Metal-Free 2D/2D van der Waals Heterojunction Based on Covalent Organic Frameworks for Highly Efficient Solar Energy Catalysis
Corresponding Author: Tianyi Ma
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 132
Abstract
Covalent organic frameworks (COFs) have emerged as a kind of rising star materials in photocatalysis. However, their photocatalytic activities are restricted by the high photogenerated electron–hole pairs recombination rate. Herein, a novel metal-free 2D/2D van der Waals heterojunction, composed of a two-dimensional (2D) COF with ketoenamine linkage (TpPa-1-COF) and 2D defective hexagonal boron nitride (h-BN), is successfully constructed through in situ solvothermal method. Benefitting from the presence of VDW heterojunction, larger contact area and intimate electronic coupling can be formed between the interface of TpPa-1-COF and defective h-BN, which make contributions to promoting charge carriers separation. The introduced defects can also endow the h-BN with porous structure, thus providing more reactive sites. Moreover, the TpPa-1-COF will undergo a structural transformation after being integrated with defective h-BN, which can enlarge the gap between the conduction band position of the h-BN and TpPa-1-COF, and suppress electron backflow, corroborated by experimental and density functional theory calculations results. Accordingly, the resulting porous h-BN/TpPa-1-COF metal-free VDW heterojunction displays outstanding solar energy catalytic activity for water splitting without co-catalysts, and the H2 evolution rate can reach up to 3.15 mmol g−1 h−1, which is about 67 times greater than that of pristine TpPa-1-COF, also surpassing that of state-of-the-art metal-free-based photocatalysts reported to date. In particular, it is the first work for constructing COFs-based heterojunctions with the help of h-BN, which may provide new avenue for designing highly efficient metal-free-based photocatalysts for H2 evolution.
Highlights:
1 It is the first attempt to combine covalent organic frameworks with hexagonal boron nitride (h-BN) to construct efficient metal-free photocatalyst.
2 The composite displays superior photocatalytic hydrogen production performance in metal-free systems.
3 The integrated porous h-BN can suppress electron backflow to optimize the composite photocatalytic activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Gustafson, M.H. Goldberg, P. Bergquist, K. Lacroix, S.A. Rosenthal et al., The durable, bipartisan effects of emphasizing the cost savings of renewable energy. Nat. Energy 7, 1023–1030 (2022). https://doi.org/10.1038/s41560-022-01099-2
- T. Bolsen, Framing renewable energy. Nat. Energy 7, 1003–1004 (2022). https://doi.org/10.1038/s41560-022-01100-y
- G. Graziono, Homogeneous catalysis: an electrochemical and spectroscopic look at renewable energy. Nat. Rev. Chem. 2, 0130 (2018). https://doi.org/10.1038/s41570-018-0130
- D.M. Kammen, D.A. Sunter, City-integrated renewable energy for urban sustainability. Science 352, 922–928 (2016). https://doi.org/10.1126/science.aad9302
- J.W. Ager, A.A. Lapkin, Chemical storage of renewable energy. Science 360, 707–708 (2018). https://doi.org/10.1126/science.aat7918
- X.-B. Li, C.-H. Tung, L.-Z. Wu, Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2, 160–173 (2018). https://doi.org/10.1038/s41570-018-0024-8
- M.-Y. Qi, M. Conte, M. Anpo, Z.-R. Tang, Y.-J. Xu, Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 121, 13051–13085 (2021). https://doi.org/10.1021/acs.chemrev.1c00197
- G. Murali, J.K.R. Modigunta, Y.H. Park, J.-H. Lee, J. Rawal et al., A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano 16, 13370–13429 (2022). https://doi.org/10.1021/acsnano.2c04750
- J. Pitchaimani, S.-F. Ni, L. Dang, Metal dithiolene complexes in olefin addition and purification, small molecule adsorption, H2 evolution and CO2 reduction. Coord. Chem. Rev. 420, 213398 (2020). https://doi.org/10.1016/j.ccr.2020.213398
