Biomimetic Synapses Based on Halide Perovskites for Neuromorphic Vision Computing: Materials, Devices, and Applications
Corresponding Author: Yue Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 246
Abstract
The demand for accurate perception of the physical world has led to a dramatic increase in visual sensing data, accompanied by challenges in the energy efficiency of data processing. However, conventional vision systems with separated sensor and processing units struggle to handle increasingly intricate and large-scale data. As such, a rethinking of architecture design is necessary. Inspired by human visual systems, neuromorphic vision computing systems in which computation tasks are moved partly to the sensory or memory units offer transformative solutions to these challenges. As crucial hardware support, biomimetic synapses that replicate synaptic functions and dynamics are urgent for the development of future computing, while further progress requires materials that can support synaptic weight modulation. Given their excellent optical, electrical, and ion migration properties, halide perovskite materials have emerged as promising candidates for biomimetic synapses. Here we review the latest efforts of synaptic devices based on halide perovskite materials for neuromorphic vision computing. We demonstrate the operating mechanism of perovskite synapses and introduce their potential applications in realizing neuromorphic vision computing. We address challenges and future directions related to biomimetic perovskite synapses.
Highlights:
1 Insightful discussion of the unique properties of perovskite materials in terms of optical, electrical, and ion migration properties, along with extensively analysis of different categories of perovskite materials for biomimetic synapses.
2 Comprehensive exploration of the structures and working mechanisms of perovskite synapses, emphasizing their transformative opportunities in neuromorphic vision computing.
3 Prospective outlook on the approach to the performance optimization methods of synaptic devices, covering material optimization, device structure design, and external physical signal regulation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Long, Y. Zhou, Y. Ding, X. Qiu, S. Poddar et al., Biomimetic optoelectronics with nanomaterials for artificial vision. Nat. Rev. Mater. 10(2), 128–146 (2025). https://doi.org/10.1038/s41578-024-00750-6
- H. Wang, T. Fu, Y. Du, W. Gao, K. Huang et al., Scientific discovery in the age of artificial intelligence. Nature 620(7972), 47–60 (2023). https://doi.org/10.1038/s41586-023-06221-2
- J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen et al., A survey on distributed machine learning. ACM Comput. Surv. 53(2), 1–33 (2021). https://doi.org/10.1145/3377454
- B.J. Shastri, A.N. Tait, T. de Ferreira Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15(2), 102–114 (2021). https://doi.org/10.1038/s41566-020-00754-y
- M.S. Lundstrom, M.A. Alam, Moore’s law: the journey ahead. Science 378(6621), 722–723 (2022). https://doi.org/10.1126/science.ade2191
- J.B. Aimone, S. Agarwal, Overcoming the noise in neural computing. Science 383(6685), 832–833 (2024). https://doi.org/10.1126/science.adn8545
- R. Yu, Z. Wang, Q. Liu, B. Gao, Z. Hao et al., A full-stack memristor-based computation-in-memory system with software-hardware co-development. Nat. Commun. 16(1), 2123 (2025). https://doi.org/10.1038/s41467-025-57183-0
- Z. Huang, Y. Li, Y. Zhang, J. Chen, J. He et al., 2D multifunctional devices: from material preparation to device fabrication and neuromorphic applications. Int. J. Extrem. Manuf. 6(3), 032003 (2024). https://doi.org/10.1088/2631-7990/ad2e13
- L. Hu, J. Shao, J. Wang, P. Cheng, L. Zhang et al., In situ cryptography in a neuromorphic vision sensor based on light-driven memristors. Appl. Phys. Rev. 11, 011411 (2024). https://doi.org/10.1063/5.0185502
- S. Choi, J. Yang, G. Wang, Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 32(51), e2004659 (2020). https://doi.org/10.1002/adma.202004659
- A. Bag, G. Ghosh, M.J. Sultan, H.H. Chouhdry, S.J. Hong et al., Bio-inspired sensory receptors for artificial-intelligence perception. Adv. Mater. 37(26), 2403150 (2025). https://doi.org/10.1002/adma.202403150
- M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
- X. Mou, J. Tang, Y. Lyu, Q. Zhang, S. Yang et al., Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning. Sci. Adv. 7(29), eabh0648 (2021). https://doi.org/10.1126/sciadv.abh0648
- S.W. Cho, C. Jo, Y.-H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14(1), 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
- G. Ding, H. Li, J. Zhao, K. Zhou, Y. Zhai et al., Nanomaterials for flexible neuromorphics. Chem. Rev. 124(22), 12738–12843 (2024). https://doi.org/10.1021/acs.chemrev.4c00369
- R. Peng, Y. Wu, B. Wang, R. Shi, L. Xu et al., Programmable graded doping for reconfigurable molybdenum ditelluride devices. Nat. Electron. 6(11), 852–861 (2023). https://doi.org/10.1038/s41928-023-01056-1
- H. Jiang, X. Zhang, K. Chen, X. He, Y. Liu et al., Two-dimensional czochralski growth of single-crystal MoS2. Nat. Mater. 24(2), 188–196 (2025). https://doi.org/10.1038/s41563-024-02069-7
- J. Yang, L. Hu, L. Shen, J. Wang, P. Cheng et al., Optically driven intelligent computing with ZnO memristor. Fundam. Res. 4(1), 158–166 (2024). https://doi.org/10.1016/j.fmre.2022.06.019
- L. Hu, J. Yang, J. Wang, P. Cheng, L.O. Chua et al., All-optically controlled memristor for optoelectronic neuromorphic computing. Adv. Funct. Mater. 31(4), 2005582 (2021). https://doi.org/10.1002/adfm.202005582
- J.W. Lee, J. Han, B. Kang, Y.J. Hong, S. Lee et al., Strategic development of memristors for neuromorphic systems: low-power and reconfigurable operation. Adv. Mater. 37(19), 2413916 (2025). https://doi.org/10.1002/adma.202413916
- H. Chen, Y. Cai, Y. Han, H. Huang, Towards artificial visual sensory system: organic optoelectronic synaptic materials and devices. Angew. Chem. Int. Ed. 63(1), e202313634 (2024). https://doi.org/10.1002/anie.202313634
- Q. Zhang, T. Jin, X. Ye, D. Geng, W. Chen et al., Organic field effect transistor-based photonic synapses: materials, devices, and applications. Adv. Funct. Mater. 31(49), 2106151 (2021). https://doi.org/10.1002/adfm.202106151
- Z. Wang, L. Lu, J. Meng, T. Wang, Emerging negative photoconductivity effect-based synaptic device for optoelectronic in-sensor computing. Adv. Mater. 37(32), 2504710 (2025). https://doi.org/10.1002/adma.202504710
- M. Vasilopoulou, A.R. bin Mohd Yusoff, Y. Chai, M.-A. Kourtis, T. Matsushima et al., Neuromorphic computing based on halide perovskites. Nat. Electron. 6(12), 949–962 (2023). https://doi.org/10.1038/s41928-023-01082-z
- A. Liu, H. Zhu, S. Bai, Y. Reo, M. Caironi et al., High-performance metal halide perovskite transistors. Nat. Electron. 6(8), 559–571 (2023). https://doi.org/10.1038/s41928-023-01001-2
- H. Si, Z. Zhang, Q. Liao, G. Zhang, Y. Ou et al., A-site management for highly crystalline perovskites. Adv. Mater. 32(4), 1904702 (2020). https://doi.org/10.1002/adma.201904702
- L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang et al., Advances in the application of perovskite materials. Nano-Micro Lett. 15(1), 177 (2023). https://doi.org/10.1007/s40820-023-01140-3
- Z. Saki, M.M. Byranvand, N. Taghavinia, M. Kedia, M. Saliba, Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy Environ. Sci. 14(11), 5690–5722 (2021). https://doi.org/10.1039/d1ee02018h
- H. Si, X. Zhao, Z. Zhang, Q. Liao, Y. Zhang, Low-temperature electron-transporting materials for perovskite solar cells: fundamentals, progress, and outlook. Coord. Chem. Rev. 500, 215502 (2024). https://doi.org/10.1016/j.ccr.2023.215502
- K. Beom, Z. Fan, D. Li, N. Newman, Halide perovskite based synaptic devices for neuromorphic systems. Mater. Today Phys. 24, 100667 (2022). https://doi.org/10.1016/j.mtphys.2022.100667
- J. Ren, B. Wan, Q. Cheng, R. Geng, X. Zhao et al., Progress on perovskite photodetectors for optical communications. Nanoscale (2026). https://doi.org/10.1039/D5NR03957F
- X. Shi, K. Xu, Y. He, Z. Peng, X. Meng et al., Strategies for enhancing energy-level matching in perovskite solar cells: an energy flow perspective. Nano-Micro Lett. 17(1), 313 (2025). https://doi.org/10.1007/s40820-025-01815-z
- S. Zhang, H. Si, W. Fan, M. Shi, M. Li et al., Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew. Chem. Int. Ed. 59(28), 11573–11582 (2020). https://doi.org/10.1002/anie.202003502
- Y. Zhou, I. Poli, D. Meggiolaro, F. De Angelis, A. Petrozza, Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6(11), 986–1002 (2021). https://doi.org/10.1038/s41578-021-00331-x
- H. Wu, H. Si, Z. Zhang, Z. Kang, P. Wu et al., All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 5(12), 1801219 (2018). https://doi.org/10.1002/advs.201801219
- H. Rafique, G. Abbas, M.J. Mendes, P. Barquinha, R. Martins et al., Recent advancements and perspectives of low-dimensional halide perovskites for visual perception and optoelectronic applications. Nano-Micro Letters 18(1), 44 (2025). https://doi.org/10.1007/s40820-025-01823-z
- F. Li, T. Yang, R. Zheng, Solution-processed perovskite crystals for electronics: moving forward. Matter 5(6), 1700–1733 (2022). https://doi.org/10.1016/j.matt.2022.04.022
- Y. Jiang, X. Wang, A. Pan, Properties of excitons and photogenerated charge carriers in metal halide perovskites. Adv. Mater. 31(47), 1806671 (2019). https://doi.org/10.1002/adma.201806671
- N. Xu, X. Qi, Z. Shen, L. Hu, J. Lv et al., Point defects in metal halide perovskites. Nat. Rev. Phys. 7(10), 554–564 (2025). https://doi.org/10.1038/s42254-025-00861-1
- S.J. Kim, I.H. Im, J.H. Baek, S.H. Park, J.Y. Kim et al., Reliable and robust two-dimensional perovskite memristors for flexible-resistive random-access memory array. ACS Nano 18(41), 28131–28141 (2024). https://doi.org/10.1021/acsnano.4c07673
- G. Vats, B. Hodges, A.J. Ferguson, L.M. Wheeler, J.L. Blackburn, Optical memory, switching, and neuromorphic functionality in metal halide perovskite materials and devices. Adv. Mater. 35(37), 2205459 (2023). https://doi.org/10.1002/adma.202205459
- H. Si, C. Xu, Y. Ou, G. Zhang, W. Fan et al., Dual-passivation of ionic defects for highly crystalline perovskite. Nano Energy 68, 104320 (2020). https://doi.org/10.1016/j.nanoen.2019.104320
