Skin-Friendly Large Matrix Iontronic Sensing Meta-Fabric for Spasticity Visualization and Rehabilitation Training via Piezo-Ionic Dynamics
Corresponding Author: Mingwei Tian
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 90
Abstract
Rehabilitation training is believed to be an effectual strategy that can reduce the risk of dysfunction caused by spasticity. However, achieving visualization rehabilitation training for patients remains clinically challenging. Herein, we propose visual rehabilitation training system including iontronic meta-fabrics with skin-friendly and large matrix features, as well as high-resolution image modules for distribution of human muscle tension. Attributed to the dynamic connection and dissociation of the meta-fabric, the fabric exhibits outstanding tactile sensing properties, such as wide tactile sensing range (0 ~ 300 kPa) and high-resolution tactile perception (50 Pa or 0.058%). Meanwhile, thanks to the differential capillary effect, the meta-fabric exhibits a “hitting three birds with one stone” property (dryness wearing experience, long working time and cooling sensing). Based on this, the fabrics can be integrated with garments and advanced data analysis systems to manufacture a series of large matrix structure (40 × 40, 1600 sensing units) training devices. Significantly, the tunability of piezo-ionic dynamics of the meta-fabric and the programmability of high-resolution imaging modules allow this visualization training strategy extendable to various common disease monitoring. Therefore, we believe that our study overcomes the constraint of standard spasticity rehabilitation training devices in terms of visual display and paves the way for future smart healthcare.
Highlights:
1 The iontronic meta-fabric exhibits a “hitting three birds with one stone” property, breaking through the bottleneck that traditional film materials (PDMS) cannot balance comfort and durability.
2 The meta-fabrics can be integrated with garments and advanced data analysis systems to manufacture a series of large matrix structure (> 40 × 40, 1600 sensing units) rehabilitation training devices, overcoming the bottleneck of low matrix integration of traditional iontronic devices (< 10 × 10, 100 sensing units).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.J. Reinkensmeyer, A.J. Farrens, D.G. Kamper, Facilitating limb movement after stroke. Nat. Med. 29, 535–536 (2023). https://doi.org/10.1038/s41591-023-02233-7
- I.M. Howard, A.T. Patel, Spasticity evaluation and management tools. Muscle Nerve 67, 272–283 (2023). https://doi.org/10.1002/mus.27792
- S.J. Nagel, S. Wilson, M.D. Johnson, A. Machado, L. Frizon et al., Spinal cord stimulation for spasticity: historical approaches, current status, and future directions. Neuromodulation 20, 307–321 (2017). https://doi.org/10.1111/ner.12591
- J. Wissel, L.D. Schelosky, J. Scott, W. Christe, J.H. Faiss et al., Early development of spasticity following stroke: a prospective, observational trial. J. Neurol. 257, 1067–1072 (2010). https://doi.org/10.1007/s00415-010-5463-1
- C.L. Watkins, M.J. Leathley, J.M. Gregson, A.P. Moore, T.L. Smith et al., Prevalence of spasticity post stroke. Clin. Rehabil.. Rehabil. 16, 515–522 (2002). https://doi.org/10.1191/0269215502cr512oa
- P.P. Urban, T. Wolf, M. Uebele, J.J. Marx, T. Vogt et al., Occurence and clinical predictors of spasticity after ischemic stroke. Stroke 41, 2016–2020 (2010). https://doi.org/10.1161/STROKEAHA.110.581991
