
- S. Shi, Y. Ming, H. Wu, C. Zhi, L. Yang et al., A bionic skin for health management: excellent breathability, in situ sensing, and big data analysis. Adv. Mater. 36(17), 2306435 (2024). https://doi.org/10.1002/adma.202306435
- C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
- Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 14(1), 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
- Y. Zhu, R. Haghniaz, M.C. Hartel, S. Guan, J. Bahari et al., A breathable, passive-cooling, non-inflammatory, and biodegradable aerogel electronic skin for wearable physical-electrophysiological-chemical analysis. Adv. Mater. 35(10), e2209300 (2023). https://doi.org/10.1002/adma.202209300
- Y. Ding, J. Jiang, Y. Wu, Y. Zhang, J. Zhou et al., Porous conductive textiles for wearable electronics. Chem. Rev. 124(4), 1535–1648 (2024). https://doi.org/10.1021/acs.chemrev.3c00507
- Y.D. Horev, A. Maity, Y. Zheng, Y. Milyutin, M. Khatib et al., Stretchable and highly permeable nanofibrous sensors for detecting complex human body motion. Adv. Mater. 33(41), 2102488 (2021). https://doi.org/10.1002/adma.202102488
- H. Liu, H. Li, Z. Wang, X. Wei, H. Zhu et al., Robust and multifunctional kirigami electronics with a tough and permeable aramid nanofiber framework. Adv. Mater. 34(50), 2207350 (2022). https://doi.org/10.1002/adma.202207350
- F. Guo, Z. Ren, S. Wang, Y. Xie, J. Pan et al., Recent progress of electrospun nanofiber-based composite materials for monitoring physical, physiological, and body fluid signals. Nano-Micro Lett. 17(1), 302 (2025). https://doi.org/10.1007/s40820-025-01804-2
- S.S. Kwak, S. Yoo, R. Avila, H.U. Chung, H. Jeong et al., Skin-integrated devices with soft, holey architectures for wireless physiological monitoring, with applications in the neonatal intensive care unit. Adv. Mater. 33(44), 2103974 (2021). https://doi.org/10.1002/adma.202103974
- A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
- K.K. Kim, J. Choi, J.-H. Kim, S. Nam, S.H. Ko, Evolvable skin electronics by in situ and in operando adaptation. Adv. Funct. Mater. 32(4), 2106329 (2022). https://doi.org/10.1002/adfm.202106329
- G. Li, M. Zhang, S. Liu, M. Yuan, J. Wu et al., Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat. Electron. 6(2), 154–163 (2023). https://doi.org/10.1038/s41928-022-00914-8
- Z. Huang, Y. Hao, Y. Li, H. Hu, C. Wang et al., Three-dimensional integrated stretchable electronics. Nat. Electron. 1(8), 473–480 (2018). https://doi.org/10.1038/s41928-018-0116-y
- H. Song, G. Luo, Z. Ji, R. Bo, Z. Xue et al., Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci. Adv. 8(11), eabm3785 (2022). https://doi.org/10.1126/sciadv.abm3785
- L. Guo, S.P. DeWeerth, High-density stretchable electronics: toward an integrated multilayer composite. Adv. Mater. 22(36), 4030–4033 (2010). https://doi.org/10.1002/adma.201000515
- L. Zhu, X. Zhou, J. Zhang, Y. Xia, M. Wu et al., Self-adhesive elastic conductive ink with high permeability and low diffusivity for direct printing of universal textile electronics. ACS Nano 18(51), 34750–34762 (2024). https://doi.org/10.1021/acsnano.4c11291
- R. Guo, T. Li, C. Jiang, H. Zong, X. Li et al., Pressure regulated printing of semiliquid metal on electrospinning film enables breathable and waterproof wearable electronics. Adv. Fiber Mater. 6(2), 354–366 (2024). https://doi.org/10.1007/s42765-023-00343-y
- P. Wang, X. Ma, Z. Lin, F. Chen, Z. Chen et al., Well-defined in-textile photolithography towards permeable textile electronics. Nat. Commun. 15(1), 887 (2024). https://doi.org/10.1038/s41467-024-45287-y
- F. Chen, Q. Zhuang, Y. Ding, C. Zhang, X. Song et al., Wet-adaptive electronic skin. Adv. Mater. 35(49), 2305630 (2023). https://doi.org/10.1002/adma.202305630
