Ion-Mediated Carbon Microdomain Engineering Boosting Enhanced Plateau Capacity of Carbon Anode under High Rate Towards High-Performance Sodium Dual-Ion Batteries
Corresponding Author: Qingguang Pan
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 161
Abstract
Sodium-based dual-ion batteries (SDIBs) have been attracting increasing attention in recent years owing to their low cost, environmental benignancy, and high operating voltage. However, the sluggish ion kinetics of conventional carbon anodes that cannot match the fast capacitive anion intercalation behavior of graphite cathodes constraints on improving power density of SDIBs. Herein, we present an ingenious carbon microdomain engineering strategy to fabricate high-performance carbon anode with ion-mediated high-activity nitrogen species and molecular-scale closed-pore architectures. Experimental characterizations and theoretical investigations demonstrate that Zn2+-mediated structural engineering tailors oxidized nitrogen species, which proficiently accelerate the sodium-ion desolvation kinetics; meanwhile the acetate-mediated pore-forming process modulates closed pores, which synergistically afford abundant sodium storage sites for high plateau-region capacity. As a result, the optimized microdomain engineered carbon material (MEC3) tailored with the optimal amount of zinc acetate demonstrates an outstanding plateau-region capacity of 253 mAh g− 1 even at 1 C, among the highest reported values. Consequently, the MEC3||expanded graphite dual-ion battery exhibits an unprecedented cycling stability at high current rate, maintaining 80.6% capacity retention after 10,000 cycles at 10 C, among the best reports. This microdomain engineering strategy provides a new design principle for overcoming kinetic limitations of carbonaceous materials in plateau-dominated sodium storage systems.
Highlights:
1 Carbon microdomain engineering using ion-mediated structural control tailors oriented high-activity nitrogen species and creates specific closed pores.
2 This strategy accelerates sodium-ion desolvation kinetics, thereby enhancing sodium storage performance even at high current densities.
3 The optimized carbon material achieves exceptional rate performance and cycling stability, making it one of the top-tier materials for sodium-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.C. Zhang, X.Y. Ji, C.D. Xie, R. Yang, F. Zhang, Y.B. Tang, Aqueous secondary batteries: status and challenges. Energy Storage Mater. 77, 104186 (2025). https://doi.org/10.1016/j.ensm.2025.104186
- X. Liu, J. Shang, Y. Cheng, Q. Pan, J. Li et al., Biomimetic gourd-vine supramolecular engineering for high-performance organic cathode through dual-mode of anion coordination and conjugated redox activation. Angew. Chem. Int. Ed. 64(38), e202511229 (2025). https://doi.org/10.1002/anie.202511229
- J. Lu, Y. Chen, Y. Lei, P. Jaumaux, H. Tian et al., Quasi-solid gel electrolytes for alkali metal battery applications. Nano-Micro Lett. 17(1), 194 (2025). https://doi.org/10.1007/s40820-024-01632-w
- Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du et al., Recycling of sodium-ion batteries. Nat. Rev. Mater. 8(9), 623–634 (2023). https://doi.org/10.1038/s41578-023-00574-w
- B. Liu, C. Jiang, K. Yan, J. Shang, Y. Fan et al., Super-wetting interface engineering of space-confined micron-sized alloying anodes for high-performance sodium-based dual-ion batteries. Matter 8(10), 102294 (2025). https://doi.org/10.1016/j.matt.2025.102294
- Y. Liu, M. Qiu, X. Hu, J. Yuan, W. Liao et al., Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries. Nano-Micro Lett. 15(1), 104 (2023). https://doi.org/10.1007/s40820-023-01070-0
- H. Wu, S. Luo, H. Wang, L. Li, Y. Fang et al., A review of anode materials for dual-ion batteries. Nano-Micro Lett. 16(1), 252 (2024). https://doi.org/10.1007/s40820-024-01470-w
- S. Gan, Y. Huang, N. Hong, Y. Zhang, B. Xiong et al., Comprehensive understanding of closed pores in hard carbon anode for high-energy sodium-ion batteries. Nano-Micro Lett. 17(1), 325 (2025). https://doi.org/10.1007/s40820-025-01833-x
- F. Wang, T. Zhang, T. Zhang, T. He, F. Ran, Recent progress in improving rate performance of cellulose-derived carbon materials for sodium-ion batteries. Nano-Micro Lett. 16(1), 148 (2024). https://doi.org/10.1007/s40820-024-01351-2
- Y. Wang, Y. Kuang, J. Cui, X. Xu, F. Li et al., Self-template construction of hierarchical Bi@C microspheres as competitive wide temperature-operating anodes for superior sodium-ion batteries. Nano Lett. 24(48), 15242–15251 (2024). https://doi.org/10.1021/acs.nanolett.4c03453
