Heteroatom-Induced Accelerated Kinetics on Nickel Selenide for Highly Efficient Hydrazine-Assisted Water Splitting and Zn-Hydrazine Battery
Corresponding Author: Zhong‑Yong Yuan
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 155
Abstract
Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production. Rational design of bifunctional electrocatalysts, which can simultaneously accelerate hydrogen evolution reaction (HER)/hydrazine oxidation reaction (HzOR) kinetics, is the key step. Herein, we demonstrate the development of ultrathin P/Fe co-doped NiSe2 nanosheets supported on modified Ni foam (P/Fe-NiSe2) synthesized through a facile electrodeposition process and subsequent heat treatment. Based on electrochemical measurements, characterizations, and density functional theory calculations, a favorable “2 + 2” reaction mechanism with a two-step HER process and a two-step HzOR step was fully proved and the specific effect of P doping on HzOR kinetics was investigated. P/Fe-NiSe2 thus yields an impressive electrocatalytic performance, delivering a high current density of 100 mA cm−2 with potentials of − 168 and 200 mV for HER and HzOR, respectively. Additionally, P/Fe-NiSe2 can work efficiently for hydrazine-assisted water electrolysis and Zn-Hydrazine (Zn-Hz) battery, making it promising for practical application.
Highlights:
1 Ultrathin P and Fe co-doped NiSe2 nanosheets supported on modified Ni foam are synthesized, which shows desirable bifunctional electrocatalytic hydrogen evolution reaction (HER)/hydrazine oxidation reaction (HzOR) performance in hydrazine-assisted water electrolysis and Zn-Hz battery.
2 The coexistence of P and Fe heteroatoms induces an accelerated “2 + 2” reaction mechanism with a two-step HER process and a two-step HzOR step.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Dai, Y. Pan, B. Liu, Water splitting: conjugated polymer nanomaterials for solar water splitting. Adv. Energy Mater. 10(42), 2070172 (2020). https://doi.org/10.1002/aenm.202070172
- T. Gao, X. Tang, X. Li, S. Wu, S. Yu et al., Understanding the atomic and defective interface effect on ruthenium clusters for the hydrogen evolution reaction. ACS Catal. 13(1), 49–59 (2023). https://doi.org/10.1021/acscatal.2c04586
- Y. Zhu, J. Zhang, Q. Qian, Y. Li, Z. Li et al., Dual nanoislands on Ni/C hybrid nanosheet activate superior hydrazine oxidation-assisted high-efficiency H2 production. Angew. Chem. Int. Ed. 61(2), e202113082 (2022). https://doi.org/10.1002/anie.202113082
- L.A. Zavala, K. Kumar, V. Martin, F. Maillard, F. Maugé et al., Direct evidence of the role of Co or Pt, Co single-atom promoters on the performance of MoS2 nanoclusters for the hydrogen evolution reaction. ACS Catal. 13(2), 1221–1229 (2023). https://doi.org/10.1021/acscatal.2c05432
- G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang et al., Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol Co-electrocatalysis. Nano-Micro Lett. 14(1), 200 (2022). https://doi.org/10.1007/s40820-022-00940-3
- Q. Xue, X.-Y. Bai, Y. Zhao, Y.-N. Li, T.-J. Wang et al., Au core-PtAu alloy shell nanowires for formic acid electrolysis. J. Energy Chem. 65, 94–102 (2022). https://doi.org/10.1016/j.jechem.2021.05.034
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14(1), 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- Y. Ding, K.-W. Cao, J.-W. He, F.-M. Li, H. Huang et al., Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction. Chinese J. Catal. 43(6), 1535–1543 (2022). https://doi.org/10.1016/S1872-2067(21)63977-3
- H.-Y. Wang, M.-L. Sun, J.-T. Ren, Z.-Y. Yuan, Circumventing challenges: design of anodic electrocatalysts for hybrid water electrolysis systems. Adv. Energy Mater. 13(4), 2203568 (2023). https://doi.org/10.1002/aenm.202203568
- Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14(1), 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
- J. Zhu, J. Qian, X. Peng, B. Xia, D. Gao, Etching-induced surface reconstruction of NiMoO4 for oxygen evolution reaction. Nano-Micro Lett. 15(1), 30 (2023). https://doi.org/10.1007/s40820-022-01011-3
- Q. Qian, J. Zhang, J. Li, Y. Li, X. Jin et al., Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem. Int. Ed. 60(11), 5984–5993 (2021). https://doi.org/10.1002/anie.202014362
- Q. Sun, M. Zhou, Y. Shen, L. Wang, Y. Ma et al., Hierarchical nanoporous Ni(Cu) alloy anchored on amorphous NiFeP as efficient bifunctional electrocatalysts for hydrogen evolution and hydrazine oxidation. J. Catal. 373, 180–189 (2019). https://doi.org/10.1016/j.jcat.2019.03.039
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- R. Li, H. Xu, P. Yang, D. Wang, Y. Li et al., Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 13(1), 120 (2021). https://doi.org/10.1007/s40820-021-00639-x
- G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13(1), 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
- Y. Li, X. Yu, J. Gao, Y. Ma, Hierarchical Ni2P/Zn–Ni–P nanosheet array for efficient energy-saving hydrogen evolution and hydrazine oxidation. J. Mater. Chem. A 11(5), 2191–2202 (2023). https://doi.org/10.1039/D2TA08366C
- Q. Yu, X. Liu, G. Liu, X. Wang, Z. Li et al., Constructing three-phase heterojunction with 1D/3D hierarchical structure as efficient trifunctional electrocatalyst in alkaline seawater. Adv. Funct. Mater. 32(46), 2205767 (2022). https://doi.org/10.1002/adfm.202205767
- X.-W. Lv, Q.-H. Kong, X.-L. Song, Y.-P. Liu, Z.-Y. Yuan, Coupling nonstoichiometric Cu2−xSe with stable Cu2Se berzelianite for efficient synergistic electrocatalytic hydrazine-assisted water splitting. Inorg. Chem. Front. 9(23), 6182–6189 (2022). https://doi.org/10.1039/D2QI01699K
- Y. Meng, X. Zou, X. Huang, A. Goswami, Z. Liu et al., Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation. Adv. Mater. 26(37), 6510–6516 (2014). https://doi.org/10.1002/adma.201401969
- Q. Sun, Y. Li, J. Wang, B. Cao, Y. Yu et al., Pulsed electrodeposition of well-ordered nanoporous Cu-doped Ni arrays promotes high-efficiency overall hydrazine splitting. J. Mater. Chem. A 8(40), 21084–21093 (2020). https://doi.org/10.1039/D0TA08078K
- F. Qin, Z. Zhao, M.K. Alam, Y. Ni, F. Robles-Hernandez et al., Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 3(3), 546–554 (2018). https://doi.org/10.1021/acsenergylett.7b01335
- C. Zhu, Z. Yin, W. Lai, Y. Sun, L. Liu et al., Fe-Ni-Mo nitride porous nanotubes for full water splitting and Zn-air batteries. Adv. Energy Mater. 8(36), 1802327 (2018). https://doi.org/10.1002/aenm.201802327
- C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu et al., Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 56(3), 842–846 (2017). https://doi.org/10.1002/anie.201608899
- L. Hang, T. Zhang, D. Men, L. Liang, Y. Chen et al., Constructing nickel-based bifunctional oxygen catalyst and dual network hydrogel electrolyte for high-performance, compressible and rechargeable zinc-air batteries. Mater. Today Phys. 29, 100924 (2022). https://doi.org/10.1016/j.mtphys.2022.100924
- J. Zhou, L. Yu, Q. Zhou, C. Huang, Y. Zhang et al., Ultrafast fabrication of porous transition metal foams for efficient electrocatalytic water splitting. Appl. Catal. B-Environ. 288, 120002 (2021). https://doi.org/10.1016/j.apcatb.2021.120002
- X. Peng, Y. Yan, X. Jin, C. Huang, W. Jin et al., Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78, 105234 (2020). https://doi.org/10.1016/j.nanoen.2020.105234
- X. Xia, L. Wang, N. Sui, V.L. Colvin, W.W. Yu, Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 12(23), 12249–12262 (2020). https://doi.org/10.1039/D0NR02939D
- Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren et al., Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 8(3), 2236–2241 (2018). https://doi.org/10.1021/acscatal.7b03594
- C. Huang, J. Zhou, D. Duan, Q. Zhou, J. Wang et al., Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism. Chin. J. Catal. 43(8), 2091–2110 (2022). https://doi.org/10.1016/S1872-2067(21)64052-4
- J. Yu, W.-J. Li, G. Kao, C.-Y. Xu, R. Chen et al., In-situ growth of CNTs encapsulating P-doped NiSe2 nanops on carbon framework as efficient bifunctional electrocatalyst for overall water splitting. J. Energy Chem. 60, 111–120 (2021). https://doi.org/10.1016/j.jechem.2020.12.030
- T. Wang, D. Gao, W. Xiao, P. Xi, D. Xue et al., Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Res. 11(11), 6051–6061 (2018). https://doi.org/10.1007/s12274-018-2122-9
- C. Gu, S. Hu, X. Zheng, M.-R. Gao, Y.-R. Zheng et al., Synthesis of sub-2 nm iron-doped NiSe2 nanowires and their surface-confined oxidation for oxygen evolution catalysis. Angew. Chem. Int. Ed. 57(15), 4020–4024 (2018). https://doi.org/10.1002/anie.201800883
- Y. Zhao, B. Jin, A. Vasileff, Y. Jiao, S.-Z. Qiao, Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. J. Mater. Chem. A 7(14), 8117–8121 (2019). https://doi.org/10.1039/C9TA01903K
- Y. Wu, X. Liu, D. Han, X. Song, L. Shi et al., Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 9(1), 1425 (2018). https://doi.org/10.1038/s41467-018-03858-w
- Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core–shell ZIF-8@ZIF-67-derived CoP nanop-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140(7), 2610–2618 (2018). https://doi.org/10.1021/jacs.7b12420
- H. Liang, A.N. Gandi, C. Xia, M.N. Hedhili, D.H. Anjum et al., Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2(5), 1035–1042 (2017). https://doi.org/10.1021/acsenergylett.7b00206
- L. Zeng, K. Sun, X. Wang, Y. Liu, Y. Pan et al., Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 51, 26–36 (2018). https://doi.org/10.1016/j.nanoen.2018.06.048
- Y. Feng, Q. Shi, J. Lin, E. Chai, X. Zhang et al., Decoupled electrochemical hydrazine “splitting” via a rechargeable Zn–hydrazine battery. Adv. Mater. 34(51), 2207747 (2022). https://doi.org/10.1002/adma.202207747
- C. Xie, W. Chen, S. Du, D. Yan, Y. Zhang et al., In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy 71, 104653 (2020). https://doi.org/10.1016/j.nanoen.2020.104653
- K. Gu, D. Wang, C. Xie, T. Wang, G. Huang et al., Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem. Int. Ed. 60(37), 20253–20258 (2021). https://doi.org/10.1002/anie.202107390
- Y. Duan, N. Dubouis, J. Huang, D.A. Dalla Corte, V. Pimenta et al., Revealing the impact of electrolyte composition for Co-based water oxidation catalysts by the study of reaction kinetics parameters. ACS Catal. 10(7), 4160–4170 (2020). https://doi.org/10.1021/acscatal.0c00490
- J. Huang, H. Sheng, R.D. Ross, J. Han, X. Wang et al., Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 12(1), 3036 (2021). https://doi.org/10.1038/s41467-021-23390-8
- L. Wang, S. Zhu, N. Marinkovic, S. Kattel, M. Shao et al., Insight into the synergistic effect between nickel and tungsten carbide for catalyzing urea electrooxidation in alkaline electrolyte. Appl. Catal. B-Environ. 232, 365–370 (2018). https://doi.org/10.1016/j.apcatb.2018.03.064
- X.-W. Lv, W.-S. Xu, W.-W. Tian, H.-Y. Wang, Z.-Y. Yuan, Activity promotion of core and shell in multifunctional core–shell Co2P@NC electrocatalyst by secondary metal doping for water electrolysis and Zn-air batteries. Small 17(38), 2101856 (2021). https://doi.org/10.1002/smll.202101856
- H. Hanawa, K. Kunimatsu, M. Watanabe, H. Uchida, In situ ATR-FTIR analysis of the structure of Nafion–Pt/C and Nafion–Pt3Co/C interfaces in fuel cell. J. Phys. Chem. C 116(40), 21401–21406 (2012). https://doi.org/10.1021/jp306955q
