Annular Microfluidic Meta-Atom Fusion-Enabled Broadband Metamaterial Absorber
Corresponding Author: Xiaosheng Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 169
Abstract
Electromagnetic (EM) metamaterial absorbers (MMAs) with broadband absorption are of growing interest for applications such as stealth and EM interference mitigation. In this work, we present a novel 3D-printed MMA based on a fused annular microfluidic meta-atom (FAMMA) architecture, designed for W-band absorption. The FAMMA structure features three kinds of orthogonally fused annual meta-atoms, forming a complex 3D microfluidic meta-atom with intricate architecture. Fabricated via high-precision micro 3D printing technology, the FAMMA-based MMA exploits the synergistic solid–liquid coupling effect of the unique three-dimensional orthogonal structure to achieve strong broadband absorption. Three representative FAMMAs with different geometric dimensions have achieved ultra-low reflection loss (RL of − 42.1 dB), ultra-broadband effective absorption bandwidth (EAB of 31.3 GHz), and dual-band absorption (in 76.0–85.3 and 99.1–105.6 GHz), respectively. The underlying absorption mechanisms are elucidated by impedance matching theory and electromagnetic field distribution analyses. Application demonstrations show that the FAMMA-based MMA significantly suppresses radar echo power and renders metallic targets undetectable to both radar detector and radar imaging systems, highlighting its potential in stealth technology. Overall, this work establishes a new design concept for high-performance broadband millimeter wave MMAs, opening new avenue for future applications such as high-speed communication, through-wall sensing, and drone detection.
Highlights:
1 Unique 3D-printed electromagnetic metamaterial absorber based on a fused annular microfluidic meta-atom architecture.
2 Synergistic solid-liquid coupling effect of the unique three-dimensional orthogonal structure to achieve strong broadband absorption.
3 High-performance broadband absorption for millimeter wave.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry et al., Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006). https://doi.org/10.1126/science.1133628
- N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008). https://doi.org/10.1103/physrevlett.100.207402
- H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt et al., A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Exp. 16(10), 7181–7188 (2008). https://doi.org/10.1364/OE.16.007181
- H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong et al., Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Phys. Rev. B 86(20), 205104 (2012). https://doi.org/10.1103/physrevb.86.205104
- K. Errajraji, N. Jebbor, S. Das, T. Islam, B.T.P. Madhav et al., Design and analysis of a multi-band miniaturized metamaterial absorber for wireless communication applications. Opt. Quantum Electron. 56(2), 232 (2023). https://doi.org/10.1007/s11082-023-05813-6
- I. Moon, W. Kim, Y. Seo, S. Kahng, A metamaterial surface avoiding loss from the radome for a millimeter-wave signal-sensing array antenna. Sensors 24(3), 0 (2024). https://doi.org/10.3390/s24031018
- Q. Zeng, X. Tian, D.T. Nguyen, C. Li, P. Chia et al., A digitally embroidered metamaterial biosensor for kinetic environments. Nat. Electron. 7(11), 1025–1034 (2024). https://doi.org/10.1038/s41928-024-01263-4