- C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15(1), 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
- X. Wang, Q. Fan, Z. Liu, X. Zhu, M. Yang et al., Anion-mediated approach to overcome oxidation in ether electrolytes for high-voltage sodium-ion batteries. Nat. Commun. 16(1), 2536 (2025). https://doi.org/10.1038/s41467-025-57910-7
- Y. Gao, H. Zhang, J. Peng, L. Li, Y. Xiao, Y. Liu, Y. Qiao, S.-L. Chou, A 30-year overview of sodium-ion batteries. Carbon Energy 6(6), e464 (2024). https://doi.org/10.1002/cey2.464
- M. Wang, Q. Liu, G. Wu, J. Ma, Y. Tang, Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life. Green Energy Environ. 8(2), 548–558 (2023). https://doi.org/10.1016/j.gee.2021.03.007
- Z. Lu, H. Yang, Y. Guo, H. Lin, P. Shan et al., Consummating ion desolvation in hard carbon anodes for reversible sodium storage. Nat. Commun. 15, 3497 (2024). https://doi.org/10.1038/s41467-024-47522-y
- Q. Pan, Z. Tong, Y. Su, S. Qin, Y. Tang, Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv. Funct. Mater. 31(37), 2103912 (2021). https://doi.org/10.1002/adfm.202103912
- P. Liang, D. Pan, X. Hu, K.R. Yang, Y. Liu et al., Se-regulated MnS porous nanocubes encapsulated in carbon nanofibers as high-performance anode for sodium-ion batteries. Nano-Micro Lett. 17(1), 237 (2025). https://doi.org/10.1007/s40820-025-01767-4
- Y. Sun, J.-C. Li, H. Zhou, S. Guo, Wide-temperature-range sodium-metal batteries: from fundamentals and obstacles to optimization. Energy Environ. Sci. 16(11), 4759–4811 (2023). https://doi.org/10.1039/D3EE02082G
- Y. Wang, X. Xu, Y. Wu, F. Li, W. Fan, S. Ji, J. Zhao, J. Liu, Y. Huo, Facile galvanic replacement construction of Bi@C nanosheets array as binder-free anodes for superior sodium-ion batteries. Adv. Energy Mater. 14(30), 2401833 (2024). https://doi.org/10.1002/aenm.202401833
- K. Zou, W. Deng, D.S. Silvester, G. Zou, H. Hou et al., Carbonyl chemistry for advanced electrochemical energy storage systems. ACS Nano 18(31), 19950–20000 (2024). https://doi.org/10.1021/acsnano.4c02307
- Y. Li, A. Vasileiadis, Q. Zhou, Y. Lu, Q. Meng et al., Origin of fast charging in hard carbon anodes. Nat. Energy 9(2), 134–142 (2024). https://doi.org/10.1038/s41560-023-01414-5
- Q. Li, X. Liu, Y. Tao, J. Huang, J. Zhang et al., Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Natl. Sci. Rev. 9(8), nwac084 (2022). https://doi.org/10.1093/nsr/nwac084
- R. Jia, R. Yang, Y. Zheng, Q. Pan, F. Zhang, Y. Tang, Anomalous electrochemical aging strengthening behavior of MXene electrodes for synergistic anion-cation storage in dual-ion batteries. Adv. Funct. Mater. 35(14), 2419013 (2025). https://doi.org/10.1002/adfm.202419013
- J. Peng, H. Wang, X. Shi, H.J. Fan, Ultrahigh plateau-capacity sodium storage by plugging open pores. Adv. Mater. (2024). https://doi.org/10.1002/adma.202410326
- B. Wang, J.R. Fitzpatrick, A. Brookfield, A.J. Fielding, E. Reynolds et al., Electron paramagnetic resonance as a tool to determine the sodium charge storage mechanism of hard carbon. Nat. Commun. 15, 3013 (2024). https://doi.org/10.1038/s41467-024-45460-3
- X. Chen, J. Tian, P. Li, Y. Fang, Y. Fang, X. Liang, J. Feng, J. Dong, X. Ai, H. Yang, Y. Cao, An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism. Adv. Energy Mater. 12(24), 2200886 (2022). https://doi.org/10.1002/aenm.202200886
- M. Hu, L. Yang, K. Zhou, C. Zhou, Z.-H. Huang et al., Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation. Carbon 122, 680–686 (2017). https://doi.org/10.1016/j.carbon.2017.05.003
- D. Wu, F. Sun, Z. Qu, H. Wang, Z. Lou et al., Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau capacity for high performance sodium ion batteries. J. Mater. Chem. A 10(33), 17225–17236 (2022). https://doi.org/10.1039/D2TA04194D
- C.-Z. Zhan, X.-J. Zeng, R.-T. Lv, Y. Shen, Z.-H. Huang, F.-y Kang, Preparation of porous graphitic carbon and its dual-ion capacitance energy storage mechanism. New Carbon Mater. 38(3), 576–581 (2023). https://doi.org/10.1016/S1872-5805(23)60727-9
- Y. Wang, Z. Yi, L. Xie, Y. Mao, W. Ji, Z. Liu, X. Wei, F. Su, C.-M. Chen, Releasing free radicals in precursor triggers the formation of closed pores in hard carbon for sodium-ion batteries. Adv. Mater. 36(26), 2401249 (2024). https://doi.org/10.1002/adma.202401249
- S. Zhang, N. Sun, X. Li, R.A. Soomro, B. Xu, Closed pore engineering of activated carbon enabled by waste mask for superior sodium storage. Energy Storage Mater. 66, 103183 (2024). https://doi.org/10.1016/j.ensm.2024.103183
- X. Chen, N. Sawut, K. Chen, H. Li, J. Zhang et al., Filling carbon: a microstructure-engineered hard carbon for efficient alkali metal ion storage. Energy Environ. Sci. 16(9), 4041–4053 (2023). https://doi.org/10.1039/D3EE01154B