- R.D. Zorowitz, P.J. Gillard, M. Brainin, Poststroke spasticity. Neurology 80, S45–S52 (2013). https://doi.org/10.1212/wnl.0b013e3182764c86
- T. Dorňák, M. Justanová, R. Konvalinková, M. Říha, J. Mužík et al., Prevalence and evolution of spasticity in patients suffering from first-ever stroke with carotid origin: a prospective, longitudinal study. Eur. J. Neurol. 26, 880–886 (2019). https://doi.org/10.1111/ene.13902
- D.K. Sommerfeld, E.U.-B. Eek, A.-K. Svensson, L.W. Holmqvist, M.H. von Arbin, Spasticity after stroke. Stroke 35, 134–139 (2004). https://doi.org/10.1161/01.str.0000105386.05173.5e
- M. Yoo, J.H. Ahn, D.W. Rha, E.S. Park, Reliability of the modified Ashworth and modified Tardieu scales with standardized movement speeds in children with spastic cerebral palsy. Children 9(6), 827 (2022). https://doi.org/10.3390/children9060827
- J. He, A. Luo, J. Yu, C. Qian, D. Liu et al., Quantitative assessment of spasticity: a narrative review of novel approaches and technologies. Front. Neurol. 14, 1121323 (2023). https://doi.org/10.3389/fneur.2023.1121323
- R. De-la-Torre, E.D. Oña, C. Balaguer, A. Jardón, Robot-aided systems for improving the assessment of upper limb spasticity: a systematic review. Sensors 20(18), 5251 (2020). https://doi.org/10.3390/s20185251
- G.E. Voerman, M. Gregorič, H.J. Hermens, Neurophysiological methods for the assessment of spasticity: the Hoffmann reflex, the tendon reflex, and the stretch reflex. Disabil. Rehabil.. Rehabil. 27, 33–68 (2005). https://doi.org/10.1080/09638280400014600
- A. Thibaut, C. Chatelle, E. Ziegler, M.-A. Bruno, S. Laureys et al., Spasticity after stroke: physiology, assessment and treatment. Brain Inj. 27, 1093–1105 (2013). https://doi.org/10.3109/02699052.2013.804202
- Z. Tomášová, P. Hluštík, M. Král, P. Otruba, R. Herzig et al., Cortical activation changes in patients suffering from post-stroke arm spasticity and treated with botulinum toxin A. J. Neuroimaging 23, 337–344 (2013). https://doi.org/10.1111/j.1552-6569.2011.00682.x
- T.J. Bovend’Eerdt, M. Newman, K. Barker, H. Dawes, C. Minelli et al., The effects of stretching in spasticity: a systematic review. Arch. Phys. Med. Rehabil. 89, 1395–1406 (2008). https://doi.org/10.1016/j.apmr.2008.02.015
- Y.J. Choo, M. Boudier-Revéret, M.C. Chang, 3D printing technology applied to orthosis manufacturing: narrative review. Ann. Palliat. Med. 9(6), 4262270–4264270 (2020). https://doi.org/10.21037/apm-20-1185
- R. Chen, T. Luo, J. Wang, R. Wang, C. Zhang et al., Nonlinearity synergy: an elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing. Nat. Commun. 14, 6641 (2023). https://doi.org/10.1038/s41467-023-42361-9
- C. Lv, C. Tian, J. Jiang, Y. Dang, Y. Liu et al., Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception. Adv. Sci. 10, e2206807 (2023). https://doi.org/10.1002/advs.202206807
- S. Li, S. Chen, L. Yang, Y. Guo, K. Tan et al., Bimodal capacitive tactile sensor assisted by shield effect of triboelectric nanogenerator. Nano Energy 118, 108946 (2023). https://doi.org/10.1016/j.nanoen.2023.108946
- P. Zhu, H. Du, X. Hou, P. Lu, L. Wang et al., Skin-electrode iontronic interface for mechanosensing. Nat. Commun. 12, 4731 (2021). https://doi.org/10.1038/s41467-021-24946-4