- M. Tabib-Azar, M.A.H. Chowdhury, A 10 GHz metamaterial sensor to detect SARS COV-2 and dust ps in free space. IEEE Sens. J. 22(13), 12846–12851 (2022). https://doi.org/10.1109/JSEN.2022.3178049
- S. Nie, I.F. Akyildiz, Metasurfaces for multiplexed communication. Nat. Electron. 4(3), 177–178 (2021). https://doi.org/10.1038/s41928-021-00555-3
- J.-Q. Han, F.-Y. Meng, C. Guan, T. Jin, C. Ding et al., Frequency-multiplexed programmable guided-wave-driven metasurface for low earth orbit satellite communication. Adv. Opt. Mater. 13(10), 2402880 (2025). https://doi.org/10.1002/adom.202402880
- H.-Y. Wang, P. Hu, X.-B. Sun, Z.-L. Hou, P.-Y. Zhao et al., Bioinspired disordered aerogel for omnidirectional terahertz response. Adv. Mater. 37(10), e2418889 (2025). https://doi.org/10.1002/adma.202418889
- D. Wang, T. Ping, Z. Du, X. Liu, Y. Zhang, Lessons from nature: advances and perspectives in bionic microwave absorption materials. Nano-Micro Lett. 17(1), 100 (2024). https://doi.org/10.1007/s40820-024-01591-2
- Z. Lin, Q. Wu, X. Liu, H. Ma, H. Liu et al., Flexible meta-tape with wide gamut, low lightness and low infrared emissivity for visible-infrared camouflage. Adv. Mater. 36(52), 2410336 (2024). https://doi.org/10.1002/adma.202410336
- M.A. Assad, M. Elbahri, Perfect ultraviolet absorbers via disordered polarizonic metasurfaces for multiband camouflage and stealth technologies. Adv. Funct. Mater. 35(14), 2418271 (2025). https://doi.org/10.1002/adfm.202418271
- K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011). https://doi.org/10.1038/ncomms1528
- Q. An, D. Li, W. Liao, T. Liu, D. Joralmon et al., A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv. Mater. 35(26), e2300659 (2023). https://doi.org/10.1002/adma.202300659
- B.-X. Wang, C. Xu, G. Duan, W. Xu, F. Pi, Review of broadband metamaterial absorbers: from principles, design strategies, and tunable properties to functional applications. Adv. Funct. Mater. 33(14), 2213818 (2023). https://doi.org/10.1002/adfm.202213818
- Z. Ren, Z. Yang, W. Mu, T. Liu, X. Liu et al., Ultra-broadband perfect absorbers based on biomimetic metamaterials with dual coupling gradient resonators. Adv. Mater. 37(11), 2570092 (2025). https://doi.org/10.1002/adma.202570092
- H.-X. Xu, M. Wang, G. Hu, S. Wang, Y. Wang et al., Adaptable invisibility management using kirigami-inspired transformable metamaterials. Research (2021). https://doi.org/10.34133/2021/9806789
- Y. Wang, C. Wang, Y. Zhai, F. Zhang, H. Luo et al., LPDA-inspired material-geometry joint wide-angle broadband absorption based on metapyramid. Mater. Des. 235, 112397 (2023). https://doi.org/10.1016/j.matdes.2023.112397
- Y. Wang, H. Luo, Y. Shao, H. Wang, T. Liu et al., Detection and anti-detection with microwave-infrared compatible camouflage using asymmetric composite metasurface. Adv. Sci. 11(43), 2410364 (2024). https://doi.org/10.1002/advs.202410364
- J. Qin, Y. Shi, S. Jiang, Y. Gao, S. Yao et al., Ultrabroadband and >93% microwave absorption enabled by “doped” water meta-atom lattice with subwavelength thickness. Adv. Mater. 36(52), e2411153 (2024). https://doi.org/10.1002/adma.202411153
- V. Jokanović, B. Čolović, M. Nenadović, A. Trajkovska Petkoska, M. Mitrić et al., Ultra-high and near-zero refractive indices of magnetron sputtered thin-film metamaterials based on TixOy. Adv. Mater. Sci. Eng. 2016, 4565493 (2016). https://doi.org/10.1155/2016/4565493