- H. Si, S. Zhang, S. Ma, Z. Xiong, A. Kausar et al., Emerging conductive atomic force microscopy for metal halide perovskite materials and solar cells. Adv. Energy Mater. 10(10), 1903922 (2020). https://doi.org/10.1002/aenm.201903922
- H. Wang, D.H. Kim, Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46(17), 5204–5236 (2017). https://doi.org/10.1039/c6cs00896h
- H. Si, Q. Liao, Z. Kang, Y. Ou, J. Meng et al., Deciphering the NH4PbI3 intermediate phase for simultaneous improvement on nucleation and crystal growth of perovskite. Adv. Funct. Mater. 27(30), 1701804 (2017). https://doi.org/10.1002/adfm.201701804
- W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend et al., Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2(3), 16099 (2017). https://doi.org/10.1038/natrevmats.2016.99
- J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2(7), 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42
- T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic: inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016). https://doi.org/10.1038/natrevmats.2015.7
- Z. Xiao, J. Huang, Energy-efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater. 2(7), 1600100 (2016). https://doi.org/10.1002/aelm.201600100
- J. Gong, H. Wei, Y. Ni, S. Zhang, Y. Du et al., Methylammonium halide-doped perovskite artificial synapse for light-assisted environmental perception and learning. Mater. Today Phys. 21, 100540 (2021). https://doi.org/10.1016/j.mtphys.2021.100540
- C. Kagan, D. Mitzi, C. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286(5441), 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
- H. Zhu, A. Liu, K.I. Shim, H. Jung, T. Zou et al., High-performance hysteresis-free perovskite transistors through anion engineering. Nat. Commun. 13, 1741 (2022). https://doi.org/10.1038/s41467-022-29434-x
- H. Zhu, W. Yang, Y. Reo, G. Zheng, S. Bai et al., Tin perovskite transistors and complementary circuits based on A-site cation engineering. Nat. Electron. 6(9), 650–657 (2023). https://doi.org/10.1038/s41928-023-01019-6
- J. Ma, M. Qin, P. Li, L. Han, Y. Zhang et al., Crystallization kinetics modulation and defect suppression of all-inorganic CsPbX3 perovskite films. Energy Environ. Sci. 15(2), 413–438 (2022). https://doi.org/10.1039/D1EE03192A
- W. Xiang, S. Liu, W. Tress, A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ. Sci. 14(4), 2090–2113 (2021). https://doi.org/10.1039/D1EE00157D
- S. Zhang, C. Xu, W. Fan, H. Sun, F. Cheng et al., Sp-hybridized carbon enabled crystal lattice manipulation, pushing the limit of fill factor in β-CsPbI3 perovskite solar cells. Matter 7(9), 3205–3220 (2024). https://doi.org/10.1016/j.matt.2024.06.047
- S. Sun, M. Lu, X. Gao, Z. Shi, X. Bai et al., 0D perovskites: unique properties, synthesis, and their applications. Adv. Sci. 8(24), 2102689 (2021). https://doi.org/10.1002/advs.202102689
- J. Sun, X. Zhao, H. Si, F. Gao, B. Zhao et al., Defect passivation and energy level modulation of CsPbBr2I QDs for high-detectivity and stable photodetectors. Adv. Opt. Mater. 11(10), 2202877 (2023). https://doi.org/10.1002/adom.202202877
- Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
- H. Wang, B. Sun, S.S. Ge, J. Su, M.L. Jin, On non-von Neumann flexible neuromorphic vision sensors. NPJ Flex. Electron. 8, 28 (2024). https://doi.org/10.1038/s41528-024-00313-3
- Q. Shi, D. Liu, D. Hao, J. Zhang, L. Tian et al., Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy 87, 106197 (2021). https://doi.org/10.1016/j.nanoen.2021.106197
- R. Wang, P. Chen, D. Hao, J. Zhang, Q. Shi et al., Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces 13(36), 43144–43154 (2021). https://doi.org/10.1021/acsami.1c08424
- H. Ye, Z. Liu, H. Han, T. Shi, G. Liao, Lead-free AgBiI4 perovskite artificial synapses for a tactile sensory neuron system with information preprocessing function. Mater. Adv. 3(19), 7248–7256 (2022). https://doi.org/10.1039/D2MA00675H
- S. Mao, M. Cui, S. Jiang, P. Zhao, J. Lao et al., Dual-modal artificial synapse based on a lead-free halide Cu2AgBiI6 for image processing and information encryption. Chem. Eng. J. 472, 145086 (2023). https://doi.org/10.1016/j.cej.2023.145086
- D. Hao, Z. Yang, J. Huang, F. Shan, Recent developments of optoelectronic synaptic devices based on metal halide perovskites. Adv. Funct. Mater. 33(8), 2211467 (2023). https://doi.org/10.1002/adfm.202211467
- L. Hu, X. Zhuge, J. Wang, X. Wei, L. Zhang et al., Emerging optoelectronic devices for brain-inspired computing. Adv. Electron. Mater. 11(3), 2400482 (2025). https://doi.org/10.1002/aelm.202400482
- T. Zhang, C. Fan, L. Hu, F. Zhuge, X. Pan et al., A reconfigurable all-optical-controlled synaptic device for neuromorphic computing applications. ACS Nano 18(25), 16236–16247 (2024). https://doi.org/10.1021/acsnano.4c02278
- Z. Xue, Y. Xu, C. Jin, Y. Liang, Z. Cai et al., Halide perovskite photoelectric artificial synapses: materials, devices, and applications. Nanoscale 15(10), 4653–4668 (2023). https://doi.org/10.1039/D2NR06403K
- B. Li, F. Xia, B. Du, S. Zhang, L. Xu et al., 2D halide perovskites for high-performance resistive switching memory and artificial synapse applications. Adv. Sci. 11(23), 2310263 (2024). https://doi.org/10.1002/advs.202310263
- J.-M. Yang, E.-S. Choi, S.-Y. Kim, J.-H. Kim, J.-H. Park et al., Perovskite-related (CH3NH3)3Sb2Br9 for forming-free memristor and low-energy-consuming neuromorphic computing. Nanoscale 11(13), 6453–6461 (2019). https://doi.org/10.1039/c8nr09918a
- S.K. Vishwanath, B. Febriansyah, S.E. Ng, T. Das, J. Acharya et al., High-performance one-dimensional halide perovskite crossbar memristors and synapses for neuromorphic computing. Mater. Horiz. 11(11), 2643–2656 (2024). https://doi.org/10.1039/d3mh02055j
- R.A. John, N. Yantara, Y.F. Ng, G. Narasimman, E. Mosconi et al., Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Adv. Mater. 30(51), e1805454 (2018). https://doi.org/10.1002/adma.201805454
- S.J. Kim, I.H. Im, J.H. Baek, S. Choi, S.H. Park et al., Linearly programmable two-dimensional halide perovskite memristor arrays for neuromorphic computing. Nat. Nanotechnol. 20(1), 83–92 (2025). https://doi.org/10.1038/s41565-024-01790-3
- S. Liu, J. Zeng, Q. Chen, G. Liu, Recent advances in halide perovskite memristors: from materials to applications. Front. Phys. 19(2), 23501 (2024). https://doi.org/10.1007/s11467-023-1344-9
- S.G. Kim, Q. Van Le, J.S. Han, H. Kim, M.-J. Choi et al., Dual-phase all-inorganic cesium halide perovskites for conducting-bridge memory-based artificial synapses. Adv. Funct. Mater. 29(49), 1906686 (2019). https://doi.org/10.1002/adfm.201906686
- A. Siddik, P.K. Haldar, T. Paul, U. Das, A. Barman et al., Nonvolatile resistive switching and synaptic characteristics of lead-free all-inorganic perovskite-based flexible memristive devices for neuromorphic systems. Nanoscale 13(19), 8864–8874 (2021). https://doi.org/10.1039/d0nr08214g
- B. Ku, B. Koo, A.S. Sokolov, M.J. Ko, C. Choi, Two-terminal artificial synapse with hybrid organic–inorganic perovskite (CH3NH3)PbI3 and low operating power energy (∼47 fJ/μm2). J. Alloys Compd. 833, 155064 (2020). https://doi.org/10.1016/j.jallcom.2020.155064
- L. Hao, S. Cai, Progress in in situ TEM investigations of halide perovskites. Microstructures 5(1), 2025012 (2025). https://doi.org/10.20517/microstructures.2024.10
- Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan et al., Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012). https://doi.org/10.1038/ncomms1737
- J.-Y. Chen, C.-L. Hsin, C.-W. Huang, C.-H. Chiu, Y.-T. Huang et al., Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13(8), 3671–3677 (2013). https://doi.org/10.1021/nl4015638
- T. Fujii, M. Arita, Y. Takahashi, I. Fujiwara, In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching. Appl. Phys. Lett. 98(21), 212104 (2011). https://doi.org/10.1063/1.3593494
- Y. Yang, R. Huang, Probing memristive switching in nanoionic devices. Nat. Electron. 1(5), 274–287 (2018). https://doi.org/10.1038/s41928-018-0069-1
- T. Chai, C. Xu, Y. Wang, L. Zheng, K. Hu et al., Lead-free perovskite based self-rectifying memristor with self-organizing heterojunction for energy-efficient image information sensing, processing, and protection. Adv. Funct. Mater. e22022 (2025). https://doi.org/10.1002/adfm.202522022
- S. Panchanan, S. Dutta, G. Dastgeer, R. Jaafreh, K. Hamad et al., Mixed-dimensional Cu-based perovskites for stable and energy-efficient neuromorphic memristors. Adv. Funct. Mater. e20665 (2025). https://doi.org/10.1002/adfm.202520665
- L. Guo, H. Sun, L. Min, M. Wang, F. Cao et al., Two-terminal perovskite optoelectronic synapse for rapid trained neuromorphic computation with high accuracy. Adv. Mater. 36(27), 2402253 (2024). https://doi.org/10.1002/adma.202402253
- J. Choi, J.S. Han, K. Hong, S.Y. Kim, H.W. Jang, Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 30(42), 1704002 (2018). https://doi.org/10.1002/adma.201704002
- W. Xu, H. Cho, Y.-H. Kim, Y.-T. Kim, C. Wolf et al., Organometal halide perovskite artificial synapses. Adv. Mater. 28(28), 5916–5922 (2016). https://doi.org/10.1002/adma.201506363
- H. Yu, J. Gong, H. Wei, W. Huang, W. Xu, Mixed-halide perovskite for ultrasensitive two-terminal artificial synaptic devices. Mater. Chem. Front. 3(5), 941–947 (2019). https://doi.org/10.1039/c9qm00061e
- J.-Y. Mao, Z. Zheng, Z.-Y. Xiong, P. Huang, G.-L. Ding et al., Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy 71, 104616 (2020). https://doi.org/10.1016/j.nanoen.2020.104616
- J. Gong, H. Yu, X. Zhou, H. Wei, M. Ma et al., Lateral artificial synapses on hybrid perovskite platelets with modulated neuroplasticity. Adv. Funct. Mater. 30(46), 2005413 (2020). https://doi.org/10.1002/adfm.202005413
- X. Yang, Z. Xiong, Y. Chen, Y. Ren, L. Zhou et al., A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy 78, 105246 (2020). https://doi.org/10.1016/j.nanoen.2020.105246
- S. Paramanik, A. Maiti, S. Chatterjee, A.J. Pal, Large resistive switching and artificial synaptic behaviors in layered Cs3Sb2I9 lead-free perovskite memory devices. Adv. Electron. Mater. 8(1), 2100237 (2022). https://doi.org/10.1002/aelm.202100237
- J. Lao, W. Xu, C. Jiang, N. Zhong, B. Tian et al., An air-stable artificial synapse based on a lead-free double perovskite Cs2AgBiBr6 film for neuromorphic computing. J. Mater. Chem. C 9(17), 5706–5712 (2021). https://doi.org/10.1039/d1tc00655j