- X. Ren, D. Philo, Y. Li, L. Shi, K. Chang et al., Recent advances of low-dimensional phosphorus-based nanomaterials for solar-driven photocatalytic reactions. Coord. Chem. Rev. 424, 213516 (2020). https://doi.org/10.1016/j.ccr.2020.213516
- A.K. Singh, C. Das, A. Indra, Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord. Chem. Rev. 465, 214516 (2022). https://doi.org/10.1016/j.ccr.2022.214516
- M. Yasuda, T. Matsumoto, T. Yamashita, Sacrificial hydrogen production over TiO2-based photocatalysts: polyols, carboxylic acids, and saccharides. Renew. Sustain. Energy Rev. 81, 1627–1635 (2018). https://doi.org/10.1016/j.rser.2017.05.243
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
- L. Lin, Z. Lin, J. Zhang, X. Cai, W. Lin et al., Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 3, 649–655 (2020). https://doi.org/10.1038/s41929-020-0476-3
- M. Liu, C. Wei, H. Zhuzhang, J. Zhou, Z. Pan et al., Fully condensed poly (triazine imide) crystals: extended π-conjugation and structural defects for overall water splitting. Angew. Chem. Int. Ed. 61, e202113389 (2022). https://doi.org/10.1002/anie.202113389
- Z.-A. Lan, M. Wu, Z. Fang, Y. Zhang, X. Chen et al., Ionothermal synthesis of covalent triazine frameworks in a NaCl–KCl–ZnCl2 eutectic salt for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 61, e202201482 (2022). https://doi.org/10.1002/anie.202201482
- Z.-A. Lan, X. Chi, M. Wu, X. Zhang, X. Chen et al., Molecular design of covalent triazine frameworks with anisotropic charge migration for photocatalytic hydrogen production. Small 18, 2200129 (2022). https://doi.org/10.1002/smll.202200129
- R. Sun, B. Tan, Covalent triazine frameworks (CTFs): synthesis, crystallization, and photocatalytic water splitting. Chem. Eur. J. (2022). https://doi.org/10.1002/chem.202203077
- R.S. Sprick, J.-X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech et al., Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 137, 3265–3270 (2015). https://doi.org/10.1021/ja511552k
- Z.-A. Lan, W. Ren, X. Chen, Y. Zhang, X. Wang, Conjugated donor-acceptor polymer photocatalysts with electron-output “tentacles” for efficient hydrogen evolution. Appl. Catal. B Environ. 245, 596–603 (2019). https://doi.org/10.1016/j.apcatb.2019.01.010
- G. Li, Z. Xie, Q. Wang, X. Chen, Y. Zhang et al., Asymmetric acceptor–donor–acceptor polymers with fast charge carrier transfer for solar hydrogen production. Chem. Eur. J. 27, 939–943 (2021). https://doi.org/10.1002/chem.202003856
- Z.-A. Lan, G. Zhang, X. Chen, Y. Zhang, K.A.I. Zhang et al., Reducing the exciton binding energy of donor–acceptor-based conjugated polymers to promote charge-induced reactions. Angew. Chem. Int. Ed. 58, 10236–10240 (2019). https://doi.org/10.1002/anie.201904904
- Z.-A. Lan, M. Wu, Z. Fang, X. Chi, X. Chen et al., A fully coplanar donor–acceptor polymeric semiconductor with promoted charge separation kinetics for photochemistry. Angew. Chem. Int. Ed. 60, 16355–16359 (2021). https://doi.org/10.1002/anie.202103992
- C. Dai, B. Liu, Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 13, 24–52 (2020). https://doi.org/10.1039/C9EE01935A
- H. Zhang, G. Liu, L. Shi, H. Liu, T. Wang et al., Engineering coordination polymers for photocatalysis. Nano Energy 22, 149–168 (2016). https://doi.org/10.1016/j.nanoen.2016.01.029
- Y. Li, M. Liu, L. Chen, Polyoxometalate built-in conjugated microporous polymers for visible-light heterogeneous photocatalysis. J. Mater. Chem. A 5, 13757–13762 (2017). https://doi.org/10.1039/C7TA03776G
- Y. Wan, L. Wang, H. Xu, X. Wu, J. Yang, A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting. J. Am. Chem. Soc. 142, 4508–4516 (2020). https://doi.org/10.1021/jacs.0c00564
