Human Machine Interface with Wearable Electronics Using Biodegradable Triboelectric Films for Calligraphy Practice and Correction
Corresponding Author: Zhong Lin Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 225
Abstract
Letter handwriting, especially stroke correction, is of great importance for recording languages and expressing and exchanging ideas for individual behavior and the public. In this study, a biodegradable and conductive carboxymethyl chitosan-silk fibroin (CSF) film is prepared to design wearable triboelectric nanogenerator (denoted as CSF-TENG), which outputs of Voc ≈ 165 V, Isc ≈ 1.4 μA, and Qsc ≈ 72 mW cm−2. Further, in vitro biodegradation of CSF film is performed through trypsin and lysozyme. The results show that trypsin and lysozyme have stable and favorable biodegradation properties, removing 63.1% of CSF film after degrading for 11 days. Further, the CSF-TENG-based human–machine interface (HMI) is designed to promptly track writing steps and access the accuracy of letters, resulting in a straightforward communication media of human and machine. The CSF-TENG-based HMI can automatically recognize and correct three representative letters (F, H, and K), which is benefited by HMI system for data processing and analysis. The CSF-TENG-based HMI can make decisions for the next stroke, highlighting the stroke in advance by replacing it with red, which can be a candidate for calligraphy practice and correction. Finally, various demonstrations are done in real-time to achieve virtual and real-world controls including writing, vehicle movements, and healthcare.
Highlights:
1 A wearable triboelectric nanogenerator (denoted as CSF-TENG) is designed using biodegradable and carboxymethyl chitosan-silk fibroin (CSF) film.
2 In vitro biodegradation of CSF film is performed through trypsin and lysozyme. 63.1% of CSF film is removed by trypsin and lysozyme after degrading for 11 days.
3 An intuitive writing system is designed by CSF-TENGs-based human-machine interface to promptly track writing steps, highlight the stroke in advance, and access the accuracy of letters.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhu, X. Liu, Q. Shi, T. Zhongda, S. Xinge et al., Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 11(1), 7 (2019). https://doi.org/10.3390/mi11010007
- Y. Ra, M. La, S. Cho, S.J. Park, D. Choi, Scalable batch fabrication of flexible, transparent and self-triggered tactile sensor array based on triboelectric effect. Int. J. Precis. Eng. Manuf. Green Tech. 8, 519–531 (2020). https://doi.org/10.1007/s40684-020-00267-7
- D. Doganay, M.O. Cicek, M.B. Durukan, B. Altuntas, E. Agbahca et al., Fabric based wearable triboelectric nanogenerators for human machine interface. Nano Energy 89, 106412 (2021). https://doi.org/10.1016/j.nanoen.2021.106412
- Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu et al., Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat 2(6), 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
- S. Lee, Q. Shi, C. Lee, From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater. 7(3), 031302 (2019). https://doi.org/10.1063/1.5063498
- R. Wu, L. Ma, S. Liu, A. Patil, C. Hou et al., Fibrous inductance strain sensors for passive inductance textile sensing. Mater. Today Phys. 15, 100243 (2020). https://doi.org/10.1063/1.5063498
- C. Ning, R. Cheng, Y. Jiang, F. Sheng, J. Yi et al., Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano 16(2), 2811–2821 (2022). https://doi.org/10.1021/acsnano.1c09792
- S. Han, J. Kim, S.M. Won, Y. Ma, D. Kang et al., Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Trans. Med. 10(435), eaan4950 (2018). https://doi.org/10.1126/scitranslmed.aan4950