- M. Amit, L. Chukoskie, A.J. Skalsky, H. Garudadri, T.N. Ng, Flexible pressure sensors for objective assessment of motor disorders. Adv. Funct. Mater. 30, 1905241 (2020). https://doi.org/10.1002/adfm.201905241
- K.Y. Chung, B. Xu, D. Tan, Q. Yang, Z. Li et al., Naturally crosslinked biocompatible carbonaceous liquid metal aqueous ink printing wearable electronics for multi-sensing and energy harvesting. Nano-Micro Lett. 16, 149 (2024). https://doi.org/10.1007/s40820-024-01362-z
- T. Chen, Q. Wei, Y. Ma, Y. Tang, L. Ma et al., Multifunctional electronic skins for ultra-sensitive strain, temperature, humidity sensing, and energy harvesting. Nano Energy 127, 109752 (2024). https://doi.org/10.1016/j.nanoen.2024.109752
- K.Y. Chung, B. Xu, Z. Li, Y. Liu, J. Han, Bioinspired ultra-stretchable dual-carbon conductive functional polymer fiber materials for health monitoring, energy harvesting and self-powered sensing. Chem. Eng. J. 454, 140384 (2023). https://doi.org/10.1016/j.cej.2022.140384
- Z. Li, B. Xu, J. Han, J. Huang, H. Fu, A polycation-modified nanofillers tailored polymer electrolytes fiber for versatile biomechanical energy harvesting and full-range personal healthcare sensing. Adv. Funct. Mater. 32, 2106731 (2022). https://doi.org/10.1002/adfm.202106731
- N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11, 209 (2020). https://doi.org/10.1038/s41467-019-14054-9
- G. Jeanmairet, B. Rotenberg, M. Salanne, Microscopic simulations of electrochemical double-layer capacitors. Chem. Rev. 122, 10860–10898 (2022). https://doi.org/10.1021/acs.chemrev.1c00925
- J. Wu, Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022). https://doi.org/10.1021/acs.chemrev.2c00097
- C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides et al., Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013). https://doi.org/10.1126/science.1240228
- S.C.B. Mannsfeld, B.C.-K. Tee, R.M. Stoltenberg, C.V.H.-H. Chen, S. Barman et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010). https://doi.org/10.1038/nmat2834
- H. Qiao, S. Sun, P. Wu, Non-equilibrium-growing aesthetic ionic skin for fingertip-like strain-undisturbed tactile sensation and texture recognition. Adv. Mater. 35, e2300593 (2023). https://doi.org/10.1002/adma.202300593
- C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Rob. 3, eaau6914 (2018). https://doi.org/10.1126/scirobotics.aau6914
- C. Li, J. Cheng, Y. He, X. He, Z. Xu et al., Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing. Nat. Commun. 14, 4853 (2023). https://doi.org/10.1038/s41467-023-40583-5
- N.A. Bakhtina, U. Loeffelmann, N. MacKinnon, J.G. Korvink, Two-photon nanolithography enhances the performance of an ionic liquid–polymer composite sensor. Adv. Funct. Mater. 25, 1683–1693 (2015). https://doi.org/10.1002/adfm.201404370
- A. Balena, M. Bianco, F. Pisanello, M. De Vittorio, Recent advances on high-speed and holographic two-photon direct laser writing. Adv. Funct. Mater. 33, 2211773 (2023). https://doi.org/10.1002/adfm.202211773
- D. Soare, An ancient sensory organ in crocodilians. Nature 417, 241–242 (2002). https://doi.org/10.1038/417241a
- M.C. Milinkovitch, L. Manukyan, A. Debry, N. Di-Poï, S. Martin et al., Crocodile head scales are not developmental units but emerge from physical cracking. Science 339, 78–81 (2013). https://doi.org/10.1126/science.1226265
- R. Yang, A. Dutta, B. Li, N. Tiwari, W. Zhang et al., Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-Pyramids. Nat. Commun. 14, 2907 (2023). https://doi.org/10.1038/s41467-023-38274-2