- K. Ju, B. Hyun, L. Eun, I. Hyuk, J. Kim et al., Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing. Nano Lett. 22(14), 6010–6017 (2022). https://doi.org/10.1021/acs.nanolett.2c01272
- J. Liu, J. Gong, H. Wei, Y. Li, H. Wu et al., A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation. Nat. Commun. 13(1), 7427 (2022). https://doi.org/10.1038/s41467-022-35092-w
- S.-U. Lee, S.-Y. Kim, J.-H. Lee, J.H. Baek, J.-W. Lee et al., Artificial synapse based on a δ-FAPbI3/atomic-layer-deposited SnO2 bilayer memristor. Nano Lett. 4c00253 (2024). https://doi.org/10.1021/acs.nanolett.4c00253
- S.-I. Kim, Y. Lee, M.-H. Park, G.-T. Go, Y.-H. Kim et al., Dimensionality dependent plasticity in halide perovskite artificial synapses for neuromorphic computing. Adv. Electron. Mater. 5(9), 1900008 (2019). https://doi.org/10.1002/aelm.201900008
- H. Tian, L. Zhao, X. Wang, Y.-W. Yeh, N. Yao et al., Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11(12), 12247–12256 (2017). https://doi.org/10.1021/acsnano.7b05726
- S.J. Kim, T.H. Lee, J.-M. Yang, J.W. Yang, Y.J. Lee et al., Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 52, 19–30 (2022). https://doi.org/10.1016/j.mattod.2021.10.035
- F. Luo, Y. Wu, J. Tong, G. Qin, X. Zhang, Two-dimensional Cs3Bi2I6Cl3 perovskite for resistive switching behaviors and artificial synaptic simulation. J. Alloys Compd. 938, 168498 (2023). https://doi.org/10.1016/j.jallcom.2022.168498
- Y. Wang, Y. Zha, C. Bao, F. Hu, Y. Di et al., Monolithic 2D perovskites enabled artificial photonic synapses for neuromorphic vision sensors. Adv. Mater. 36(18), 2311524 (2024). https://doi.org/10.1002/adma.202311524
- M. Huang, S. Zhang, P. Zhou, Z. Chen, H. Lian et al., Heterogeneous interface engineering enabling homogeneous metal halide perovskite nanowires for artificial synapses. Mater. Today Nano 25, 100449 (2024). https://doi.org/10.1016/j.mtnano.2023.100449
- Y.R. Park, G. Wang, Learning-effective mixed-dimensional halide perovskite QD synaptic array for self-rectifying and luminous artificial neural networks. Adv. Funct. Mater. 34(3), 2307971 (2024). https://doi.org/10.1002/adfm.202307971
- W. Li, Y. Ren, T. Duan, H. Tang, H. Li et al., Vacancy-ordered double-perovskite-based memristors for image processing and pattern recognition. Matter 8(1), 101888 (2025). https://doi.org/10.1016/j.matt.2024.10.006
- L.-W. Chen, W.-C. Wang, S.-H. Ko, C.-Y. Chen, C.-T. Hsu et al., Highly uniform all-vacuum-deposited inorganic perovskite artificial synapses for reservoir computing. Adv. Intell. Syst. 3(1), 2170010 (2021). https://doi.org/10.1002/aisy.202170010
- F. Zeng, Y. Guo, W. Hu, Y. Tan, X. Zhang et al., Opportunity of the lead-free all-inorganic Cs3Cu2I5 perovskite film for memristor and neuromorphic computing applications. ACS Appl. Mater. Interfaces 12(20), 23094–23101 (2020). https://doi.org/10.1021/acsami.0c03106
- P.-T. Lai, C.-Y. Chen, H.-C. Lin, B.-Y. Chuang, K.-H. Kuo et al., Harnessing 2D ruddlesden–popper perovskite with polar organic cation for ultrasensitive multibit nonvolatile transistor-type photomemristors. ACS Nano 17(24), 25552–25564 (2023). https://doi.org/10.1021/acsnano.3c09595
- Z. Guo, J. Zhang, X. Liu, L. Wang, L. Xiong et al., Optoelectronic synapses and photodetectors based on organic semiconductor/halide perovskite heterojunctions: materials, devices, and applications. Adv. Funct. Mater. 33(46), 2305508 (2023). https://doi.org/10.1002/adfm.202305508
- J.-Y. Chen, D.-L. Yang, F.-C. Jhuang, Y.-H. Fang, J.-S. Benas et al., Ultrafast responsive and low-energy-consumption poly(3-hexylthiophene)/perovskite quantum dots composite film-based photonic synapse. Adv. Funct. Mater. 31(47), 2105911 (2021). https://doi.org/10.1002/adfm.202105911
- W.-C. Chen, Y.-C. Lin, C.-C. Hung, L.-C. Hsu, Y.-S. Wu et al., Stretchable photosynaptic transistor with an ultralow energy consumption conferred using conjugated block copolymers/perovskite quantum dots nanocomposites. Mater. Today 70, 57–70 (2023). https://doi.org/10.1016/j.mattod.2023.10.010
- C. Wang, Y. Bian, K. Liu, M. Qin, F. Zhang et al., Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors. Nat. Commun. 15, 3123 (2024). https://doi.org/10.1038/s41467-024-47532-w
- J. Zhu, T. Zhang, Y. Yang, R. Huang, A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7, 011312 (2020). https://doi.org/10.1063/1.5118217
- L. Qian, Y. Sun, M. Wu, C. Li, D. Xie et al., A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale 10(15), 6837–6843 (2018). https://doi.org/10.1039/c8nr00914g
- Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun et al., Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater. 29(28), 1902538 (2019). https://doi.org/10.1002/adfm.201902538
- X. Niu, B. Tian, Q. Zhu, B. Dkhil, C. Duan, Ferroelectric polymers for neuromorphic computing. Appl. Phys. Rev. 9(2), 021309 (2022). https://doi.org/10.1063/5.0073085
- B. Jeong, P. Gkoupidenis, K. Asadi, Solution-processed perovskite field-effect transistor artificial synapses. Adv. Mater. 33(52), 2104034 (2021). https://doi.org/10.1002/adma.202104034
- S. Han, T. Ma, H. Li, J. Wu, R. Liu et al., Photoferroelectric perovskite synapses for neuromorphic computing. Adv. Funct. Mater. 34(3), 2309910 (2024). https://doi.org/10.1002/adfm.202309910
- K. Lee, H. Han, Y. Kim, J. Park, S. Jang et al., Retina-inspired structurally tunable synaptic perovskite nanocones. Adv. Funct. Mater. 31(52), 2105596 (2021). https://doi.org/10.1002/adfm.202105596
- W. He, Y. Fang, H. Yang, X. Wu, L. He et al., A multi-input light-stimulated synaptic transistor for complex neuromorphic computing. J. Mater. Chem. C 7(40), 12523–12531 (2019). https://doi.org/10.1039/c9tc03898a
- X. Wu, E. Li, Y. Liu, W. Lin, R. Yu et al., Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy 85, 106000 (2021). https://doi.org/10.1016/j.nanoen.2021.106000
- C. Han, X. Han, J. Han, M. He, S. Peng et al., Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application (adv. funct. mater. 22/2022). Adv. Funct. Mater. 32(22), 2270129 (2022). https://doi.org/10.1002/adfm.202270129
- Y. Li, J. Wang, Q. Yang, G. Shen, Flexible artificial optoelectronic synapse based on lead-free metal halide nanocrystals for neuromorphic computing and color recognition. Adv. Sci. 9(22), 2202123 (2022). https://doi.org/10.1002/advs.202202123
- G. Chen, G. Peng, X. Yu, W. Yu, Y. Hao et al., Multifunctional memory-synaptic hybrid optoelectronic transistors for neuromorphic computing. IEEE Trans. Electron Devices 69(7), 3997–4001 (2022). https://doi.org/10.1109/TED.2022.3173246
- H. Shao, Y. Li, W. Yang, X. He, L. Wang et al., A reconfigurable optoelectronic synaptic transistor with stable Zr-CsPbI3 nanocrystals for visuomorphic computing (adv. mater. 12/2023). Adv. Mater. 35(12), 2370084 (2023). https://doi.org/10.1002/adma.202370084
- M. Li, Z. Xiong, S. Shao, L. Shao, S.-T. Han et al., Multimodal optoelectronic neuromorphic electronics based on lead-free perovskite-mixed carbon nanotubes. Carbon 176, 592–601 (2021). https://doi.org/10.1016/j.carbon.2021.02.046
- L. Yin, W. Huang, R. Xiao, W. Peng, Y. Zhu et al., Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett. 20(5), 3378–3387 (2020). https://doi.org/10.1021/acs.nanolett.0c00298
- F. Huang, F. Fang, Y. Zheng, Q. You, H. Li et al., Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res. 16(1), 1304–1312 (2023). https://doi.org/10.1007/s12274-022-4806-4
- Q. Liu, L. Yin, C. Zhao, J. Wang, Z. Wu et al., Hybrid mixed-dimensional perovskite/metal-oxide heterojunction for all-in-one opto-electric artificial synapse and retinal-neuromorphic system. Nano Energy 102, 107686 (2022). https://doi.org/10.1016/j.nanoen.2022.107686
- Y. Park, M.-K. Kim, J.-S. Lee, 2D layered metal-halide perovskite/oxide semiconductor-based broadband optoelectronic synaptic transistors with long-term visual memory. J. Mater. Chem. C 9(4), 1429–1436 (2021). https://doi.org/10.1016/j.nanoen.2022.107686
- X. Huang, Q. Li, W. Shi, K. Liu, Y. Zhang et al., Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system. Small 17(36), 2102820 (2021). https://doi.org/10.1002/smll.202102820
- X. Zhang, C. Wang, Q. Sun, J. Wu, Y. Dai et al., Inorganic halide perovskite nanowires/conjugated polymer heterojunction-based optoelectronic synaptic transistors for dynamic machine vision. Nano Lett. 24(14), 4132–4140 (2024). https://doi.org/10.1021/acs.nanolett.3c05092
- Q. Liu, Q. Wei, H. Ren, L. Zhou, Y. Zhou et al., Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat. Commun. 14(1), 7179 (2023). https://doi.org/10.1038/s41467-023-43034-3
- K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu et al., Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15(11), 1900010 (2019). https://doi.org/10.1002/smll.201900010
- Y. Cheng, H. Li, B. Liu, L. Jiang, M. Liu et al., Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical Pavlovian conditioning and neural coding dynamics. Small 16(45), 2005217 (2020). https://doi.org/10.1002/smll.202005217
- D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 12(35), 39487–39495 (2020). https://doi.org/10.1021/acsami.0c10851
- Y. Cheng, K. Shan, Y. Xu, J. Yang, J. He et al., Hardware implementation of photoelectrically modulated dendritic arithmetic and spike-timing-dependent plasticity enabled by an ion-coupling gate-tunable vertical 0D-perovskite/2D-MoS2 hybrid-dimensional van der Waals heterostructure. Nanoscale 12(42), 21798–21811 (2020). https://doi.org/10.1039/d0nr04950f
- B. Pradhan, S. Das, J. Li, F. Chowdhury, J. Cherusseri et al., Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv. 6(7), eaay5225 (2020). https://doi.org/10.1126/sciadv.aay5225
- S. Subramanian Periyal, M. Jagadeeswararao, S.E. Ng, R.A. John, N. Mathews, Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv. Mater. Technol. 5(11), 2000514 (2020). https://doi.org/10.1002/admt.202000514
- J. Liu, Z. Yang, Z. Gong, Z. Shen, Y. Ye et al., Weak light-stimulated synaptic hybrid phototransistors based on islandlike perovskite films prepared by spin coating. ACS Appl. Mater. Interfaces 13(11), 13362–13371 (2021). https://doi.org/10.1021/acsami.0c22604
- H. Duan, L. Liang, Z. Wu, H. Zhang, L. Huang et al., IGZO/CsPbBr3-nanops/IGZO neuromorphic phototransistors and their optoelectronic coupling applications. ACS Appl. Mater. Interfaces 13(25), 30165–30173 (2021). https://doi.org/10.1021/acsami.1c05396