- L. Zu, D. Liu, J. Shao, Y. Liu, S. Shu et al., A self-powered early warning glove with integrated elastic-arched triboelectric nanogenerator and flexible printed circuit for real-time safety protection. Adv. Mater. Technol. 5(7), 2100787 (2022). https://doi.org/10.1002/admt.202100787
- L. Ma, R. Wu, H. Miao, X. Fan, L. Kong et al., All-in-one fibrous capacitive humidity sensor for human breath monitoring. Text. Res. J. 91(3–4), 398–405 (2021). https://doi.org/10.1177/0040517520944495
- R. Yin, D. Wang, S. Zhao, Z. Lou, G. Shen, Wearable sensors-enabled human–machine interaction systems: from design to application. Adv. Funct. Mater. 31(11), 2008936 (2021). https://doi.org/10.1002/adfm.202008936
- T. He, H. Wang, J. Wang, X. Tian, F. We et al., Self-sustainable wearable textile nano-energy nano-system (NENS) for next-generation healthcare applications. Adv. Sci. 6(24), 1901437 (2019). https://doi.org/10.1002/advs.201901437
- M. Zhu, T. He, C. Lee, Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl. Phys. Rev. 7(3), 031305 (2020). https://doi.org/10.1063/5.0016485
- M. Zhu, Z. Yi, B. Yang, C. Lee, Making use of nanoenergy from human–nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 36, 101016 (2021). https://doi.org/10.1016/j.nantod.2020.101016
- K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
- F. Wen, Z. Zhang, T. He, C. Lee, AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 12, 5378 (2021). https://doi.org/10.1038/s41467-021-25637-w
- Y. Lu, H. Tian, J. Cheng, F. Zhu, B. Liu et al., Decoding lip language using triboelectric sensors with deep learning. Nat. Commun. 13, 1401 (2022). https://doi.org/10.1038/s41467-022-29083-0
- X. Qu, X. Ma, B. Shi, H. Li, L. Zheng et al., Refreshable braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv. Funct. Mater. 31(5), 2006612 (2020). https://doi.org/10.1002/adfm.202006612
- Z. Zhang, T. He, M. Zhu, Z. Sun, Q. Shi et al., Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. NPJ Flex. Electron. 4, 29 (2020). https://doi.org/10.1038/s41528-020-00092-7
- Q.F. Shi, Z.D. Sun, Z.X. Zhang, C. Lee, Triboelectric nanogenerators and hybridized systems for enabling next-generation IoT applications. Research 2021, 6849171 (2021). https://doi.org/10.34133/2021/6849171
- T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11, 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
- Q. Shi, Z. Zhang, T. He, Z. Sun, B. Wang et al., Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 11, 4609 (2020). https://doi.org/10.1038/s41467-020-18471-z
- X. Guo, T. He, Z. Zhang, A. Luo, C. Lee, Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 15(12), 19054–19069 (2021). https://doi.org/10.1021/acsnano.1c04464
- J. Meng, Z.H. Guo, C.X. Pan, L.Y. Wang, C.Y. Chang et al., Flexible textile direct-current generator based on the tribovoltaic effect at dynamic metal-semiconducting polymer interfaces. ACS Energy Lett. 6(7), 2442–2450 (2021). https://doi.org/10.1021/acsenergylett.1c00288
- B. Chen, W. Tang, Z.L. Wang, Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Mater. Today 1(50), 224–238 (2021). https://doi.org/10.1016/j.mattod.2021.05.017
- S.S. Rautaray, A. Agrawal, Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intel. Rev. 43, 1–54 (2015). https://doi.org/10.1007/s10462-012-9356-9
- H. Wang, X. Ma, Y. Hao, Electronic devices for human-machine interfaces. Adv. Mater. Interfaces 4(4), 1600709 (2017). https://doi.org/10.1002/admi.201600709