- Q. Wu, C.P. Scarborough, B.G. Martin, R.K. Shaw, D.H. Werner et al., A ku-band dual polarization hybrid-mode horn antenna enabled by printed-circuit-board metasurfaces. IEEE Trans. Anntenas. Propag. 61(3), 1089–1098 (2013). https://doi.org/10.1109/TAP.2012.2227448
- J. Gong, F. Yang, Q. Shao, X. He, X. Zhang et al., Microwave absorption performance of methylimidazolium ionic liquids: towards novel ultra-wideband metamaterial absorbers. RSC Adv. 7(67), 41980–41988 (2017). https://doi.org/10.1039/c7ra06709g
- Y. Lu, J. Chen, J. Li, Design of all-dielectric ultra-wideband transparent water-based absorber. J. Phys. D Appl. Phys. 55(11), 115502 (2022). https://doi.org/10.1088/1361-6463/ac3bf5
- K. Kim, D. Lee, S. Eom, S. Lim, Stretchable metamaterial absorber using liquid metal-filled polydimethylsiloxane (PDMS). Sensors 16(4), 521 (2016). https://doi.org/10.3390/s16040521
- D.D. Lim, J. Lee, J. Park, J. Lee, D. Noh et al., Multifunctional seamless meta-sandwich composite as lightweight, load-bearing, and broadband-electromagnetic-wave-absorbing structure. Additive Manuf. 95, 104515 (2024). https://doi.org/10.1016/j.addma.2024.104515
- S. Li, Z. Shen, W. Yin, L. Zhang, X. Chen, 3D-printed terahertz metamaterial for electromagnetically induced reflection analogue. J. Phys. D Appl. Phys. 55(32), 325003 (2022). https://doi.org/10.1088/1361-6463/ac708c
- Z. Shen, S. Li, Y. Xu, W. Yin, L. Zhang et al., Three-dimensional printed ultrabroadband terahertz metamaterial absorbers. Phys. Rev. Appl. 16, 014066 (2021). https://doi.org/10.1103/physrevapplied.16.014066
- W. Yin, S. Li, Z. Shen, Y. Cui, C. Yang et al., Broadband and multiband terahertz metamaterials based on 3-D-printed liquid metal-filled microchannel. IEEE Trans. Microw. Theory Tech. 71(8), 3333–3340 (2023). https://doi.org/10.1109/TMTT.2023.3278945
- Y. Fu, Y. Wang, J. Cheng, Y. Li, J. Wang et al., Manipulating polarization attenuation in NbS2–NiS2 nanoflowers through homogeneous heterophase interface engineering toward microwave absorption with shifted frequency bands. Nano Mater. Sci. 6(6), 794–804 (2024). https://doi.org/10.1016/j.nanoms.2024.05.003
- Y. Li, Y. Jin, H. Raza, Y. Wang, Q. Chen et al., Dual driving strategy from micro-polarization to macroscopic conductance: tailoring optimized low-frequency and wide-band microwave absorption in high-entropy oxides. J. Mater. Sci. Technol. 235, 110–121 (2025). https://doi.org/10.1016/j.jmst.2025.02.011
- C.A. Balanis, in Reflection and Transmission. ed.by (John Wiley & Sons, Inc; 2023), pp. 179–269.
- H. Wang, H. Zhang, J. Cheng, T. Liu, D. Zhang et al., Building the conformal protection of VB-group VS2 laminated heterostructure based on biomass-derived carbon for excellent broadband electromagnetic waves absorption. J. Materiomics 9(3), 492–501 (2023). https://doi.org/10.1016/j.jmat.2022.12.003
- Y. Jin, J. Cheng, S. Jiang, X. Zou, Y. Wang et al., Conductance reinforced relaxation attenuation with strong metal-N coordination in multivariate π-conjugated MOFs for integrated radar-infrared camouflage. Adv. Mater. 37(32), 2501330 (2025). https://doi.org/10.1002/adma.202501330
- Y. Gao, X. Chen, X. Jin, C. Zhang, X. Zhang et al., Multifunction integration within magnetic CNT-bridged MXene/CoNi based phase change materials. eScience 4(6), 100292 (2024). https://doi.org/10.1016/j.esci.2024.100292