- J. Lin, Q. Zhou, Z. Liao, Y. Chen, Y. Liu, Q. Liu, X. Xiong, Steric hindrance engineering to modulate the closed pores formation of polymer-derived hard carbon for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 63(39), e202409906 (2024). https://doi.org/10.1002/anie.202409906
- W. Jian, X. Qiu, H. Chen, J. Yin, W. Yin et al., Elucidation of the sodium-ion storage behaviors in hard carbon anodes through pore architecture engineering. ACS Nano 19(24), 22201–22216 (2025). https://doi.org/10.1021/acsnano.5c03700
- Z. Zheng, S. Hu, W. Yin, J. Peng, R. Wang, J. Jin, B. He, Y. Gong, H. Wang, H.J. Fan, CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage. Adv. Energy Mater. 14(3), 2303064 (2024). https://doi.org/10.1002/aenm.202303064
- J. Duan, Z. Xu, M. Li, P. Yang, H. Hu et al., Structure regulation of hard carbon with enriched semi-closed ultramicropores for enhanced rapid sodium storage. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508822
- C. Qiu, A. Li, D. Qiu, Y. Wu, Z. Jiang et al., One-step construction of closed pores enabling high plateau capacity hard carbon anodes for sodium-ion batteries: closed-pore formation and energy storage mechanisms. ACS Nano 18(18), 11941–11954 (2024). https://doi.org/10.1021/acsnano.4c02046
- S. Li, J. Liu, Y. Chen, S. Li, P. Tang, Y. Xie, S. Xie, Z. Miao, J. Zhu, X. Yan, Graphitization induction effect of hard carbon for sodium-ion storage. Adv. Funct. Mater. 35(30), 2424629 (2025). https://doi.org/10.1002/adfm.202424629
- Y. Guo, D. Qiao, S. Zhao, B. Zhang, F. Xie, Advanced functional chitosan-based nanocomposite materials for performance-demanding applications. Prog. Polym. Sci. 157, 101872 (2024). https://doi.org/10.1016/j.progpolymsci.2024.101872
- C. Ou, S. Chen, Y. Liu, J. Shao, S. Li et al., Study on the thermal degradation kinetics and pyrolysis characteristics of chitosan-Zn complex. J. Anal. Appl. Pyrolysis 122, 268–276 (2016). https://doi.org/10.1016/j.jaap.2016.03.021
- J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem et al., Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem. Int. Ed. 58(21), 7035–7039 (2019). https://doi.org/10.1002/anie.201902109
- Z. Liang, L. Song, M. Sun, B. Huang, Y. Du, Tunable CO/H(2) ratios of electrochemical reduction of CO2 through the Zn-Ln dual atomic catalysts. Sci. Adv. 7(47), eabl4915 (2021). https://doi.org/10.1126/sciadv.abl4915
- S. Tunmee, R. Supruangnet, H. Nakajima, X. Zhou, S. Arakawa, T. Suzuki, K. Kanda, H. Ito, K. Komatsu, H. Saitoh, Study of synchrotron radiation near-edge X-ray absorption fine-structure of amorphous hydrogenated carbon films at various thicknesses. J. Nanomater. 2015(1), 276790 (2015). https://doi.org/10.1155/2015/276790
- X. Zhou, S. Tunmee, T. Suzuki, P. Phothongkam, K. Kanda et al., Quantitative NEXAFS and solid-state NMR studies of sp3/(sp2 + sp3) ratio in the hydrogenated DLC films. Diam. Relat. Mater. 73, 232–240 (2017). https://doi.org/10.1016/j.diamond.2016.09.026
- H. Wu, W. Yuan, L. Li, X. Gao, Z. Zhang, Y. Qian, Ultra-high capacity and stable dual-ion batteries with fast kinetics enabled by HOF supermolecules derived 3D nitrogen-oxygen Co-doped nanocarbon anodes. Adv. Funct. Mater. 34(46), 2406540 (2024). https://doi.org/10.1002/adfm.202406540
- Z. Xu, J. Wang, Z. Guo, F. Xie, H. Liu, H. Yadegari, M. Tebyetekerwa, M.P. Ryan, Y.-S. Hu, M.-M. Titirici, The role of hydrothermal carbonization in sustainable sodium-ion battery anodes. Adv. Energy Mater. 12(18), 2200208 (2022). https://doi.org/10.1002/aenm.202200208
- D.-S. Bin, Y. Li, Y.-G. Sun, S.-Y. Duan, Y. Lu et al., Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 8(26), 1800855 (2018). https://doi.org/10.1002/aenm.201800855
- Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
- Z. Zhu, F. Liang, Z. Zhou, X. Zeng, D. Wang et al., Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J. Mater. Chem. A 6(4), 1513–1522 (2018). https://doi.org/10.1039/c7ta07951f
- F. Xie, Z. Xu, A.C.S. Jensen, H. Au, Y. Lu, V. Araullo‐Peters, A.J. Drew, Y.-S. Hu, M.-M. Titirici, Hard–soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 29(24), 1901072 (2019). https://doi.org/10.1002/adfm.201901072
- S. Qiu, L. Xiao, M.L. Sushko, K.S. Han, Y. Shao et al., Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 7(17), 1700403 (2017). https://doi.org/10.1002/aenm.201700403
- F. Chen, Y. Di, Q. Su, D. Xu, Y. Zhang, S. Zhou, S. Liang, X. Cao, A. Pan, Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries. Carbon Energy 5(2), e191 (2023). https://doi.org/10.1002/cey2.191
