Synergistic Ferroptosis–Immunotherapy Nanoplatforms: Multidimensional Engineering for Tumor Microenvironment Remodeling and Therapeutic Optimization
Corresponding Author: Xiao Wei
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 56
Abstract
Emerging ferroptosis–immunotherapy strategies, integrating functionalized nanoplatforms with ferroptosis-inducing agents and immunomodulatory therapeutics, demonstrate significant potential in managing primary, recurrent, and metastatic malignancies. Mechanistically, ferroptosis induction not only directly eliminates tumor cells but also promotes immunogenic cell death (ICD), eliciting damage-associated molecular patterns (DAMPs) release to activate partial antitumor immunity. However, standalone ferroptosis therapy fails to initiate robust systemic antitumor immune responses due to inherent limitations: low tumor immunogenicity, immunosuppressive microenvironment constraints, and tumor microenvironment (TME)-associated physiological barriers (e.g., hypoxia, dense extracellular matrix). To address these challenges, synergistic approaches have been developed to enhance immune cell infiltration and reestablish immunosurveillance, encompassing (1) direct amplification of antitumor immunity, (2) disruption of immunosuppressive tumor niches, and (3) biophysical hallmark remodeling in TME. Rational nanocarrier design has emerged as a critical enabler for overcoming biological delivery barriers and optimizing therapeutic efficacy. Unlike prior studies solely addressing ferroptosis or nanotechnology in tumor therapy, this work first systematically outlines the synergistic potential of nanoparticles in combined ferroptosis–immunotherapy strategies. It advances multidimensional nanoplatform design principles for material selection, structural configuration, physicochemical modulation, multifunctional integration, and artificial intelligence-enabled design, providing a scientific basis for efficacy optimization. Moreover, it examines translational challenges of ferroptosis–immunotherapy nanoplatforms across preclinical and clinical stages, proposing actionable solutions while envisioning future onco-immunotherapy directions. Collectively, it provides systematic insights into advanced nanomaterial design principles and therapeutic optimization strategies, offering a roadmap for accelerating clinical translation in onco-immunotherapy research.
Highlights:
1 First systematic integration: This work presents the first comprehensive outline of the synergistic potential of nanoparticle-enabled ferroptosis–immunotherapy strategies against malignancies, moving beyond studies solely focusing on ferroptosis induction or standalone nanotherapeutics in cancer.
2 Multidimensional nanoplatform design: Establishes advanced design principles for functionalized nanoplatforms, including rational material selection, structural configuration, physicochemical modulation, multifunctional integration, and AI-enabled design, to overcome tumor microenvironment barriers and optimize ferroptosis–immunotherapy efficacy.
3 Translational focus & AI integration: Provides a critical analysis of translational hurdles for ferroptosis–immunotherapy nanoplatforms across preclinical and clinical development, proposing actionable solutions while pioneering the integration of artificial intelligence into future nanoplatform design and onco-immunotherapy direction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, W. Zhen, Y. Wang, S. Song, H. Zhang, Na2S2O8 nanops trigger antitumor immunotherapy through reactive oxygen species storm and surge of tumor osmolarity. J. Am. Chem. Soc. 142, 21751–21757 (2020). https://doi.org/10.1021/jacs.0c09482
- M. Yu, X. Duan, Y. Cai, F. Zhang, S. Jiang et al., Multifunctional nanoregulator reshapes immune microenvironment and enhances immune memory for tumor immunotherapy. Adv. Sci. 6, 1900037 (2019). https://doi.org/10.1002/advs.201900037
- T. Yang, S. Zhang, H. Yuan, Y. Wang, L. Cai et al., Platinum-based TREM2 inhibitor suppresses tumors by remodeling the immunosuppressive microenvironment. Angew. Chem. Int. Ed. Engl. 62, e202213337 (2023). https://doi.org/10.1002/anie.202213337
- T.T. Mai, A. Hamai, A. Hienzsch, T. Caneque, S. Muller et al., Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 9, 1025–1033 (2017). https://doi.org/10.1038/nchem.2778
- R. Hu, C. Dai, X. Dai, C. Dong, H. Huang et al., Topology regulation of nanomedicine for autophagy-augmented ferroptosis and cancer immunotherapy. Sci. Bull. 68, 77–94 (2023). https://doi.org/10.1016/j.scib.2022.12.030
- J.D. Mancias, X. Wang, S.P. Gygi, J.W. Harper, A.C. Kimmelman, Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014). https://doi.org/10.1038/nature13148
- E. Grignano, L. Cantero-Aguilar, Z. Tuerdi, T. Chabane, R. Vazquez et al., Dihydroartemisinin-induced ferroptosis in acute myeloid leukemia: links to iron metabolism and metallothionein. Cell Death Discov. 9, 97 (2023). https://doi.org/10.1038/s41420-023-01371-8
- M. Conrad, D.A. Pratt, Publisher Correction: the chemical basis of ferroptosis. Nat. Chem. Biol. 16, 223–224 (2020). https://doi.org/10.1038/s41589-019-0434-z
- F. Zeng, S. Nijiati, L. Tang, J. Ye, Z. Zhou et al., Ferroptosis detection: from approaches to applications. Angew. Chem. Int. Ed. Engl. 62, e202300379 (2023). https://doi.org/10.1002/anie.202300379
- H.F. Yan, T. Zou, Q.Z. Tuo, S. Xu, H. Li et al., Ferroptosis: mechanisms and links with diseases. Signal Transd. Target. Ther. 6, 49 (2021). https://doi.org/10.1038/s41392-020-00428-9
- X. Chen, R. Kang, G. Kroemer, D. Tang, Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 18, 280–296 (2021). https://doi.org/10.1038/s41571-020-00462-0
- N.A. Porter, S.E. Caldwell, K.A. Mills, Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30, 277–290 (1995). https://doi.org/10.1007/BF02536034
- W.S. Yang, R. SriRamaratnam, M.E. Welsch, K. Shimada, R. Skouta et al., Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014). https://doi.org/10.1016/j.cell.2013.12.010
- G. Lei, L. Zhuang, B. Gan, Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 22, 381–396 (2022). https://doi.org/10.1038/s41568-022-00459-0
- C. Liang, X. Zhang, M. Yang, X. Dong, Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater. 31, e1904197 (2019). https://doi.org/10.1002/adma.201904197
- W. Xu, G. Guan, R. Yue, Z. Dong, L. Lei et al., Chemical design of magnetic nanomaterials for imaging and ferroptosis-based cancer therapy. Chem. Rev. 125, 1897–1961 (2025). https://doi.org/10.1021/acs.chemrev.4c00546
- J.P. Friedmann Angeli, D.V. Krysko, M. Conrad, Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019). https://doi.org/10.1038/s41568-019-0149-1
- P. Liao, W. Wang, W. Wang, I. Kryczek, X. Li et al., CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 40, 365-378 e366 (2022). https://doi.org/10.1016/j.ccell.2022.02.003
- A.A. Kapralov, Q. Yang, H.H. Dar, Y.Y. Tyurina, T.S. Anthonymuthu et al., Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat. Chem. Biol. 16, 278–290 (2020). https://doi.org/10.1038/s41589-019-0462-8