- F.A. Hassani, Q. Shi, F. Wen, T. He, A. Haroun et al., Smart materials for smart healthcare–moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater. Med. 1, 92–124 (2020). https://doi.org/10.1016/j.smaim.2020.07.005
- Y. Chen, Z. Gao, F. Zhang, Z. Wen, X. Sun, Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2(1), 20210112 (2022). https://doi.org/10.1002/exp.20210112
- M. Zhu, Z. Yi, B. Yang, C. Lee, Making use of nanoenergy from human - nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 36, 101016 (2021). https://doi.org/10.1016/j.nantod.2020.101016
- A. Haroun, X.H. Le, S. Gao, B.W. Dong, T.Y.Y. He et al., Progress in micro/nano sensors and nanoenergy for future aiot-based smart home applications. Nano Express 2(2), 33 (2021). https://doi.org/10.1088/2632-959X/abf3d4
- Z. Sun, M. Zhu, C. Lee, Progress in the triboelectric human–machine interfaces (HMIs)-moving from smart gloves to AI/haptic enabled HMI in the 5G/IoT era. Nanoenergy Adv. 1(1), 81–120 (2021). https://doi.org/10.3390/nanoenergyadv1010005
- Z. Sun, M. Zhu, Z. Zhang, Z. Chen, Q. Shi et al., Artificial intelligence of things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv. Sci. 8(14), 2100230 (2021). https://doi.org/10.1002/advs.202100230
- F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7(14), 2000261 (2020). https://doi.org/10.1002/advs.202000261
- Z. Bai, Y. Xu, C. Lee, J. Guo, Autonomously adhesive, stretchable, and transparent solid-state polyionic triboelectric patch for wearable power source and tactile sensor. Adv. Funct. Mater. 31(37), 2104365 (2021). https://doi.org/10.1002/adfm.202104365
- Y. Zhang, X. Gao, Y. Wu, J. Gui, S. Guo et al., Self-powered technology based on nanogenerators for biomedical applications. Exploration 1(1), 90–114 (2021). https://doi.org/10.1002/EXP.20210152
- Y. Lai, H. Wu, H. Lin, C. Chang, H. Chou et al., Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201904626
- X. Hou, J. Zhu, J. Qian, X. Niu, J. He et al., Stretchable triboelectric textile composed of wavy conductive-cloth-pet and patterned stretchable electrode for harvesting multi-variant human motion energy. ACS Appl. Mater. Interfaces 10(50), 43661–43668 (2018). https://doi.org/10.1021/acsami.8b16267
- P. Xiong, M. Liu, X. Chen, J. Sun, L.W. Zhong, Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017). https://doi.org/10.1126/sciadv.1700015
- Z. Hui, M. Xiao, D. Shen, J. Feng, P. Peng et al., A self-powered nanogenerator for the electrical protection of integrated circuits from trace amounts of liquid. Nano-Micro Lett. 12, 5 (2020). https://doi.org/10.1007/s40820-019-0338-1
- F. Xu, S. Dong, G. Liu, C. Pan, Z.L. Wang, Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy 88, 106247 (2021). https://doi.org/10.1016/j.nanoen.2021.106247
- Y. Zhu, S. Lin, W. Gao, M. Zhang, Z.L. Wang, Effects of oxygen vacancies and cation valence states on the triboelectric property of substoichiometric oxide films. ACS Appl. Mater. Interfaces 13(30), 35795–35803 (2021). https://doi.org/10.1021/acsami.1c09248
- T. He, X. Guo, C. Lee, Flourishing energy harvesters for future body sensor network: from single to multiple energy sources. IScience 24(1), 101934 (2021). https://doi.org/10.1016/j.isci.2020.101934
- X. Guo, L. Liu, Z. Zhang, S. Gao, T. He et al., Technology evolution from micro-scale energy harvesters to nanogenerators. J. Micromech. Microeng. 31(9), 093002 (2021). https://doi.org/10.1088/1361-6439/ac168e
- X.S. Zhang, M. Han, B. Kim, J.F. Bao, J. Brugger et al., All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47, 410–426 (2018). https://doi.org/10.1016/j.nanoen.2018.02.046
- F. He, X. You, H. Gong, Y. Yang, M. Ye, Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12(5), 6442–6450 (2020). https://doi.org/10.1021/acsami.9b19721