- X. Liu, J. Shang, J. Li, H. Liu, F. Zhang et al., Insight into robust anion coordination behavior of organic cathode with dual elongated π-conjugated motifs. Angew. Chem. Int. Ed. 64(7), e202420160 (2025). https://doi.org/10.1002/anie.202420160
- B. Cao, Z. Guo, H. Liu, Y. Ma, W. Zhao, Y. Yang, A. Li, H. Song, Z. Li, W. Du, High content of single-atomic sulfur in nano carbon spheres boosting potassium storage performance. Chem. Eng. J. 511, 161950 (2025). https://doi.org/10.1016/j.cej.2025.161950
- Y. Su, J. Shang, X. Liu, J. Li, Q. Pan, Y. Tang, Constructing π-π superposition effect of tetralithium naphthalenetetracarboxylate with electron delocalization for robust dual-ion batteries. Angew. Chem. Int. Ed. 63(22), e202403775 (2024). https://doi.org/10.1002/anie.202403775
- Y. Wei, B. Tang, X. Liang, F. Zhang, Y. Tang, An ultrahigh-mass-loading integrated free-standing functional all-carbon positive electrode prepared using an architecture tailoring strategy for high-energy-density dual-ion batteries. Adv. Mater. 35(30), 2302086 (2023). https://doi.org/10.1002/adma.202302086
- H. Liu, Z. Xin, B. Cao, D. Zhang, J. Lu et al., Sucralose with bifunctional groups as a functional additive enhancing the interfacial stability of zinc metal anodes via interfacial molecular chemistry regulation. J. Mater. Chem. A 12(31), 20229–20237 (2024). https://doi.org/10.1039/D4TA03031A
- J. Liu, Y. You, L. Huang, Q. Zheng, Z. Sun, K. Fang, L. Sha, M. Liu, X. Zhan, J. Zhao, Y.C. Han, Q. Zhang, Y. Chen, S. Wu, L. Zhang, Precisely tunable instantaneous carbon rearrangement enables low-working-potential hard carbon toward sodium-ion batteries with enhanced energy density. Adv. Mater. 36(44), 2407369 (2024). https://doi.org/10.1002/adma.202407369
- Z. Tang, R. Zhang, H. Wang, S. Zhou, Z. Pan et al., Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun. 14(1), 6024 (2023). https://doi.org/10.1038/s41467-023-39637-5
- C. Wu, Y. Yang, Y. Li, X. He, Y. Zhang et al., Unraveling the structure–performance relationship in hard carbon for sodium-ion battery by coupling key structural parameters. Energy Environ. Sci. 18(12), 6019–6031 (2025). https://doi.org/10.1039/D5EE00278H
- Y. Xue, Y. Chen, Y. Liang, L. Shi, R. Ma, X. Qiu, Y. Li, N. Guo, Q. Zhuang, B. Xi, Z. Ju, S. Xiong, Substitution index-prediction rules for low-potential plateau of hard carbon anodes in sodium-ion batteries. Adv. Mater. 37(28), 2417886 (2025). https://doi.org/10.1002/adma.202417886
- Z. Wen, R. Zhao, T. Tian, T. Zhang, X. Wang, X. Yang, W. Song, Y. Chen, J. Ding, W. Hu, Molecular stitching in polysaccharide precursor for fabricating hard carbon with ultra-high plateau capacity of sodium storage. Adv. Mater. 37(18), 2420251 (2025). https://doi.org/10.1002/adma.202420251
- Y. Zhang, S.-W. Zhang, Y. Chu, J. Zhang, H. Xue et al., Redefining closed pores in carbons by solvation structures for enhanced sodium storage. Nat. Commun. 16(1), 3634 (2025). https://doi.org/10.1038/s41467-025-59022-8
- J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
- Z. Hu, Q. Liu, K. Zhang, L. Zhou, L. Li et al., All carbon dual ion batteries. ACS Appl. Mater. Interfaces 10(42), 35978–35983 (2018). https://doi.org/10.1021/acsami.8b11824
- L. Fan, Q. Liu, S. Chen, Z. Xu, B. Lu, Soft carbon as anode for high-performance sodium-based dual ion full battery. Adv. Energy Mater. 7(14), 1602778 (2017). https://doi.org/10.1002/aenm.201602778
- X. Zhang, L. Zhang, W. Zhang, S. Xue, Y. Tang, A fast and stable sodium-based dual-ion battery achieved by Cu3P@P-doped carbon matrix anode. J. Power. Sources 518, 230741 (2022). https://doi.org/10.1016/j.jpowsour.2021.230741
- Y. Liu, X. Hu, G. Zhong, J. Chen, H. Zhan et al., Layer-by-layer stacked nanohybrids of N, S-co-doped carbon film modified atomic MoS2 nanosheets for advanced sodium dual-ion batteries. J. Mater. Chem. A 7(42), 24271–24280 (2019). https://doi.org/10.1039/C9TA09636A
- G. Zhang, X. Ou, J. Yang, Y. Tang, Molecular coupling and self-assembly strategy toward WSe2/carbon micro–nano hierarchical structure for elevated sodium-ion storage. Small Methods 5(8), 2100374 (2021). https://doi.org/10.1002/smtd.202100374
- X. Hou, W. Li, Y. Wang, S. Li, Y. Meng, H. Yu, B. Chen, X. Wu, Sodium-based dual-ion batteries via coupling high-capacity selenium/graphene anode with high-voltage graphite cathode. Chin. Chem. Lett. 31(9), 2314–2318 (2020). https://doi.org/10.1016/j.cclet.2020.04.021
- H. Wang, Q. Wu, Y. Wang, X. Lv, H.-G. Wang, A redox-active metal–organic compound for lithium/sodium-based dual-ion batteries. J. Colloid Interface Sci. 606, 1024–1030 (2022). https://doi.org/10.1016/j.jcis.2021.08.113
- S. Mu, Q. Liu, P. Kidkhunthod, X. Zhou, W. Wang et al., Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 8(7), nwaa178 (2020). https://doi.org/10.1093/nsr/nwaa178