- S. Gang, H. He, H. Long, Y. Wei, W. Zhang et al., 2D-high entropy alloys embedded in 3D-carbon foam towards light-weight electromagnetic wave absorption and hydrophobic thermal insulation. Nano Energy 135, 110642 (2025). https://doi.org/10.1016/j.nanoen.2025.110642
- Y. Feng, G. Hai, G. Sun, K. Chen, X. Wang et al., Dual-functional phase change composites integrating thermal buffering and electromagnetic wave absorption via multi-interfacial engineering. Adv. Fiber Mater. (2025). https://doi.org/10.1007/s42765-025-00585-y
- Y. Li, X. Han, J. Zhu, Y. Feng, P. Liu et al., MOF-derived Co/C-anchored MoS2-based phase change materials toward thermal management and microwave absorption. Electron 2(4), e56 (2024). https://doi.org/10.1002/elt2.56
- Y. Qian, S. Gang, Y. Li, T. Xiong, X. Li et al., Advanced multifunctional IGBT packing materials with enhanced thermal conductivity and electromagnetic wave absorption properties. J. Colloid Interface Sci. 653, 617–626 (2024). https://doi.org/10.1016/j.jcis.2023.09.073
- T. Xiong, Y. Luo, Y. Qian, Y. Li, J. Li et al., High electromagnetic wave absorption and flame retardancy performance from NF@HCS/NF-filled epoxy-based electronic packaging material. J. Mater. Chem. A 12(2), 1094–1105 (2024). https://doi.org/10.1039/D3TA06007A
- J. Lee, H. Lim, J. Park, J. Lee, D. Noh et al., Data-driven design of lightweight, interface-free metamaterial composites tailored for enhanced broadband electromagnetic absorption with robust mechanical properties. Compos. Part B Eng. 306, 112838 (2025). https://doi.org/10.1016/j.compositesb.2025.112838
- Y. Li, P. Liu, P. Li, Y. Feng, Y. Gao et al., Neural network-inspired hybrid aerogel boosting solar thermal storage and microwave absorption. Nano Res. Energy 3(3), e9120120 (2024). https://doi.org/10.26599/nre.2024.9120120
- J. Lee, D.D. Lim, J. Park, J. Lee, D. Noh et al., Multifunctionality of additively manufactured kelvin foam for electromagnetic wave absorption and load bearing. Small 19(50), 2305005 (2023). https://doi.org/10.1002/smll.202305005
- Y.I. Abdulkarim, H.N. Awl, F.O. Alkurt, F.F. Muhammadsharif, S.R. Saeed et al., A thermally stable and polarization insensitive square-shaped water metamaterial with ultra-broadband absorption. J. Mater. Res. Technol. 13, 1150–1158 (2021). https://doi.org/10.1016/j.jmrt.2021.05.031
- Y. Zhou, Z. Shen, X. Huang, J. Wu, Y. Li et al., Ultra-wideband water-based metamaterial absorber with temperature insensitivity. Phys. Lett. A 383(23), 2739–2743 (2019). https://doi.org/10.1016/j.physleta.2019.05.050
- Z. Shen, X. Huang, H. Yang, T. Xiang, C. Wang et al., An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water. J. Appl. Phys. 123(22), 225106 (2018). https://doi.org/10.1063/1.5024319
- S. Li, Z. Shen, H. Yang, Y. Liu, Y. Yang et al., Ultra-wideband transmissive water-based metamaterial absorber with wide angle incidence and polarization insensitivity. Plasmonics 16(4), 1269–1275 (2021). https://doi.org/10.1007/s11468-021-01389-7
- M. Cao, X. Huang, L. Gao, X. Li, L. Guo et al., Broadband bi-directional all-dielectric transparent metamaterial absorber. Nanomaterials 12(23), 4124 (2022). https://doi.org/10.3390/nano12234124