- S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi et al., Iron oxide nanops inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11, 986–994 (2016). https://doi.org/10.1038/nnano.2016.168
- R. Eugster, M. Orsi, G. Buttitta, N. Serafini, M. Tiboni et al., Leveraging machine learning to streamline the development of liposomal drug delivery systems. J. Control. Release 376, 1025–1038 (2024). https://doi.org/10.1016/j.jconrel.2024.10.065
- A. Xu, G. Wang, Y. Li, H. Dong, S. Yang et al., Carbon-based quantum dots with solid-state photoluminescent: mechanism, implementation, and application. Small 16, e2004621 (2020). https://doi.org/10.1002/smll.202004621
- P. Singh, S. Pandit, S.R. Balusamy, M. Madhusudanan, H. Singh et al., Advanced nanomaterials for cancer therapy: gold, silver, and iron oxide nanops in oncological applications. Adv. Healthc. Mater. 14, e2403059 (2025). https://doi.org/10.1002/adhm.202403059
- Y. Song, X. Xu, Z. Wang, Y. Zhao, Metal-organic framework-based nanomedicines for ferroptotic cancer therapy. Adv. Healthc. Mater. 13, e2303533 (2024). https://doi.org/10.1002/adhm.202303533
- P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie et al., Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010). https://doi.org/10.1038/nmat2608
- P. Gravan, J. Pena-Martin, J.L. de Andres, M. Pedrosa, M. Villegas-Montoya et al., Exploring the impact of nanop stealth coatings in cancer models: from pegylation to cell membrane-coating nanotechnology. ACS Appl. Mater. Interfaces 16, 2058–2074 (2024). https://doi.org/10.1021/acsami.3c13948
- R.H. Fang, A.V. Kroll, W. Gao, L. Zhang, Cell membrane coating nanotechnology. Adv. Mater. 30, e1706759 (2018). https://doi.org/10.1002/adma.201706759
- F. Danhier, O. Feron, V. Preat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 148, 135–146 (2010). https://doi.org/10.1016/j.jconrel.2010.08.027
- D.E. Lee, H. Koo, I.C. Sun, J.H. Ryu, K. Kim et al., Multifunctional nanops for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656–2672 (2012). https://doi.org/10.1039/c2cs15261d
- M.J. Ko, S. Min, H. Hong, W. Yoo, J. Joo et al., Magnetic nanops for ferroptosis cancer therapy with diagnostic imaging. Bioact. Mater. 32, 66–97 (2024). https://doi.org/10.1016/j.bioactmat.2023.09.015
- W. Wang, M. Green, J.E. Choi, M. Gijon, P.D. Kennedy et al., CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019). https://doi.org/10.1038/s41586-019-1170-y
- K. Li, Z. Zhang, Y. Mei, M. Li, Q. Yang et al., Targeting the innate immune system with nanops for cancer immunotherapy. J. Mater. Chem. B 10, 1709–1733 (2022). https://doi.org/10.1039/d1tb02818a
- K. Li, K. Xu, Y. He, Y. Yang, M. Tan et al., Oxygen self-generating nanoreactor mediated ferroptosis activation and immunotherapy in triple-negative breast cancer. ACS Nano 17, 4667–4687 (2023). https://doi.org/10.1021/acsnano.2c10893
- D.E. Large, R.G. Abdelmessih, E.A. Fink, D.T. Auguste, Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 176, 113851 (2021). https://doi.org/10.1016/j.addr.2021.113851
- M.Z. Wang, T.W. Gu, Y. Xu, L. Yang, Z.H. Jiang et al., Mechanical stretching of cells and lipid nanops for nucleic acid delivery. J. Control. Release 339, 208–219 (2021). https://doi.org/10.1016/j.jconrel.2021.09.021
- S.G. Antimisiaris, A. Marazioti, M. Kannavou, E. Natsaridis, F. Gkartziou et al., Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 174, 53–86 (2021). https://doi.org/10.1016/j.addr.2021.01.019
- W. Wang, Y. Gao, J. Xu, T. Zou, B. Yang et al., A NRF2 regulated and the immunosuppressive microenvironment reversed nanoplatform for cholangiocarcinoma photodynamic-gas therapy. Adv. Sci. 11, e2307143 (2024). https://doi.org/10.1002/advs.202307143
- Z. Gao, J. Zhang, Y. Hou, J. Lu, J. Liang et al., Boosting the synergism between cancer ferroptosis and immunotherapy via targeted stimuli-responsive liposomes. Biomaterials 305, 122442 (2024). https://doi.org/10.1016/j.biomaterials.2023.122442
- X. Kong, Z. He, Y. Zhang, Y. Fang, D. Liu et al., Intelligent self-amplifying ferroptosis-inducible nanoplatform for enhanced tumor microenvironment reconstruction and combination therapy. Chem. Eng. J. 468, 143729 (2023). https://doi.org/10.1016/j.cej.2023.143729
- M. Ghezzi, S. Pescina, C. Padula, P. Santi, E. Del Favero et al., Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 332, 312–336 (2021). https://doi.org/10.1016/j.jconrel.2021.02.031
- D. Hwang, J.D. Ramsey, A.V. Kabanov, Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 156, 80–118 (2020). https://doi.org/10.1016/j.addr.2020.09.009
- R. Song, T. Li, J. Ye, F. Sun, B. Hou et al., Acidity-activatable dynamic nanops boosting ferroptotic cell death for immunotherapy of cancer. Adv. Mater. 33, e2101155 (2021). https://doi.org/10.1002/adma.202101155
- S. He, J. Yu, M. Xu, C. Zhang, C. Xu et al., A semiconducting iron-chelating nano-immunomodulator for specific and sensitized sono-metallo-immunotherapy of cancer. Angew. Chem. Int. Ed. Engl. 62, e202310178 (2023). https://doi.org/10.1002/anie.202310178
- C. Jiang, X. Li, F. Pan, L. Zhang, H. Yu et al., Ferroptosis and pyroptosis co-activated nanomodulator for “cold” tumor immunotherapy and lung metastasis inhibition. Adv. Funct. Mater. 33, 2211698 (2023). https://doi.org/10.1002/adfm.202211698
- M.A. Beach, U. Nayanathara, Y. Gao, C. Zhang, Y. Xiong et al., Polymeric nanops for drug delivery. Chem. Rev. 124, 5505–5616 (2024). https://doi.org/10.1021/acs.chemrev.3c00705
- Z. Hong, X. Zan, T. Yu, Y. Hu, H. Gou et al., Local delivery of superagonist gene based on polymer nanops for cancer immunotherapy. Chin. Chem. Lett. 34, 107603 (2023). https://doi.org/10.1016/j.cclet.2022.06.026
- S.D. Jeong, B.K. Jung, D. Lee, J. Ha, H.G. Chang et al., Enhanced immunogenic cell death by apoptosis/ferroptosis hybrid pathway potentiates PD-L1 blockade cancer immunotherapy. ACS Biomater. Sci. Eng. 8, 5188–5198 (2022). https://doi.org/10.1021/acsbiomaterials.2c00950
- B. Yu, B. Choi, W. Li, D.H. Kim, Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat. Commun. 11, 3637 (2020). https://doi.org/10.1038/s41467-020-17380-5
- Q. Zhang, X. Wang, Y. Zhao, Z. Cheng, D. Fang et al., Nanointegrative in situ reprogramming of tumor-intrinsic lipid droplet biogenesis for low-dose radiation-activated ferroptosis immunotherapy. ACS Nano 17, 25419–25438 (2023). https://doi.org/10.1021/acsnano.3c08907
- P. Sun, L. Huang, Z. Li, Y. Yang, S. Lu et al., Charge-reversal biodegradable nanoplatform with ferroptosis and ICD induction for tumor synergistic treatment. Chem. Eng. J. 483, 149234 (2024). https://doi.org/10.1016/j.cej.2024.149234
- R. Fan, C. Chen, M. Mu, D. Chuan, H. Liu et al., Engineering MMP-2 activated nanops carrying B7–H3 bispecific antibodies for ferroptosis-enhanced glioblastoma immunotherapy. ACS Nano 17, 9126–9139 (2023). https://doi.org/10.1021/acsnano.2c12217