- M. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv. Energy Mater. 7(7), 1601963 (2017). https://doi.org/10.1002/aenm.201601963
- N. Jiang, L. Chen, H. Jiang, Y. Hu, C. Li, Introducing the solvent co-intercalation mechanism for hard carbon with ultrafast sodium storage. Small 18(15), 2108092 (2022). https://doi.org/10.1002/smll.202108092
- Z. Guo, Z. Xu, F. Xie, J. Jiang, K. Zheng, S. Alabidun, M. Crespo‐Ribadeneyra, Y.-S. Hu, H. Au, M.-M. Titirici, Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteries. Adv. Mater. 35(42), 2304091 (2023). https://doi.org/10.1002/adma.202304091
- W. Li, X. Guo, K. Song, J. Chen, J. Zhang, G. Tang, C. Liu, W. Chen, C. Shen, Binder-induced ultrathin SEI for defect-passivated hard carbon enables highly reversible sodium-ion storage. Adv. Energy Mater. 13(22), 2300648 (2023). https://doi.org/10.1002/aenm.202300648
- Z. Fang, S. Fan, Z. Yan, D. Tang, X. Gao, X. Huang, H. Zheng, B. Wang, Q. Jiang, J. Han, J. Lin, Q. Xie, D.-L. Peng, Q. Wei, Root-growth-inspired self-morphology-evolution of microsized bismuth surrounded by microsized hard carbon for stabilized sodium-ion storage. Adv. Mater. 37(3), 2412636 (2025). https://doi.org/10.1002/adma.202412636
References
Y.C. Zhang, X.Y. Ji, C.D. Xie, R. Yang, F. Zhang, Y.B. Tang, Aqueous secondary batteries: status and challenges. Energy Storage Mater. 77, 104186 (2025). https://doi.org/10.1016/j.ensm.2025.104186
X. Liu, J. Shang, Y. Cheng, Q. Pan, J. Li et al., Biomimetic gourd-vine supramolecular engineering for high-performance organic cathode through dual-mode of anion coordination and conjugated redox activation. Angew. Chem. Int. Ed. 64(38), e202511229 (2025). https://doi.org/10.1002/anie.202511229
J. Lu, Y. Chen, Y. Lei, P. Jaumaux, H. Tian et al., Quasi-solid gel electrolytes for alkali metal battery applications. Nano-Micro Lett. 17(1), 194 (2025). https://doi.org/10.1007/s40820-024-01632-w
Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du et al., Recycling of sodium-ion batteries. Nat. Rev. Mater. 8(9), 623–634 (2023). https://doi.org/10.1038/s41578-023-00574-w
B. Liu, C. Jiang, K. Yan, J. Shang, Y. Fan et al., Super-wetting interface engineering of space-confined micron-sized alloying anodes for high-performance sodium-based dual-ion batteries. Matter 8(10), 102294 (2025). https://doi.org/10.1016/j.matt.2025.102294
Y. Liu, M. Qiu, X. Hu, J. Yuan, W. Liao et al., Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries. Nano-Micro Lett. 15(1), 104 (2023). https://doi.org/10.1007/s40820-023-01070-0
H. Wu, S. Luo, H. Wang, L. Li, Y. Fang et al., A review of anode materials for dual-ion batteries. Nano-Micro Lett. 16(1), 252 (2024). https://doi.org/10.1007/s40820-024-01470-w
S. Gan, Y. Huang, N. Hong, Y. Zhang, B. Xiong et al., Comprehensive understanding of closed pores in hard carbon anode for high-energy sodium-ion batteries. Nano-Micro Lett. 17(1), 325 (2025). https://doi.org/10.1007/s40820-025-01833-x
F. Wang, T. Zhang, T. Zhang, T. He, F. Ran, Recent progress in improving rate performance of cellulose-derived carbon materials for sodium-ion batteries. Nano-Micro Lett. 16(1), 148 (2024). https://doi.org/10.1007/s40820-024-01351-2
Y. Wang, Y. Kuang, J. Cui, X. Xu, F. Li et al., Self-template construction of hierarchical Bi@C microspheres as competitive wide temperature-operating anodes for superior sodium-ion batteries. Nano Lett. 24(48), 15242–15251 (2024). https://doi.org/10.1021/acs.nanolett.4c03453
C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15(1), 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
X. Wang, Q. Fan, Z. Liu, X. Zhu, M. Yang et al., Anion-mediated approach to overcome oxidation in ether electrolytes for high-voltage sodium-ion batteries. Nat. Commun. 16(1), 2536 (2025). https://doi.org/10.1038/s41467-025-57910-7
Y. Gao, H. Zhang, J. Peng, L. Li, Y. Xiao, Y. Liu, Y. Qiao, S.-L. Chou, A 30-year overview of sodium-ion batteries. Carbon Energy 6(6), e464 (2024). https://doi.org/10.1002/cey2.464
M. Wang, Q. Liu, G. Wu, J. Ma, Y. Tang, Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life. Green Energy Environ. 8(2), 548–558 (2023). https://doi.org/10.1016/j.gee.2021.03.007
Z. Lu, H. Yang, Y. Guo, H. Lin, P. Shan et al., Consummating ion desolvation in hard carbon anodes for reversible sodium storage. Nat. Commun. 15, 3497 (2024). https://doi.org/10.1038/s41467-024-47522-y
Q. Pan, Z. Tong, Y. Su, S. Qin, Y. Tang, Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv. Funct. Mater. 31(37), 2103912 (2021). https://doi.org/10.1002/adfm.202103912