- Z. Wu, X. Chen, Z. Zhang, L. Heng, S. Wang et al., Design and optimization of a flexible water-based microwave absorbing metamaterial. Appl. Phys. Exp. 12(5), 057003 (2019). https://doi.org/10.7567/1882-0786/ab0f66
- X. Huang, H. Yang, Z. Shen, J. Chen, H. Lin et al., Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime. J. Phys. D Appl. Phys. 50(38), 385304 (2017). https://doi.org/10.1088/1361-6463/aa81af
- L. Du, T. Shi, S. Dong, X. Wang, M. Zhou et al., Ultra broadband microwave metamaterial absorber with multiple strong absorption peaks induced by sandwiched water resonators. Appl. Phys. A 128(10), 864 (2022). https://doi.org/10.1007/s00339-022-05994-z
- Y. Wang, R. Su, J. Chen, W. Wang, X. Zhang et al., 3D printed bioinspired flexible absorber: toward high-performance electromagnetic absorption at 75–110 GHz. ACS Appl. Mater. Interfaces 15(46), 53996–54005 (2023). https://doi.org/10.1021/acsami.3c13543
- C. Chen, L. Tian, J. Zhu, Design and demonstration of polarization-independent metamaterial absorber in W band. Photonics Nanostruct. Fundam. Appl. 52, 101054 (2022). https://doi.org/10.1016/j.photonics.2022.101054
References
D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry et al., Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006). https://doi.org/10.1126/science.1133628
N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008). https://doi.org/10.1103/physrevlett.100.207402
H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt et al., A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Exp. 16(10), 7181–7188 (2008). https://doi.org/10.1364/OE.16.007181
H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong et al., Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Phys. Rev. B 86(20), 205104 (2012). https://doi.org/10.1103/physrevb.86.205104
K. Errajraji, N. Jebbor, S. Das, T. Islam, B.T.P. Madhav et al., Design and analysis of a multi-band miniaturized metamaterial absorber for wireless communication applications. Opt. Quantum Electron. 56(2), 232 (2023). https://doi.org/10.1007/s11082-023-05813-6
I. Moon, W. Kim, Y. Seo, S. Kahng, A metamaterial surface avoiding loss from the radome for a millimeter-wave signal-sensing array antenna. Sensors 24(3), 0 (2024). https://doi.org/10.3390/s24031018
Q. Zeng, X. Tian, D.T. Nguyen, C. Li, P. Chia et al., A digitally embroidered metamaterial biosensor for kinetic environments. Nat. Electron. 7(11), 1025–1034 (2024). https://doi.org/10.1038/s41928-024-01263-4
M. Tabib-Azar, M.A.H. Chowdhury, A 10 GHz metamaterial sensor to detect SARS COV-2 and dust ps in free space. IEEE Sens. J. 22(13), 12846–12851 (2022). https://doi.org/10.1109/JSEN.2022.3178049
S. Nie, I.F. Akyildiz, Metasurfaces for multiplexed communication. Nat. Electron. 4(3), 177–178 (2021). https://doi.org/10.1038/s41928-021-00555-3
J.-Q. Han, F.-Y. Meng, C. Guan, T. Jin, C. Ding et al., Frequency-multiplexed programmable guided-wave-driven metasurface for low earth orbit satellite communication. Adv. Opt. Mater. 13(10), 2402880 (2025). https://doi.org/10.1002/adom.202402880
H.-Y. Wang, P. Hu, X.-B. Sun, Z.-L. Hou, P.-Y. Zhao et al., Bioinspired disordered aerogel for omnidirectional terahertz response. Adv. Mater. 37(10), e2418889 (2025). https://doi.org/10.1002/adma.202418889
D. Wang, T. Ping, Z. Du, X. Liu, Y. Zhang, Lessons from nature: advances and perspectives in bionic microwave absorption materials. Nano-Micro Lett. 17(1), 100 (2024). https://doi.org/10.1007/s40820-024-01591-2
