Ultrathin, Lightweight, and Flexible CNT Buckypaper Enhanced Using MXenes for Electromagnetic Interference Shielding
Corresponding Author: Hui Mei
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 66
Abstract
Lightweight, flexibility, and low thickness are urgent requirements for next-generation high-performance electromagnetic interference (EMI) shielding materials for catering to the demand for smart and wearable electronic devices. Although several efforts have focused on constructing porous and flexible conductive films or aerogels, few studies have achieved a balance in terms of density, thickness, flexibility, and EMI shielding effectiveness (SE). Herein, an ultrathin, lightweight, and flexible carbon nanotube (CNT) buckypaper enhanced using MXenes (Ti3C2Tx) for high-performance EMI shielding is synthesized through a facile electrophoretic deposition process. The obtained Ti3C2Tx@CNT hybrid buckypaper exhibits an outstanding EMI SE of 60.5 dB in the X-band at 100 μm. The hybrid buckypaper with an MXene content of 49.4 wt% exhibits an EMI SE of 50.4 dB in the X-band with a thickness of only 15 μm, which is 105% higher than that of pristine CNT buckypaper. Furthermore, an average specific SE value of 5.7 × 104 dB cm2 g−1 is exhibited in the 5-μm hybrid buckypaper. Thus, this assembly process proves promising for the construction of ultrathin, flexible, and high-performance EMI shielding films for application in electronic devices and wireless communications.
Highlights:
1 Ultrathin, lightweight, and flexible carbon nanotube buckypaper enhanced using MXenes (Ti3C2Tx) for high-performance electromagnetic interference shielding is synthesized through facile electrophoretic deposition.
2 The obtained Ti3C2Tx@CNT hybrid buckypaper demonstrates outstanding EMI shielding effectiveness of 60.5 dB in the X-band at 100 μm and a specific SE value of 5.7 × 104 dB cm2 g−1 at 5 μm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- M. Hu, C. Cui, C. Shi, Z.S. Wu, J. Yang et al., High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano 13, 6899 (2019). https://doi.org/10.1021/acsnano.9b01762
- Y. Chen, H.B. Zhang, Y. Yang, M. Wang, A. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26, 447–455 (2016). https://doi.org/10.1002/adfm.201503782
- P. Hu, J. Lyu, C. Fu, W.B. Gong, J. Liao et al., Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14, 688–697 (2020). https://doi.org/10.1021/acsnano.9b07459
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13, 201701388 (2017). https://doi.org/10.1002/smll.201701388
- Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9, 9059–9069 (2017). https://doi.org/10.1021/acsami.7b01017
- C. Weng, G. Wang, Z. Dai, Y. Pei, L. Liu et al., Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 11, 22804–22812 (2019). https://doi.org/10.1039/c9nr07988b
- P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.K. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11, 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
- J. Liu, Y. Liu, H.B. Zhang, Y. Dai, Z. Liu et al., Superelastic and multifunctional graphene based aerogels by interfacial reinforcement with graphitized carbon at high temperatures. Carbon 132, 95–103 (2018). https://doi.org/10.1016/j.carbon.2018.02.026
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 201701583 (2017). https://doi.org/10.1002/adma.201701583
- D. Lu, Z. Mo, B. Liang, L. Yang, Z. He et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018). https://doi.org/10.1016/j.carbon.2018.03.061
- Y. Zhan, J. Wang, K. Zhang, Y. Li, Y. Meng et al., Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085
- S. Wu, M. Zou, Z. Li, D. Chen, H. Zhang et al., Robust and stable Cu nanowire@graphene core–shell aerogels for ultraeffective electromagnetic interference shielding. Small 14, 201800634 (2018). https://doi.org/10.1002/smll.201800634
- J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9, 44609 (2017). https://doi.org/10.1021/acsami.7b14626
- M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 201906769 (2020). https://doi.org/10.1002/adma.201906769
- H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide mxene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30, 201906996 (2020). https://doi.org/10.1002/adfm.201906996
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan et al., Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6, 201802040 (2019). https://doi.org/10.1002/admi.201802040
- Y.J. Wan, X.M. Li, P.L. Zhu, R. Sun, C.P. Wong et al., Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A 130, 105764 (2020). https://doi.org/10.1016/j.compositesa.2020.105764
- X. Jin, J. Wang, L. Dai, X. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/mxene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx(MXene). Science 369, 446 (2020). https://doi.org/10.1126/science.aba7977