P. Liang, D. Pan, X. Hu, K.R. Yang, Y. Liu et al., Se-regulated MnS porous nanocubes encapsulated in carbon nanofibers as high-performance anode for sodium-ion batteries. Nano-Micro Lett. 17(1), 237 (2025). https://doi.org/10.1007/s40820-025-01767-4
Y. Sun, J.-C. Li, H. Zhou, S. Guo, Wide-temperature-range sodium-metal batteries: from fundamentals and obstacles to optimization. Energy Environ. Sci. 16(11), 4759–4811 (2023). https://doi.org/10.1039/D3EE02082G
Y. Wang, X. Xu, Y. Wu, F. Li, W. Fan, S. Ji, J. Zhao, J. Liu, Y. Huo, Facile galvanic replacement construction of Bi@C nanosheets array as binder-free anodes for superior sodium-ion batteries. Adv. Energy Mater. 14(30), 2401833 (2024). https://doi.org/10.1002/aenm.202401833
K. Zou, W. Deng, D.S. Silvester, G. Zou, H. Hou et al., Carbonyl chemistry for advanced electrochemical energy storage systems. ACS Nano 18(31), 19950–20000 (2024). https://doi.org/10.1021/acsnano.4c02307
Y. Li, A. Vasileiadis, Q. Zhou, Y. Lu, Q. Meng et al., Origin of fast charging in hard carbon anodes. Nat. Energy 9(2), 134–142 (2024). https://doi.org/10.1038/s41560-023-01414-5
Q. Li, X. Liu, Y. Tao, J. Huang, J. Zhang et al., Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Natl. Sci. Rev. 9(8), nwac084 (2022). https://doi.org/10.1093/nsr/nwac084
R. Jia, R. Yang, Y. Zheng, Q. Pan, F. Zhang, Y. Tang, Anomalous electrochemical aging strengthening behavior of MXene electrodes for synergistic anion-cation storage in dual-ion batteries. Adv. Funct. Mater. 35(14), 2419013 (2025). https://doi.org/10.1002/adfm.202419013
J. Peng, H. Wang, X. Shi, H.J. Fan, Ultrahigh plateau-capacity sodium storage by plugging open pores. Adv. Mater. (2024). https://doi.org/10.1002/adma.202410326
B. Wang, J.R. Fitzpatrick, A. Brookfield, A.J. Fielding, E. Reynolds et al., Electron paramagnetic resonance as a tool to determine the sodium charge storage mechanism of hard carbon. Nat. Commun. 15, 3013 (2024). https://doi.org/10.1038/s41467-024-45460-3
X. Chen, J. Tian, P. Li, Y. Fang, Y. Fang, X. Liang, J. Feng, J. Dong, X. Ai, H. Yang, Y. Cao, An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism. Adv. Energy Mater. 12(24), 2200886 (2022). https://doi.org/10.1002/aenm.202200886
M. Hu, L. Yang, K. Zhou, C. Zhou, Z.-H. Huang et al., Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation. Carbon 122, 680–686 (2017). https://doi.org/10.1016/j.carbon.2017.05.003
D. Wu, F. Sun, Z. Qu, H. Wang, Z. Lou et al., Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau capacity for high performance sodium ion batteries. J. Mater. Chem. A 10(33), 17225–17236 (2022). https://doi.org/10.1039/D2TA04194D
C.-Z. Zhan, X.-J. Zeng, R.-T. Lv, Y. Shen, Z.-H. Huang, F.-y Kang, Preparation of porous graphitic carbon and its dual-ion capacitance energy storage mechanism. New Carbon Mater. 38(3), 576–581 (2023). https://doi.org/10.1016/S1872-5805(23)60727-9
Y. Wang, Z. Yi, L. Xie, Y. Mao, W. Ji, Z. Liu, X. Wei, F. Su, C.-M. Chen, Releasing free radicals in precursor triggers the formation of closed pores in hard carbon for sodium-ion batteries. Adv. Mater. 36(26), 2401249 (2024). https://doi.org/10.1002/adma.202401249
S. Zhang, N. Sun, X. Li, R.A. Soomro, B. Xu, Closed pore engineering of activated carbon enabled by waste mask for superior sodium storage. Energy Storage Mater. 66, 103183 (2024). https://doi.org/10.1016/j.ensm.2024.103183
X. Chen, N. Sawut, K. Chen, H. Li, J. Zhang et al., Filling carbon: a microstructure-engineered hard carbon for efficient alkali metal ion storage. Energy Environ. Sci. 16(9), 4041–4053 (2023). https://doi.org/10.1039/D3EE01154B
J. Lin, Q. Zhou, Z. Liao, Y. Chen, Y. Liu, Q. Liu, X. Xiong, Steric hindrance engineering to modulate the closed pores formation of polymer-derived hard carbon for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 63(39), e202409906 (2024). https://doi.org/10.1002/anie.202409906
W. Jian, X. Qiu, H. Chen, J. Yin, W. Yin et al., Elucidation of the sodium-ion storage behaviors in hard carbon anodes through pore architecture engineering. ACS Nano 19(24), 22201–22216 (2025). https://doi.org/10.1021/acsnano.5c03700
Z. Zheng, S. Hu, W. Yin, J. Peng, R. Wang, J. Jin, B. He, Y. Gong, H. Wang, H.J. Fan, CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage. Adv. Energy Mater. 14(3), 2303064 (2024). https://doi.org/10.1002/aenm.202303064
J. Duan, Z. Xu, M. Li, P. Yang, H. Hu et al., Structure regulation of hard carbon with enriched semi-closed ultramicropores for enhanced rapid sodium storage. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508822
C. Qiu, A. Li, D. Qiu, Y. Wu, Z. Jiang et al., One-step construction of closed pores enabling high plateau capacity hard carbon anodes for sodium-ion batteries: closed-pore formation and energy storage mechanisms. ACS Nano 18(18), 11941–11954 (2024). https://doi.org/10.1021/acsnano.4c02046