- D. Mullangi, V. Dhavale, S. Shalini, S. Nandi, S. Collins et al., Low-overpotential electrocatalytic water splitting with noble-metal-free nanops supported in a sp3 N-rich flexible COF. Adv. Energy Mater. 6, 1600110 (2016). https://doi.org/10.1002/aenm.201600110
- W. Li, X. Huang, T. Zeng, Y.A. Liu, W. Hu et al., Cover Picture: Thiazolo [5,4-d] thiazole-based donor–acceptor covalent organic framework for sunlight-driven hydrogen evolution. Angew. Chem. Int. Ed. 60, 1661–1661 (2021). https://doi.org/10.1002/anie.202016354
- Z. Mi, T. Zhou, W. Weng, J. Unruangsri, K. Hu et al., Covalent organic frameworks enabling site isolation of viologen-derived electron-transfer mediators for stable photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 60, 9642–9649 (2021). https://doi.org/10.1002/anie.202016618
- M.-L. Xu, M. Lu, G.-Y. Qin, X.-M. Wu, T. Yu et al., Piezo-photocatalytic synergy in BiFeO3@COF Z-scheme heterostructures for high-efficiency overall water splitting. Angew. Chem. Int. Ed. 61, e202210700 (2022). https://doi.org/10.1002/anie.202210700
- M.K. Lee, M. Shokouhimehr, S.Y. Kim, H.W. Jang, Two-dimensional metal–organic frameworks and covalent–organic frameworks for electrocatalysis: distinct merits by the reduced dimension. Adv. Energy Mater. 12, 2003990 (2022). https://doi.org/10.1002/aenm.202003990
- Q. Yang, M. Luo, K. Liu, H. Cao, H. Yan, Covalent organic frameworks for photocatalytic applications. Appl. Catal. B Environ. 276, 119174 (2020). https://doi.org/10.1016/j.apcatb.2020.119174
- S. Ma, T. Deng, Z. Li, Z. Zhang, J. Jia et al., Photocatalytic hydrogen production on a sp2-carbon-linked covalent organic framework. Angew. Chem. Int. Ed. 61, e202208919 (2022). https://doi.org/10.1002/anie.202208919
- W. Chen, L. Wang, D. Mo, F. He, Z. Wen et al., Modulating benzothiadiazole-based covalent organic frameworks via halogenation for enhanced photocatalytic water splitting. Angew. Chem. Int. Ed. 59, 16902–16909 (2020). https://doi.org/10.1002/anie.202006925
- S. Tao, D. Jiang, Covalent organic frameworks for energy conversions: Current status, challenges, and perspectives. CCS Chem. 3, 2003–2024 (2020). https://doi.org/10.31635/ccschem.020.202000491
- Y. Lv, Y. Li, G. Zhang, Z. Peng, L. Ye et al., An in situ film-to-film transformation approach toward highly crystalline covalent organic framework films. CCS Chem. 4, 1519–1525 (2021). https://doi.org/10.31635/ccschem.021.202101025
- C. Mo, M. Yang, F. Sun, J. Jian, L. Zhong et al., Alkene-linked covalent organic frameworks boosting photocatalytic hydrogen evolution by efficient charge separation and transfer in the presence of sacrificial electron donors. Adv. Sci. 7, 1902988 (2020). https://doi.org/10.1002/advs.201902988
- Z. Zhao, X. Chen, B. Li, S. Zhao, L. Niu et al., Spatial regulation of acceptor units in olefin-linked COFs toward highly efficient photocatalytic H2 evolution. Adv. Sci. 9, 2203832 (2022). https://doi.org/10.1002/advs.202203832
- M. Luo, Q. Yang, W. Yang, J. Wang, F. He et al., Defects engineering leads to enhanced photocatalytic H2 evolution on graphitic carbon nitride–covalent organic framework nanosheet composite. Small 16, 2001100 (2020). https://doi.org/10.1002/smll.202001100
- Y. Liu, W. Zhou, W.L. Teo, K. Wang, L. Zhang et al., Covalent-organic-framework-based composite materials. Chem 6, 3172–3202 (2020). https://doi.org/10.1016/j.chempr.2020.08.021
- F.-M. Zhang, J.-L. Sheng, Z.-D. Yang, X.-J. Sun, H.-L. Tang et al., Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Int. Ed. 57, 12106–12110 (2018). https://doi.org/10.1002/anie.201806862
- L. Sun, L. Li, J. Yang, J. Fan, Q. Xu, Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation. Chin. J. Catal. 43, 350–358 (2022). https://doi.org/10.1016/S1872-2067(21)63869-X
- L. Sun, L. Li, J. Fan, Q. Xu, D. Ma, Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation. J. Mater. Sci. Technol. 123, 41–48 (2022). https://doi.org/10.1016/j.jmst.2021.12.065