- Y. Zhao, N. Yang, X. Chu, F. Sun, M.U. Ali et al., Wide-humidity range applicable, anti-freezing, and healable zwitterionic hydrogels for ion-leakage-free iontronic sensors. Adv. Mater. 35, e2211617 (2023). https://doi.org/10.1002/adma.202211617
- Y. Lai, Y. Hu, Probing the swelling-dependent mechanical and transport properties of polyacrylamide hydrogels through AFM-based dynamic nanoindentation. Soft Matter 14, 2619–2627 (2018). https://doi.org/10.1039/C7SM02351K
- G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28, 1802576 (2018). https://doi.org/10.1002/adfm.201802576
- Z. Huang, X. Feng, T. Zhang, Z. Liu, B. Zhu et al., Highly stretchable hydrogels for sensitive pressure sensor and programmable surface patterning by thermal bubble inkjet technology. J. Appl. Polym. Sci. 137, 49146 (2020). https://doi.org/10.1002/app.49146
- H. Ding, Z. Wu, H. Wang, Z. Zhou, Y. Wei et al., An ultrastretchable, high-performance, and crosstalk-free proximity and pressure bimodal sensor based on ionic hydrogel fibers for human-machine interfaces. Mater. Horiz. 9, 1935–1946 (2022). https://doi.org/10.1039/d2mh00281g
- S. Feng, Q. Li, S. Wang, B. Wang, Y. Hou et al., Tunable dual temperature-pressure sensing and parameter self-separating based on ionic hydrogel via multisynergistic network design. ACS Appl. Mater. Interfaces 11, 21049–21057 (2019). https://doi.org/10.1021/acsami.9b05214
- Y. Tai, M. Mulle, I.A. Ventura, G. Lubineau, A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres. Nanoscale 7(35), 14766–14773 (2015). https://doi.org/10.1039/C5NR03155A
- M. Yue, Y. Wang, H. Guo, C. Zhang, T. Liu, 3D reactive printing of polyaniline hybrid hydrogel microlattices with large stretchability and high fatigue resistance for wearable pressure sensors. Compos. Sci. Technol. 220, 109263 (2022). https://doi.org/10.1016/j.compscitech.2022.109263
- H. Zhou, M. Wang, X. Jin, H. Liu, J. Lai et al., Capacitive pressure sensors containing reliefs on solution-processable hydrogel electrodes. ACS Appl. Mater. Interfaces 13, 1441–1451 (2021). https://doi.org/10.1021/acsami.0c18355
- W. Yuanzhao, Y. Liu, Y. Zhou, Q. Man, Hu. Chao et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3, eaat0429 (2018). https://doi.org/10.1126/scirobotics.aat0429
- S. Xia, Q. Zhang, S. Song, L. Duan, G. Gao, Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem. Mater. 31, 9522–9531 (2019). https://doi.org/10.1021/acs.chemmater.9b03919
- Z. Lei, Q. Wang, S. Sun, W. Zhu, P. Wu, A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 29, 1700321 (2017). https://doi.org/10.1002/adma.201700321
- Z. Qin, X. Sun, Q. Yu, H. Zhang, X. Wu et al., Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 12, 4944–4953 (2020). https://doi.org/10.1021/acsami.9b21659
- N. Kallingal, M.R. Maurya, M.S. Sajna, H.C. Yalcin, H.M. Ouakad, A highly sensitive wearable pressure sensor capsule based on PVA/MXene composite gel. 3 Biotech 12, 171 (2022). https://doi.org/10.1007/s13205-022-03221-3
- W. Chen, B. Wang, Q. Zhu, X. Yan, Flexible pressure sensors with a wide detection range based on self-assembled polystyrene microspheres. Sensors 19(23), 5194 (2019). https://doi.org/10.3390/s19235194
- E.S. Hosseini, M. Chakraborty, J. Roe, Y. Petillot, R.S. Dahiya, Porous elastomer based wide range flexible pressure sensor for autonomous underwater vehicles. IEEE Sens. J. 22, 9914–9921 (2022). https://doi.org/10.1109/JSEN.2022.3165560