S. Li, J. Liu, Y. Chen, S. Li, P. Tang, Y. Xie, S. Xie, Z. Miao, J. Zhu, X. Yan, Graphitization induction effect of hard carbon for sodium-ion storage. Adv. Funct. Mater. 35(30), 2424629 (2025). https://doi.org/10.1002/adfm.202424629
Y. Guo, D. Qiao, S. Zhao, B. Zhang, F. Xie, Advanced functional chitosan-based nanocomposite materials for performance-demanding applications. Prog. Polym. Sci. 157, 101872 (2024). https://doi.org/10.1016/j.progpolymsci.2024.101872
C. Ou, S. Chen, Y. Liu, J. Shao, S. Li et al., Study on the thermal degradation kinetics and pyrolysis characteristics of chitosan-Zn complex. J. Anal. Appl. Pyrolysis 122, 268–276 (2016). https://doi.org/10.1016/j.jaap.2016.03.021
J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem et al., Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem. Int. Ed. 58(21), 7035–7039 (2019). https://doi.org/10.1002/anie.201902109
Z. Liang, L. Song, M. Sun, B. Huang, Y. Du, Tunable CO/H(2) ratios of electrochemical reduction of CO2 through the Zn-Ln dual atomic catalysts. Sci. Adv. 7(47), eabl4915 (2021). https://doi.org/10.1126/sciadv.abl4915
S. Tunmee, R. Supruangnet, H. Nakajima, X. Zhou, S. Arakawa, T. Suzuki, K. Kanda, H. Ito, K. Komatsu, H. Saitoh, Study of synchrotron radiation near-edge X-ray absorption fine-structure of amorphous hydrogenated carbon films at various thicknesses. J. Nanomater. 2015(1), 276790 (2015). https://doi.org/10.1155/2015/276790
X. Zhou, S. Tunmee, T. Suzuki, P. Phothongkam, K. Kanda et al., Quantitative NEXAFS and solid-state NMR studies of sp3/(sp2 + sp3) ratio in the hydrogenated DLC films. Diam. Relat. Mater. 73, 232–240 (2017). https://doi.org/10.1016/j.diamond.2016.09.026
H. Wu, W. Yuan, L. Li, X. Gao, Z. Zhang, Y. Qian, Ultra-high capacity and stable dual-ion batteries with fast kinetics enabled by HOF supermolecules derived 3D nitrogen-oxygen Co-doped nanocarbon anodes. Adv. Funct. Mater. 34(46), 2406540 (2024). https://doi.org/10.1002/adfm.202406540
Z. Xu, J. Wang, Z. Guo, F. Xie, H. Liu, H. Yadegari, M. Tebyetekerwa, M.P. Ryan, Y.-S. Hu, M.-M. Titirici, The role of hydrothermal carbonization in sustainable sodium-ion battery anodes. Adv. Energy Mater. 12(18), 2200208 (2022). https://doi.org/10.1002/aenm.202200208
D.-S. Bin, Y. Li, Y.-G. Sun, S.-Y. Duan, Y. Lu et al., Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 8(26), 1800855 (2018). https://doi.org/10.1002/aenm.201800855
Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
Z. Zhu, F. Liang, Z. Zhou, X. Zeng, D. Wang et al., Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J. Mater. Chem. A 6(4), 1513–1522 (2018). https://doi.org/10.1039/c7ta07951f
F. Xie, Z. Xu, A.C.S. Jensen, H. Au, Y. Lu, V. Araullo‐Peters, A.J. Drew, Y.-S. Hu, M.-M. Titirici, Hard–soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 29(24), 1901072 (2019). https://doi.org/10.1002/adfm.201901072
S. Qiu, L. Xiao, M.L. Sushko, K.S. Han, Y. Shao et al., Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 7(17), 1700403 (2017). https://doi.org/10.1002/aenm.201700403
F. Chen, Y. Di, Q. Su, D. Xu, Y. Zhang, S. Zhou, S. Liang, X. Cao, A. Pan, Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries. Carbon Energy 5(2), e191 (2023). https://doi.org/10.1002/cey2.191
X. Liu, J. Shang, J. Li, H. Liu, F. Zhang et al., Insight into robust anion coordination behavior of organic cathode with dual elongated π-conjugated motifs. Angew. Chem. Int. Ed. 64(7), e202420160 (2025). https://doi.org/10.1002/anie.202420160
B. Cao, Z. Guo, H. Liu, Y. Ma, W. Zhao, Y. Yang, A. Li, H. Song, Z. Li, W. Du, High content of single-atomic sulfur in nano carbon spheres boosting potassium storage performance. Chem. Eng. J. 511, 161950 (2025). https://doi.org/10.1016/j.cej.2025.161950
Y. Su, J. Shang, X. Liu, J. Li, Q. Pan, Y. Tang, Constructing π-π superposition effect of tetralithium naphthalenetetracarboxylate with electron delocalization for robust dual-ion batteries. Angew. Chem. Int. Ed. 63(22), e202403775 (2024). https://doi.org/10.1002/anie.202403775
Y. Wei, B. Tang, X. Liang, F. Zhang, Y. Tang, An ultrahigh-mass-loading integrated free-standing functional all-carbon positive electrode prepared using an architecture tailoring strategy for high-energy-density dual-ion batteries. Adv. Mater. 35(30), 2302086 (2023). https://doi.org/10.1002/adma.202302086
H. Liu, Z. Xin, B. Cao, D. Zhang, J. Lu et al., Sucralose with bifunctional groups as a functional additive enhancing the interfacial stability of zinc metal anodes via interfacial molecular chemistry regulation. J. Mater. Chem. A 12(31), 20229–20237 (2024). https://doi.org/10.1039/D4TA03031A