- J. Lipton, G.M. Weng, J.A. Rӧhr, H. Wang, A.D. Taylor, Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale. Matter 2, 1148–1165 (2020). https://doi.org/10.1016/j.matt.2020.03.012
- X. Zang, J. Wang, Y. Qin, T. Wang, C. He et al., Enhancing capacitance performance of MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 12, 77 (2020). https://doi.org/10.1007/s40820-020-0415-5
- F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11, 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
- Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30, 201907451 (2020). https://doi.org/10.1002/adfm.201907451
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7, 202000979 (2020). https://doi.org/10.1002/advs.202000979
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- J. Liu, Z. Liu, H.B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6, 201901094 (2020). https://doi.org/10.1002/aelm.201901094
- G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28, 201803360 (2018). https://doi.org/10.1002/adfm.201803360
- B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12, 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- A.G. Cano-Márquez, F.J. Rodríguez-Macías, J. Campos-Delgado, C.G. Espinosa-González, F. Tristán-López et al., Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9, 1527–1533 (2009). https://doi.org/10.1021/nl803585s
- J. Lim, U.N. Maiti, N.Y. Kim, R. Narayan, W.J. Lee et al., Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures. Nat. Commun. 7, 10364 (2016). https://doi.org/10.1038/ncomms10364
- S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
- T. Schultz, N.C. Frey, K. Hantanasirisakul, S. Park, S.J. May et al., Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater. 31, 6590–6597 (2019). https://doi.org/10.1021/acs.chemmater.9b00414
- C. Cui, C. Xiang, L. Geng, X. Lai, R. Guo et al., Flexible and ultrathin electrospun regenerate cellulose nano fibers and D-Ti3C2Tx ( MXene ) composite film for electromagnetic interference shielding. J. Alloys Compd. 788, 1246–1255 (2019). https://doi.org/10.1016/j.jallcom.2019.02.294
- B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei et al., Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154–160 (2016). https://doi.org/10.1016/j.carbon.2016.02.040
- Y.J. Tan, J. Li, J.H. Cai, X.H. Tang, J.H. Liu et al., Comparative study on solid and hollow glass microspheres for enhanced electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites. Compos. Part B 177, 107378 (2019). https://doi.org/10.1016/j.compositesb.2019.107378
- M. Li, L. Jia, X. Zhang, D. Yan, Q. Zhang et al., Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. J. Colloid Interface Sci. 530, 113–119 (2018). https://doi.org/10.1016/j.jcis.2018.06.052
- X. Shui, D.D.L. Chung, Nickel filament polymer–matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 26, 928–934 (1997). https://doi.org/10.1007/s11664-997-0276-4
- J. Ma, K. Wang, M. Zhan, A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv. 5, 65283–65296 (2015). https://doi.org/10.1039/c5ra09507g
- E. Zhou, J. Xi, Y. Liu, Z. Xu, Y. Guo et al., Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding. Nanoscale 9, 18613–18618 (2017). https://doi.org/10.1039/c7nr07030f
- H. Li, X. Lu, D. Yuan, J. Sun, F. Erden et al., Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. J. Mater. Chem. C 5, 8694–8698 (2017). https://doi.org/10.1039/c7tc02394d
References
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
M. Hu, C. Cui, C. Shi, Z.S. Wu, J. Yang et al., High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano 13, 6899 (2019). https://doi.org/10.1021/acsnano.9b01762
Y. Chen, H.B. Zhang, Y. Yang, M. Wang, A. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26, 447–455 (2016). https://doi.org/10.1002/adfm.201503782
P. Hu, J. Lyu, C. Fu, W.B. Gong, J. Liao et al., Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14, 688–697 (2020). https://doi.org/10.1021/acsnano.9b07459
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13, 201701388 (2017). https://doi.org/10.1002/smll.201701388
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9, 9059–9069 (2017). https://doi.org/10.1021/acsami.7b01017
C. Weng, G. Wang, Z. Dai, Y. Pei, L. Liu et al., Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 11, 22804–22812 (2019). https://doi.org/10.1039/c9nr07988b
P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.K. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11, 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
J. Liu, Y. Liu, H.B. Zhang, Y. Dai, Z. Liu et al., Superelastic and multifunctional graphene based aerogels by interfacial reinforcement with graphitized carbon at high temperatures. Carbon 132, 95–103 (2018). https://doi.org/10.1016/j.carbon.2018.02.026