- C.-C. Li, M.-Y. Gao, X.-J. Sun, H.-L. Tang, H. Dong et al., Rational combination of covalent-organic framework and nano TiO2 by covalent bonds to realize dramatically enhanced photocatalytic activity. Appl. Catal. B Environ. 266, 118586 (2020). https://doi.org/10.1016/j.apcatb.2020.118586
- Y.-P. Zhang, H.-L. Tang, H. Dong, M.-Y. Gao, C.-C. Li et al., Covalent-organic framework based Z-scheme heterostructured noble-metal-free photocatalysts for visible-light-driven hydrogen evolution. J. Mater. Chem. A 8, 4334–4340 (2020). https://doi.org/10.1039/C9TA12870K
- J. Mao, L. Wang, S. Qu, Y. Zhang, J. Huang et al., Defect engineering in CuSx/COF hybridized heterostructures: synergistic facilitation of the charge migration for an efficacious photocatalytic conversion of CO2 into CO. Inorg. Chem. 61(49), 20064–20072 (2022). https://doi.org/10.1021/acs.inorgchem.2c03481
- H. Yan, Y.-H. Liu, Y. Yang, H.-Y. Zhang, X.-R. Liu et al., Covalent organic framework based WO3@COF/rGO for efficient visible-light-driven H2 evolution by two-step separation mode. Chem. Eng. J. 431, 133404 (2022). https://doi.org/10.1016/j.cej.2021.133404
- X. An, J. Bian, K. Zhu, R. Liu, H. Liu et al., Facet-dependent activity of TiO2/covalent organic framework S-scheme heterostructures for CO2 photoreduction. Chem. Eng. J. 442, 135279 (2022). https://doi.org/10.1016/j.cej.2022.135279
- Y. Wang, Z. Hu, W. Wang, H. He, L. Deng et al., Design of well-defined shell–core covalent organic frameworks/metal sulfide as an efficient Z-scheme heterojunction for photocatalytic water splitting. Chem. Sci. 12, 16065–16073 (2021). https://doi.org/10.1039/D1SC05893B
- Y. Qin, H. Li, J. Lu, Y. Feng, F. Meng et al., Synergy between van der Waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 277, 119254 (2020). https://doi.org/10.1016/j.apcatb.2020.119254
- Z. Wang, B. Cheng, L. Zhang, J. Yu, Y. Li et al., S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chin. J. Catal. 43, 1657–1666 (2022). https://doi.org/10.1016/S1872-2067(21)64010-X
- J. Xiong, J. Di, W. Zhu, H. Li, Hexagonal boron nitride adsorbent: synthesis, performance tailoring and applications. J. Energy Chem. 40, 99–111 (2020). https://doi.org/10.1016/j.jechem.2019.03.002
- Z. He, C. Kim, L. Lin, T.H. Jeon, S. Lin et al., Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis. Nano Energy 42, 58–68 (2017). https://doi.org/10.1016/j.nanoen.2017.10.043
- M.-Y. Gao, C.-C. Li, H.-L. Tang, X.-J. Sun, H. Dong et al., Boosting visible-light-driven hydrogen evolution of covalent organic frameworks through compositing with MoS2: a promising candidate for noble-metal-free photocatalysts. J. Mater. Chem. A 7, 20193–20200 (2019). https://doi.org/10.1039/C9TA07319A
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558
- G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251–14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996). https://doi.org/10.1063/1.472933
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505
- L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73(19), 195107 (2006). https://doi.org/10.1103/PhysRevB.73.195107
- M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, J. Joannopoulos, Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56(3), 1354–1365 (1997). https://doi.org/10.1103/PhysRevB.56.1354
- S. Kandambeth, A. Mallick, B. Lukose, M.V. Mane, T. Heine et al., Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012). https://doi.org/10.1021/ja308278w
- Q. Liu, C. Chen, M. Du, Y. Wu, C. Ren et al., Porous hexagonal boron nitride sheets: effect of hydroxyl and secondary amino groups on photocatalytic hydrogen evolution. ACS Appl. Nano Mater. 1, 4566–4575 (2018). https://doi.org/10.1021/acsanm.8b00867
- Y. Wang, Q. Yang, F. Yi, R. Lu, Y. Chen et al., NH2-UiO-66 coated with two-dimensional covalent organic frameworks: high stability and photocatalytic activity. ACS Appl. Mater. Interfaces 13, 29916–29925 (2021). https://doi.org/10.1021/acsami.1c06008