- Y. Ra, J. Choi, M. La, Development of a highly transparent and flexible touch sensor based on triboelectric effect. Funct. Compos. Struct. 1(4), 045001 (2019). https://doi.org/10.1088/2631-6331/ab47ba
- S. Fu, W. He, H. Wu, C. Shan, Y. Du et al., High output performance and ultra-durable dc output for triboelectric nanogenerator inspired by primary cell. Nano-Micro Lett. 14, 155 (2022). https://doi.org/10.1007/s40820-022-00898-2
- S. Shen, J. Yi, R. Cheng, L. Ma, F. Sheng et al., Electromagnetic shielding triboelectric yarns for human–machine interacting. Adv. Electron. Mater. 8(2), 2101130 (2022). https://doi.org/10.1002/aelm.202101130
- S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric–catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13, 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
- Z.H. Guo, Y.C. Jiao, H.L. Wang, C. Zhang, F. Liang et al., Self-powered electrowetting valve for instantaneous and simultaneous actuation of paper-based microfluidic assays. Adv. Funct. Mater. 29(15), 1808974 (2019). https://doi.org/10.1002/adfm.201808974
- V. Slabov, S. Kopyl, M.P.S. Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectric energy harvesting. Nano-Micro Lett. 12, 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
- Q.J. Sun, Y. Lei, X.H. Zhao, J. Han, V. Roy, Scalable fabrication of hierarchically structured graphite/polydimethylsiloxane composite films for large-area triboelectric nanogenerators and self-powered tactile sensing. Nano Energy 80, 105521 (2021). https://doi.org/10.1016/j.nanoen.2020.105521
- Y.W. Cai, X.N. Zhang, G.G. Wang, G.Z. Li, Y. Yang, A flexible ultra-sensitive triboelectric tactile sensor of wrinkled pdms/mxene composite films for e-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
- K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park et al., Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 10, 2158 (2019). https://doi.org/10.1038/s-41467-019-10061-y
- Y. Yang, S.Z. Yu, H. Zhang, L. Ying, S. Lee et al., A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv. Mater. 25(45), 6594–6601 (2013). https://doi.org/10.1002/adma.201302453
- Q. Zhang, T. Jin, G. Cai, L. Xu, T. He et al., Wearable triboelectric sensors enabled gait analysis and waist motion capture for iot-based smart healthcare applications. Adv. Sci. 9(4), 2103694 (2021). https://doi.org/10.1002/advs.202103694
- M. Zhu, Z. Sun, T. Chen, C. Lee, Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nat. Commun. 12, 2692 (2021). https://doi.org/10.1038/s41467-021-23020-3
- C. Li, D. Liu, C. Xu, Z. Wang, Z.L. Wang, Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat. Commun. 12, 2950 (2021). https://doi.org/10.1038/s41467-021-23207-8
- M. Zhang, J. Li, L. Kang, N. Zhang, C. Huang et al., Machine learning-guided design and development of multifunctional flexible Ag/poly (amic acid) composites using the differential evolution algorithm. Nanoscale 12(6), 3988–3996 (2020). https://doi.org/10.1039/C9NR09146G
- L. Ji, K. Zhao, X. Zhao, F. Lu, T. Li, Triboelectric nanogenerator based smart electronics via machine learning. Adv. Mater. Technol. 5(2), 1900921 (2020). https://doi.org/10.1002/admt.201900921
- R. Cao, X. Pu, X. Du, W. Yang, J. Wang et al., Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction. ACS Nano 12(6), 5190–5196 (2018). https://doi.org/10.1021/acsnano.8b0247
- Y. Tong, Z. Feng, J. Kim, J.L. Robertson, B.N. Johnson, 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 75, 104973 (2020). https://doi.org/10.1016/j.nanoen.2020.104973