- J. Hao, Y.-H. Kim, S.N. Habisreutinger, S.P. Harvey, E.M. Miller et al., Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci. Adv. 7(18), eabf1959 (2021). https://doi.org/10.1126/sciadv.abf1959
- E. Ercan, Y.-C. Lin, W.-C. Yang, W.-C. Chen, Self-assembled nanostructures of quantum dot/conjugated polymer hybrids for photonic synaptic transistors with ultralow energy consumption and zero-gate bias. Adv. Funct. Mater. 32(6), 2107925 (2022). https://doi.org/10.1002/adfm.202107925
- Q.-B. Zhu, B. Li, D.-D. Yang, C. Liu, S. Feng et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021). https://doi.org/10.1038/s41467-021-22047-w
- T. Chen, X. Wang, D. Hao, S. Dai, Q. Ou et al., Photonic synapses with ultra-low energy consumption based on vertical organic field-effect transistors. Adv. Opt. Mater. 9(8), 2002030 (2021). https://doi.org/10.1002/adom.202002030
- Z. Xin, Y. Tan, T. Chen, E. Iranmanesh, L. Li et al., Visible-light-stimulated synaptic InGaZnO phototransistors enabled by wavelength-tunable perovskite quantum dots. Nanoscale Adv. 3(17), 5046–5052 (2021). https://doi.org/10.1039/d1na00410g
- J. Li, Z. Shen, Y. Cao, X. Tu, C. Zhao et al., Artificial synapses enabled neuromorphic computing: from blueprints to reality. Nano Energy 103, 107744 (2022). https://doi.org/10.1016/j.nanoen.2022.107744
- J. Kuang, K. Liu, M. Liu, M. Shao, M. Zhu et al., Interface defects tuning in polymer-perovskite phototransistors for visual synapse and adaptation functions. Adv. Funct. Mater. 33(5), 2209502 (2023). https://doi.org/10.1002/adfm.202209502
- Y. Wu, S. Dai, X. Liu, P. Guo, J. Zhang et al., Optical microlithography of perovskite quantum dots/organic semiconductor heterojunctions for neuromorphic photosensors. Adv. Funct. Mater. 34(23), 2315175 (2024). https://doi.org/10.1002/adfm.202315175
- H. Zhu, S. Teale, M.N. Lintangpradipto, S. Mahesh, B. Chen et al., Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8(9), 569–586 (2023). https://doi.org/10.1038/s41578-023-00582-w
- J.A. Christians, P.A. Miranda Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137(4), 1530–1538 (2015). https://doi.org/10.1021/ja511132a
- J.-Y. Ma, H.-J. Yan, M.-H. Li, J.-K. Sun, Y.-X. Chen et al., Microscopic investigations on the surface-state dependent moisture stability of a hybrid perovskite. Nanoscale 12(14), 7759–7765 (2020). https://doi.org/10.1039/c9nr10137c
- F. Du, X. Liu, J. Liao, D. Yu, N. Zhang et al., Improving the stability of halide perovskites for photo-, electro-, photoelectro-chemical applications. Adv. Funct. Mater. 34(12), 2312175 (2024). https://doi.org/10.1002/adfm.202312175
- J.A. Steele, H. Jin, I. Dovgaliuk, R.F. Berger, T. Braeckevelt et al., Thermal unequilibrium of strained black CsPbI3 thin films. Science 365(6454), 679–684 (2019). https://doi.org/10.1126/science.aax3878
- L. Ma, D. Guo, M. Li, C. Wang, Z. Zhou et al., Temperature-dependent thermal decomposition pathway of organic–inorganic halide perovskite materials. Chem. Mater. 31(20), 8515–8522 (2019). https://doi.org/10.1021/acs.chemmater.9b03190
- B. Zhao, S.-F. Jin, S. Huang, N. Liu, J.-Y. Ma et al., Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics. J. Am. Chem. Soc. 140(37), 11716–11725 (2018). https://doi.org/10.1021/jacs.8b06050
- W. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J. Fan et al., Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 9(2), 490–498 (2016). https://doi.org/10.1039/C5EE03522H
- Z. Wang, Z. Zhang, L. Xie, S. Wang, C. Yang et al., Recent advances and perspectives of photostability for halide perovskite solar cells. Adv. Opt. Mater. 10(3), 2101822 (2022). https://doi.org/10.1002/adom.202101822
- E.J. Juarez-Perez, L.K. Ono, M. Maeda, Y. Jiang, Z. Hawash et al., Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 6(20), 9604–9612 (2018). https://doi.org/10.1039/C8TA03501F
- T. Leijtens, E.T. Hoke, G. Grancini, D.J. Slotcavage, G.E. Eperon et al., Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5(20), 1500962 (2015). https://doi.org/10.1002/aenm.201500962
- H. Kim, Halide perovskite memristor crossbar arrays for low voltage in memory computing. Adv. Mater. Interfaces 12(22), e00729 (2025). https://doi.org/10.1002/admi.202500729
- C.-H. Lin, L. Hu, X. Guan, J. Kim, C.-Y. Huang et al., Electrode engineering in halide perovskite electronics: plenty of room at the interfaces. Adv. Mater. 34(18), 2108616 (2022). https://doi.org/10.1002/adma.202108616
- J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
- H. Lee, T. Moon, Y. Lee, J. Kim, Structural mechanisms of quasi-2D perovskites for next-generation photovoltaics. Nano-Micro Lett. 17(1), 139 (2025). https://doi.org/10.1007/s40820-024-01609-9
- M.T. Klug, A. Osherov, A.A. Haghighirad, S.D. Stranks, P.R. Brown et al., Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10(1), 236–246 (2017). https://doi.org/10.1039/C6EE03201J
- M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3(8), 648–654 (2018). https://doi.org/10.1038/s41560-018-0192-2
- H. Zhu, F. Zhang, Y. Xiao, S. Wang, X. Li, Suppressing defects through thiadiazole derivatives that modulate CH3NH3PbI3 crystal growth for highly stable perovskite solar cells under dark conditions. J. Mater. Chem. A 6(12), 4971–4980 (2018). https://doi.org/10.1039/c8ta00769a
- E. Choi, J.-W. Lee, M. Anaya, A. Mirabelli, H. Shim et al., Synergetic effect of aluminum oxide and organic halide salts on two-dimensional perovskite layer formation and stability enhancement of perovskite solar cells. Adv. Energy Mater. 13(39), 2301717 (2023). https://doi.org/10.1002/aenm.202301717
- H. Wang, L. Yang, W. Lv, M. Gan, Z. Zhang et al., High-efficiency perovskite solar cells with oriented growth and consolidated ABX3 structures via multifunctional ionic liquids at buried interfaces. ACS Appl. Mater. Interfaces 17(13), 19754–19761 (2025). https://doi.org/10.1021/acsami.5c01012
- Q. Zhang, Q. Zhao, H. Wang, Y. Yao, L. Li et al., Tuning isomerism effect in organic bulk additives enables efficient and stable perovskite solar cells. Nano-Micro Lett. 17(1), 107 (2025). https://doi.org/10.1007/s40820-024-01613-z
- X. Zheng, S. Ahmed, Y. Zhang, G. Xu, J. Wang et al., Differentiating the 2D passivation from amorphous passivation in perovskite solar cells. Nano-Micro Lett. 18(1), 62 (2025). https://doi.org/10.1007/s40820-025-01913-y
- C. Liu, Y. Yang, H. Chen, I. Spanopoulos, A.S.R. Bati et al., Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature 633(8029), 359–364 (2024). https://doi.org/10.1038/s41586-024-07764-8
- Z. Wan, C. Li, C. Jia, J. Su, Z. Li et al., Suppressing ion migration through dual interface engineering toward efficient and stable perovskite solar modules. ACS Energy Lett. 10(4), 1585–1595 (2025). https://doi.org/10.1021/acsenergylett.5c00074
- X. Tang, C. Yang, Y. Xu, J. Xia, B. Li et al., Enhancing the efficiency and stability of perovskite solar cells via a polymer heterointerface bridge. Nat. Photonics 19(7), 701–708 (2025). https://doi.org/10.1038/s41566-025-01676-3
- X. Wang, Y. Zong, D. Liu, J. Yang, Z. Wei, Advanced optoelectronic devices for neuromorphic analog based on low-dimensional semiconductors. Adv. Funct. Mater. 33(15), 2213894 (2023). https://doi.org/10.1002/adfm.202213894
- N. Ilyas, J. Wang, C. Li, D. Li, H. Fu et al., Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv. Funct. Mater. 32(15), 2110976 (2022). https://doi.org/10.1002/adfm.202110976
- J. Yu, Y. Wang, S. Qin, G. Gao, X. Chong et al., Bioinspired interactive neuromorphic devices. Mater. Today 60, 158–182 (2022). https://doi.org/10.1016/j.mattod.2022.09.012
- S. Hong, S.H. Choi, J. Park, H. Yoo, J.Y. Oh et al., Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1–xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 14(8), 9796–9806 (2020). https://doi.org/10.1021/acsnano.0c01689
- S. Liu, Z. Wu, Z. He, W. Chen, X. Zhong et al., Low-power perovskite neuromorphic synapse with enhanced photon efficiency for directional motion perception. ACS Appl. Mater. Interfaces 16(17), 22303–22311 (2024). https://doi.org/10.1021/acsami.4c04398
- Q. Xia, J.J. Yang, Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18(4), 309–323 (2019). https://doi.org/10.1038/s41563-019-0291-x
- B.W. Zhang, C.-H. Lin, S. Nirantar, E. Han, Y. Zhang et al., Lead-free perovskites and metal halides for resistive switching memory and artificial synapse. Small Struct. 5(6), 2300524 (2024). https://doi.org/10.1002/sstr.202300524
- J. He, R. Wei, S. Ge, W. Wu, J. Guo et al., Artificial visual-tactile perception array for enhanced memory and neuromorphic computations. InfoMat 6(3), e12493 (2024). https://doi.org/10.1002/inf2.12493
- T. Liu, Z. Yuan, L. Wang, C. Shan, Q. Zhang et al., Chelated tin halide perovskite for near-infrared neuromorphic imaging array enabling object recognition and motion perception. Nat. Commun. 16(1), 4261 (2025). https://doi.org/10.1038/s41467-025-59624-2
- L. Zhang, Y. Wang, X. Meng, J. Zhang, P. Wu et al., The issues on the commercialization of perovskite solar cells. Mater. Futures 3(2), 022101 (2024). https://doi.org/10.1088/2752-5724/ad37cf
- C. Hu, B. Li, X. Wang, C. Liu, D. Sun et al., Recent progress in the patterning of perovskite films for photodetector applications. Light Sci. Appl. 14(1), 355 (2025). https://doi.org/10.1038/s41377-025-01958-z
- J.-W. Lee, S.M. Kang, Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications. Nano-Micro Lett. 15(1), 184 (2023). https://doi.org/10.1007/s40820-023-01154-x
- X. Han, W. Wu, H. Chen, D. Peng, L. Qiu et al., Metal halide perovskite arrays: from construction to optoelectronic applications. Adv. Funct. Mater. 31(3), 2005230 (2021). https://doi.org/10.1002/adfm.202005230
- J. Harwell, J. Burch, A. Fikouras, M.C. Gather, A. Di Falco et al., Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13(4), 3823–3829 (2019). https://doi.org/10.1021/acsnano.8b09592
- Y. Huang, T. Ando, A. Sebastian, M.-F. Chang, J.J. Yang et al., Memristor-based hardware accelerators for artificial intelligence. Nat. Rev. Electr. Eng. 1(5), 286–299 (2024). https://doi.org/10.1038/s44287-024-00037-6
- H. Li, S. Wang, X. Zhang, W. Wang, R. Yang et al., Memristive crossbar arrays for storage and computing applications. Adv. Intell. Syst. 3(9), 2100017 (2021). https://doi.org/10.1002/aisy.202100017
- J. Li, Y. Lei, Z. Wang, H. Meng, W. Zhang et al., High-density artificial synapse array consisting of homogeneous electrolyte-gated transistors. Adv. Sci. 11(3), 2305430 (2024). https://doi.org/10.1002/advs.202305430