- L. Zhang, A. Song, Q.C. Yang, S.J. Li, S. Wang et al., Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy. Nat. Commun. 14, 5355 (2023). https://doi.org/10.1038/s41467-023-41121-z
- W. Mu, Q. Chu, Y. Liu, N. Zhang, A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nanomicro Lett. 12, 142 (2020). https://doi.org/10.1007/s40820-020-00482-6
- M. Sharifi, F. Attar, A.A. Saboury, K. Akhtari, N. Hooshmand et al., Plasmonic gold nanops: optical manipulation, imaging, drug delivery and therapy. J. Control. Release 311–312, 170–189 (2019). https://doi.org/10.1016/j.jconrel.2019.08.032
- Y. Du, M. Han, K. Cao, Q. Li, J. Pang et al., Gold nanorods exhibit intrinsic therapeutic activity via controlling N6-methyladenosine-based epitranscriptomics in acute myeloid leukemia. ACS Nano 15, 17689–17704 (2021). https://doi.org/10.1021/acsnano.1c05547
- X. Zhang, H. Ge, Y. Ma, L. Song, Y. Ma et al., Engineered anti-cancer nanomedicine for synergistic ferroptosis-immunotherapy. Chem. Eng. J. 455, 140688 (2023). https://doi.org/10.1016/j.cej.2022.140688
- J. Liu, J. Zhan, Y. Zhang, L. Huang, J. Yang et al., Ultrathin clay nanops-mediated mutual reinforcement of ferroptosis and cancer immunotherapy. Adv. Mater. 36, e2309562 (2024). https://doi.org/10.1002/adma.202309562
- Y.C. Chin, L.X. Yang, F.T. Hsu, C.W. Hsu, T.W. Chang et al., Iron oxide@chlorophyll clustered nanops eliminate bladder cancer by photodynamic immunotherapy-initiated ferroptosis and immunostimulation. J. Nanobiotechnol. 20, 373 (2022). https://doi.org/10.1186/s12951-022-01575-7
- Y. Ruan, H. Zhuang, X. Zeng, L. Lin, X. Wang et al., Engineered microbial nanohybrids for tumor-mediated NIR II photothermal enhanced ferroptosis/cuproptosis and immunotherapy. Adv. Healthc. Mater. 13, e2302537 (2024). https://doi.org/10.1002/adhm.202302537
- L. Shi, Y. Yu, J. Li, B. Ma, X. Zhang et al., NIR-responsive Cu2–xSe@Fc nanops for photothermal- ferroptosis combination therapy in esophageal cancer. J. Nanobiotechnol. 23, 356 (2025). https://doi.org/10.1186/s12951-025-03434-7
- C. Huang, X. Lin, T. Lin, W. Lin, Z. Gong et al., Multifunctional nanocomposites induce mitochondrial dysfunction and glucose deprivation to boost immunogenic ferroptosis for cancer therapy. Chem. Eng. J. 466, 143012 (2023). https://doi.org/10.1016/j.cej.2023.143012
- H. Lei, Q. Li, G. Li, T. Wang, X. Lv et al., Manganese molybdate nanodots with dual amplification of STING activation for “cycle” treatment of metalloimmunotherapy. Bioact. Mater. 31, 53–62 (2024). https://doi.org/10.1016/j.bioactmat.2023.07.026
- H. Lei, Q. Li, Z. Pei, L. Liu, N. Yang et al., Nonferrous ferroptosis inducer manganese molybdate nanops to enhance tumor immunotherapy. Small 19, e2303438 (2023). https://doi.org/10.1002/smll.202303438
- S. Fu, Y. Li, L. Shen, Y. Chen, J. Lu et al., Cu2WS4-PEG nanozyme as multifunctional sensitizers for enhancing immuno-radiotherapy by inducing ferroptosis. Small 20, e2309537 (2024). https://doi.org/10.1002/smll.202309537
- Y. Bao, G. Li, S. Li, H. Zhang, X. Wu et al., Multifunctional tumor-targeting carbon dots for tumor microenvironment activated ferroptosis and immunotherapy in cancer treatment. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c13867
- L. Yao, M.M. Zhao, Q.W. Luo, Y.C. Zhang, T.T. Liu et al., Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity. ACS Nano 16, 9228–9239 (2022). https://doi.org/10.1021/acsnano.2c01619
- Y. Feng, N. Panwar, D.J.H. Tng, S.C. Tjin, K. Wang et al., The application of mesoporous silica nanop family in cancer theranostics. Coord. Chem. Rev. 319, 86–109 (2016). https://doi.org/10.1016/j.ccr.2016.04.019
- H. Chen, J. Song, Y. Wang, T. Wang, F. Zhang et al., “Triple-Hop” nano-bomb combining CDT, PDT and immunetherapy for NIR-triggered cancer therapy. Chem. Eng. J. 481, 148268 (2024). https://doi.org/10.1016/j.cej.2023.148268
- X. Deng, T. Liu, Y. Zhu, J. Chen, Z. Song et al., Ca & Mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening. Bioact. Mater. 33, 483–496 (2024). https://doi.org/10.1016/j.bioactmat.2023.11.017
- W. Liang, P. Wied, F. Carraro, C.J. Sumby, B. Nidetzky et al., Metal-organic framework-based enzyme biocomposites. Chem. Rev. 121, 1077–1129 (2021). https://doi.org/10.1021/acs.chemrev.0c01029
- R. Liu, J. Yang, Y. Du, X. Yu, Y. Liao et al., A “one arrow three eagle” strategy to improve CM-272 primed bladder cancer immunotherapy. Adv. Mater. 36, e2310522 (2024). https://doi.org/10.1002/adma.202310522
- Y. Xu, Y. Guo, C. Zhang, M. Zhan, L. Jia et al., Fibronectin-coated metal-phenolic networks for cooperative tumor chemo-/chemodynamic/immune therapy via enhanced ferroptosis-mediated immunogenic cell death. ACS Nano 16, 984–996 (2022). https://doi.org/10.1021/acsnano.1c08585
- Y. Li, Y. Duan, Y. Li, Y. Gu, L. Zhou et al., Cascade loop of ferroptosis induction and immunotherapy based on metal-phenolic networks for combined therapy of colorectal cancer. Exploration 5, 20230117 (2025). https://doi.org/10.1002/EXP.20230117
- X. Zhao, X. Wang, W. Zhang, T. Tian, J. Zhang et al., A ferroptosis-inducing arsenene-iridium nanoplatform for synergistic immunotherapy in pancreatic cancer. Angew. Chem. Int. Ed. Engl. 63, e202400829 (2024). https://doi.org/10.1002/anie.202400829
- Y. Liu, R. Niu, R. Deng, S. Song, Y. Wang et al., Multi-enzyme co-expressed dual-atom nanozymes induce cascade immunogenic ferroptosis via activating interferon-gamma and targeting arachidonic acid metabolism. J. Am. Chem. Soc. 145, 8965–8978 (2023). https://doi.org/10.1021/jacs.2c13689
- D. Mendanha, J. Vieira de Castro, H. Ferreira, N.M. Neves, Biomimetic and cell-based nanocarriers: new strategies for brain tumor targeting. J. Control. Release 337, 482–493 (2021). https://doi.org/10.1016/j.jconrel.2021.07.047
- R.H. Fang, W. Gao, L. Zhang, Targeting drugs to tumours using cell membrane-coated nanops. Nat. Rev. Clin. Oncol. 20, 33–48 (2023). https://doi.org/10.1038/s41571-022-00699-x
- P.L. Rodriguez, T. Harada, D.A. Christian, D.A. Pantano, R.K. Tsai et al., Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanops. Science 339, 971–975 (2013). https://doi.org/10.1126/science.1229568
- Y. Wang, H. Xu, D. Wang, Y. Lu, Y. Zhang et al., Synergistic reinforcement of immunogenic cell death and transformation of tumor-associated macrophages via an M1-type macrophage membrane-camouflaged ferrous-supply-regeneration nanoplatform. Acta Biomater. 174, 358–371 (2024). https://doi.org/10.1016/j.actbio.2023.11.041
- M. Chen, Y. Shen, Y. Pu, B. Zhou, J. Bing et al., Biomimetic inducer enabled dual ferroptosis of tumor and M2-type macrophages for enhanced tumor immunotherapy. Biomaterials 303, 122386 (2023). https://doi.org/10.1016/j.biomaterials.2023.122386
- Y. Ma, X. Zhao, P. Tian, K. Xu, J. Luo et al., Laser-ignited lipid peroxidation nanoamplifiers for strengthening tumor photodynamic therapy through aggravating ferroptotic propagation and sustainable high immunogenicity. Small 20, e2306402 (2024). https://doi.org/10.1002/smll.202306402