- W. Zhang, L. Deng, L. Yang, P. Yang, D. Diao et al., Multilanguage-handwriting self-powered recognition based on triboelectric nanogenerator enabled machine learning. Nano Energy 77, 105174 (2020). https://doi.org/10.1016/j.nanoen.2020.105174
- Q. Lian, X.F. Zheng, T.F. Hu, Preparation and adsorption properties of magnetic CoFe2O4–chitosan composite microspheres. Russ. J. Phys. Chem. 89(11), 2132–2136 (2015). https://doi.org/10.1134/s0036024415110096
- N. Stefan, F.M. Miroiu, G. Socol, Degradable silk fibroin—poly (sebacic acid) diacetoxy terminated, (SF-PSADT) polymeric composite coatings for biodegradable medical applications deposited by laser technology—sciencedirect. Prog. Org. Coat. 134, 11–21 (2019). https://doi.org/10.1016/j.porgcoat.2019.04.075
- A. As, C. Pskb, D. Dvnv, A. Sj, A. Sk et al., A review on catalytic-enzyme degradation of toxic environmental pollutants: microbial enzymes. J. Hazard. Mater. 419, 126451 (2021). https://doi.org/10.1016/j.jhazmat.2021.126451
- Q. Cai, G. Shi, J. Bei, S. Wang, Enzymatic degradation behavior and mechanism of poly(lactide-co-glycolide) foams by trypsin. Biomaterials 24(4), 629–638 (2003). https://doi.org/10.1016/S0142-9612(02)00377-0
References
J. Zhu, X. Liu, Q. Shi, T. Zhongda, S. Xinge et al., Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 11(1), 7 (2019). https://doi.org/10.3390/mi11010007
Y. Ra, M. La, S. Cho, S.J. Park, D. Choi, Scalable batch fabrication of flexible, transparent and self-triggered tactile sensor array based on triboelectric effect. Int. J. Precis. Eng. Manuf. Green Tech. 8, 519–531 (2020). https://doi.org/10.1007/s40684-020-00267-7
D. Doganay, M.O. Cicek, M.B. Durukan, B. Altuntas, E. Agbahca et al., Fabric based wearable triboelectric nanogenerators for human machine interface. Nano Energy 89, 106412 (2021). https://doi.org/10.1016/j.nanoen.2021.106412
Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu et al., Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat 2(6), 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
S. Lee, Q. Shi, C. Lee, From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater. 7(3), 031302 (2019). https://doi.org/10.1063/1.5063498
R. Wu, L. Ma, S. Liu, A. Patil, C. Hou et al., Fibrous inductance strain sensors for passive inductance textile sensing. Mater. Today Phys. 15, 100243 (2020). https://doi.org/10.1063/1.5063498
C. Ning, R. Cheng, Y. Jiang, F. Sheng, J. Yi et al., Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano 16(2), 2811–2821 (2022). https://doi.org/10.1021/acsnano.1c09792
S. Han, J. Kim, S.M. Won, Y. Ma, D. Kang et al., Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Trans. Med. 10(435), eaan4950 (2018). https://doi.org/10.1126/scitranslmed.aan4950
L. Zu, D. Liu, J. Shao, Y. Liu, S. Shu et al., A self-powered early warning glove with integrated elastic-arched triboelectric nanogenerator and flexible printed circuit for real-time safety protection. Adv. Mater. Technol. 5(7), 2100787 (2022). https://doi.org/10.1002/admt.202100787
L. Ma, R. Wu, H. Miao, X. Fan, L. Kong et al., All-in-one fibrous capacitive humidity sensor for human breath monitoring. Text. Res. J. 91(3–4), 398–405 (2021). https://doi.org/10.1177/0040517520944495
R. Yin, D. Wang, S. Zhao, Z. Lou, G. Shen, Wearable sensors-enabled human–machine interaction systems: from design to application. Adv. Funct. Mater. 31(11), 2008936 (2021). https://doi.org/10.1002/adfm.202008936
T. He, H. Wang, J. Wang, X. Tian, F. We et al., Self-sustainable wearable textile nano-energy nano-system (NENS) for next-generation healthcare applications. Adv. Sci. 6(24), 1901437 (2019). https://doi.org/10.1002/advs.201901437