- A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi et al., Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 124, 13547–13553 (2002). https://doi.org/10.1021/ja0269643
- Z. Wang, P.K. Nayak, J.A. Caraveo-Frescas, H.N. Alshareef, Recent developments in p-type oxide semiconductor materials and devices. Adv. Mater. 28, 3831–3892 (2016). https://doi.org/10.1002/adma.201503080
- S. Cao, L. Piao, Considerations for a more accurate evaluation method for photocatalytic water splitting. Angew. Chem. Int. Ed. 59, 18312–18320 (2020). https://doi.org/10.1002/anie.202009633
- Z. Wang, T. Hisatomi, R. Li, K. Sayama, G. Liu et al., Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Joule 5, 344–359 (2021). https://doi.org/10.1016/j.joule.2021.01.001
- J.M. Buriak, Preface to the special issue on methods and protocols in materials chemistry. Chem. Mater. 29, 1–2 (2017). https://doi.org/10.1021/acs.chemmater.6b05235
- S.M.H. Hejazi, M. Shahrezaei, P. Błoński, M. Allieta, P.M. Sheverdyaeva et al., Defect engineering over anisotropic brookite toward substrate-specific photo-oxidation of alcohols. Chem. Catal. 2, 1177–1190 (2022). https://doi.org/10.1016/j.checat.2022.03.015
References
A. Gustafson, M.H. Goldberg, P. Bergquist, K. Lacroix, S.A. Rosenthal et al., The durable, bipartisan effects of emphasizing the cost savings of renewable energy. Nat. Energy 7, 1023–1030 (2022). https://doi.org/10.1038/s41560-022-01099-2
T. Bolsen, Framing renewable energy. Nat. Energy 7, 1003–1004 (2022). https://doi.org/10.1038/s41560-022-01100-y
G. Graziono, Homogeneous catalysis: an electrochemical and spectroscopic look at renewable energy. Nat. Rev. Chem. 2, 0130 (2018). https://doi.org/10.1038/s41570-018-0130
D.M. Kammen, D.A. Sunter, City-integrated renewable energy for urban sustainability. Science 352, 922–928 (2016). https://doi.org/10.1126/science.aad9302
J.W. Ager, A.A. Lapkin, Chemical storage of renewable energy. Science 360, 707–708 (2018). https://doi.org/10.1126/science.aat7918
X.-B. Li, C.-H. Tung, L.-Z. Wu, Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2, 160–173 (2018). https://doi.org/10.1038/s41570-018-0024-8
M.-Y. Qi, M. Conte, M. Anpo, Z.-R. Tang, Y.-J. Xu, Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 121, 13051–13085 (2021). https://doi.org/10.1021/acs.chemrev.1c00197
G. Murali, J.K.R. Modigunta, Y.H. Park, J.-H. Lee, J. Rawal et al., A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano 16, 13370–13429 (2022). https://doi.org/10.1021/acsnano.2c04750
J. Pitchaimani, S.-F. Ni, L. Dang, Metal dithiolene complexes in olefin addition and purification, small molecule adsorption, H2 evolution and CO2 reduction. Coord. Chem. Rev. 420, 213398 (2020). https://doi.org/10.1016/j.ccr.2020.213398
X. Ren, D. Philo, Y. Li, L. Shi, K. Chang et al., Recent advances of low-dimensional phosphorus-based nanomaterials for solar-driven photocatalytic reactions. Coord. Chem. Rev. 424, 213516 (2020). https://doi.org/10.1016/j.ccr.2020.213516
A.K. Singh, C. Das, A. Indra, Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord. Chem. Rev. 465, 214516 (2022). https://doi.org/10.1016/j.ccr.2022.214516
M. Yasuda, T. Matsumoto, T. Yamashita, Sacrificial hydrogen production over TiO2-based photocatalysts: polyols, carboxylic acids, and saccharides. Renew. Sustain. Energy Rev. 81, 1627–1635 (2018). https://doi.org/10.1016/j.rser.2017.05.243
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
L. Lin, Z. Lin, J. Zhang, X. Cai, W. Lin et al., Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 3, 649–655 (2020). https://doi.org/10.1038/s41929-020-0476-3
M. Liu, C. Wei, H. Zhuzhang, J. Zhou, Z. Pan et al., Fully condensed poly (triazine imide) crystals: extended π-conjugation and structural defects for overall water splitting. Angew. Chem. Int. Ed. 61, e202113389 (2022). https://doi.org/10.1002/anie.202113389