- H. Shi, I. González-Afanador, C. Holbrook, N. Sepúlveda, X. Tan, Soft pressure sensor for underwater sea lamprey detection. IEEE Sens. J. 22, 9932–9944 (2022). https://doi.org/10.1109/JSEN.2022.3166693
- C.-Y. Huang, G. Yang, P. Huang, J.-M. Hu, Z.-H. Tang et al., Flexible pressure sensor with an excellent linear response in a broad detection range for human motion monitoring. ACS Appl. Mater. Interfaces 15, 3476–3485 (2023). https://doi.org/10.1021/acsami.2c19465
- W. Yang, W. Gong, C. Hou, Y. Su, Y. Guo et al., All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun. 10, 5541 (2019). https://doi.org/10.1038/s41467-019-13569-5
- D. Miao, Z. Huang, X. Wang, J. Yu, B. Ding, Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small 14, e1801527 (2018). https://doi.org/10.1002/smll.201801527
- J. Dong, Y. Peng, X. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32, 2209762 (2022). https://doi.org/10.1002/adfm.202209762
- C.C. Kim, H.H. Lee, K.H. Oh, J.Y. Sun, Highly stretchable, transparent ionic touch panel. Science 353, 682–687 (2016). https://doi.org/10.1126/science.aaf8810
References
D.J. Reinkensmeyer, A.J. Farrens, D.G. Kamper, Facilitating limb movement after stroke. Nat. Med. 29, 535–536 (2023). https://doi.org/10.1038/s41591-023-02233-7
I.M. Howard, A.T. Patel, Spasticity evaluation and management tools. Muscle Nerve 67, 272–283 (2023). https://doi.org/10.1002/mus.27792
S.J. Nagel, S. Wilson, M.D. Johnson, A. Machado, L. Frizon et al., Spinal cord stimulation for spasticity: historical approaches, current status, and future directions. Neuromodulation 20, 307–321 (2017). https://doi.org/10.1111/ner.12591
J. Wissel, L.D. Schelosky, J. Scott, W. Christe, J.H. Faiss et al., Early development of spasticity following stroke: a prospective, observational trial. J. Neurol. 257, 1067–1072 (2010). https://doi.org/10.1007/s00415-010-5463-1
C.L. Watkins, M.J. Leathley, J.M. Gregson, A.P. Moore, T.L. Smith et al., Prevalence of spasticity post stroke. Clin. Rehabil.. Rehabil. 16, 515–522 (2002). https://doi.org/10.1191/0269215502cr512oa
P.P. Urban, T. Wolf, M. Uebele, J.J. Marx, T. Vogt et al., Occurence and clinical predictors of spasticity after ischemic stroke. Stroke 41, 2016–2020 (2010). https://doi.org/10.1161/STROKEAHA.110.581991
R.D. Zorowitz, P.J. Gillard, M. Brainin, Poststroke spasticity. Neurology 80, S45–S52 (2013). https://doi.org/10.1212/wnl.0b013e3182764c86
T. Dorňák, M. Justanová, R. Konvalinková, M. Říha, J. Mužík et al., Prevalence and evolution of spasticity in patients suffering from first-ever stroke with carotid origin: a prospective, longitudinal study. Eur. J. Neurol. 26, 880–886 (2019). https://doi.org/10.1111/ene.13902
D.K. Sommerfeld, E.U.-B. Eek, A.-K. Svensson, L.W. Holmqvist, M.H. von Arbin, Spasticity after stroke. Stroke 35, 134–139 (2004). https://doi.org/10.1161/01.str.0000105386.05173.5e
M. Yoo, J.H. Ahn, D.W. Rha, E.S. Park, Reliability of the modified Ashworth and modified Tardieu scales with standardized movement speeds in children with spastic cerebral palsy. Children 9(6), 827 (2022). https://doi.org/10.3390/children9060827
J. He, A. Luo, J. Yu, C. Qian, D. Liu et al., Quantitative assessment of spasticity: a narrative review of novel approaches and technologies. Front. Neurol. 14, 1121323 (2023). https://doi.org/10.3389/fneur.2023.1121323