- S. Pazos, X. Xu, T. Guo, K. Zhu, H.N. Alshareef et al., Solution-processed memristors: performance and reliability. Nat. Rev. Mater. 9(5), 358–373 (2024). https://doi.org/10.1038/s41578-024-00661-6
- B. Jin, Z. Wang, T. Wang, J. Meng, Memristor-based artificial neural networks for hardware neuromorphic computing. Research 8, 0758 (2025). https://doi.org/10.34133/research.0758
- W. Zhang, P. Yao, B. Gao, Q. Liu, D. Wu et al., Edge learning using a fully integrated neuro-inspired memristor chip. Science 381(6663), 1205–1211 (2023). https://doi.org/10.1126/science.ade3483
- Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1(2), 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2
- P. Lin, Q. Xia, Three-dimensional hybrid circuits: the future of neuromorphic computing hardware. Nano Express 2(3), 031003 (2021). https://doi.org/10.1088/2632-959x/ac280e
- W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu et al., Neuro-inspired computing chips. Nat. Electron. 3(7), 371–382 (2020). https://doi.org/10.1038/s41928-020-0435-7
- D. Kudithipudi, C. Schuman, C.M. Vineyard, T. Pandit, C. Merkel et al., Neuromorphic computing at scale. Nature 637(8047), 801–812 (2025). https://doi.org/10.1038/s41586-024-08253-8
References
Z. Long, Y. Zhou, Y. Ding, X. Qiu, S. Poddar et al., Biomimetic optoelectronics with nanomaterials for artificial vision. Nat. Rev. Mater. 10(2), 128–146 (2025). https://doi.org/10.1038/s41578-024-00750-6
H. Wang, T. Fu, Y. Du, W. Gao, K. Huang et al., Scientific discovery in the age of artificial intelligence. Nature 620(7972), 47–60 (2023). https://doi.org/10.1038/s41586-023-06221-2
J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen et al., A survey on distributed machine learning. ACM Comput. Surv. 53(2), 1–33 (2021). https://doi.org/10.1145/3377454
B.J. Shastri, A.N. Tait, T. de Ferreira Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15(2), 102–114 (2021). https://doi.org/10.1038/s41566-020-00754-y
M.S. Lundstrom, M.A. Alam, Moore’s law: the journey ahead. Science 378(6621), 722–723 (2022). https://doi.org/10.1126/science.ade2191
J.B. Aimone, S. Agarwal, Overcoming the noise in neural computing. Science 383(6685), 832–833 (2024). https://doi.org/10.1126/science.adn8545
R. Yu, Z. Wang, Q. Liu, B. Gao, Z. Hao et al., A full-stack memristor-based computation-in-memory system with software-hardware co-development. Nat. Commun. 16(1), 2123 (2025). https://doi.org/10.1038/s41467-025-57183-0
Z. Huang, Y. Li, Y. Zhang, J. Chen, J. He et al., 2D multifunctional devices: from material preparation to device fabrication and neuromorphic applications. Int. J. Extrem. Manuf. 6(3), 032003 (2024). https://doi.org/10.1088/2631-7990/ad2e13
L. Hu, J. Shao, J. Wang, P. Cheng, L. Zhang et al., In situ cryptography in a neuromorphic vision sensor based on light-driven memristors. Appl. Phys. Rev. 11, 011411 (2024). https://doi.org/10.1063/5.0185502
S. Choi, J. Yang, G. Wang, Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 32(51), e2004659 (2020). https://doi.org/10.1002/adma.202004659
A. Bag, G. Ghosh, M.J. Sultan, H.H. Chouhdry, S.J. Hong et al., Bio-inspired sensory receptors for artificial-intelligence perception. Adv. Mater. 37(26), 2403150 (2025). https://doi.org/10.1002/adma.202403150
M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
X. Mou, J. Tang, Y. Lyu, Q. Zhang, S. Yang et al., Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning. Sci. Adv. 7(29), eabh0648 (2021). https://doi.org/10.1126/sciadv.abh0648
S.W. Cho, C. Jo, Y.-H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14(1), 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
G. Ding, H. Li, J. Zhao, K. Zhou, Y. Zhai et al., Nanomaterials for flexible neuromorphics. Chem. Rev. 124(22), 12738–12843 (2024). https://doi.org/10.1021/acs.chemrev.4c00369
R. Peng, Y. Wu, B. Wang, R. Shi, L. Xu et al., Programmable graded doping for reconfigurable molybdenum ditelluride devices. Nat. Electron. 6(11), 852–861 (2023). https://doi.org/10.1038/s41928-023-01056-1
H. Jiang, X. Zhang, K. Chen, X. He, Y. Liu et al., Two-dimensional czochralski growth of single-crystal MoS2. Nat. Mater. 24(2), 188–196 (2025). https://doi.org/10.1038/s41563-024-02069-7
J. Yang, L. Hu, L. Shen, J. Wang, P. Cheng et al., Optically driven intelligent computing with ZnO memristor. Fundam. Res. 4(1), 158–166 (2024). https://doi.org/10.1016/j.fmre.2022.06.019
L. Hu, J. Yang, J. Wang, P. Cheng, L.O. Chua et al., All-optically controlled memristor for optoelectronic neuromorphic computing. Adv. Funct. Mater. 31(4), 2005582 (2021). https://doi.org/10.1002/adfm.202005582
J.W. Lee, J. Han, B. Kang, Y.J. Hong, S. Lee et al., Strategic development of memristors for neuromorphic systems: low-power and reconfigurable operation. Adv. Mater. 37(19), 2413916 (2025). https://doi.org/10.1002/adma.202413916
H. Chen, Y. Cai, Y. Han, H. Huang, Towards artificial visual sensory system: organic optoelectronic synaptic materials and devices. Angew. Chem. Int. Ed. 63(1), e202313634 (2024). https://doi.org/10.1002/anie.202313634
Q. Zhang, T. Jin, X. Ye, D. Geng, W. Chen et al., Organic field effect transistor-based photonic synapses: materials, devices, and applications. Adv. Funct. Mater. 31(49), 2106151 (2021). https://doi.org/10.1002/adfm.202106151
Z. Wang, L. Lu, J. Meng, T. Wang, Emerging negative photoconductivity effect-based synaptic device for optoelectronic in-sensor computing. Adv. Mater. 37(32), 2504710 (2025). https://doi.org/10.1002/adma.202504710
M. Vasilopoulou, A.R. bin Mohd Yusoff, Y. Chai, M.-A. Kourtis, T. Matsushima et al., Neuromorphic computing based on halide perovskites. Nat. Electron. 6(12), 949–962 (2023). https://doi.org/10.1038/s41928-023-01082-z
A. Liu, H. Zhu, S. Bai, Y. Reo, M. Caironi et al., High-performance metal halide perovskite transistors. Nat. Electron. 6(8), 559–571 (2023). https://doi.org/10.1038/s41928-023-01001-2
H. Si, Z. Zhang, Q. Liao, G. Zhang, Y. Ou et al., A-site management for highly crystalline perovskites. Adv. Mater. 32(4), 1904702 (2020). https://doi.org/10.1002/adma.201904702
L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang et al., Advances in the application of perovskite materials. Nano-Micro Lett. 15(1), 177 (2023). https://doi.org/10.1007/s40820-023-01140-3
Z. Saki, M.M. Byranvand, N. Taghavinia, M. Kedia, M. Saliba, Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy Environ. Sci. 14(11), 5690–5722 (2021). https://doi.org/10.1039/d1ee02018h
H. Si, X. Zhao, Z. Zhang, Q. Liao, Y. Zhang, Low-temperature electron-transporting materials for perovskite solar cells: fundamentals, progress, and outlook. Coord. Chem. Rev. 500, 215502 (2024). https://doi.org/10.1016/j.ccr.2023.215502
K. Beom, Z. Fan, D. Li, N. Newman, Halide perovskite based synaptic devices for neuromorphic systems. Mater. Today Phys. 24, 100667 (2022). https://doi.org/10.1016/j.mtphys.2022.100667
J. Ren, B. Wan, Q. Cheng, R. Geng, X. Zhao et al., Progress on perovskite photodetectors for optical communications. Nanoscale (2026). https://doi.org/10.1039/D5NR03957F
X. Shi, K. Xu, Y. He, Z. Peng, X. Meng et al., Strategies for enhancing energy-level matching in perovskite solar cells: an energy flow perspective. Nano-Micro Lett. 17(1), 313 (2025). https://doi.org/10.1007/s40820-025-01815-z
S. Zhang, H. Si, W. Fan, M. Shi, M. Li et al., Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew. Chem. Int. Ed. 59(28), 11573–11582 (2020). https://doi.org/10.1002/anie.202003502
Y. Zhou, I. Poli, D. Meggiolaro, F. De Angelis, A. Petrozza, Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6(11), 986–1002 (2021). https://doi.org/10.1038/s41578-021-00331-x
H. Wu, H. Si, Z. Zhang, Z. Kang, P. Wu et al., All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 5(12), 1801219 (2018). https://doi.org/10.1002/advs.201801219
H. Rafique, G. Abbas, M.J. Mendes, P. Barquinha, R. Martins et al., Recent advancements and perspectives of low-dimensional halide perovskites for visual perception and optoelectronic applications. Nano-Micro Letters 18(1), 44 (2025). https://doi.org/10.1007/s40820-025-01823-z
F. Li, T. Yang, R. Zheng, Solution-processed perovskite crystals for electronics: moving forward. Matter 5(6), 1700–1733 (2022). https://doi.org/10.1016/j.matt.2022.04.022
Y. Jiang, X. Wang, A. Pan, Properties of excitons and photogenerated charge carriers in metal halide perovskites. Adv. Mater. 31(47), 1806671 (2019). https://doi.org/10.1002/adma.201806671
N. Xu, X. Qi, Z. Shen, L. Hu, J. Lv et al., Point defects in metal halide perovskites. Nat. Rev. Phys. 7(10), 554–564 (2025). https://doi.org/10.1038/s42254-025-00861-1
S.J. Kim, I.H. Im, J.H. Baek, S.H. Park, J.Y. Kim et al., Reliable and robust two-dimensional perovskite memristors for flexible-resistive random-access memory array. ACS Nano 18(41), 28131–28141 (2024). https://doi.org/10.1021/acsnano.4c07673
G. Vats, B. Hodges, A.J. Ferguson, L.M. Wheeler, J.L. Blackburn, Optical memory, switching, and neuromorphic functionality in metal halide perovskite materials and devices. Adv. Mater. 35(37), 2205459 (2023). https://doi.org/10.1002/adma.202205459
H. Si, C. Xu, Y. Ou, G. Zhang, W. Fan et al., Dual-passivation of ionic defects for highly crystalline perovskite. Nano Energy 68, 104320 (2020). https://doi.org/10.1016/j.nanoen.2019.104320
H. Si, S. Zhang, S. Ma, Z. Xiong, A. Kausar et al., Emerging conductive atomic force microscopy for metal halide perovskite materials and solar cells. Adv. Energy Mater. 10(10), 1903922 (2020). https://doi.org/10.1002/aenm.201903922
H. Wang, D.H. Kim, Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46(17), 5204–5236 (2017). https://doi.org/10.1039/c6cs00896h
H. Si, Q. Liao, Z. Kang, Y. Ou, J. Meng et al., Deciphering the NH4PbI3 intermediate phase for simultaneous improvement on nucleation and crystal growth of perovskite. Adv. Funct. Mater. 27(30), 1701804 (2017). https://doi.org/10.1002/adfm.201701804
W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend et al., Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2(3), 16099 (2017). https://doi.org/10.1038/natrevmats.2016.99
J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2(7), 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42
T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic: inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016). https://doi.org/10.1038/natrevmats.2015.7