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 201701583 (2017). https://doi.org/10.1002/adma.201701583
D. Lu, Z. Mo, B. Liang, L. Yang, Z. He et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018). https://doi.org/10.1016/j.carbon.2018.03.061
Y. Zhan, J. Wang, K. Zhang, Y. Li, Y. Meng et al., Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085
S. Wu, M. Zou, Z. Li, D. Chen, H. Zhang et al., Robust and stable Cu nanowire@graphene core–shell aerogels for ultraeffective electromagnetic interference shielding. Small 14, 201800634 (2018). https://doi.org/10.1002/smll.201800634
J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9, 44609 (2017). https://doi.org/10.1021/acsami.7b14626
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 201906769 (2020). https://doi.org/10.1002/adma.201906769
H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide mxene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30, 201906996 (2020). https://doi.org/10.1002/adfm.201906996
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan et al., Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6, 201802040 (2019). https://doi.org/10.1002/admi.201802040
Y.J. Wan, X.M. Li, P.L. Zhu, R. Sun, C.P. Wong et al., Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A 130, 105764 (2020). https://doi.org/10.1016/j.compositesa.2020.105764
X. Jin, J. Wang, L. Dai, X. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/mxene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx(MXene). Science 369, 446 (2020). https://doi.org/10.1126/science.aba7977
J. Lipton, G.M. Weng, J.A. Rӧhr, H. Wang, A.D. Taylor, Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale. Matter 2, 1148–1165 (2020). https://doi.org/10.1016/j.matt.2020.03.012
X. Zang, J. Wang, Y. Qin, T. Wang, C. He et al., Enhancing capacitance performance of MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 12, 77 (2020). https://doi.org/10.1007/s40820-020-0415-5
F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11, 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30, 201907451 (2020). https://doi.org/10.1002/adfm.201907451
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7, 202000979 (2020). https://doi.org/10.1002/advs.202000979
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
J. Liu, Z. Liu, H.B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6, 201901094 (2020). https://doi.org/10.1002/aelm.201901094
G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28, 201803360 (2018). https://doi.org/10.1002/adfm.201803360
B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12, 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
A.G. Cano-Márquez, F.J. Rodríguez-Macías, J. Campos-Delgado, C.G. Espinosa-González, F. Tristán-López et al., Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9, 1527–1533 (2009). https://doi.org/10.1021/nl803585s
J. Lim, U.N. Maiti, N.Y. Kim, R. Narayan, W.J. Lee et al., Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures. Nat. Commun. 7, 10364 (2016). https://doi.org/10.1038/ncomms10364
S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
T. Schultz, N.C. Frey, K. Hantanasirisakul, S. Park, S.J. May et al., Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater. 31, 6590–6597 (2019). https://doi.org/10.1021/acs.chemmater.9b00414
C. Cui, C. Xiang, L. Geng, X. Lai, R. Guo et al., Flexible and ultrathin electrospun regenerate cellulose nano fibers and D-Ti3C2Tx ( MXene ) composite film for electromagnetic interference shielding. J. Alloys Compd. 788, 1246–1255 (2019). https://doi.org/10.1016/j.jallcom.2019.02.294
B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei et al., Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154–160 (2016). https://doi.org/10.1016/j.carbon.2016.02.040
Y.J. Tan, J. Li, J.H. Cai, X.H. Tang, J.H. Liu et al., Comparative study on solid and hollow glass microspheres for enhanced electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites. Compos. Part B 177, 107378 (2019). https://doi.org/10.1016/j.compositesb.2019.107378
M. Li, L. Jia, X. Zhang, D. Yan, Q. Zhang et al., Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. J. Colloid Interface Sci. 530, 113–119 (2018). https://doi.org/10.1016/j.jcis.2018.06.052
X. Shui, D.D.L. Chung, Nickel filament polymer–matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 26, 928–934 (1997). https://doi.org/10.1007/s11664-997-0276-4
J. Ma, K. Wang, M. Zhan, A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv. 5, 65283–65296 (2015). https://doi.org/10.1039/c5ra09507g
E. Zhou, J. Xi, Y. Liu, Z. Xu, Y. Guo et al., Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding. Nanoscale 9, 18613–18618 (2017). https://doi.org/10.1039/c7nr07030f
H. Li, X. Lu, D. Yuan, J. Sun, F. Erden et al., Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. J. Mater. Chem. C 5, 8694–8698 (2017). https://doi.org/10.1039/c7tc02394d