- C. Zhang, Q. Yang, H. Li, Z. Luo, Y. Lu et al., 3D laser structuring of supermetalphobic microstructures inside elastomer for multilayer high-density interconnect soft electronics. Int. J. Extrem. Manuf. 7(3), 035004 (2025). https://doi.org/10.1088/2631-7990/ada835
- J. Wang, R.C.Y. Auyeung, H. Kim, N.A. Charipar, A. Piqué, Three-dimensional printing of interconnects by laser direct-write of silver nanopastes. Adv. Mater. 22(40), 4462–4466 (2010). https://doi.org/10.1002/adma.201001729
- M. Kim, J.J. Park, S. Hong, Y. Jung, J. Bang et al., Monolithically stacked VIA-free liquid metal circuit for stretchable electronics. Mater. Today 83, 24–34 (2025). https://doi.org/10.1016/j.mattod.2024.11.005
- G. Xiroudakis, G. Exadaktylos, G. Saratsis, Stress-deformation analysis of the cracked elastic body. Eng. Fract. Mech. 309, 110380 (2024). https://doi.org/10.1016/j.engfracmech.2024.110380
References
M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19(10), 1102–1109 (2020). https://doi.org/10.1038/s41563-020-0699-3
F. Chun, B. Zhang, Y. Gao, X. Wei, Q. Zhang et al., Multicolour stretchable perovskite electroluminescent devices for user-interactive displays. Nat. Photon. 18(8), 856–863 (2024). https://doi.org/10.1038/s41566-024-01455-6
J. Lee, H. Sul, W. Lee, K.R. Pyun, I. Ha et al., Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 30(29), 1909171 (2020). https://doi.org/10.1002/adfm.201909171
D. Zhong, C. Wu, Y. Jiang, Y. Yuan, M.-G. Kim et al., High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627(8003), 313–320 (2024). https://doi.org/10.1038/s41586-024-07096-7
G. Ge, Y. Zhang, X. Xiao, Y. Gong, C. Liu et al., Rapidly gelling, highly adhesive, and mechanically robust ionogels for stretchable and wireless electronics. Adv. Funct. Mater. 34(21), 2310963 (2024). https://doi.org/10.1002/adfm.202310963
M. Ha, G.S. Cañón Bermúdez, T. Kosub, I. Mönch, Y. Zabila et al., Printable and stretchable giant magnetoresistive sensors for highly compliant and skin-conformal electronics. Adv. Mater. 33(12), 2005521 (2021). https://doi.org/10.1002/adma.202005521
S. Choi, S.I. Han, D. Kim, T. Hyeon, D.-H. Kim, High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48(6), 1566–1595 (2019). https://doi.org/10.1039/C8CS00706C
Z. Xue, H. Song, J.A. Rogers, Y. Zhang, Y. Huang, Mechanically-guided structural designs in stretchable inorganic electronics. Adv. Mater. 32(15), e1902254 (2020). https://doi.org/10.1002/adma.201902254
Y. Bai, Y. Zhou, X. Wu, M. Yin, L. Yin et al., Flexible strain sensors with ultra-high sensitivity and wide range enabled by crack-modulated electrical pathways. Nano-Micro Lett. 17(1), 64 (2024). https://doi.org/10.1007/s40820-024-01571-6
X. Yan, R. Zhao, H. Lin, Z. Zhao, S. Song et al., Nucleobase-driven wearable ionogel electronics for long-term human motion detection and electrophysiological signal monitoring. Adv. Funct. Mater. 35(2), 2412244 (2025). https://doi.org/10.1002/adfm.202412244
Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20(6), 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
S. Shi, Y. Ming, H. Wu, C. Zhi, L. Yang et al., A bionic skin for health management: excellent breathability, in situ sensing, and big data analysis. Adv. Mater. 36(17), 2306435 (2024). https://doi.org/10.1002/adma.202306435
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 14(1), 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
Y. Zhu, R. Haghniaz, M.C. Hartel, S. Guan, J. Bahari et al., A breathable, passive-cooling, non-inflammatory, and biodegradable aerogel electronic skin for wearable physical-electrophysiological-chemical analysis. Adv. Mater. 35(10), e2209300 (2023). https://doi.org/10.1002/adma.202209300
Y. Ding, J. Jiang, Y. Wu, Y. Zhang, J. Zhou et al., Porous conductive textiles for wearable electronics. Chem. Rev. 124(4), 1535–1648 (2024). https://doi.org/10.1021/acs.chemrev.3c00507