Z.-A. Lan, M. Wu, Z. Fang, Y. Zhang, X. Chen et al., Ionothermal synthesis of covalent triazine frameworks in a NaCl–KCl–ZnCl2 eutectic salt for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 61, e202201482 (2022). https://doi.org/10.1002/anie.202201482
Z.-A. Lan, X. Chi, M. Wu, X. Zhang, X. Chen et al., Molecular design of covalent triazine frameworks with anisotropic charge migration for photocatalytic hydrogen production. Small 18, 2200129 (2022). https://doi.org/10.1002/smll.202200129
R. Sun, B. Tan, Covalent triazine frameworks (CTFs): synthesis, crystallization, and photocatalytic water splitting. Chem. Eur. J. (2022). https://doi.org/10.1002/chem.202203077
R.S. Sprick, J.-X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech et al., Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 137, 3265–3270 (2015). https://doi.org/10.1021/ja511552k
Z.-A. Lan, W. Ren, X. Chen, Y. Zhang, X. Wang, Conjugated donor-acceptor polymer photocatalysts with electron-output “tentacles” for efficient hydrogen evolution. Appl. Catal. B Environ. 245, 596–603 (2019). https://doi.org/10.1016/j.apcatb.2019.01.010
G. Li, Z. Xie, Q. Wang, X. Chen, Y. Zhang et al., Asymmetric acceptor–donor–acceptor polymers with fast charge carrier transfer for solar hydrogen production. Chem. Eur. J. 27, 939–943 (2021). https://doi.org/10.1002/chem.202003856
Z.-A. Lan, G. Zhang, X. Chen, Y. Zhang, K.A.I. Zhang et al., Reducing the exciton binding energy of donor–acceptor-based conjugated polymers to promote charge-induced reactions. Angew. Chem. Int. Ed. 58, 10236–10240 (2019). https://doi.org/10.1002/anie.201904904
Z.-A. Lan, M. Wu, Z. Fang, X. Chi, X. Chen et al., A fully coplanar donor–acceptor polymeric semiconductor with promoted charge separation kinetics for photochemistry. Angew. Chem. Int. Ed. 60, 16355–16359 (2021). https://doi.org/10.1002/anie.202103992
C. Dai, B. Liu, Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 13, 24–52 (2020). https://doi.org/10.1039/C9EE01935A
H. Zhang, G. Liu, L. Shi, H. Liu, T. Wang et al., Engineering coordination polymers for photocatalysis. Nano Energy 22, 149–168 (2016). https://doi.org/10.1016/j.nanoen.2016.01.029
Y. Li, M. Liu, L. Chen, Polyoxometalate built-in conjugated microporous polymers for visible-light heterogeneous photocatalysis. J. Mater. Chem. A 5, 13757–13762 (2017). https://doi.org/10.1039/C7TA03776G
Y. Wan, L. Wang, H. Xu, X. Wu, J. Yang, A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting. J. Am. Chem. Soc. 142, 4508–4516 (2020). https://doi.org/10.1021/jacs.0c00564
D. Mullangi, V. Dhavale, S. Shalini, S. Nandi, S. Collins et al., Low-overpotential electrocatalytic water splitting with noble-metal-free nanops supported in a sp3 N-rich flexible COF. Adv. Energy Mater. 6, 1600110 (2016). https://doi.org/10.1002/aenm.201600110
W. Li, X. Huang, T. Zeng, Y.A. Liu, W. Hu et al., Cover Picture: Thiazolo [5,4-d] thiazole-based donor–acceptor covalent organic framework for sunlight-driven hydrogen evolution. Angew. Chem. Int. Ed. 60, 1661–1661 (2021). https://doi.org/10.1002/anie.202016354
Z. Mi, T. Zhou, W. Weng, J. Unruangsri, K. Hu et al., Covalent organic frameworks enabling site isolation of viologen-derived electron-transfer mediators for stable photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 60, 9642–9649 (2021). https://doi.org/10.1002/anie.202016618
M.-L. Xu, M. Lu, G.-Y. Qin, X.-M. Wu, T. Yu et al., Piezo-photocatalytic synergy in BiFeO3@COF Z-scheme heterostructures for high-efficiency overall water splitting. Angew. Chem. Int. Ed. 61, e202210700 (2022). https://doi.org/10.1002/anie.202210700
M.K. Lee, M. Shokouhimehr, S.Y. Kim, H.W. Jang, Two-dimensional metal–organic frameworks and covalent–organic frameworks for electrocatalysis: distinct merits by the reduced dimension. Adv. Energy Mater. 12, 2003990 (2022). https://doi.org/10.1002/aenm.202003990