R. De-la-Torre, E.D. Oña, C. Balaguer, A. Jardón, Robot-aided systems for improving the assessment of upper limb spasticity: a systematic review. Sensors 20(18), 5251 (2020). https://doi.org/10.3390/s20185251
G.E. Voerman, M. Gregorič, H.J. Hermens, Neurophysiological methods for the assessment of spasticity: the Hoffmann reflex, the tendon reflex, and the stretch reflex. Disabil. Rehabil.. Rehabil. 27, 33–68 (2005). https://doi.org/10.1080/09638280400014600
A. Thibaut, C. Chatelle, E. Ziegler, M.-A. Bruno, S. Laureys et al., Spasticity after stroke: physiology, assessment and treatment. Brain Inj. 27, 1093–1105 (2013). https://doi.org/10.3109/02699052.2013.804202
Z. Tomášová, P. Hluštík, M. Král, P. Otruba, R. Herzig et al., Cortical activation changes in patients suffering from post-stroke arm spasticity and treated with botulinum toxin A. J. Neuroimaging 23, 337–344 (2013). https://doi.org/10.1111/j.1552-6569.2011.00682.x
T.J. Bovend’Eerdt, M. Newman, K. Barker, H. Dawes, C. Minelli et al., The effects of stretching in spasticity: a systematic review. Arch. Phys. Med. Rehabil. 89, 1395–1406 (2008). https://doi.org/10.1016/j.apmr.2008.02.015
Y.J. Choo, M. Boudier-Revéret, M.C. Chang, 3D printing technology applied to orthosis manufacturing: narrative review. Ann. Palliat. Med. 9(6), 4262270–4264270 (2020). https://doi.org/10.21037/apm-20-1185
R. Chen, T. Luo, J. Wang, R. Wang, C. Zhang et al., Nonlinearity synergy: an elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing. Nat. Commun. 14, 6641 (2023). https://doi.org/10.1038/s41467-023-42361-9
C. Lv, C. Tian, J. Jiang, Y. Dang, Y. Liu et al., Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception. Adv. Sci. 10, e2206807 (2023). https://doi.org/10.1002/advs.202206807
S. Li, S. Chen, L. Yang, Y. Guo, K. Tan et al., Bimodal capacitive tactile sensor assisted by shield effect of triboelectric nanogenerator. Nano Energy 118, 108946 (2023). https://doi.org/10.1016/j.nanoen.2023.108946
P. Zhu, H. Du, X. Hou, P. Lu, L. Wang et al., Skin-electrode iontronic interface for mechanosensing. Nat. Commun. 12, 4731 (2021). https://doi.org/10.1038/s41467-021-24946-4
M. Amit, L. Chukoskie, A.J. Skalsky, H. Garudadri, T.N. Ng, Flexible pressure sensors for objective assessment of motor disorders. Adv. Funct. Mater. 30, 1905241 (2020). https://doi.org/10.1002/adfm.201905241
K.Y. Chung, B. Xu, D. Tan, Q. Yang, Z. Li et al., Naturally crosslinked biocompatible carbonaceous liquid metal aqueous ink printing wearable electronics for multi-sensing and energy harvesting. Nano-Micro Lett. 16, 149 (2024). https://doi.org/10.1007/s40820-024-01362-z
T. Chen, Q. Wei, Y. Ma, Y. Tang, L. Ma et al., Multifunctional electronic skins for ultra-sensitive strain, temperature, humidity sensing, and energy harvesting. Nano Energy 127, 109752 (2024). https://doi.org/10.1016/j.nanoen.2024.109752
K.Y. Chung, B. Xu, Z. Li, Y. Liu, J. Han, Bioinspired ultra-stretchable dual-carbon conductive functional polymer fiber materials for health monitoring, energy harvesting and self-powered sensing. Chem. Eng. J. 454, 140384 (2023). https://doi.org/10.1016/j.cej.2022.140384
Z. Li, B. Xu, J. Han, J. Huang, H. Fu, A polycation-modified nanofillers tailored polymer electrolytes fiber for versatile biomechanical energy harvesting and full-range personal healthcare sensing. Adv. Funct. Mater. 32, 2106731 (2022). https://doi.org/10.1002/adfm.202106731