- L.-X. Chen, L.-Y. Jiang, A.-J. Wang, Q.-Y. Chen, J.-J. Feng, Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction. Electrochim. Acta 190, 872–878 (2016). https://doi.org/10.1016/j.electacta.2015.12.151
- Y. Yao, S. Zhu, H. Wang, H. Li, M. Shao, A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 140(4), 1496–1501 (2018). https://doi.org/10.1021/jacs.7b12101
- X.-W. Lv, X.-L. Liu, Y.-J. Suo, Y.-P. Liu, Z.-Y. Yuan, Identifying the dominant role of pyridinic-N–Mo bonding in synergistic electrocatalysis for ambient nitrogen reduction. ACS Nano 15(7), 12109–12118 (2021). https://doi.org/10.1021/acsnano.1c03465
- H.-Y. Wang, J.-T. Ren, C.-C. Weng, X.-W. Lv, Z.-Y. Yuan, Insight into the valence state of sisal-like MoO2 nanosheet arrays for N2 electrolysis. Chem. Eng. J. 426, 130761 (2021). https://doi.org/10.1016/j.cej.2021.130761
References
C. Dai, Y. Pan, B. Liu, Water splitting: conjugated polymer nanomaterials for solar water splitting. Adv. Energy Mater. 10(42), 2070172 (2020). https://doi.org/10.1002/aenm.202070172
T. Gao, X. Tang, X. Li, S. Wu, S. Yu et al., Understanding the atomic and defective interface effect on ruthenium clusters for the hydrogen evolution reaction. ACS Catal. 13(1), 49–59 (2023). https://doi.org/10.1021/acscatal.2c04586
Y. Zhu, J. Zhang, Q. Qian, Y. Li, Z. Li et al., Dual nanoislands on Ni/C hybrid nanosheet activate superior hydrazine oxidation-assisted high-efficiency H2 production. Angew. Chem. Int. Ed. 61(2), e202113082 (2022). https://doi.org/10.1002/anie.202113082
L.A. Zavala, K. Kumar, V. Martin, F. Maillard, F. Maugé et al., Direct evidence of the role of Co or Pt, Co single-atom promoters on the performance of MoS2 nanoclusters for the hydrogen evolution reaction. ACS Catal. 13(2), 1221–1229 (2023). https://doi.org/10.1021/acscatal.2c05432
G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang et al., Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol Co-electrocatalysis. Nano-Micro Lett. 14(1), 200 (2022). https://doi.org/10.1007/s40820-022-00940-3
Q. Xue, X.-Y. Bai, Y. Zhao, Y.-N. Li, T.-J. Wang et al., Au core-PtAu alloy shell nanowires for formic acid electrolysis. J. Energy Chem. 65, 94–102 (2022). https://doi.org/10.1016/j.jechem.2021.05.034
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14(1), 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
Y. Ding, K.-W. Cao, J.-W. He, F.-M. Li, H. Huang et al., Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction. Chinese J. Catal. 43(6), 1535–1543 (2022). https://doi.org/10.1016/S1872-2067(21)63977-3
H.-Y. Wang, M.-L. Sun, J.-T. Ren, Z.-Y. Yuan, Circumventing challenges: design of anodic electrocatalysts for hybrid water electrolysis systems. Adv. Energy Mater. 13(4), 2203568 (2023). https://doi.org/10.1002/aenm.202203568
Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14(1), 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
J. Zhu, J. Qian, X. Peng, B. Xia, D. Gao, Etching-induced surface reconstruction of NiMoO4 for oxygen evolution reaction. Nano-Micro Lett. 15(1), 30 (2023). https://doi.org/10.1007/s40820-022-01011-3
Q. Qian, J. Zhang, J. Li, Y. Li, X. Jin et al., Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem. Int. Ed. 60(11), 5984–5993 (2021). https://doi.org/10.1002/anie.202014362
Q. Sun, M. Zhou, Y. Shen, L. Wang, Y. Ma et al., Hierarchical nanoporous Ni(Cu) alloy anchored on amorphous NiFeP as efficient bifunctional electrocatalysts for hydrogen evolution and hydrazine oxidation. J. Catal. 373, 180–189 (2019). https://doi.org/10.1016/j.jcat.2019.03.039
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