- Q. Jiang, K. Wang, X. Zhang, B. Ouyang, H. Liu et al., Platelet membrane-camouflaged magnetic nanops for ferroptosis-enhanced cancer immunotherapy. Small 16, e2001704 (2020). https://doi.org/10.1002/smll.202001704
- T. Xu, Y. Ma, Q. Yuan, H. Hu, X. Hu et al., Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano 14, 3414–3425 (2020). https://doi.org/10.1021/acsnano.9b09426
- X. Yu, X. Li, Q. Chen, S. Wang, R. Xu et al., High intensity focused ultrasound-driven nanomotor for effective ferroptosis-immunotherapy of TNBC. Adv. Sci. 11, e2305546 (2024). https://doi.org/10.1002/advs.202305546
- Y. Yu, X. Shen, X. Xiao, L. Li, Y. Huang, Butyrate modification promotes intestinal absorption and hepatic cancer cells targeting of ferroptosis inducer loaded nanop for enhanced hepatocellular carcinoma therapy. Small 19, e2301149 (2023). https://doi.org/10.1002/smll.202301149
- G. Song, M. Li, S. Fan, M. Qin, B. Shao et al., Boosting synergism of chemo- and immuno-therapies via switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis by bisphosphonate coordination lipid nanogranules. Acta. Pharm. Sin. B 14, 836–853 (2024). https://doi.org/10.1016/j.apsb.2023.08.029
- W. Guo, Z. Wu, J. Chen, S. Guo, W. You et al., Nanop delivery of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by promoting ferroptosis. J. Immunother. Cancer (2022). https://doi.org/10.1136/jitc-2021-004381
- Y. Zou, B. Jin, H. Li, X. Wu, Y. Liu et al., Cold nanozyme for precise enzymatic antitumor immunity. ACS Nano 16, 21491–21504 (2022). https://doi.org/10.1021/acsnano.2c10057
- D. Li, J. Ren, J. Li, Y. Zhang, Y. Lou et al., Ferroptosis-apoptosis combined anti-melanoma immunotherapy with a NIR-responsive upconverting mSiO2 photodynamic platform. Chem. Eng. J. 419, 129557 (2021). https://doi.org/10.1016/j.cej.2021.129557
- K. Zhang, Z. Ma, S. Li, Y. Wu, J. Zhang et al., Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor. Biomaterials 284, 121502 (2022). https://doi.org/10.1016/j.biomaterials.2022.121502
- P. Liu, X. Shi, Y. Peng, J. Hu, J. Ding et al., Anti-PD-L1 dnazyme loaded photothermal Mn2+/Fe3+ hybrid metal-phenolic networks for cyclically amplified tumor ferroptosis-immunotherapy. Adv. Healthc. Mater. 11, e2102315 (2022). https://doi.org/10.1002/adhm.202102315
- Y. Cai, Y. Jiang, Y. Chen, E. Cheng, Y. Gu et al., Amplifying STING activation and immunogenic cell death by metal-polyphenol coordinated nanomedicines for enhanced cancer immunotherapy. Chin. Chem. Lett. 36, 110437 (2025). https://doi.org/10.1016/j.cclet.2024.110437
- K. Sun, J. Yu, J. Hu, W. Yang, X. Chu et al., Photothermal enhanced polyphenol-based nanofibers ameliorate catalytic efficiency of ferroptosis for synergistic tumor therapy. Chem. Eng. J. 470, 144360 (2023). https://doi.org/10.1016/j.cej.2023.144360
- T. Nie, H. Liu, Z. Fang, Y. Zheng, R. Zhang et al., Tumor microenvironment mediated spermidine-metal-immunopeptide nanocomplex for boosting ferroptotic immunotherapy of lymphoma. ACS Nano 17, 10925–10937 (2023). https://doi.org/10.1021/acsnano.3c02803
- C.-M. Lai, J. Xu, B.-C. Zhang, S.-H. He, J.-W. Shao, A natural product-derived nanozyme regulator induced chemo-ferroptosis dual therapy in remodeling of the tumor immune microenvironment of hepatocellular carcinoma. Chem. Eng. J. 482, 148976 (2024). https://doi.org/10.1016/j.cej.2024.148976
- W. Guo, Z. Chen, Z. Li, H. Huang, Y. Ren et al., Cancer cell membrane biomimetic mesoporous silica nanotheranostics for enhanced ferroptosis-mediated immuogenic cell death on gastric cancer. Chem. Eng. J. 455, 140868 (2023). https://doi.org/10.1016/j.cej.2022.140868
- H. Yang, X. Yao, Y. Liu, X. Shen, M. Li et al., Ferroptosis nanomedicine: clinical challenges and opportunities for modulating tumor metabolic and immunological landscape. ACS Nano 17, 15328–15353 (2023). https://doi.org/10.1021/acsnano.3c04632
- H. Wang, C. Qiao, Q. Guan, M. Wei, Z. Li, Nanop-mediated synergistic anticancer effect of ferroptosis and photodynamic therapy: novel insights and perspectives. Asian J. Pharm. Sci. 18, 100829 (2023). https://doi.org/10.1016/j.ajps.2023.100829
- H. Lee, A.K. Lytton-Jean, Y. Chen, K.T. Love, A.I. Park et al., Molecularly self-assembled nucleic acid nanops for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012). https://doi.org/10.1038/nnano.2012.73
- P. Decuzzi, B. Godin, T. Tanaka, S.Y. Lee, C. Chiappini et al., Size and shape effects in the biodistribution of intravascularly injected ps. J. Control. Release 141, 320–327 (2010). https://doi.org/10.1016/j.jconrel.2009.10.014
- C. Kinnear, T.L. Moore, L. Rodriguez-Lorenzo, B. Rothen-Rutishauser, A. Petri-Fink, Form follows function: nanop shape and its implications for nanomedicine. Chem. Rev. 117, 11476–11521 (2017). https://doi.org/10.1021/acs.chemrev.7b00194
- N. Doshi, S. Mitragotri, Needle-shaped polymeric ps induce transient disruption of cell membranes. J. R. Soc. Interface. 7, S403-410 (2010). https://doi.org/10.1098/rsif.2010.0134.focus
- H. Wang, D. Jiao, D. Feng, Q. Liu, Y. Huang et al., Transformable supramolecular self-assembled peptides for cascade self-enhanced ferroptosis primed cancer immunotherapy. Adv. Mater. 36, e2311733 (2024). https://doi.org/10.1002/adma.202311733
- T. Sun, Y.S. Zhang, B. Pang, D.C. Hyun, M. Yang et al., Engineered nanops for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 53, 12320–12364 (2014). https://doi.org/10.1002/anie.201403036
- X. Duan, Y. Li, Physicochemical characteristics of nanops affect circulation, biodistribution, cellular internalization, and trafficking. Small 9, 1521–1532 (2013). https://doi.org/10.1002/smll.201201390
- K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Therapeutic nanops for drug delivery in cancer. Clin. Cancer Res. 14, 1310–1316 (2008). https://doi.org/10.1158/1078-0432.CCR-07-1441
- N.X. Zhu, Z.W. Wei, C.X. Chen, D. Wang, C.C. Cao et al., Self-generation of surface roughness by low-surface-energy alkyl chains for highly stable superhydrophobic/superoleophilic MOFs with multiple functionalities. Angew. Chem. Int. Ed. Engl. 58, 17033–17040 (2019). https://doi.org/10.1002/anie.201909912
- N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Degradable controlled-release polymers and polymeric nanops: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016). https://doi.org/10.1021/acs.chemrev.5b00346
- H.B. Na, I.C. Song, T. Hyeon, Inorganic nanops for MRI contrast agents. Adv. Mater. 21, 2133–2148 (2009). https://doi.org/10.1002/adma.200802366
- Q. Fu, R. Zhu, J. Song, H. Yang, X. Chen, Photoacoustic imaging: contrast agents and their biomedical applications. Adv. Mater. 31, 1805875 (2019). https://doi.org/10.1002/adma.201805875
- Y. Qiu, Z. Wu, Y. Chen, J. Liao, Q. Zhang et al., Nano ultrasound contrast agent for synergistic chemo-photothermal therapy and enhanced immunotherapy against liver cancer and metastasis. Adv. Sci. 10, e2300878 (2023). https://doi.org/10.1002/advs.202300878
- J. Ren, J. Zhou, H. Liu, X. Jiao, Y. Cao et al., Ultrasound (US)-activated redox dyshomeostasis therapy reinforced by immunogenic cell death (ICD) through a mitochondrial targeting liposomal nanosystem. Theranostics 11, 9470–9491 (2021). https://doi.org/10.7150/thno.62984