N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11, 209 (2020). https://doi.org/10.1038/s41467-019-14054-9
G. Jeanmairet, B. Rotenberg, M. Salanne, Microscopic simulations of electrochemical double-layer capacitors. Chem. Rev. 122, 10860–10898 (2022). https://doi.org/10.1021/acs.chemrev.1c00925
J. Wu, Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022). https://doi.org/10.1021/acs.chemrev.2c00097
C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides et al., Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013). https://doi.org/10.1126/science.1240228
S.C.B. Mannsfeld, B.C.-K. Tee, R.M. Stoltenberg, C.V.H.-H. Chen, S. Barman et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010). https://doi.org/10.1038/nmat2834
H. Qiao, S. Sun, P. Wu, Non-equilibrium-growing aesthetic ionic skin for fingertip-like strain-undisturbed tactile sensation and texture recognition. Adv. Mater. 35, e2300593 (2023). https://doi.org/10.1002/adma.202300593
C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Rob. 3, eaau6914 (2018). https://doi.org/10.1126/scirobotics.aau6914
C. Li, J. Cheng, Y. He, X. He, Z. Xu et al., Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing. Nat. Commun. 14, 4853 (2023). https://doi.org/10.1038/s41467-023-40583-5
N.A. Bakhtina, U. Loeffelmann, N. MacKinnon, J.G. Korvink, Two-photon nanolithography enhances the performance of an ionic liquid–polymer composite sensor. Adv. Funct. Mater. 25, 1683–1693 (2015). https://doi.org/10.1002/adfm.201404370
A. Balena, M. Bianco, F. Pisanello, M. De Vittorio, Recent advances on high-speed and holographic two-photon direct laser writing. Adv. Funct. Mater. 33, 2211773 (2023). https://doi.org/10.1002/adfm.202211773
D. Soare, An ancient sensory organ in crocodilians. Nature 417, 241–242 (2002). https://doi.org/10.1038/417241a
M.C. Milinkovitch, L. Manukyan, A. Debry, N. Di-Poï, S. Martin et al., Crocodile head scales are not developmental units but emerge from physical cracking. Science 339, 78–81 (2013). https://doi.org/10.1126/science.1226265
R. Yang, A. Dutta, B. Li, N. Tiwari, W. Zhang et al., Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-Pyramids. Nat. Commun. 14, 2907 (2023). https://doi.org/10.1038/s41467-023-38274-2
Y. Zhao, N. Yang, X. Chu, F. Sun, M.U. Ali et al., Wide-humidity range applicable, anti-freezing, and healable zwitterionic hydrogels for ion-leakage-free iontronic sensors. Adv. Mater. 35, e2211617 (2023). https://doi.org/10.1002/adma.202211617
Y. Lai, Y. Hu, Probing the swelling-dependent mechanical and transport properties of polyacrylamide hydrogels through AFM-based dynamic nanoindentation. Soft Matter 14, 2619–2627 (2018). https://doi.org/10.1039/C7SM02351K
G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28, 1802576 (2018). https://doi.org/10.1002/adfm.201802576
Z. Huang, X. Feng, T. Zhang, Z. Liu, B. Zhu et al., Highly stretchable hydrogels for sensitive pressure sensor and programmable surface patterning by thermal bubble inkjet technology. J. Appl. Polym. Sci. 137, 49146 (2020). https://doi.org/10.1002/app.49146
H. Ding, Z. Wu, H. Wang, Z. Zhou, Y. Wei et al., An ultrastretchable, high-performance, and crosstalk-free proximity and pressure bimodal sensor based on ionic hydrogel fibers for human-machine interfaces. Mater. Horiz. 9, 1935–1946 (2022). https://doi.org/10.1039/d2mh00281g