Z. Lin, Q. Wu, X. Liu, H. Ma, H. Liu et al., Flexible meta-tape with wide gamut, low lightness and low infrared emissivity for visible-infrared camouflage. Adv. Mater. 36(52), 2410336 (2024). https://doi.org/10.1002/adma.202410336
M.A. Assad, M. Elbahri, Perfect ultraviolet absorbers via disordered polarizonic metasurfaces for multiband camouflage and stealth technologies. Adv. Funct. Mater. 35(14), 2418271 (2025). https://doi.org/10.1002/adfm.202418271
K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011). https://doi.org/10.1038/ncomms1528
Q. An, D. Li, W. Liao, T. Liu, D. Joralmon et al., A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv. Mater. 35(26), e2300659 (2023). https://doi.org/10.1002/adma.202300659
B.-X. Wang, C. Xu, G. Duan, W. Xu, F. Pi, Review of broadband metamaterial absorbers: from principles, design strategies, and tunable properties to functional applications. Adv. Funct. Mater. 33(14), 2213818 (2023). https://doi.org/10.1002/adfm.202213818
Z. Ren, Z. Yang, W. Mu, T. Liu, X. Liu et al., Ultra-broadband perfect absorbers based on biomimetic metamaterials with dual coupling gradient resonators. Adv. Mater. 37(11), 2570092 (2025). https://doi.org/10.1002/adma.202570092
H.-X. Xu, M. Wang, G. Hu, S. Wang, Y. Wang et al., Adaptable invisibility management using kirigami-inspired transformable metamaterials. Research (2021). https://doi.org/10.34133/2021/9806789
Y. Wang, C. Wang, Y. Zhai, F. Zhang, H. Luo et al., LPDA-inspired material-geometry joint wide-angle broadband absorption based on metapyramid. Mater. Des. 235, 112397 (2023). https://doi.org/10.1016/j.matdes.2023.112397
Y. Wang, H. Luo, Y. Shao, H. Wang, T. Liu et al., Detection and anti-detection with microwave-infrared compatible camouflage using asymmetric composite metasurface. Adv. Sci. 11(43), 2410364 (2024). https://doi.org/10.1002/advs.202410364
J. Qin, Y. Shi, S. Jiang, Y. Gao, S. Yao et al., Ultrabroadband and >93% microwave absorption enabled by “doped” water meta-atom lattice with subwavelength thickness. Adv. Mater. 36(52), e2411153 (2024). https://doi.org/10.1002/adma.202411153
V. Jokanović, B. Čolović, M. Nenadović, A. Trajkovska Petkoska, M. Mitrić et al., Ultra-high and near-zero refractive indices of magnetron sputtered thin-film metamaterials based on TixOy. Adv. Mater. Sci. Eng. 2016, 4565493 (2016). https://doi.org/10.1155/2016/4565493
Q. Wu, C.P. Scarborough, B.G. Martin, R.K. Shaw, D.H. Werner et al., A ku-band dual polarization hybrid-mode horn antenna enabled by printed-circuit-board metasurfaces. IEEE Trans. Anntenas. Propag. 61(3), 1089–1098 (2013). https://doi.org/10.1109/TAP.2012.2227448
J. Gong, F. Yang, Q. Shao, X. He, X. Zhang et al., Microwave absorption performance of methylimidazolium ionic liquids: towards novel ultra-wideband metamaterial absorbers. RSC Adv. 7(67), 41980–41988 (2017). https://doi.org/10.1039/c7ra06709g
Y. Lu, J. Chen, J. Li, Design of all-dielectric ultra-wideband transparent water-based absorber. J. Phys. D Appl. Phys. 55(11), 115502 (2022). https://doi.org/10.1088/1361-6463/ac3bf5
K. Kim, D. Lee, S. Eom, S. Lim, Stretchable metamaterial absorber using liquid metal-filled polydimethylsiloxane (PDMS). Sensors 16(4), 521 (2016). https://doi.org/10.3390/s16040521