- T. Zuo, T. Fang, J. Zhang, J. Yang, R. Xu et al., pH-Sensitive molecular-switch-containing polymer nanop for breast cancer therapy with ferritinophagy-cascade ferroptosis and tumor immune activation. Adv. Healthc. Mater. 10, e2100683 (2021). https://doi.org/10.1002/adhm.202100683
- L. Cheng, Y. Qiu, L. He, H. Wang, M. Zheng et al., Advancing immunotherapy in triple negative breast Cancer: a novel multimodal theranostic nanoplatform integrating synergetic ferroptosis and photothermal therapy. Chem. Eng. J. 485, 150057 (2024). https://doi.org/10.1016/j.cej.2024.150057
- Y. Wang, F. Chen, H. Zhou, L. Huang, J. Ye et al., Redox dyshomeostasis with dual stimuli-activatable dihydroartemisinin nanops to potentiate ferroptotic therapy of pancreatic cancer. Small Methods 7, e2200888 (2023). https://doi.org/10.1002/smtd.202200888
- Y. Cao, S. Liu, Y. Ma, L. Ma, M. Zu et al., Oral nanomotor-enabled mucus traverse and tumor penetration for targeted chemo-sono-immunotherapy against colon cancer. Small 18, e2203466 (2022). https://doi.org/10.1002/smll.202203466
- H. Liang, X. Wu, G. Zhao, K. Feng, K. Ni et al., Renal clearable ultrasmall single-crystal Fe nanops for highly selective and effective ferroptosis therapy and immunotherapy. J. Am. Chem. Soc. 143, 15812–15823 (2021). https://doi.org/10.1021/jacs.1c07471
- Y. Li, Y. Cao, K. Ma, R. Ma, M. Zhang et al., A triple-responsive polymeric prodrug nanoplatform with extracellular ROS consumption and intracellular H2O2 self-generation for imaging-guided tumor chemo-ferroptosis-immunotherapy. Adv. Healthc. Mater. 13, e2303568 (2024). https://doi.org/10.1002/adhm.202303568
- F. Wang, G. Dong, M. Ding, N. Yu, C. Sheng et al., Dual-programmable semiconducting polymer nanoPROTACs for deep-tissue sonodynamic-ferroptosis activatable immunotherapy. Small 20, e2306378 (2024). https://doi.org/10.1002/smll.202306378
- L. Lei, Z. Dong, L. Xu, F. Yang, B. Yin et al., Metal-fluorouracil networks with disruption of mitochondrion enhanced ferroptosis for synergistic immune activation. Theranostics 12, 6207–6222 (2022). https://doi.org/10.7150/thno.75323
- Z. He, H. Zhou, Q. Feng, Y. Zhang, S. Gao et al., A bimetallic dual-targeting nanoplatform for combinational ferroptosis activation/epigenetic regulation/photothermal therapy against breast cancer and tumor microenvironment remodeling. Chem. Eng. J. 479, 147466 (2024). https://doi.org/10.1016/j.cej.2023.147466
- S. Wang, Q. Guo, R. Xu, P. Lin, G. Deng et al., Correction: Combination of ferroptosis and pyroptosis dual induction by triptolide nano-MOFs for immunotherapy of Melanoma. J. Nanobiotechnol. 22, 415 (2024). https://doi.org/10.1186/s12951-024-02624-z
- F. Zhang, F. Li, G.H. Lu, W. Nie, L. Zhang et al., Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS Nano 13, 5662–5673 (2019). https://doi.org/10.1021/acsnano.9b00892
- B. Xie, H. Zhao, Y.F. Ding, Z. Wang, C. Gao et al., Supramolecularly engineered conjugate of bacteria and cell membrane-coated magnetic nanops for enhanced ferroptosis and immunotherapy of tumors. Adv. Sci. 10, e2304407 (2023). https://doi.org/10.1002/advs.202304407
- I. Costa, D.J. Barbosa, S. Benfeito, V. Silva, D. Chavarria et al., Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol. Ther. 244, 108373 (2023). https://doi.org/10.1016/j.pharmthera.2023.108373
- Y. Xie, W. Hou, X. Song, Y. Yu, J. Huang et al., Ferroptosis: process and function. Cell Death Differ. 23, 369–379 (2016). https://doi.org/10.1038/cdd.2015.158
- Y. Zhou, K. Chen, W.K. Lin, J. Liu, W. Kang et al., Photo-enhanced synergistic induction of ferroptosis for anti-cancer immunotherapy. Adv. Healthc. Mater. 12, e2300994 (2023). https://doi.org/10.1002/adhm.202300994
- P. Manivasagan, A. Joe, H.W. Han, T. Thambi, M. Selvaraj et al., Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Mater. Today Bio. 13, 100197 (2022). https://doi.org/10.1016/j.mtbio.2021.100197
- Q. Zhang, Y. Li, C. Jiang, W. Sun, J. Tao et al., Near-infrared light-enhanced generation of hydroxyl radical for cancer immunotherapy. Adv. Healthc. Mater. 12, e2301502 (2023). https://doi.org/10.1002/adhm.202301502
- Z. Zhou, H. Liang, R. Yang, Y. Yang, J. Dong et al., Glutathione depletion-induced activation of dimersomes for potentiating the ferroptosis and immunotherapy of “cold” tumor. Angew. Chem. Int. Ed. Engl. 61, e202202843 (2022). https://doi.org/10.1002/anie.202202843
- Y. Liu, X. Quan, J. Li, J. Huo, X. Li et al., Liposomes embedded with PEGylated iron oxide nanops enable ferroptosis and combination therapy in cancer. Natl. Sci. Rev. 10, nwac167 (2023). https://doi.org/10.1093/nsr/nwac167
- P. Li, D. Wang, J. Hu, X. Yang, The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv. Drug Deliv. Rev. 189, 114447 (2022). https://doi.org/10.1016/j.addr.2022.114447
- B. Park, S. Park, J. Kim, C. Kim, Listening to drug delivery and responses via photoacoustic imaging. Adv. Drug Deliv. Rev. 184, 114235 (2022). https://doi.org/10.1016/j.addr.2022.114235
- R. Qiao, C. Yang, M. Gao, Superparamagnetic iron oxide nanops: from preparations to in vivo MRI applications. J. Mater. Chem. 19, 6274–6293 (2009). https://doi.org/10.1039/B902394A
- C.L. Degen, M. Poggio, H.J. Mamin, C.T. Rettner, D. Rugar, Nanoscale magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A. 106, 1313–1317 (2009). https://doi.org/10.1073/pnas.0812068106
- Z. Gao, T. Ma, E. Zhao, D. Docter, W. Yang et al., Small is smarter: nano MRI contrast agents—advantages and recent achievements. Small 12, 556–576 (2016). https://doi.org/10.1002/smll.201502309
- L. Zhang, M. Qiu, R. Wang, S. Li, X. Liu et al., Monitoring ROS responsive Fe3O4-based nanop mediated ferroptosis and immunotherapy via 129Xe MRI. Angew. Chem. Int. Ed. Engl. 63, e202403771 (2024). https://doi.org/10.1002/anie.202403771
- C. Li, G. Chen, Y. Zhang, F. Wu, Q. Wang, advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 142, 14789–14804 (2020). https://doi.org/10.1021/jacs.0c07022
- S. Zhu, R. Tian, A.L. Antaris, X. Chen, H. Dai, Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 31, e1900321 (2019). https://doi.org/10.1002/adma.201900321
- M. Cronin, M. Seher, S. Arsang-Jang, A. Lowery, M. Kerin et al., Multimodal imaging of cancer therapy-related cardiac dysfunction in breast cancer-a state-of-the-art review. J. Clin. Med. (2023). https://doi.org/10.3390/jcm12196295
- L. Xie, J. Li, G. Wang, W. Sang, M. Xu et al., Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J. Am. Chem. Soc. 144, 787–797 (2022). https://doi.org/10.1021/jacs.1c09753
- V.R. Shinde, N. Revi, S. Murugappan, S.P. Singh, A.K. Rengan, Enhanced permeability and retention effect: a key facilitator for solid tumor targeting by nanops. Photodiagn. Photodyn. Ther. 39, 102915 (2022). https://doi.org/10.1016/j.pdpdt.2022.102915
- Z. Zhang, Y. Ji, N. Hu, Q. Yu, X. Zhang et al., Ferroptosis-induced anticancer effect of resveratrol with a biomimetic nano-delivery system in colorectal cancer treatment. Asian J. Pharm. Sci. 17, 751–766 (2022). https://doi.org/10.1016/j.ajps.2022.07.006