R. Li, H. Xu, P. Yang, D. Wang, Y. Li et al., Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 13(1), 120 (2021). https://doi.org/10.1007/s40820-021-00639-x
G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13(1), 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
Y. Li, X. Yu, J. Gao, Y. Ma, Hierarchical Ni2P/Zn–Ni–P nanosheet array for efficient energy-saving hydrogen evolution and hydrazine oxidation. J. Mater. Chem. A 11(5), 2191–2202 (2023). https://doi.org/10.1039/D2TA08366C
Q. Yu, X. Liu, G. Liu, X. Wang, Z. Li et al., Constructing three-phase heterojunction with 1D/3D hierarchical structure as efficient trifunctional electrocatalyst in alkaline seawater. Adv. Funct. Mater. 32(46), 2205767 (2022). https://doi.org/10.1002/adfm.202205767
X.-W. Lv, Q.-H. Kong, X.-L. Song, Y.-P. Liu, Z.-Y. Yuan, Coupling nonstoichiometric Cu2−xSe with stable Cu2Se berzelianite for efficient synergistic electrocatalytic hydrazine-assisted water splitting. Inorg. Chem. Front. 9(23), 6182–6189 (2022). https://doi.org/10.1039/D2QI01699K
Y. Meng, X. Zou, X. Huang, A. Goswami, Z. Liu et al., Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation. Adv. Mater. 26(37), 6510–6516 (2014). https://doi.org/10.1002/adma.201401969
Q. Sun, Y. Li, J. Wang, B. Cao, Y. Yu et al., Pulsed electrodeposition of well-ordered nanoporous Cu-doped Ni arrays promotes high-efficiency overall hydrazine splitting. J. Mater. Chem. A 8(40), 21084–21093 (2020). https://doi.org/10.1039/D0TA08078K
F. Qin, Z. Zhao, M.K. Alam, Y. Ni, F. Robles-Hernandez et al., Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 3(3), 546–554 (2018). https://doi.org/10.1021/acsenergylett.7b01335
C. Zhu, Z. Yin, W. Lai, Y. Sun, L. Liu et al., Fe-Ni-Mo nitride porous nanotubes for full water splitting and Zn-air batteries. Adv. Energy Mater. 8(36), 1802327 (2018). https://doi.org/10.1002/aenm.201802327
C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu et al., Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 56(3), 842–846 (2017). https://doi.org/10.1002/anie.201608899
L. Hang, T. Zhang, D. Men, L. Liang, Y. Chen et al., Constructing nickel-based bifunctional oxygen catalyst and dual network hydrogel electrolyte for high-performance, compressible and rechargeable zinc-air batteries. Mater. Today Phys. 29, 100924 (2022). https://doi.org/10.1016/j.mtphys.2022.100924
J. Zhou, L. Yu, Q. Zhou, C. Huang, Y. Zhang et al., Ultrafast fabrication of porous transition metal foams for efficient electrocatalytic water splitting. Appl. Catal. B-Environ. 288, 120002 (2021). https://doi.org/10.1016/j.apcatb.2021.120002
X. Peng, Y. Yan, X. Jin, C. Huang, W. Jin et al., Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78, 105234 (2020). https://doi.org/10.1016/j.nanoen.2020.105234
X. Xia, L. Wang, N. Sui, V.L. Colvin, W.W. Yu, Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 12(23), 12249–12262 (2020). https://doi.org/10.1039/D0NR02939D
Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren et al., Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 8(3), 2236–2241 (2018). https://doi.org/10.1021/acscatal.7b03594
C. Huang, J. Zhou, D. Duan, Q. Zhou, J. Wang et al., Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism. Chin. J. Catal. 43(8), 2091–2110 (2022). https://doi.org/10.1016/S1872-2067(21)64052-4
J. Yu, W.-J. Li, G. Kao, C.-Y. Xu, R. Chen et al., In-situ growth of CNTs encapsulating P-doped NiSe2 nanops on carbon framework as efficient bifunctional electrocatalyst for overall water splitting. J. Energy Chem. 60, 111–120 (2021). https://doi.org/10.1016/j.jechem.2020.12.030
T. Wang, D. Gao, W. Xiao, P. Xi, D. Xue et al., Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Res. 11(11), 6051–6061 (2018). https://doi.org/10.1007/s12274-018-2122-9