Z. Xiao, J. Huang, Energy-efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater. 2(7), 1600100 (2016). https://doi.org/10.1002/aelm.201600100
J. Gong, H. Wei, Y. Ni, S. Zhang, Y. Du et al., Methylammonium halide-doped perovskite artificial synapse for light-assisted environmental perception and learning. Mater. Today Phys. 21, 100540 (2021). https://doi.org/10.1016/j.mtphys.2021.100540
C. Kagan, D. Mitzi, C. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286(5441), 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
H. Zhu, A. Liu, K.I. Shim, H. Jung, T. Zou et al., High-performance hysteresis-free perovskite transistors through anion engineering. Nat. Commun. 13, 1741 (2022). https://doi.org/10.1038/s41467-022-29434-x
H. Zhu, W. Yang, Y. Reo, G. Zheng, S. Bai et al., Tin perovskite transistors and complementary circuits based on A-site cation engineering. Nat. Electron. 6(9), 650–657 (2023). https://doi.org/10.1038/s41928-023-01019-6
J. Ma, M. Qin, P. Li, L. Han, Y. Zhang et al., Crystallization kinetics modulation and defect suppression of all-inorganic CsPbX3 perovskite films. Energy Environ. Sci. 15(2), 413–438 (2022). https://doi.org/10.1039/D1EE03192A
W. Xiang, S. Liu, W. Tress, A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ. Sci. 14(4), 2090–2113 (2021). https://doi.org/10.1039/D1EE00157D
S. Zhang, C. Xu, W. Fan, H. Sun, F. Cheng et al., Sp-hybridized carbon enabled crystal lattice manipulation, pushing the limit of fill factor in β-CsPbI3 perovskite solar cells. Matter 7(9), 3205–3220 (2024). https://doi.org/10.1016/j.matt.2024.06.047
S. Sun, M. Lu, X. Gao, Z. Shi, X. Bai et al., 0D perovskites: unique properties, synthesis, and their applications. Adv. Sci. 8(24), 2102689 (2021). https://doi.org/10.1002/advs.202102689
J. Sun, X. Zhao, H. Si, F. Gao, B. Zhao et al., Defect passivation and energy level modulation of CsPbBr2I QDs for high-detectivity and stable photodetectors. Adv. Opt. Mater. 11(10), 2202877 (2023). https://doi.org/10.1002/adom.202202877
Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
H. Wang, B. Sun, S.S. Ge, J. Su, M.L. Jin, On non-von Neumann flexible neuromorphic vision sensors. NPJ Flex. Electron. 8, 28 (2024). https://doi.org/10.1038/s41528-024-00313-3
Q. Shi, D. Liu, D. Hao, J. Zhang, L. Tian et al., Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy 87, 106197 (2021). https://doi.org/10.1016/j.nanoen.2021.106197
R. Wang, P. Chen, D. Hao, J. Zhang, Q. Shi et al., Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces 13(36), 43144–43154 (2021). https://doi.org/10.1021/acsami.1c08424
H. Ye, Z. Liu, H. Han, T. Shi, G. Liao, Lead-free AgBiI4 perovskite artificial synapses for a tactile sensory neuron system with information preprocessing function. Mater. Adv. 3(19), 7248–7256 (2022). https://doi.org/10.1039/D2MA00675H
S. Mao, M. Cui, S. Jiang, P. Zhao, J. Lao et al., Dual-modal artificial synapse based on a lead-free halide Cu2AgBiI6 for image processing and information encryption. Chem. Eng. J. 472, 145086 (2023). https://doi.org/10.1016/j.cej.2023.145086
D. Hao, Z. Yang, J. Huang, F. Shan, Recent developments of optoelectronic synaptic devices based on metal halide perovskites. Adv. Funct. Mater. 33(8), 2211467 (2023). https://doi.org/10.1002/adfm.202211467
L. Hu, X. Zhuge, J. Wang, X. Wei, L. Zhang et al., Emerging optoelectronic devices for brain-inspired computing. Adv. Electron. Mater. 11(3), 2400482 (2025). https://doi.org/10.1002/aelm.202400482
T. Zhang, C. Fan, L. Hu, F. Zhuge, X. Pan et al., A reconfigurable all-optical-controlled synaptic device for neuromorphic computing applications. ACS Nano 18(25), 16236–16247 (2024). https://doi.org/10.1021/acsnano.4c02278
Z. Xue, Y. Xu, C. Jin, Y. Liang, Z. Cai et al., Halide perovskite photoelectric artificial synapses: materials, devices, and applications. Nanoscale 15(10), 4653–4668 (2023). https://doi.org/10.1039/D2NR06403K
B. Li, F. Xia, B. Du, S. Zhang, L. Xu et al., 2D halide perovskites for high-performance resistive switching memory and artificial synapse applications. Adv. Sci. 11(23), 2310263 (2024). https://doi.org/10.1002/advs.202310263
J.-M. Yang, E.-S. Choi, S.-Y. Kim, J.-H. Kim, J.-H. Park et al., Perovskite-related (CH3NH3)3Sb2Br9 for forming-free memristor and low-energy-consuming neuromorphic computing. Nanoscale 11(13), 6453–6461 (2019). https://doi.org/10.1039/c8nr09918a
S.K. Vishwanath, B. Febriansyah, S.E. Ng, T. Das, J. Acharya et al., High-performance one-dimensional halide perovskite crossbar memristors and synapses for neuromorphic computing. Mater. Horiz. 11(11), 2643–2656 (2024). https://doi.org/10.1039/d3mh02055j
R.A. John, N. Yantara, Y.F. Ng, G. Narasimman, E. Mosconi et al., Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Adv. Mater. 30(51), e1805454 (2018). https://doi.org/10.1002/adma.201805454
S.J. Kim, I.H. Im, J.H. Baek, S. Choi, S.H. Park et al., Linearly programmable two-dimensional halide perovskite memristor arrays for neuromorphic computing. Nat. Nanotechnol. 20(1), 83–92 (2025). https://doi.org/10.1038/s41565-024-01790-3
S. Liu, J. Zeng, Q. Chen, G. Liu, Recent advances in halide perovskite memristors: from materials to applications. Front. Phys. 19(2), 23501 (2024). https://doi.org/10.1007/s11467-023-1344-9
S.G. Kim, Q. Van Le, J.S. Han, H. Kim, M.-J. Choi et al., Dual-phase all-inorganic cesium halide perovskites for conducting-bridge memory-based artificial synapses. Adv. Funct. Mater. 29(49), 1906686 (2019). https://doi.org/10.1002/adfm.201906686
A. Siddik, P.K. Haldar, T. Paul, U. Das, A. Barman et al., Nonvolatile resistive switching and synaptic characteristics of lead-free all-inorganic perovskite-based flexible memristive devices for neuromorphic systems. Nanoscale 13(19), 8864–8874 (2021). https://doi.org/10.1039/d0nr08214g
B. Ku, B. Koo, A.S. Sokolov, M.J. Ko, C. Choi, Two-terminal artificial synapse with hybrid organic–inorganic perovskite (CH3NH3)PbI3 and low operating power energy (∼47 fJ/μm2). J. Alloys Compd. 833, 155064 (2020). https://doi.org/10.1016/j.jallcom.2020.155064
L. Hao, S. Cai, Progress in in situ TEM investigations of halide perovskites. Microstructures 5(1), 2025012 (2025). https://doi.org/10.20517/microstructures.2024.10
Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan et al., Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012). https://doi.org/10.1038/ncomms1737
J.-Y. Chen, C.-L. Hsin, C.-W. Huang, C.-H. Chiu, Y.-T. Huang et al., Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13(8), 3671–3677 (2013). https://doi.org/10.1021/nl4015638
T. Fujii, M. Arita, Y. Takahashi, I. Fujiwara, In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching. Appl. Phys. Lett. 98(21), 212104 (2011). https://doi.org/10.1063/1.3593494
Y. Yang, R. Huang, Probing memristive switching in nanoionic devices. Nat. Electron. 1(5), 274–287 (2018). https://doi.org/10.1038/s41928-018-0069-1
T. Chai, C. Xu, Y. Wang, L. Zheng, K. Hu et al., Lead-free perovskite based self-rectifying memristor with self-organizing heterojunction for energy-efficient image information sensing, processing, and protection. Adv. Funct. Mater. e22022 (2025). https://doi.org/10.1002/adfm.202522022
S. Panchanan, S. Dutta, G. Dastgeer, R. Jaafreh, K. Hamad et al., Mixed-dimensional Cu-based perovskites for stable and energy-efficient neuromorphic memristors. Adv. Funct. Mater. e20665 (2025). https://doi.org/10.1002/adfm.202520665
L. Guo, H. Sun, L. Min, M. Wang, F. Cao et al., Two-terminal perovskite optoelectronic synapse for rapid trained neuromorphic computation with high accuracy. Adv. Mater. 36(27), 2402253 (2024). https://doi.org/10.1002/adma.202402253
J. Choi, J.S. Han, K. Hong, S.Y. Kim, H.W. Jang, Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 30(42), 1704002 (2018). https://doi.org/10.1002/adma.201704002
W. Xu, H. Cho, Y.-H. Kim, Y.-T. Kim, C. Wolf et al., Organometal halide perovskite artificial synapses. Adv. Mater. 28(28), 5916–5922 (2016). https://doi.org/10.1002/adma.201506363
H. Yu, J. Gong, H. Wei, W. Huang, W. Xu, Mixed-halide perovskite for ultrasensitive two-terminal artificial synaptic devices. Mater. Chem. Front. 3(5), 941–947 (2019). https://doi.org/10.1039/c9qm00061e
J.-Y. Mao, Z. Zheng, Z.-Y. Xiong, P. Huang, G.-L. Ding et al., Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy 71, 104616 (2020). https://doi.org/10.1016/j.nanoen.2020.104616
J. Gong, H. Yu, X. Zhou, H. Wei, M. Ma et al., Lateral artificial synapses on hybrid perovskite platelets with modulated neuroplasticity. Adv. Funct. Mater. 30(46), 2005413 (2020). https://doi.org/10.1002/adfm.202005413
X. Yang, Z. Xiong, Y. Chen, Y. Ren, L. Zhou et al., A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy 78, 105246 (2020). https://doi.org/10.1016/j.nanoen.2020.105246
S. Paramanik, A. Maiti, S. Chatterjee, A.J. Pal, Large resistive switching and artificial synaptic behaviors in layered Cs3Sb2I9 lead-free perovskite memory devices. Adv. Electron. Mater. 8(1), 2100237 (2022). https://doi.org/10.1002/aelm.202100237
J. Lao, W. Xu, C. Jiang, N. Zhong, B. Tian et al., An air-stable artificial synapse based on a lead-free double perovskite Cs2AgBiBr6 film for neuromorphic computing. J. Mater. Chem. C 9(17), 5706–5712 (2021). https://doi.org/10.1039/d1tc00655j
K. Ju, B. Hyun, L. Eun, I. Hyuk, J. Kim et al., Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing. Nano Lett. 22(14), 6010–6017 (2022). https://doi.org/10.1021/acs.nanolett.2c01272
J. Liu, J. Gong, H. Wei, Y. Li, H. Wu et al., A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation. Nat. Commun. 13(1), 7427 (2022). https://doi.org/10.1038/s41467-022-35092-w
S.-U. Lee, S.-Y. Kim, J.-H. Lee, J.H. Baek, J.-W. Lee et al., Artificial synapse based on a δ-FAPbI3/atomic-layer-deposited SnO2 bilayer memristor. Nano Lett. 4c00253 (2024). https://doi.org/10.1021/acs.nanolett.4c00253
S.-I. Kim, Y. Lee, M.-H. Park, G.-T. Go, Y.-H. Kim et al., Dimensionality dependent plasticity in halide perovskite artificial synapses for neuromorphic computing. Adv. Electron. Mater. 5(9), 1900008 (2019). https://doi.org/10.1002/aelm.201900008
H. Tian, L. Zhao, X. Wang, Y.-W. Yeh, N. Yao et al., Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11(12), 12247–12256 (2017). https://doi.org/10.1021/acsnano.7b05726