- G. Wang, L. Xie, B. Li, W. Sang, J. Yan et al., A nanounit strategy reverses immune suppression of exosomal PD-L1 and is associated with enhanced ferroptosis. Nat. Commun. 12, 5733 (2021). https://doi.org/10.1038/s41467-021-25990-w
- J. Li, Y.C. Jia, Y.X. Ding, J. Bai, F. Cao et al., The crosstalk between ferroptosis and mitochondrial dynamic regulatory networks. Int. J. Biol. Sci. 19, 2756–2771 (2023). https://doi.org/10.7150/ijbs.83348
- L. Bejarano, M.J.C. Jordao, J.A. Joyce, Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021). https://doi.org/10.1158/2159-8290.CD-20-1808
- E. Sahai, I. Astsaturov, E. Cukierman, D.G. DeNardo, M. Egeblad et al., A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020). https://doi.org/10.1038/s41568-019-0238-1
- B. Tang, J. Zhu, Y. Wang, W. Chen, S. Fang et al., Targeted xCT-mediated ferroptosis and protumoral polarization of macrophages is effective against hcc and enhances the efficacy of the anti-PD-1/L1 response. Adv. Sci. 10, 2203973 (2023). https://doi.org/10.1002/advs.202203973
- Q. Li, R. Su, X. Bao, K. Cao, Y. Du et al., Glycyrrhetinic acid nanops combined with ferrotherapy for improved cancer immunotherapy. Acta Biomater. 144, 109–120 (2022). https://doi.org/10.1016/j.actbio.2022.03.030
- Z. He, H. Zhou, Y. Zhang, X. Du, S. Liu et al., Oxygen-boosted biomimetic nanoplatform for synergetic phototherapy/ferroptosis activation and reversal of immune-suppressed tumor microenvironment. Biomaterials 290, 121832 (2022). https://doi.org/10.1016/j.biomaterials.2022.121832
- Z. Yan, Y. Liu, L. Zhao, J. Hu, Y. Du et al., In situ stimulus-responsive self-assembled nanomaterials for drug delivery and disease treatment. Mater. Horiz. 10, 3197–3217 (2023). https://doi.org/10.1039/d3mh00592e
- X. Wu, Z. Zhou, K. Li, S. Liu, Nanomaterials-induced redox imbalance: challenged and opportunities for nanomaterials in cancer therapy. Adv. Sci. 11, e2308632 (2024). https://doi.org/10.1002/advs.202308632
- Y. Wei, F. Shen, H. Song, R. Zhao, W. Feng et al., The challenge and opportunity of gut microbiota-targeted nanomedicine for colorectal cancer therapy. Imeta 3, e213 (2024). https://doi.org/10.1002/imt2.213
- W.C. Chou, Q. Chen, L. Yuan, Y.H. Cheng, C. He et al., An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanop delivery to tumors in mice. J. Control. Release 361, 53–63 (2023). https://doi.org/10.1016/j.jconrel.2023.07.040
- L. Sun, H. Liu, Y. Ye, Y. Lei, R. Islam et al., Smart nanops for cancer therapy. Signal Transduct. Target. Ther. 8, 418 (2023). https://doi.org/10.1038/s41392-023-01642-x
- O. Adir, M. Poley, G. Chen, S. Froim, N. Krinsky et al., Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 32, e1901989 (2020). https://doi.org/10.1002/adma.201901989
- L. Nuhn, Artificial intelligence assists nanops to enter solid tumours. Nat. Nanotechnol. 18, 550–551 (2023). https://doi.org/10.1038/s41565-023-01382-7
- L. Rao, Y. Yuan, X. Shen, G. Yu, X. Chen, Designing nanotheranostics with machine learning. Nat. Nanotechnol. 19, 1769–1781 (2024). https://doi.org/10.1038/s41565-024-01753-8
- J. Yang, S. Ma, R. Xu, Y. Wei, J. Zhang et al., Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J. Control. Release 334, 21–33 (2021). https://doi.org/10.1016/j.jconrel.2021.04.013
- Y. Wang, C. Wu, C. Feng, Q. Chen, Z. He et al., Spatiotemporally-controlled supramolecular hybrid nanoassembly enabling ferroptosis-augmented photodynamic immunotherapy of cancer. Chin. Chem. Lett. 36, 109902 (2025). https://doi.org/10.1016/j.cclet.2024.109902
- J. Li, Y. Zhou, J. Liu, X. Yang, K. Zhang et al., Metal-phenolic networks with ferroptosis to deliver NIR-responsive CO for synergistic therapy. J. Control. Release 352, 313–327 (2022). https://doi.org/10.1016/j.jconrel.2022.10.025
- M. Chang, M. Wang, B. Liu, W. Zhong, D. Jana et al., A cancer nanovaccine based on an feal-layered double hydroxide framework for reactive oxygen species-augmented metalloimmunotherapy. ACS Nano 18, 8143–8156 (2024). https://doi.org/10.1021/acsnano.3c11960
- Z. Wang, P. Zhou, Y. Li, D. Zhang, F. Chu et al., A bimetallic polymerization network for effective increase in labile iron pool and robust activation of cGAS/STING induces ferroptosis-based tumor immunotherapy. Small 20, e2308397 (2024). https://doi.org/10.1002/smll.202308397
- J.L. Liang, X.K. Jin, S.M. Zhang, Q.X. Huang, P. Ji et al., Specific activation of cGAS-STING pathway by nanotherapeutics-mediated ferroptosis evoked endogenous signaling for boosting systemic tumor immunotherapy. Sci. Bull. 68, 622–636 (2023). https://doi.org/10.1016/j.scib.2023.02.027
- S. Guo, W. Xiong, J. Zhu, J. Feng, R. Zhou et al., A STING pathway-activatable contrast agent for MRI-guided tumor immunoferroptosis synergistic therapy. Biomaterials 302, 122300 (2023). https://doi.org/10.1016/j.biomaterials.2023.122300
- P. Huang, Y. Yang, W. Wang, Z. Li, N. Gao et al., Self-driven nanoprodrug platform with enhanced ferroptosis for synergistic photothermal-IDO immunotherapy. Biomaterials 299, 122157 (2023). https://doi.org/10.1016/j.biomaterials.2023.122157
- X. Zhu, W. Zheng, X. Wang, Z. Li, X. Shen et al., Enhanced photodynamic therapy synergizing with inhibition of tumor neutrophil ferroptosis boosts anti-PD-1 therapy of gastric cancer. Adv. Sci. 11, e2307870 (2024). https://doi.org/10.1002/advs.202307870
- U. Harjes, Tumour immunology: tumours copy to escape. Nat. Rev. Cancer 17, 453 (2017). https://doi.org/10.1038/nrc.2017.66
- L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, G. Kroemer, Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015). https://doi.org/10.1016/j.ccell.2015.10.012
- J. Li, S. Zhou, J. Yu, W. Cai, Y. Yang et al., Low dose shikonin and anthracyclines coloaded liposomes induce robust immunogenetic cell death for synergistic chemo-immunotherapy. J. Control. Release 335, 306–319 (2021). https://doi.org/10.1016/j.jconrel.2021.05.040
- D.A. Jaffray, Image-guided radiotherapy: from current concept to future perspectives. Nat. Rev. Clin. Oncol. 9, 688–699 (2012). https://doi.org/10.1038/nrclinonc.2012.194
- S. Guo, Y. Yao, Y. Tang, Z. Xin, D. Wu et al., Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct. Target. Ther. 8, 205 (2023). https://doi.org/10.1038/s41392-023-01462-z
- J. Huang, F. Liu, X. Han, L. Zhang, Z. Hu et al., Nanosonosensitizers for highly efficient sonodynamic cancer theranostics. Theranostics 8, 6178–6194 (2018). https://doi.org/10.7150/thno.29569
- Q. Xu, G. Zhan, Z. Zhang, T. Yong, X. Yang et al., Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors. Theranostics 11, 1937–1952 (2021). https://doi.org/10.7150/thno.45511
- Q. Chen, Q. Hu, E. Dukhovlinova, G. Chen, S. Ahn et al., Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 31, e1900192 (2019). https://doi.org/10.1002/adma.201900192
- P. Tsvetkov, S. Coy, B. Petrova, M. Dreishpoon, A. Verma et al., Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022). https://doi.org/10.1126/science.abf0529