D.D. Lim, J. Lee, J. Park, J. Lee, D. Noh et al., Multifunctional seamless meta-sandwich composite as lightweight, load-bearing, and broadband-electromagnetic-wave-absorbing structure. Additive Manuf. 95, 104515 (2024). https://doi.org/10.1016/j.addma.2024.104515
S. Li, Z. Shen, W. Yin, L. Zhang, X. Chen, 3D-printed terahertz metamaterial for electromagnetically induced reflection analogue. J. Phys. D Appl. Phys. 55(32), 325003 (2022). https://doi.org/10.1088/1361-6463/ac708c
Z. Shen, S. Li, Y. Xu, W. Yin, L. Zhang et al., Three-dimensional printed ultrabroadband terahertz metamaterial absorbers. Phys. Rev. Appl. 16, 014066 (2021). https://doi.org/10.1103/physrevapplied.16.014066
W. Yin, S. Li, Z. Shen, Y. Cui, C. Yang et al., Broadband and multiband terahertz metamaterials based on 3-D-printed liquid metal-filled microchannel. IEEE Trans. Microw. Theory Tech. 71(8), 3333–3340 (2023). https://doi.org/10.1109/TMTT.2023.3278945
Y. Fu, Y. Wang, J. Cheng, Y. Li, J. Wang et al., Manipulating polarization attenuation in NbS2–NiS2 nanoflowers through homogeneous heterophase interface engineering toward microwave absorption with shifted frequency bands. Nano Mater. Sci. 6(6), 794–804 (2024). https://doi.org/10.1016/j.nanoms.2024.05.003
Y. Li, Y. Jin, H. Raza, Y. Wang, Q. Chen et al., Dual driving strategy from micro-polarization to macroscopic conductance: tailoring optimized low-frequency and wide-band microwave absorption in high-entropy oxides. J. Mater. Sci. Technol. 235, 110–121 (2025). https://doi.org/10.1016/j.jmst.2025.02.011
C.A. Balanis, in Reflection and Transmission. ed.by (John Wiley & Sons, Inc; 2023), pp. 179–269.
H. Wang, H. Zhang, J. Cheng, T. Liu, D. Zhang et al., Building the conformal protection of VB-group VS2 laminated heterostructure based on biomass-derived carbon for excellent broadband electromagnetic waves absorption. J. Materiomics 9(3), 492–501 (2023). https://doi.org/10.1016/j.jmat.2022.12.003
Y. Jin, J. Cheng, S. Jiang, X. Zou, Y. Wang et al., Conductance reinforced relaxation attenuation with strong metal-N coordination in multivariate π-conjugated MOFs for integrated radar-infrared camouflage. Adv. Mater. 37(32), 2501330 (2025). https://doi.org/10.1002/adma.202501330
Y. Gao, X. Chen, X. Jin, C. Zhang, X. Zhang et al., Multifunction integration within magnetic CNT-bridged MXene/CoNi based phase change materials. eScience 4(6), 100292 (2024). https://doi.org/10.1016/j.esci.2024.100292
S. Gang, H. He, H. Long, Y. Wei, W. Zhang et al., 2D-high entropy alloys embedded in 3D-carbon foam towards light-weight electromagnetic wave absorption and hydrophobic thermal insulation. Nano Energy 135, 110642 (2025). https://doi.org/10.1016/j.nanoen.2025.110642
Y. Feng, G. Hai, G. Sun, K. Chen, X. Wang et al., Dual-functional phase change composites integrating thermal buffering and electromagnetic wave absorption via multi-interfacial engineering. Adv. Fiber Mater. (2025). https://doi.org/10.1007/s42765-025-00585-y
Y. Li, X. Han, J. Zhu, Y. Feng, P. Liu et al., MOF-derived Co/C-anchored MoS2-based phase change materials toward thermal management and microwave absorption. Electron 2(4), e56 (2024). https://doi.org/10.1002/elt2.56
Y. Qian, S. Gang, Y. Li, T. Xiong, X. Li et al., Advanced multifunctional IGBT packing materials with enhanced thermal conductivity and electromagnetic wave absorption properties. J. Colloid Interface Sci. 653, 617–626 (2024). https://doi.org/10.1016/j.jcis.2023.09.073