Q. Yang, M. Luo, K. Liu, H. Cao, H. Yan, Covalent organic frameworks for photocatalytic applications. Appl. Catal. B Environ. 276, 119174 (2020). https://doi.org/10.1016/j.apcatb.2020.119174
S. Ma, T. Deng, Z. Li, Z. Zhang, J. Jia et al., Photocatalytic hydrogen production on a sp2-carbon-linked covalent organic framework. Angew. Chem. Int. Ed. 61, e202208919 (2022). https://doi.org/10.1002/anie.202208919
W. Chen, L. Wang, D. Mo, F. He, Z. Wen et al., Modulating benzothiadiazole-based covalent organic frameworks via halogenation for enhanced photocatalytic water splitting. Angew. Chem. Int. Ed. 59, 16902–16909 (2020). https://doi.org/10.1002/anie.202006925
S. Tao, D. Jiang, Covalent organic frameworks for energy conversions: Current status, challenges, and perspectives. CCS Chem. 3, 2003–2024 (2020). https://doi.org/10.31635/ccschem.020.202000491
Y. Lv, Y. Li, G. Zhang, Z. Peng, L. Ye et al., An in situ film-to-film transformation approach toward highly crystalline covalent organic framework films. CCS Chem. 4, 1519–1525 (2021). https://doi.org/10.31635/ccschem.021.202101025
C. Mo, M. Yang, F. Sun, J. Jian, L. Zhong et al., Alkene-linked covalent organic frameworks boosting photocatalytic hydrogen evolution by efficient charge separation and transfer in the presence of sacrificial electron donors. Adv. Sci. 7, 1902988 (2020). https://doi.org/10.1002/advs.201902988
Z. Zhao, X. Chen, B. Li, S. Zhao, L. Niu et al., Spatial regulation of acceptor units in olefin-linked COFs toward highly efficient photocatalytic H2 evolution. Adv. Sci. 9, 2203832 (2022). https://doi.org/10.1002/advs.202203832
M. Luo, Q. Yang, W. Yang, J. Wang, F. He et al., Defects engineering leads to enhanced photocatalytic H2 evolution on graphitic carbon nitride–covalent organic framework nanosheet composite. Small 16, 2001100 (2020). https://doi.org/10.1002/smll.202001100
Y. Liu, W. Zhou, W.L. Teo, K. Wang, L. Zhang et al., Covalent-organic-framework-based composite materials. Chem 6, 3172–3202 (2020). https://doi.org/10.1016/j.chempr.2020.08.021
F.-M. Zhang, J.-L. Sheng, Z.-D. Yang, X.-J. Sun, H.-L. Tang et al., Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Int. Ed. 57, 12106–12110 (2018). https://doi.org/10.1002/anie.201806862
L. Sun, L. Li, J. Yang, J. Fan, Q. Xu, Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation. Chin. J. Catal. 43, 350–358 (2022). https://doi.org/10.1016/S1872-2067(21)63869-X
L. Sun, L. Li, J. Fan, Q. Xu, D. Ma, Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation. J. Mater. Sci. Technol. 123, 41–48 (2022). https://doi.org/10.1016/j.jmst.2021.12.065
C.-C. Li, M.-Y. Gao, X.-J. Sun, H.-L. Tang, H. Dong et al., Rational combination of covalent-organic framework and nano TiO2 by covalent bonds to realize dramatically enhanced photocatalytic activity. Appl. Catal. B Environ. 266, 118586 (2020). https://doi.org/10.1016/j.apcatb.2020.118586
Y.-P. Zhang, H.-L. Tang, H. Dong, M.-Y. Gao, C.-C. Li et al., Covalent-organic framework based Z-scheme heterostructured noble-metal-free photocatalysts for visible-light-driven hydrogen evolution. J. Mater. Chem. A 8, 4334–4340 (2020). https://doi.org/10.1039/C9TA12870K
J. Mao, L. Wang, S. Qu, Y. Zhang, J. Huang et al., Defect engineering in CuSx/COF hybridized heterostructures: synergistic facilitation of the charge migration for an efficacious photocatalytic conversion of CO2 into CO. Inorg. Chem. 61(49), 20064–20072 (2022). https://doi.org/10.1021/acs.inorgchem.2c03481
H. Yan, Y.-H. Liu, Y. Yang, H.-Y. Zhang, X.-R. Liu et al., Covalent organic framework based WO3@COF/rGO for efficient visible-light-driven H2 evolution by two-step separation mode. Chem. Eng. J. 431, 133404 (2022). https://doi.org/10.1016/j.cej.2021.133404