- M. Ji, H. Liu, X. Liang, M. Wei, D. Shi et al., Tumor cells are under siege from all sides: tumor cell-mimic metal−organic framework nanops triggering cuproptosis/ferroptosis/apoptosis for chemo-chemodynamic-photothermal-immunological synergistic antitumor therapy. Chem. Eng. J. 485, 149640 (2024). https://doi.org/10.1016/j.cej.2024.149640
- S. Li, M. Luo, Z. Wang, Q. Feng, J. Wilhelm et al., Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat. Biomed. Eng. 5, 455–466 (2021). https://doi.org/10.1038/s41551-020-00675-9
- C. Wang, Y. Guan, M. Lv, R. Zhang, Z. Guo et al., Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 48, 675–687 (2018). https://doi.org/10.1016/j.immuni.2018.03.017
- M. Du, Z.J. Chen, DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018). https://doi.org/10.1126/science.aat1022
- J. Tan, B. Ding, B. Teng, P. Ma, J. Lin, Understanding structure–function relationships of nanoadjuvants for enhanced cancer vaccine efficacy. Adv. Funct. Mater. 32, 2111670 (2022). https://doi.org/10.1002/adfm.202111670
- J. Tan, B. Ding, P. Zheng, H. Chen, P. Ma et al., Hollow aluminum hydroxide modified silica nanoadjuvants with amplified immunotherapy effects through immunogenic cell death induction and antigen release. Small 18, e2202462 (2022). https://doi.org/10.1002/smll.202202462
- W. Shi, W. Feng, S. Li, Y. Cui, S. Liu et al., Ferroptosis and necroptosis produced autologous tumor cell lysates co-delivering with combined immnoadjuvants as personalized in situ nanovaccines for antitumor immunity. ACS Nano 17, 14475–14493 (2023). https://doi.org/10.1021/acsnano.3c00901
- M.S. Carlino, J. Larkin, G.V. Long, Immune checkpoint inhibitors in melanoma. Lancet 398, 1002–1014 (2021). https://doi.org/10.1016/S0140-6736(21)01206-X
- S.P. Kubli, T. Berger, D.V. Araujo, L.L. Siu, T.W. Mak, Beyond immune checkpoint blockade: emerging immunological strategies. Nat. Rev. Drug Discov. 20, 899–919 (2021). https://doi.org/10.1038/s41573-021-00155-y
- D.B. Doroshow, S. Bhalla, M.B. Beasley, L.M. Sholl, K.M. Kerr et al., PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021). https://doi.org/10.1038/s41571-021-00473-5
- H. Yamaguchi, J.M. Hsu, W.H. Yang, M.C. Hung, Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol. 19, 287–305 (2022). https://doi.org/10.1038/s41571-022-00601-9
- S. Liu, H. Wang, X. Shao, H. Chen, S. Chao et al., Advances in PD-1 signaling inhibition-based nano-delivery systems for tumor therapy. J. Nanobiotechnology 21, 207 (2023). https://doi.org/10.1186/s12951-023-01966-4
- M.K. Islam, J. Stanslas, Peptide-based and small molecule PD-1 and PD-L1 pharmacological modulators in the treatment of cancer. Pharmacol. Ther. 227, 107870 (2021). https://doi.org/10.1016/j.pharmthera.2021.107870
- H. Acar, J.M. Ting, S. Srivastava, J.L. LaBelle, M.V. Tirrell, Molecular engineering solutions for therapeutic peptide delivery. Chem. Soc. Rev. 46, 6553–6569 (2017). https://doi.org/10.1039/c7cs00536a
- Sristi, G. Gupta, M.A.S. Abourehab, A. Sahebkar, P. Kesharwani, Recent advances in PD-L1 siRNA nanocarriers for cancer therapy. Int. J. Biol. Macromol. 311, 143994 (2025). https://doi.org/10.1016/j.ijbiomac.2025.143994
- B. Rowshanravan, N. Halliday, D.M. Sansom, CTLA-4: a moving target in immunotherapy. Blood 131, 58–67 (2018). https://doi.org/10.1182/blood-2017-06-741033
- Y. Guo, Y. Liu, W. Wu, D. Ling, Q. Zhang et al., Indoleamine 2,3-dioxygenase (Ido) inhibitors and their nanomedicines for cancer immunotherapy. Biomaterials 276, 121018 (2021). https://doi.org/10.1016/j.biomaterials.2021.121018
- M.E.W. Logtenberg, F.A. Scheeren, T.N. Schumacher, The CD47-SIRPα immune checkpoint. Immunity 52, 742–752 (2020). https://doi.org/10.1016/j.immuni.2020.04.011
- Y. Tie, F. Tang, Y.Q. Wei, X.W. Wei, Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J. Hematol. Oncol. 15, 61 (2022). https://doi.org/10.1186/s13045-022-01282-8
- A. Mantovani, P. Allavena, F. Marchesi, C. Garlanda, Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022). https://doi.org/10.1038/s41573-022-00520-5
- Z. Gu, T. Liu, J. Tang, Y. Yang, H. Song et al., Mechanism of iron oxide-induced macrophage activation: the impact of composition and the underlying signaling pathway. J. Am. Chem. Soc. 141, 6122–6126 (2019). https://doi.org/10.1021/jacs.8b10904
- R. Kim, A. Hashimoto, N. Markosyan, V.A. Tyurin, Y.Y. Tyurina et al., Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022). https://doi.org/10.1038/s41586-022-05443-0
- Q. Wu, L. You, E. Nepovimova, Z. Heger, W. Wu et al., Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J. Hematol. Oncol. 15, 77 (2022). https://doi.org/10.1186/s13045-022-01292-6
- D.C. Fuhrmann, A. Mondorf, J. Beifuss, M. Jung, B. Brune, Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 36, 101670 (2020). https://doi.org/10.1016/j.redox.2020.101670
- J. Lu, J. Wang, D. Ling, Surface engineering of nanops for targeted delivery to hepatocellular carcinoma. Small (2018). https://doi.org/10.1002/smll.201702037
- J. Prakash, Y. Shaked, The Interplay between extracellular matrix remodeling and cancer therapeutics. Cancer Discov. 14, 1375–1388 (2024). https://doi.org/10.1158/2159-8290.CD-24-0002
- G. Lei, L. Zhuang, B. Gan, The roles of ferroptosis in cancer: tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell 42, 513–534 (2024). https://doi.org/10.1016/j.ccell.2024.03.011
- Z. Lin, S. Zou, K. Wen, The crosstalk of CD8+ T cells and ferroptosis in cancer. Front. Immunol. 14, 1255443 (2023). https://doi.org/10.3389/fimmu.2023.1255443
- H. Xu, D. Ye, M. Ren, H. Zhang, F. Bi, Ferroptosis in the tumor microenvironment: perspectives for immunotherapy. Trends Mol. Med. 27, 856–867 (2021). https://doi.org/10.1016/j.molmed.2021.06.014
- R. Kim, D. Taylor, R.H. Vonderheide, D.I. Gabrilovich, Ferroptosis of immune cells in the tumor microenvironment. Trends Pharmacol. Sci. 44, 542–552 (2023). https://doi.org/10.1016/j.tips.2023.06.005
- C. Bruedigam, A.H. Porter, A. Song, G. Vroeg in de Wei, T. Stoll et al., Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia. Nat. Cancer 5, 47–65 (2024). https://doi.org/10.1038/s43018-023-00653-5
- C.H. Hsieh, H.C. Hsieh, F.S. Shih, P.W. Wang, L.X. Yang et al., An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics 11, 7072–7091 (2021). https://doi.org/10.7150/thno.57803
- S.J. Dixon, D.N. Patel, M. Welsch, R. Skouta, E.D. Lee et al., Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3, e02523 (2014). https://doi.org/10.7554/eLife.02523
- S. Ma, E.S. Henson, Y. Chen, S.B. Gibson, Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7, e2307–e2307 (2016). https://doi.org/10.1038/cddis.2016.208
- J.H. Woo, Y. Shimoni, W.S. Yang, P. Subramaniam, A. Iyer et al., Elucidating compound mechanism of action by network perturbation analysis. Cell 162, 441–451 (2015). https://doi.org/10.1016/j.cell.2015.05.056
- S. Pisanti, P. Picardi, E. Ciaglia, A. D’Alessandro, M. Bifulco, Novel prospects of statins as therapeutic agents in cancer. Pharmacol. Res. 88, 84–98 (2014). https://doi.org/10.1016/j.phrs.2014.06.013