S.J. Kim, T.H. Lee, J.-M. Yang, J.W. Yang, Y.J. Lee et al., Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 52, 19–30 (2022). https://doi.org/10.1016/j.mattod.2021.10.035
F. Luo, Y. Wu, J. Tong, G. Qin, X. Zhang, Two-dimensional Cs3Bi2I6Cl3 perovskite for resistive switching behaviors and artificial synaptic simulation. J. Alloys Compd. 938, 168498 (2023). https://doi.org/10.1016/j.jallcom.2022.168498
Y. Wang, Y. Zha, C. Bao, F. Hu, Y. Di et al., Monolithic 2D perovskites enabled artificial photonic synapses for neuromorphic vision sensors. Adv. Mater. 36(18), 2311524 (2024). https://doi.org/10.1002/adma.202311524
M. Huang, S. Zhang, P. Zhou, Z. Chen, H. Lian et al., Heterogeneous interface engineering enabling homogeneous metal halide perovskite nanowires for artificial synapses. Mater. Today Nano 25, 100449 (2024). https://doi.org/10.1016/j.mtnano.2023.100449
Y.R. Park, G. Wang, Learning-effective mixed-dimensional halide perovskite QD synaptic array for self-rectifying and luminous artificial neural networks. Adv. Funct. Mater. 34(3), 2307971 (2024). https://doi.org/10.1002/adfm.202307971
W. Li, Y. Ren, T. Duan, H. Tang, H. Li et al., Vacancy-ordered double-perovskite-based memristors for image processing and pattern recognition. Matter 8(1), 101888 (2025). https://doi.org/10.1016/j.matt.2024.10.006
L.-W. Chen, W.-C. Wang, S.-H. Ko, C.-Y. Chen, C.-T. Hsu et al., Highly uniform all-vacuum-deposited inorganic perovskite artificial synapses for reservoir computing. Adv. Intell. Syst. 3(1), 2170010 (2021). https://doi.org/10.1002/aisy.202170010
F. Zeng, Y. Guo, W. Hu, Y. Tan, X. Zhang et al., Opportunity of the lead-free all-inorganic Cs3Cu2I5 perovskite film for memristor and neuromorphic computing applications. ACS Appl. Mater. Interfaces 12(20), 23094–23101 (2020). https://doi.org/10.1021/acsami.0c03106
P.-T. Lai, C.-Y. Chen, H.-C. Lin, B.-Y. Chuang, K.-H. Kuo et al., Harnessing 2D ruddlesden–popper perovskite with polar organic cation for ultrasensitive multibit nonvolatile transistor-type photomemristors. ACS Nano 17(24), 25552–25564 (2023). https://doi.org/10.1021/acsnano.3c09595
Z. Guo, J. Zhang, X. Liu, L. Wang, L. Xiong et al., Optoelectronic synapses and photodetectors based on organic semiconductor/halide perovskite heterojunctions: materials, devices, and applications. Adv. Funct. Mater. 33(46), 2305508 (2023). https://doi.org/10.1002/adfm.202305508
J.-Y. Chen, D.-L. Yang, F.-C. Jhuang, Y.-H. Fang, J.-S. Benas et al., Ultrafast responsive and low-energy-consumption poly(3-hexylthiophene)/perovskite quantum dots composite film-based photonic synapse. Adv. Funct. Mater. 31(47), 2105911 (2021). https://doi.org/10.1002/adfm.202105911
W.-C. Chen, Y.-C. Lin, C.-C. Hung, L.-C. Hsu, Y.-S. Wu et al., Stretchable photosynaptic transistor with an ultralow energy consumption conferred using conjugated block copolymers/perovskite quantum dots nanocomposites. Mater. Today 70, 57–70 (2023). https://doi.org/10.1016/j.mattod.2023.10.010
C. Wang, Y. Bian, K. Liu, M. Qin, F. Zhang et al., Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors. Nat. Commun. 15, 3123 (2024). https://doi.org/10.1038/s41467-024-47532-w
J. Zhu, T. Zhang, Y. Yang, R. Huang, A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7, 011312 (2020). https://doi.org/10.1063/1.5118217
L. Qian, Y. Sun, M. Wu, C. Li, D. Xie et al., A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale 10(15), 6837–6843 (2018). https://doi.org/10.1039/c8nr00914g
Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun et al., Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater. 29(28), 1902538 (2019). https://doi.org/10.1002/adfm.201902538
X. Niu, B. Tian, Q. Zhu, B. Dkhil, C. Duan, Ferroelectric polymers for neuromorphic computing. Appl. Phys. Rev. 9(2), 021309 (2022). https://doi.org/10.1063/5.0073085
B. Jeong, P. Gkoupidenis, K. Asadi, Solution-processed perovskite field-effect transistor artificial synapses. Adv. Mater. 33(52), 2104034 (2021). https://doi.org/10.1002/adma.202104034
S. Han, T. Ma, H. Li, J. Wu, R. Liu et al., Photoferroelectric perovskite synapses for neuromorphic computing. Adv. Funct. Mater. 34(3), 2309910 (2024). https://doi.org/10.1002/adfm.202309910
K. Lee, H. Han, Y. Kim, J. Park, S. Jang et al., Retina-inspired structurally tunable synaptic perovskite nanocones. Adv. Funct. Mater. 31(52), 2105596 (2021). https://doi.org/10.1002/adfm.202105596
W. He, Y. Fang, H. Yang, X. Wu, L. He et al., A multi-input light-stimulated synaptic transistor for complex neuromorphic computing. J. Mater. Chem. C 7(40), 12523–12531 (2019). https://doi.org/10.1039/c9tc03898a
X. Wu, E. Li, Y. Liu, W. Lin, R. Yu et al., Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy 85, 106000 (2021). https://doi.org/10.1016/j.nanoen.2021.106000
C. Han, X. Han, J. Han, M. He, S. Peng et al., Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application (adv. funct. mater. 22/2022). Adv. Funct. Mater. 32(22), 2270129 (2022). https://doi.org/10.1002/adfm.202270129
Y. Li, J. Wang, Q. Yang, G. Shen, Flexible artificial optoelectronic synapse based on lead-free metal halide nanocrystals for neuromorphic computing and color recognition. Adv. Sci. 9(22), 2202123 (2022). https://doi.org/10.1002/advs.202202123
G. Chen, G. Peng, X. Yu, W. Yu, Y. Hao et al., Multifunctional memory-synaptic hybrid optoelectronic transistors for neuromorphic computing. IEEE Trans. Electron Devices 69(7), 3997–4001 (2022). https://doi.org/10.1109/TED.2022.3173246
H. Shao, Y. Li, W. Yang, X. He, L. Wang et al., A reconfigurable optoelectronic synaptic transistor with stable Zr-CsPbI3 nanocrystals for visuomorphic computing (adv. mater. 12/2023). Adv. Mater. 35(12), 2370084 (2023). https://doi.org/10.1002/adma.202370084
M. Li, Z. Xiong, S. Shao, L. Shao, S.-T. Han et al., Multimodal optoelectronic neuromorphic electronics based on lead-free perovskite-mixed carbon nanotubes. Carbon 176, 592–601 (2021). https://doi.org/10.1016/j.carbon.2021.02.046
L. Yin, W. Huang, R. Xiao, W. Peng, Y. Zhu et al., Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett. 20(5), 3378–3387 (2020). https://doi.org/10.1021/acs.nanolett.0c00298
F. Huang, F. Fang, Y. Zheng, Q. You, H. Li et al., Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res. 16(1), 1304–1312 (2023). https://doi.org/10.1007/s12274-022-4806-4
Q. Liu, L. Yin, C. Zhao, J. Wang, Z. Wu et al., Hybrid mixed-dimensional perovskite/metal-oxide heterojunction for all-in-one opto-electric artificial synapse and retinal-neuromorphic system. Nano Energy 102, 107686 (2022). https://doi.org/10.1016/j.nanoen.2022.107686
Y. Park, M.-K. Kim, J.-S. Lee, 2D layered metal-halide perovskite/oxide semiconductor-based broadband optoelectronic synaptic transistors with long-term visual memory. J. Mater. Chem. C 9(4), 1429–1436 (2021). https://doi.org/10.1016/j.nanoen.2022.107686
X. Huang, Q. Li, W. Shi, K. Liu, Y. Zhang et al., Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system. Small 17(36), 2102820 (2021). https://doi.org/10.1002/smll.202102820
X. Zhang, C. Wang, Q. Sun, J. Wu, Y. Dai et al., Inorganic halide perovskite nanowires/conjugated polymer heterojunction-based optoelectronic synaptic transistors for dynamic machine vision. Nano Lett. 24(14), 4132–4140 (2024). https://doi.org/10.1021/acs.nanolett.3c05092
Q. Liu, Q. Wei, H. Ren, L. Zhou, Y. Zhou et al., Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat. Commun. 14(1), 7179 (2023). https://doi.org/10.1038/s41467-023-43034-3
K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu et al., Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15(11), 1900010 (2019). https://doi.org/10.1002/smll.201900010
Y. Cheng, H. Li, B. Liu, L. Jiang, M. Liu et al., Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical Pavlovian conditioning and neural coding dynamics. Small 16(45), 2005217 (2020). https://doi.org/10.1002/smll.202005217
D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 12(35), 39487–39495 (2020). https://doi.org/10.1021/acsami.0c10851
Y. Cheng, K. Shan, Y. Xu, J. Yang, J. He et al., Hardware implementation of photoelectrically modulated dendritic arithmetic and spike-timing-dependent plasticity enabled by an ion-coupling gate-tunable vertical 0D-perovskite/2D-MoS2 hybrid-dimensional van der Waals heterostructure. Nanoscale 12(42), 21798–21811 (2020). https://doi.org/10.1039/d0nr04950f
B. Pradhan, S. Das, J. Li, F. Chowdhury, J. Cherusseri et al., Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv. 6(7), eaay5225 (2020). https://doi.org/10.1126/sciadv.aay5225
S. Subramanian Periyal, M. Jagadeeswararao, S.E. Ng, R.A. John, N. Mathews, Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv. Mater. Technol. 5(11), 2000514 (2020). https://doi.org/10.1002/admt.202000514
J. Liu, Z. Yang, Z. Gong, Z. Shen, Y. Ye et al., Weak light-stimulated synaptic hybrid phototransistors based on islandlike perovskite films prepared by spin coating. ACS Appl. Mater. Interfaces 13(11), 13362–13371 (2021). https://doi.org/10.1021/acsami.0c22604
H. Duan, L. Liang, Z. Wu, H. Zhang, L. Huang et al., IGZO/CsPbBr3-nanops/IGZO neuromorphic phototransistors and their optoelectronic coupling applications. ACS Appl. Mater. Interfaces 13(25), 30165–30173 (2021). https://doi.org/10.1021/acsami.1c05396
J. Hao, Y.-H. Kim, S.N. Habisreutinger, S.P. Harvey, E.M. Miller et al., Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci. Adv. 7(18), eabf1959 (2021). https://doi.org/10.1126/sciadv.abf1959
E. Ercan, Y.-C. Lin, W.-C. Yang, W.-C. Chen, Self-assembled nanostructures of quantum dot/conjugated polymer hybrids for photonic synaptic transistors with ultralow energy consumption and zero-gate bias. Adv. Funct. Mater. 32(6), 2107925 (2022). https://doi.org/10.1002/adfm.202107925
Q.-B. Zhu, B. Li, D.-D. Yang, C. Liu, S. Feng et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021). https://doi.org/10.1038/s41467-021-22047-w
T. Chen, X. Wang, D. Hao, S. Dai, Q. Ou et al., Photonic synapses with ultra-low energy consumption based on vertical organic field-effect transistors. Adv. Opt. Mater. 9(8), 2002030 (2021). https://doi.org/10.1002/adom.202002030
Z. Xin, Y. Tan, T. Chen, E. Iranmanesh, L. Li et al., Visible-light-stimulated synaptic InGaZnO phototransistors enabled by wavelength-tunable perovskite quantum dots. Nanoscale Adv. 3(17), 5046–5052 (2021). https://doi.org/10.1039/d1na00410g
J. Li, Z. Shen, Y. Cao, X. Tu, C. Zhao et al., Artificial synapses enabled neuromorphic computing: from blueprints to reality. Nano Energy 103, 107744 (2022). https://doi.org/10.1016/j.nanoen.2022.107744