X. An, J. Bian, K. Zhu, R. Liu, H. Liu et al., Facet-dependent activity of TiO2/covalent organic framework S-scheme heterostructures for CO2 photoreduction. Chem. Eng. J. 442, 135279 (2022). https://doi.org/10.1016/j.cej.2022.135279
Y. Wang, Z. Hu, W. Wang, H. He, L. Deng et al., Design of well-defined shell–core covalent organic frameworks/metal sulfide as an efficient Z-scheme heterojunction for photocatalytic water splitting. Chem. Sci. 12, 16065–16073 (2021). https://doi.org/10.1039/D1SC05893B
Y. Qin, H. Li, J. Lu, Y. Feng, F. Meng et al., Synergy between van der Waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 277, 119254 (2020). https://doi.org/10.1016/j.apcatb.2020.119254
Z. Wang, B. Cheng, L. Zhang, J. Yu, Y. Li et al., S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chin. J. Catal. 43, 1657–1666 (2022). https://doi.org/10.1016/S1872-2067(21)64010-X
J. Xiong, J. Di, W. Zhu, H. Li, Hexagonal boron nitride adsorbent: synthesis, performance tailoring and applications. J. Energy Chem. 40, 99–111 (2020). https://doi.org/10.1016/j.jechem.2019.03.002
Z. He, C. Kim, L. Lin, T.H. Jeon, S. Lin et al., Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis. Nano Energy 42, 58–68 (2017). https://doi.org/10.1016/j.nanoen.2017.10.043
M.-Y. Gao, C.-C. Li, H.-L. Tang, X.-J. Sun, H. Dong et al., Boosting visible-light-driven hydrogen evolution of covalent organic frameworks through compositing with MoS2: a promising candidate for noble-metal-free photocatalysts. J. Mater. Chem. A 7, 20193–20200 (2019). https://doi.org/10.1039/C9TA07319A
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558
G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251–14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996). https://doi.org/10.1063/1.472933
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505
L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73(19), 195107 (2006). https://doi.org/10.1103/PhysRevB.73.195107
M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, J. Joannopoulos, Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56(3), 1354–1365 (1997). https://doi.org/10.1103/PhysRevB.56.1354
S. Kandambeth, A. Mallick, B. Lukose, M.V. Mane, T. Heine et al., Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012). https://doi.org/10.1021/ja308278w
Q. Liu, C. Chen, M. Du, Y. Wu, C. Ren et al., Porous hexagonal boron nitride sheets: effect of hydroxyl and secondary amino groups on photocatalytic hydrogen evolution. ACS Appl. Nano Mater. 1, 4566–4575 (2018). https://doi.org/10.1021/acsanm.8b00867
Y. Wang, Q. Yang, F. Yi, R. Lu, Y. Chen et al., NH2-UiO-66 coated with two-dimensional covalent organic frameworks: high stability and photocatalytic activity. ACS Appl. Mater. Interfaces 13, 29916–29925 (2021). https://doi.org/10.1021/acsami.1c06008
A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi et al., Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 124, 13547–13553 (2002). https://doi.org/10.1021/ja0269643
Z. Wang, P.K. Nayak, J.A. Caraveo-Frescas, H.N. Alshareef, Recent developments in p-type oxide semiconductor materials and devices. Adv. Mater. 28, 3831–3892 (2016). https://doi.org/10.1002/adma.201503080
S. Cao, L. Piao, Considerations for a more accurate evaluation method for photocatalytic water splitting. Angew. Chem. Int. Ed. 59, 18312–18320 (2020). https://doi.org/10.1002/anie.202009633
Z. Wang, T. Hisatomi, R. Li, K. Sayama, G. Liu et al., Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Joule 5, 344–359 (2021). https://doi.org/10.1016/j.joule.2021.01.001
J.M. Buriak, Preface to the special issue on methods and protocols in materials chemistry. Chem. Mater. 29, 1–2 (2017). https://doi.org/10.1021/acs.chemmater.6b05235
S.M.H. Hejazi, M. Shahrezaei, P. Błoński, M. Allieta, P.M. Sheverdyaeva et al., Defect engineering over anisotropic brookite toward substrate-specific photo-oxidation of alcohols. Chem. Catal. 2, 1177–1190 (2022). https://doi.org/10.1016/j.checat.2022.03.015