T. Xiong, Y. Luo, Y. Qian, Y. Li, J. Li et al., High electromagnetic wave absorption and flame retardancy performance from NF@HCS/NF-filled epoxy-based electronic packaging material. J. Mater. Chem. A 12(2), 1094–1105 (2024). https://doi.org/10.1039/D3TA06007A
J. Lee, H. Lim, J. Park, J. Lee, D. Noh et al., Data-driven design of lightweight, interface-free metamaterial composites tailored for enhanced broadband electromagnetic absorption with robust mechanical properties. Compos. Part B Eng. 306, 112838 (2025). https://doi.org/10.1016/j.compositesb.2025.112838
Y. Li, P. Liu, P. Li, Y. Feng, Y. Gao et al., Neural network-inspired hybrid aerogel boosting solar thermal storage and microwave absorption. Nano Res. Energy 3(3), e9120120 (2024). https://doi.org/10.26599/nre.2024.9120120
J. Lee, D.D. Lim, J. Park, J. Lee, D. Noh et al., Multifunctionality of additively manufactured kelvin foam for electromagnetic wave absorption and load bearing. Small 19(50), 2305005 (2023). https://doi.org/10.1002/smll.202305005
Y.I. Abdulkarim, H.N. Awl, F.O. Alkurt, F.F. Muhammadsharif, S.R. Saeed et al., A thermally stable and polarization insensitive square-shaped water metamaterial with ultra-broadband absorption. J. Mater. Res. Technol. 13, 1150–1158 (2021). https://doi.org/10.1016/j.jmrt.2021.05.031
Y. Zhou, Z. Shen, X. Huang, J. Wu, Y. Li et al., Ultra-wideband water-based metamaterial absorber with temperature insensitivity. Phys. Lett. A 383(23), 2739–2743 (2019). https://doi.org/10.1016/j.physleta.2019.05.050
Z. Shen, X. Huang, H. Yang, T. Xiang, C. Wang et al., An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water. J. Appl. Phys. 123(22), 225106 (2018). https://doi.org/10.1063/1.5024319
S. Li, Z. Shen, H. Yang, Y. Liu, Y. Yang et al., Ultra-wideband transmissive water-based metamaterial absorber with wide angle incidence and polarization insensitivity. Plasmonics 16(4), 1269–1275 (2021). https://doi.org/10.1007/s11468-021-01389-7
M. Cao, X. Huang, L. Gao, X. Li, L. Guo et al., Broadband bi-directional all-dielectric transparent metamaterial absorber. Nanomaterials 12(23), 4124 (2022). https://doi.org/10.3390/nano12234124
Z. Wu, X. Chen, Z. Zhang, L. Heng, S. Wang et al., Design and optimization of a flexible water-based microwave absorbing metamaterial. Appl. Phys. Exp. 12(5), 057003 (2019). https://doi.org/10.7567/1882-0786/ab0f66
X. Huang, H. Yang, Z. Shen, J. Chen, H. Lin et al., Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime. J. Phys. D Appl. Phys. 50(38), 385304 (2017). https://doi.org/10.1088/1361-6463/aa81af
L. Du, T. Shi, S. Dong, X. Wang, M. Zhou et al., Ultra broadband microwave metamaterial absorber with multiple strong absorption peaks induced by sandwiched water resonators. Appl. Phys. A 128(10), 864 (2022). https://doi.org/10.1007/s00339-022-05994-z
Y. Wang, R. Su, J. Chen, W. Wang, X. Zhang et al., 3D printed bioinspired flexible absorber: toward high-performance electromagnetic absorption at 75–110 GHz. ACS Appl. Mater. Interfaces 15(46), 53996–54005 (2023). https://doi.org/10.1021/acsami.3c13543
C. Chen, L. Tian, J. Zhu, Design and demonstration of polarization-independent metamaterial absorber in W band. Photonics Nanostruct. Fundam. Appl. 52, 101054 (2022). https://doi.org/10.1016/j.photonics.2022.101054