J. Kuang, K. Liu, M. Liu, M. Shao, M. Zhu et al., Interface defects tuning in polymer-perovskite phototransistors for visual synapse and adaptation functions. Adv. Funct. Mater. 33(5), 2209502 (2023). https://doi.org/10.1002/adfm.202209502
Y. Wu, S. Dai, X. Liu, P. Guo, J. Zhang et al., Optical microlithography of perovskite quantum dots/organic semiconductor heterojunctions for neuromorphic photosensors. Adv. Funct. Mater. 34(23), 2315175 (2024). https://doi.org/10.1002/adfm.202315175
H. Zhu, S. Teale, M.N. Lintangpradipto, S. Mahesh, B. Chen et al., Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8(9), 569–586 (2023). https://doi.org/10.1038/s41578-023-00582-w
J.A. Christians, P.A. Miranda Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137(4), 1530–1538 (2015). https://doi.org/10.1021/ja511132a
J.-Y. Ma, H.-J. Yan, M.-H. Li, J.-K. Sun, Y.-X. Chen et al., Microscopic investigations on the surface-state dependent moisture stability of a hybrid perovskite. Nanoscale 12(14), 7759–7765 (2020). https://doi.org/10.1039/c9nr10137c
F. Du, X. Liu, J. Liao, D. Yu, N. Zhang et al., Improving the stability of halide perovskites for photo-, electro-, photoelectro-chemical applications. Adv. Funct. Mater. 34(12), 2312175 (2024). https://doi.org/10.1002/adfm.202312175
J.A. Steele, H. Jin, I. Dovgaliuk, R.F. Berger, T. Braeckevelt et al., Thermal unequilibrium of strained black CsPbI3 thin films. Science 365(6454), 679–684 (2019). https://doi.org/10.1126/science.aax3878
L. Ma, D. Guo, M. Li, C. Wang, Z. Zhou et al., Temperature-dependent thermal decomposition pathway of organic–inorganic halide perovskite materials. Chem. Mater. 31(20), 8515–8522 (2019). https://doi.org/10.1021/acs.chemmater.9b03190
B. Zhao, S.-F. Jin, S. Huang, N. Liu, J.-Y. Ma et al., Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics. J. Am. Chem. Soc. 140(37), 11716–11725 (2018). https://doi.org/10.1021/jacs.8b06050
W. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J. Fan et al., Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 9(2), 490–498 (2016). https://doi.org/10.1039/C5EE03522H
Z. Wang, Z. Zhang, L. Xie, S. Wang, C. Yang et al., Recent advances and perspectives of photostability for halide perovskite solar cells. Adv. Opt. Mater. 10(3), 2101822 (2022). https://doi.org/10.1002/adom.202101822
E.J. Juarez-Perez, L.K. Ono, M. Maeda, Y. Jiang, Z. Hawash et al., Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 6(20), 9604–9612 (2018). https://doi.org/10.1039/C8TA03501F
T. Leijtens, E.T. Hoke, G. Grancini, D.J. Slotcavage, G.E. Eperon et al., Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5(20), 1500962 (2015). https://doi.org/10.1002/aenm.201500962
H. Kim, Halide perovskite memristor crossbar arrays for low voltage in memory computing. Adv. Mater. Interfaces 12(22), e00729 (2025). https://doi.org/10.1002/admi.202500729
C.-H. Lin, L. Hu, X. Guan, J. Kim, C.-Y. Huang et al., Electrode engineering in halide perovskite electronics: plenty of room at the interfaces. Adv. Mater. 34(18), 2108616 (2022). https://doi.org/10.1002/adma.202108616
J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
H. Lee, T. Moon, Y. Lee, J. Kim, Structural mechanisms of quasi-2D perovskites for next-generation photovoltaics. Nano-Micro Lett. 17(1), 139 (2025). https://doi.org/10.1007/s40820-024-01609-9
M.T. Klug, A. Osherov, A.A. Haghighirad, S.D. Stranks, P.R. Brown et al., Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10(1), 236–246 (2017). https://doi.org/10.1039/C6EE03201J
M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3(8), 648–654 (2018). https://doi.org/10.1038/s41560-018-0192-2
H. Zhu, F. Zhang, Y. Xiao, S. Wang, X. Li, Suppressing defects through thiadiazole derivatives that modulate CH3NH3PbI3 crystal growth for highly stable perovskite solar cells under dark conditions. J. Mater. Chem. A 6(12), 4971–4980 (2018). https://doi.org/10.1039/c8ta00769a
E. Choi, J.-W. Lee, M. Anaya, A. Mirabelli, H. Shim et al., Synergetic effect of aluminum oxide and organic halide salts on two-dimensional perovskite layer formation and stability enhancement of perovskite solar cells. Adv. Energy Mater. 13(39), 2301717 (2023). https://doi.org/10.1002/aenm.202301717
H. Wang, L. Yang, W. Lv, M. Gan, Z. Zhang et al., High-efficiency perovskite solar cells with oriented growth and consolidated ABX3 structures via multifunctional ionic liquids at buried interfaces. ACS Appl. Mater. Interfaces 17(13), 19754–19761 (2025). https://doi.org/10.1021/acsami.5c01012
Q. Zhang, Q. Zhao, H. Wang, Y. Yao, L. Li et al., Tuning isomerism effect in organic bulk additives enables efficient and stable perovskite solar cells. Nano-Micro Lett. 17(1), 107 (2025). https://doi.org/10.1007/s40820-024-01613-z
X. Zheng, S. Ahmed, Y. Zhang, G. Xu, J. Wang et al., Differentiating the 2D passivation from amorphous passivation in perovskite solar cells. Nano-Micro Lett. 18(1), 62 (2025). https://doi.org/10.1007/s40820-025-01913-y
C. Liu, Y. Yang, H. Chen, I. Spanopoulos, A.S.R. Bati et al., Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature 633(8029), 359–364 (2024). https://doi.org/10.1038/s41586-024-07764-8
Z. Wan, C. Li, C. Jia, J. Su, Z. Li et al., Suppressing ion migration through dual interface engineering toward efficient and stable perovskite solar modules. ACS Energy Lett. 10(4), 1585–1595 (2025). https://doi.org/10.1021/acsenergylett.5c00074
X. Tang, C. Yang, Y. Xu, J. Xia, B. Li et al., Enhancing the efficiency and stability of perovskite solar cells via a polymer heterointerface bridge. Nat. Photonics 19(7), 701–708 (2025). https://doi.org/10.1038/s41566-025-01676-3
X. Wang, Y. Zong, D. Liu, J. Yang, Z. Wei, Advanced optoelectronic devices for neuromorphic analog based on low-dimensional semiconductors. Adv. Funct. Mater. 33(15), 2213894 (2023). https://doi.org/10.1002/adfm.202213894
N. Ilyas, J. Wang, C. Li, D. Li, H. Fu et al., Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv. Funct. Mater. 32(15), 2110976 (2022). https://doi.org/10.1002/adfm.202110976
J. Yu, Y. Wang, S. Qin, G. Gao, X. Chong et al., Bioinspired interactive neuromorphic devices. Mater. Today 60, 158–182 (2022). https://doi.org/10.1016/j.mattod.2022.09.012
S. Hong, S.H. Choi, J. Park, H. Yoo, J.Y. Oh et al., Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1–xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 14(8), 9796–9806 (2020). https://doi.org/10.1021/acsnano.0c01689
S. Liu, Z. Wu, Z. He, W. Chen, X. Zhong et al., Low-power perovskite neuromorphic synapse with enhanced photon efficiency for directional motion perception. ACS Appl. Mater. Interfaces 16(17), 22303–22311 (2024). https://doi.org/10.1021/acsami.4c04398
Q. Xia, J.J. Yang, Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18(4), 309–323 (2019). https://doi.org/10.1038/s41563-019-0291-x
B.W. Zhang, C.-H. Lin, S. Nirantar, E. Han, Y. Zhang et al., Lead-free perovskites and metal halides for resistive switching memory and artificial synapse. Small Struct. 5(6), 2300524 (2024). https://doi.org/10.1002/sstr.202300524
J. He, R. Wei, S. Ge, W. Wu, J. Guo et al., Artificial visual-tactile perception array for enhanced memory and neuromorphic computations. InfoMat 6(3), e12493 (2024). https://doi.org/10.1002/inf2.12493
T. Liu, Z. Yuan, L. Wang, C. Shan, Q. Zhang et al., Chelated tin halide perovskite for near-infrared neuromorphic imaging array enabling object recognition and motion perception. Nat. Commun. 16(1), 4261 (2025). https://doi.org/10.1038/s41467-025-59624-2
L. Zhang, Y. Wang, X. Meng, J. Zhang, P. Wu et al., The issues on the commercialization of perovskite solar cells. Mater. Futures 3(2), 022101 (2024). https://doi.org/10.1088/2752-5724/ad37cf
C. Hu, B. Li, X. Wang, C. Liu, D. Sun et al., Recent progress in the patterning of perovskite films for photodetector applications. Light Sci. Appl. 14(1), 355 (2025). https://doi.org/10.1038/s41377-025-01958-z
J.-W. Lee, S.M. Kang, Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications. Nano-Micro Lett. 15(1), 184 (2023). https://doi.org/10.1007/s40820-023-01154-x
X. Han, W. Wu, H. Chen, D. Peng, L. Qiu et al., Metal halide perovskite arrays: from construction to optoelectronic applications. Adv. Funct. Mater. 31(3), 2005230 (2021). https://doi.org/10.1002/adfm.202005230
J. Harwell, J. Burch, A. Fikouras, M.C. Gather, A. Di Falco et al., Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13(4), 3823–3829 (2019). https://doi.org/10.1021/acsnano.8b09592
Y. Huang, T. Ando, A. Sebastian, M.-F. Chang, J.J. Yang et al., Memristor-based hardware accelerators for artificial intelligence. Nat. Rev. Electr. Eng. 1(5), 286–299 (2024). https://doi.org/10.1038/s44287-024-00037-6
H. Li, S. Wang, X. Zhang, W. Wang, R. Yang et al., Memristive crossbar arrays for storage and computing applications. Adv. Intell. Syst. 3(9), 2100017 (2021). https://doi.org/10.1002/aisy.202100017
J. Li, Y. Lei, Z. Wang, H. Meng, W. Zhang et al., High-density artificial synapse array consisting of homogeneous electrolyte-gated transistors. Adv. Sci. 11(3), 2305430 (2024). https://doi.org/10.1002/advs.202305430
S. Pazos, X. Xu, T. Guo, K. Zhu, H.N. Alshareef et al., Solution-processed memristors: performance and reliability. Nat. Rev. Mater. 9(5), 358–373 (2024). https://doi.org/10.1038/s41578-024-00661-6
B. Jin, Z. Wang, T. Wang, J. Meng, Memristor-based artificial neural networks for hardware neuromorphic computing. Research 8, 0758 (2025). https://doi.org/10.34133/research.0758
W. Zhang, P. Yao, B. Gao, Q. Liu, D. Wu et al., Edge learning using a fully integrated neuro-inspired memristor chip. Science 381(6663), 1205–1211 (2023). https://doi.org/10.1126/science.ade3483
Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1(2), 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2
P. Lin, Q. Xia, Three-dimensional hybrid circuits: the future of neuromorphic computing hardware. Nano Express 2(3), 031003 (2021). https://doi.org/10.1088/2632-959x/ac280e
W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu et al., Neuro-inspired computing chips. Nat. Electron. 3(7), 371–382 (2020). https://doi.org/10.1038/s41928-020-0435-7
D. Kudithipudi, C. Schuman, C.M. Vineyard, T. Pandit, C. Merkel et al., Neuromorphic computing at scale. Nature 637(8047), 801–812 (2025). https://doi.org/10.1038/s41586-024-08253-8