Y.D. Horev, A. Maity, Y. Zheng, Y. Milyutin, M. Khatib et al., Stretchable and highly permeable nanofibrous sensors for detecting complex human body motion. Adv. Mater. 33(41), 2102488 (2021). https://doi.org/10.1002/adma.202102488
H. Liu, H. Li, Z. Wang, X. Wei, H. Zhu et al., Robust and multifunctional kirigami electronics with a tough and permeable aramid nanofiber framework. Adv. Mater. 34(50), 2207350 (2022). https://doi.org/10.1002/adma.202207350
F. Guo, Z. Ren, S. Wang, Y. Xie, J. Pan et al., Recent progress of electrospun nanofiber-based composite materials for monitoring physical, physiological, and body fluid signals. Nano-Micro Lett. 17(1), 302 (2025). https://doi.org/10.1007/s40820-025-01804-2
S.S. Kwak, S. Yoo, R. Avila, H.U. Chung, H. Jeong et al., Skin-integrated devices with soft, holey architectures for wireless physiological monitoring, with applications in the neonatal intensive care unit. Adv. Mater. 33(44), 2103974 (2021). https://doi.org/10.1002/adma.202103974
A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
K.K. Kim, J. Choi, J.-H. Kim, S. Nam, S.H. Ko, Evolvable skin electronics by in situ and in operando adaptation. Adv. Funct. Mater. 32(4), 2106329 (2022). https://doi.org/10.1002/adfm.202106329
G. Li, M. Zhang, S. Liu, M. Yuan, J. Wu et al., Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat. Electron. 6(2), 154–163 (2023). https://doi.org/10.1038/s41928-022-00914-8
Z. Huang, Y. Hao, Y. Li, H. Hu, C. Wang et al., Three-dimensional integrated stretchable electronics. Nat. Electron. 1(8), 473–480 (2018). https://doi.org/10.1038/s41928-018-0116-y
H. Song, G. Luo, Z. Ji, R. Bo, Z. Xue et al., Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci. Adv. 8(11), eabm3785 (2022). https://doi.org/10.1126/sciadv.abm3785
L. Guo, S.P. DeWeerth, High-density stretchable electronics: toward an integrated multilayer composite. Adv. Mater. 22(36), 4030–4033 (2010). https://doi.org/10.1002/adma.201000515
L. Zhu, X. Zhou, J. Zhang, Y. Xia, M. Wu et al., Self-adhesive elastic conductive ink with high permeability and low diffusivity for direct printing of universal textile electronics. ACS Nano 18(51), 34750–34762 (2024). https://doi.org/10.1021/acsnano.4c11291
R. Guo, T. Li, C. Jiang, H. Zong, X. Li et al., Pressure regulated printing of semiliquid metal on electrospinning film enables breathable and waterproof wearable electronics. Adv. Fiber Mater. 6(2), 354–366 (2024). https://doi.org/10.1007/s42765-023-00343-y
P. Wang, X. Ma, Z. Lin, F. Chen, Z. Chen et al., Well-defined in-textile photolithography towards permeable textile electronics. Nat. Commun. 15(1), 887 (2024). https://doi.org/10.1038/s41467-024-45287-y
F. Chen, Q. Zhuang, Y. Ding, C. Zhang, X. Song et al., Wet-adaptive electronic skin. Adv. Mater. 35(49), 2305630 (2023). https://doi.org/10.1002/adma.202305630
C. Zhang, Q. Yang, H. Li, Z. Luo, Y. Lu et al., 3D laser structuring of supermetalphobic microstructures inside elastomer for multilayer high-density interconnect soft electronics. Int. J. Extrem. Manuf. 7(3), 035004 (2025). https://doi.org/10.1088/2631-7990/ada835
J. Wang, R.C.Y. Auyeung, H. Kim, N.A. Charipar, A. Piqué, Three-dimensional printing of interconnects by laser direct-write of silver nanopastes. Adv. Mater. 22(40), 4462–4466 (2010). https://doi.org/10.1002/adma.201001729
M. Kim, J.J. Park, S. Hong, Y. Jung, J. Bang et al., Monolithically stacked VIA-free liquid metal circuit for stretchable electronics. Mater. Today 83, 24–34 (2025). https://doi.org/10.1016/j.mattod.2024.11.005
G. Xiroudakis, G. Exadaktylos, G. Saratsis, Stress-deformation analysis of the cracked elastic body. Eng. Fract. Mech. 309, 110380 (2024). https://doi.org/10.1016/j.engfracmech.2024.110380