S. Feng, Q. Li, S. Wang, B. Wang, Y. Hou et al., Tunable dual temperature-pressure sensing and parameter self-separating based on ionic hydrogel via multisynergistic network design. ACS Appl. Mater. Interfaces 11, 21049–21057 (2019). https://doi.org/10.1021/acsami.9b05214
Y. Tai, M. Mulle, I.A. Ventura, G. Lubineau, A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres. Nanoscale 7(35), 14766–14773 (2015). https://doi.org/10.1039/C5NR03155A
M. Yue, Y. Wang, H. Guo, C. Zhang, T. Liu, 3D reactive printing of polyaniline hybrid hydrogel microlattices with large stretchability and high fatigue resistance for wearable pressure sensors. Compos. Sci. Technol. 220, 109263 (2022). https://doi.org/10.1016/j.compscitech.2022.109263
H. Zhou, M. Wang, X. Jin, H. Liu, J. Lai et al., Capacitive pressure sensors containing reliefs on solution-processable hydrogel electrodes. ACS Appl. Mater. Interfaces 13, 1441–1451 (2021). https://doi.org/10.1021/acsami.0c18355
W. Yuanzhao, Y. Liu, Y. Zhou, Q. Man, Hu. Chao et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3, eaat0429 (2018). https://doi.org/10.1126/scirobotics.aat0429
S. Xia, Q. Zhang, S. Song, L. Duan, G. Gao, Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem. Mater. 31, 9522–9531 (2019). https://doi.org/10.1021/acs.chemmater.9b03919
Z. Lei, Q. Wang, S. Sun, W. Zhu, P. Wu, A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 29, 1700321 (2017). https://doi.org/10.1002/adma.201700321
Z. Qin, X. Sun, Q. Yu, H. Zhang, X. Wu et al., Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 12, 4944–4953 (2020). https://doi.org/10.1021/acsami.9b21659
N. Kallingal, M.R. Maurya, M.S. Sajna, H.C. Yalcin, H.M. Ouakad, A highly sensitive wearable pressure sensor capsule based on PVA/MXene composite gel. 3 Biotech 12, 171 (2022). https://doi.org/10.1007/s13205-022-03221-3
W. Chen, B. Wang, Q. Zhu, X. Yan, Flexible pressure sensors with a wide detection range based on self-assembled polystyrene microspheres. Sensors 19(23), 5194 (2019). https://doi.org/10.3390/s19235194
E.S. Hosseini, M. Chakraborty, J. Roe, Y. Petillot, R.S. Dahiya, Porous elastomer based wide range flexible pressure sensor for autonomous underwater vehicles. IEEE Sens. J. 22, 9914–9921 (2022). https://doi.org/10.1109/JSEN.2022.3165560
H. Shi, I. González-Afanador, C. Holbrook, N. Sepúlveda, X. Tan, Soft pressure sensor for underwater sea lamprey detection. IEEE Sens. J. 22, 9932–9944 (2022). https://doi.org/10.1109/JSEN.2022.3166693
C.-Y. Huang, G. Yang, P. Huang, J.-M. Hu, Z.-H. Tang et al., Flexible pressure sensor with an excellent linear response in a broad detection range for human motion monitoring. ACS Appl. Mater. Interfaces 15, 3476–3485 (2023). https://doi.org/10.1021/acsami.2c19465
W. Yang, W. Gong, C. Hou, Y. Su, Y. Guo et al., All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun. 10, 5541 (2019). https://doi.org/10.1038/s41467-019-13569-5
D. Miao, Z. Huang, X. Wang, J. Yu, B. Ding, Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small 14, e1801527 (2018). https://doi.org/10.1002/smll.201801527
J. Dong, Y. Peng, X. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32, 2209762 (2022). https://doi.org/10.1002/adfm.202209762
C.C. Kim, H.H. Lee, K.H. Oh, J.Y. Sun, Highly stretchable, transparent ionic touch panel. Science 353, 682–687 (2016). https://doi.org/10.1126/science.aaf8810