C. Gu, S. Hu, X. Zheng, M.-R. Gao, Y.-R. Zheng et al., Synthesis of sub-2 nm iron-doped NiSe2 nanowires and their surface-confined oxidation for oxygen evolution catalysis. Angew. Chem. Int. Ed. 57(15), 4020–4024 (2018). https://doi.org/10.1002/anie.201800883
Y. Zhao, B. Jin, A. Vasileff, Y. Jiao, S.-Z. Qiao, Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. J. Mater. Chem. A 7(14), 8117–8121 (2019). https://doi.org/10.1039/C9TA01903K
Y. Wu, X. Liu, D. Han, X. Song, L. Shi et al., Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 9(1), 1425 (2018). https://doi.org/10.1038/s41467-018-03858-w
Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core–shell ZIF-8@ZIF-67-derived CoP nanop-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140(7), 2610–2618 (2018). https://doi.org/10.1021/jacs.7b12420
H. Liang, A.N. Gandi, C. Xia, M.N. Hedhili, D.H. Anjum et al., Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2(5), 1035–1042 (2017). https://doi.org/10.1021/acsenergylett.7b00206
L. Zeng, K. Sun, X. Wang, Y. Liu, Y. Pan et al., Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 51, 26–36 (2018). https://doi.org/10.1016/j.nanoen.2018.06.048
Y. Feng, Q. Shi, J. Lin, E. Chai, X. Zhang et al., Decoupled electrochemical hydrazine “splitting” via a rechargeable Zn–hydrazine battery. Adv. Mater. 34(51), 2207747 (2022). https://doi.org/10.1002/adma.202207747
C. Xie, W. Chen, S. Du, D. Yan, Y. Zhang et al., In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy 71, 104653 (2020). https://doi.org/10.1016/j.nanoen.2020.104653
K. Gu, D. Wang, C. Xie, T. Wang, G. Huang et al., Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem. Int. Ed. 60(37), 20253–20258 (2021). https://doi.org/10.1002/anie.202107390
Y. Duan, N. Dubouis, J. Huang, D.A. Dalla Corte, V. Pimenta et al., Revealing the impact of electrolyte composition for Co-based water oxidation catalysts by the study of reaction kinetics parameters. ACS Catal. 10(7), 4160–4170 (2020). https://doi.org/10.1021/acscatal.0c00490
J. Huang, H. Sheng, R.D. Ross, J. Han, X. Wang et al., Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 12(1), 3036 (2021). https://doi.org/10.1038/s41467-021-23390-8
L. Wang, S. Zhu, N. Marinkovic, S. Kattel, M. Shao et al., Insight into the synergistic effect between nickel and tungsten carbide for catalyzing urea electrooxidation in alkaline electrolyte. Appl. Catal. B-Environ. 232, 365–370 (2018). https://doi.org/10.1016/j.apcatb.2018.03.064
X.-W. Lv, W.-S. Xu, W.-W. Tian, H.-Y. Wang, Z.-Y. Yuan, Activity promotion of core and shell in multifunctional core–shell Co2P@NC electrocatalyst by secondary metal doping for water electrolysis and Zn-air batteries. Small 17(38), 2101856 (2021). https://doi.org/10.1002/smll.202101856
H. Hanawa, K. Kunimatsu, M. Watanabe, H. Uchida, In situ ATR-FTIR analysis of the structure of Nafion–Pt/C and Nafion–Pt3Co/C interfaces in fuel cell. J. Phys. Chem. C 116(40), 21401–21406 (2012). https://doi.org/10.1021/jp306955q
L.-X. Chen, L.-Y. Jiang, A.-J. Wang, Q.-Y. Chen, J.-J. Feng, Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction. Electrochim. Acta 190, 872–878 (2016). https://doi.org/10.1016/j.electacta.2015.12.151
Y. Yao, S. Zhu, H. Wang, H. Li, M. Shao, A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 140(4), 1496–1501 (2018). https://doi.org/10.1021/jacs.7b12101
X.-W. Lv, X.-L. Liu, Y.-J. Suo, Y.-P. Liu, Z.-Y. Yuan, Identifying the dominant role of pyridinic-N–Mo bonding in synergistic electrocatalysis for ambient nitrogen reduction. ACS Nano 15(7), 12109–12118 (2021). https://doi.org/10.1021/acsnano.1c03465
H.-Y. Wang, J.-T. Ren, C.-C. Weng, X.-W. Lv, Z.-Y. Yuan, Insight into the valence state of sisal-like MoO2 nanosheet arrays for N2 electrolysis. Chem. Eng. J. 426, 130761 (2021). https://doi.org/10.1016/j.cej.2021.130761