M. Zhu, T. He, C. Lee, Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl. Phys. Rev. 7(3), 031305 (2020). https://doi.org/10.1063/5.0016485
M. Zhu, Z. Yi, B. Yang, C. Lee, Making use of nanoenergy from human–nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 36, 101016 (2021). https://doi.org/10.1016/j.nantod.2020.101016
K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
F. Wen, Z. Zhang, T. He, C. Lee, AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 12, 5378 (2021). https://doi.org/10.1038/s41467-021-25637-w
Y. Lu, H. Tian, J. Cheng, F. Zhu, B. Liu et al., Decoding lip language using triboelectric sensors with deep learning. Nat. Commun. 13, 1401 (2022). https://doi.org/10.1038/s41467-022-29083-0
X. Qu, X. Ma, B. Shi, H. Li, L. Zheng et al., Refreshable braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv. Funct. Mater. 31(5), 2006612 (2020). https://doi.org/10.1002/adfm.202006612
Z. Zhang, T. He, M. Zhu, Z. Sun, Q. Shi et al., Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. NPJ Flex. Electron. 4, 29 (2020). https://doi.org/10.1038/s41528-020-00092-7
Q.F. Shi, Z.D. Sun, Z.X. Zhang, C. Lee, Triboelectric nanogenerators and hybridized systems for enabling next-generation IoT applications. Research 2021, 6849171 (2021). https://doi.org/10.34133/2021/6849171
T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11, 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
Q. Shi, Z. Zhang, T. He, Z. Sun, B. Wang et al., Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 11, 4609 (2020). https://doi.org/10.1038/s41467-020-18471-z
X. Guo, T. He, Z. Zhang, A. Luo, C. Lee, Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 15(12), 19054–19069 (2021). https://doi.org/10.1021/acsnano.1c04464
J. Meng, Z.H. Guo, C.X. Pan, L.Y. Wang, C.Y. Chang et al., Flexible textile direct-current generator based on the tribovoltaic effect at dynamic metal-semiconducting polymer interfaces. ACS Energy Lett. 6(7), 2442–2450 (2021). https://doi.org/10.1021/acsenergylett.1c00288
B. Chen, W. Tang, Z.L. Wang, Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Mater. Today 1(50), 224–238 (2021). https://doi.org/10.1016/j.mattod.2021.05.017
S.S. Rautaray, A. Agrawal, Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intel. Rev. 43, 1–54 (2015). https://doi.org/10.1007/s10462-012-9356-9
H. Wang, X. Ma, Y. Hao, Electronic devices for human-machine interfaces. Adv. Mater. Interfaces 4(4), 1600709 (2017). https://doi.org/10.1002/admi.201600709
F.A. Hassani, Q. Shi, F. Wen, T. He, A. Haroun et al., Smart materials for smart healthcare–moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater. Med. 1, 92–124 (2020). https://doi.org/10.1016/j.smaim.2020.07.005
Y. Chen, Z. Gao, F. Zhang, Z. Wen, X. Sun, Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2(1), 20210112 (2022). https://doi.org/10.1002/exp.20210112
M. Zhu, Z. Yi, B. Yang, C. Lee, Making use of nanoenergy from human - nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 36, 101016 (2021). https://doi.org/10.1016/j.nantod.2020.101016
A. Haroun, X.H. Le, S. Gao, B.W. Dong, T.Y.Y. He et al., Progress in micro/nano sensors and nanoenergy for future aiot-based smart home applications. Nano Express 2(2), 33 (2021). https://doi.org/10.1088/2632-959X/abf3d4
Z. Sun, M. Zhu, C. Lee, Progress in the triboelectric human–machine interfaces (HMIs)-moving from smart gloves to AI/haptic enabled HMI in the 5G/IoT era. Nanoenergy Adv. 1(1), 81–120 (2021). https://doi.org/10.3390/nanoenergyadv1010005
Z. Sun, M. Zhu, Z. Zhang, Z. Chen, Q. Shi et al., Artificial intelligence of things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv. Sci. 8(14), 2100230 (2021). https://doi.org/10.1002/advs.202100230