J. Liu, Y. You, L. Huang, Q. Zheng, Z. Sun, K. Fang, L. Sha, M. Liu, X. Zhan, J. Zhao, Y.C. Han, Q. Zhang, Y. Chen, S. Wu, L. Zhang, Precisely tunable instantaneous carbon rearrangement enables low-working-potential hard carbon toward sodium-ion batteries with enhanced energy density. Adv. Mater. 36(44), 2407369 (2024). https://doi.org/10.1002/adma.202407369
Z. Tang, R. Zhang, H. Wang, S. Zhou, Z. Pan et al., Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun. 14(1), 6024 (2023). https://doi.org/10.1038/s41467-023-39637-5
C. Wu, Y. Yang, Y. Li, X. He, Y. Zhang et al., Unraveling the structure–performance relationship in hard carbon for sodium-ion battery by coupling key structural parameters. Energy Environ. Sci. 18(12), 6019–6031 (2025). https://doi.org/10.1039/D5EE00278H
Y. Xue, Y. Chen, Y. Liang, L. Shi, R. Ma, X. Qiu, Y. Li, N. Guo, Q. Zhuang, B. Xi, Z. Ju, S. Xiong, Substitution index-prediction rules for low-potential plateau of hard carbon anodes in sodium-ion batteries. Adv. Mater. 37(28), 2417886 (2025). https://doi.org/10.1002/adma.202417886
Z. Wen, R. Zhao, T. Tian, T. Zhang, X. Wang, X. Yang, W. Song, Y. Chen, J. Ding, W. Hu, Molecular stitching in polysaccharide precursor for fabricating hard carbon with ultra-high plateau capacity of sodium storage. Adv. Mater. 37(18), 2420251 (2025). https://doi.org/10.1002/adma.202420251
Y. Zhang, S.-W. Zhang, Y. Chu, J. Zhang, H. Xue et al., Redefining closed pores in carbons by solvation structures for enhanced sodium storage. Nat. Commun. 16(1), 3634 (2025). https://doi.org/10.1038/s41467-025-59022-8
J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
Z. Hu, Q. Liu, K. Zhang, L. Zhou, L. Li et al., All carbon dual ion batteries. ACS Appl. Mater. Interfaces 10(42), 35978–35983 (2018). https://doi.org/10.1021/acsami.8b11824
L. Fan, Q. Liu, S. Chen, Z. Xu, B. Lu, Soft carbon as anode for high-performance sodium-based dual ion full battery. Adv. Energy Mater. 7(14), 1602778 (2017). https://doi.org/10.1002/aenm.201602778
X. Zhang, L. Zhang, W. Zhang, S. Xue, Y. Tang, A fast and stable sodium-based dual-ion battery achieved by Cu3P@P-doped carbon matrix anode. J. Power. Sources 518, 230741 (2022). https://doi.org/10.1016/j.jpowsour.2021.230741
Y. Liu, X. Hu, G. Zhong, J. Chen, H. Zhan et al., Layer-by-layer stacked nanohybrids of N, S-co-doped carbon film modified atomic MoS2 nanosheets for advanced sodium dual-ion batteries. J. Mater. Chem. A 7(42), 24271–24280 (2019). https://doi.org/10.1039/C9TA09636A
G. Zhang, X. Ou, J. Yang, Y. Tang, Molecular coupling and self-assembly strategy toward WSe2/carbon micro–nano hierarchical structure for elevated sodium-ion storage. Small Methods 5(8), 2100374 (2021). https://doi.org/10.1002/smtd.202100374
X. Hou, W. Li, Y. Wang, S. Li, Y. Meng, H. Yu, B. Chen, X. Wu, Sodium-based dual-ion batteries via coupling high-capacity selenium/graphene anode with high-voltage graphite cathode. Chin. Chem. Lett. 31(9), 2314–2318 (2020). https://doi.org/10.1016/j.cclet.2020.04.021
H. Wang, Q. Wu, Y. Wang, X. Lv, H.-G. Wang, A redox-active metal–organic compound for lithium/sodium-based dual-ion batteries. J. Colloid Interface Sci. 606, 1024–1030 (2022). https://doi.org/10.1016/j.jcis.2021.08.113
S. Mu, Q. Liu, P. Kidkhunthod, X. Zhou, W. Wang et al., Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 8(7), nwaa178 (2020). https://doi.org/10.1093/nsr/nwaa178
M. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv. Energy Mater. 7(7), 1601963 (2017). https://doi.org/10.1002/aenm.201601963
N. Jiang, L. Chen, H. Jiang, Y. Hu, C. Li, Introducing the solvent co-intercalation mechanism for hard carbon with ultrafast sodium storage. Small 18(15), 2108092 (2022). https://doi.org/10.1002/smll.202108092
Z. Guo, Z. Xu, F. Xie, J. Jiang, K. Zheng, S. Alabidun, M. Crespo‐Ribadeneyra, Y.-S. Hu, H. Au, M.-M. Titirici, Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteries. Adv. Mater. 35(42), 2304091 (2023). https://doi.org/10.1002/adma.202304091
W. Li, X. Guo, K. Song, J. Chen, J. Zhang, G. Tang, C. Liu, W. Chen, C. Shen, Binder-induced ultrathin SEI for defect-passivated hard carbon enables highly reversible sodium-ion storage. Adv. Energy Mater. 13(22), 2300648 (2023). https://doi.org/10.1002/aenm.202300648
Z. Fang, S. Fan, Z. Yan, D. Tang, X. Gao, X. Huang, H. Zheng, B. Wang, Q. Jiang, J. Han, J. Lin, Q. Xie, D.-L. Peng, Q. Wei, Root-growth-inspired self-morphology-evolution of microsized bismuth surrounded by microsized hard carbon for stabilized sodium-ion storage. Adv. Mater. 37(3), 2412636 (2025). https://doi.org/10.1002/adma.202412636