F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7(14), 2000261 (2020). https://doi.org/10.1002/advs.202000261
Z. Bai, Y. Xu, C. Lee, J. Guo, Autonomously adhesive, stretchable, and transparent solid-state polyionic triboelectric patch for wearable power source and tactile sensor. Adv. Funct. Mater. 31(37), 2104365 (2021). https://doi.org/10.1002/adfm.202104365
Y. Zhang, X. Gao, Y. Wu, J. Gui, S. Guo et al., Self-powered technology based on nanogenerators for biomedical applications. Exploration 1(1), 90–114 (2021). https://doi.org/10.1002/EXP.20210152
Y. Lai, H. Wu, H. Lin, C. Chang, H. Chou et al., Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201904626
X. Hou, J. Zhu, J. Qian, X. Niu, J. He et al., Stretchable triboelectric textile composed of wavy conductive-cloth-pet and patterned stretchable electrode for harvesting multi-variant human motion energy. ACS Appl. Mater. Interfaces 10(50), 43661–43668 (2018). https://doi.org/10.1021/acsami.8b16267
P. Xiong, M. Liu, X. Chen, J. Sun, L.W. Zhong, Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017). https://doi.org/10.1126/sciadv.1700015
Z. Hui, M. Xiao, D. Shen, J. Feng, P. Peng et al., A self-powered nanogenerator for the electrical protection of integrated circuits from trace amounts of liquid. Nano-Micro Lett. 12, 5 (2020). https://doi.org/10.1007/s40820-019-0338-1
F. Xu, S. Dong, G. Liu, C. Pan, Z.L. Wang, Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy 88, 106247 (2021). https://doi.org/10.1016/j.nanoen.2021.106247
Y. Zhu, S. Lin, W. Gao, M. Zhang, Z.L. Wang, Effects of oxygen vacancies and cation valence states on the triboelectric property of substoichiometric oxide films. ACS Appl. Mater. Interfaces 13(30), 35795–35803 (2021). https://doi.org/10.1021/acsami.1c09248
T. He, X. Guo, C. Lee, Flourishing energy harvesters for future body sensor network: from single to multiple energy sources. IScience 24(1), 101934 (2021). https://doi.org/10.1016/j.isci.2020.101934
X. Guo, L. Liu, Z. Zhang, S. Gao, T. He et al., Technology evolution from micro-scale energy harvesters to nanogenerators. J. Micromech. Microeng. 31(9), 093002 (2021). https://doi.org/10.1088/1361-6439/ac168e
X.S. Zhang, M. Han, B. Kim, J.F. Bao, J. Brugger et al., All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47, 410–426 (2018). https://doi.org/10.1016/j.nanoen.2018.02.046
F. He, X. You, H. Gong, Y. Yang, M. Ye, Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12(5), 6442–6450 (2020). https://doi.org/10.1021/acsami.9b19721
Y. Ra, J. Choi, M. La, Development of a highly transparent and flexible touch sensor based on triboelectric effect. Funct. Compos. Struct. 1(4), 045001 (2019). https://doi.org/10.1088/2631-6331/ab47ba
S. Fu, W. He, H. Wu, C. Shan, Y. Du et al., High output performance and ultra-durable dc output for triboelectric nanogenerator inspired by primary cell. Nano-Micro Lett. 14, 155 (2022). https://doi.org/10.1007/s40820-022-00898-2
S. Shen, J. Yi, R. Cheng, L. Ma, F. Sheng et al., Electromagnetic shielding triboelectric yarns for human–machine interacting. Adv. Electron. Mater. 8(2), 2101130 (2022). https://doi.org/10.1002/aelm.202101130
S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric–catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13, 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
Z.H. Guo, Y.C. Jiao, H.L. Wang, C. Zhang, F. Liang et al., Self-powered electrowetting valve for instantaneous and simultaneous actuation of paper-based microfluidic assays. Adv. Funct. Mater. 29(15), 1808974 (2019). https://doi.org/10.1002/adfm.201808974
V. Slabov, S. Kopyl, M.P.S. Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectric energy harvesting. Nano-Micro Lett. 12, 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
Q.J. Sun, Y. Lei, X.H. Zhao, J. Han, V. Roy, Scalable fabrication of hierarchically structured graphite/polydimethylsiloxane composite films for large-area triboelectric nanogenerators and self-powered tactile sensing. Nano Energy 80, 105521 (2021). https://doi.org/10.1016/j.nanoen.2020.105521
Y.W. Cai, X.N. Zhang, G.G. Wang, G.Z. Li, Y. Yang, A flexible ultra-sensitive triboelectric tactile sensor of wrinkled pdms/mxene composite films for e-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park et al., Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 10, 2158 (2019). https://doi.org/10.1038/s-41467-019-10061-y
Y. Yang, S.Z. Yu, H. Zhang, L. Ying, S. Lee et al., A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv. Mater. 25(45), 6594–6601 (2013). https://doi.org/10.1002/adma.201302453
Q. Zhang, T. Jin, G. Cai, L. Xu, T. He et al., Wearable triboelectric sensors enabled gait analysis and waist motion capture for iot-based smart healthcare applications. Adv. Sci. 9(4), 2103694 (2021). https://doi.org/10.1002/advs.202103694
M. Zhu, Z. Sun, T. Chen, C. Lee, Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nat. Commun. 12, 2692 (2021). https://doi.org/10.1038/s41467-021-23020-3
C. Li, D. Liu, C. Xu, Z. Wang, Z.L. Wang, Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat. Commun. 12, 2950 (2021). https://doi.org/10.1038/s41467-021-23207-8
M. Zhang, J. Li, L. Kang, N. Zhang, C. Huang et al., Machine learning-guided design and development of multifunctional flexible Ag/poly (amic acid) composites using the differential evolution algorithm. Nanoscale 12(6), 3988–3996 (2020). https://doi.org/10.1039/C9NR09146G
L. Ji, K. Zhao, X. Zhao, F. Lu, T. Li, Triboelectric nanogenerator based smart electronics via machine learning. Adv. Mater. Technol. 5(2), 1900921 (2020). https://doi.org/10.1002/admt.201900921
R. Cao, X. Pu, X. Du, W. Yang, J. Wang et al., Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction. ACS Nano 12(6), 5190–5196 (2018). https://doi.org/10.1021/acsnano.8b0247
Y. Tong, Z. Feng, J. Kim, J.L. Robertson, B.N. Johnson, 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 75, 104973 (2020). https://doi.org/10.1016/j.nanoen.2020.104973
W. Zhang, L. Deng, L. Yang, P. Yang, D. Diao et al., Multilanguage-handwriting self-powered recognition based on triboelectric nanogenerator enabled machine learning. Nano Energy 77, 105174 (2020). https://doi.org/10.1016/j.nanoen.2020.105174
Q. Lian, X.F. Zheng, T.F. Hu, Preparation and adsorption properties of magnetic CoFe2O4–chitosan composite microspheres. Russ. J. Phys. Chem. 89(11), 2132–2136 (2015). https://doi.org/10.1134/s0036024415110096
N. Stefan, F.M. Miroiu, G. Socol, Degradable silk fibroin—poly (sebacic acid) diacetoxy terminated, (SF-PSADT) polymeric composite coatings for biodegradable medical applications deposited by laser technology—sciencedirect. Prog. Org. Coat. 134, 11–21 (2019). https://doi.org/10.1016/j.porgcoat.2019.04.075
A. As, C. Pskb, D. Dvnv, A. Sj, A. Sk et al., A review on catalytic-enzyme degradation of toxic environmental pollutants: microbial enzymes. J. Hazard. Mater. 419, 126451 (2021). https://doi.org/10.1016/j.jhazmat.2021.126451
Q. Cai, G. Shi, J. Bei, S. Wang, Enzymatic degradation behavior and mechanism of poly(lactide-co-glycolide) foams by trypsin. Biomaterials 24(4), 629–638 (2003). https://doi.org/10.1016/S0142-9612(02)00377-0