- J.L. Roh, E.H. Kim, H. Jang, D. Shin, Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11, 254–262 (2017). https://doi.org/10.1016/j.redox.2016.12.010
- P. Qian, Y.W. Zhang, Z.H. Zhou, J.Q. Liu, S.Y. Yue et al., Artesunate enhances gammadelta T-cell-mediated antitumor activity through augmenting gammadelta T-cell function and reversing immune escape of HepG2 cells. Immunopharmacol. Immunotoxicol. 40, 107–116 (2018). https://doi.org/10.1080/08923973.2017.1386212
- J.S. Weber, M.S. Carlino, A. Khattak, T. Meniawy, G. Ansstas et al., Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024). https://doi.org/10.1016/S0140-6736(23)02268-7
- L.A. Rojas, Z. Sethna, K.C. Soares, C. Olcese, N. Pang et al., Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023). https://doi.org/10.1038/s41586-023-06063-y
- A. Ribas, T. Medina, J.M. Kirkwood, Y. Zakharia, R. Gonzalez et al., Overcoming PD-1 blockade resistance with CpG-A toll-like receptor 9 agonist vidutolimod in patients with metastatic melanoma. Cancer Discov. 11, 2998–3007 (2021). https://doi.org/10.1158/2159-8290.CD-21-0425
- B. Bahmani, H. Gong, B.T. Luk, K.J. Haushalter, E. DeTeresa et al., Intratumoral immunotherapy using platelet-cloaked nanops enhances antitumor immunity in solid tumors. Nat. Commun. 12, 1999 (2021). https://doi.org/10.1038/s41467-021-22311-z
- T. Lammers, Nanomedicine tumor targeting. Adv. Mater. 36, e2312169 (2024). https://doi.org/10.1002/adma.202312169
- J. Szebeni, F. Muggia, A. Gabizon, Y. Barenholz, Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv. Drug Deliv. Rev. 63, 1020–1030 (2011). https://doi.org/10.1016/j.addr.2011.06.017
- I. de Lazaro, D.J. Mooney, Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 20, 1469–1479 (2021). https://doi.org/10.1038/s41563-021-01047-7
- W. Qin, J. Huang, C. Yang, Q. Yue, S. Chen et al., Protease-activatable nanozyme with photoacoustic and tumor-enhanced magnetic resonance imaging for photothermal ferroptosis cancer therapy. Adv. Funct. Mater. 33, 2209748 (2023). https://doi.org/10.1002/adfm.202209748
- C. Xu, K. Pu, Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50, 1111–1137 (2021). https://doi.org/10.1039/d0cs00664e
- Y. Mou, J. Wang, J. Wu, D. He, C. Zhang et al., Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol. 12, 34 (2019). https://doi.org/10.1186/s13045-019-0720-y
- D. Basuli, L. Tesfay, Z. Deng, B. Paul, Y. Yamamoto et al., Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 36, 4089–4099 (2017). https://doi.org/10.1038/onc.2017.11
- C.M. Bebber, E.S. Thomas, J. Stroh, Z. Chen, A. Androulidaki et al., Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes. Nat. Commun. 12, 2048 (2021). https://doi.org/10.1038/s41467-021-22336-4
- N. Verma, Y. Vinik, A. Saroha, N.U. Nair, E. Ruppin et al., Synthetic lethal combination targeting BET uncovered intrinsic susceptibility of TNBC to ferroptosis. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba8968
References
Y. Liu, W. Zhen, Y. Wang, S. Song, H. Zhang, Na2S2O8 nanops trigger antitumor immunotherapy through reactive oxygen species storm and surge of tumor osmolarity. J. Am. Chem. Soc. 142, 21751–21757 (2020). https://doi.org/10.1021/jacs.0c09482
M. Yu, X. Duan, Y. Cai, F. Zhang, S. Jiang et al., Multifunctional nanoregulator reshapes immune microenvironment and enhances immune memory for tumor immunotherapy. Adv. Sci. 6, 1900037 (2019). https://doi.org/10.1002/advs.201900037
T. Yang, S. Zhang, H. Yuan, Y. Wang, L. Cai et al., Platinum-based TREM2 inhibitor suppresses tumors by remodeling the immunosuppressive microenvironment. Angew. Chem. Int. Ed. Engl. 62, e202213337 (2023). https://doi.org/10.1002/anie.202213337
T.T. Mai, A. Hamai, A. Hienzsch, T. Caneque, S. Muller et al., Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 9, 1025–1033 (2017). https://doi.org/10.1038/nchem.2778
R. Hu, C. Dai, X. Dai, C. Dong, H. Huang et al., Topology regulation of nanomedicine for autophagy-augmented ferroptosis and cancer immunotherapy. Sci. Bull. 68, 77–94 (2023). https://doi.org/10.1016/j.scib.2022.12.030
J.D. Mancias, X. Wang, S.P. Gygi, J.W. Harper, A.C. Kimmelman, Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014). https://doi.org/10.1038/nature13148
E. Grignano, L. Cantero-Aguilar, Z. Tuerdi, T. Chabane, R. Vazquez et al., Dihydroartemisinin-induced ferroptosis in acute myeloid leukemia: links to iron metabolism and metallothionein. Cell Death Discov. 9, 97 (2023). https://doi.org/10.1038/s41420-023-01371-8
M. Conrad, D.A. Pratt, Publisher Correction: the chemical basis of ferroptosis. Nat. Chem. Biol. 16, 223–224 (2020). https://doi.org/10.1038/s41589-019-0434-z
F. Zeng, S. Nijiati, L. Tang, J. Ye, Z. Zhou et al., Ferroptosis detection: from approaches to applications. Angew. Chem. Int. Ed. Engl. 62, e202300379 (2023). https://doi.org/10.1002/anie.202300379
H.F. Yan, T. Zou, Q.Z. Tuo, S. Xu, H. Li et al., Ferroptosis: mechanisms and links with diseases. Signal Transd. Target. Ther. 6, 49 (2021). https://doi.org/10.1038/s41392-020-00428-9
X. Chen, R. Kang, G. Kroemer, D. Tang, Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 18, 280–296 (2021). https://doi.org/10.1038/s41571-020-00462-0
N.A. Porter, S.E. Caldwell, K.A. Mills, Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30, 277–290 (1995). https://doi.org/10.1007/BF02536034
W.S. Yang, R. SriRamaratnam, M.E. Welsch, K. Shimada, R. Skouta et al., Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014). https://doi.org/10.1016/j.cell.2013.12.010
G. Lei, L. Zhuang, B. Gan, Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 22, 381–396 (2022). https://doi.org/10.1038/s41568-022-00459-0
C. Liang, X. Zhang, M. Yang, X. Dong, Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater. 31, e1904197 (2019). https://doi.org/10.1002/adma.201904197
W. Xu, G. Guan, R. Yue, Z. Dong, L. Lei et al., Chemical design of magnetic nanomaterials for imaging and ferroptosis-based cancer therapy. Chem. Rev. 125, 1897–1961 (2025). https://doi.org/10.1021/acs.chemrev.4c00546
J.P. Friedmann Angeli, D.V. Krysko, M. Conrad, Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019). https://doi.org/10.1038/s41568-019-0149-1
P. Liao, W. Wang, W. Wang, I. Kryczek, X. Li et al., CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 40, 365-378 e366 (2022). https://doi.org/10.1016/j.ccell.2022.02.003
A.A. Kapralov, Q. Yang, H.H. Dar, Y.Y. Tyurina, T.S. Anthonymuthu et al., Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat. Chem. Biol. 16, 278–290 (2020). https://doi.org/10.1038/s41589-019-0462-8
S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi et al., Iron oxide nanops inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11, 986–994 (2016). https://doi.org/10.1038/nnano.2016.168
R. Eugster, M. Orsi, G. Buttitta, N. Serafini, M. Tiboni et al., Leveraging machine learning to streamline the development of liposomal drug delivery systems. J. Control. Release 376, 1025–1038 (2024). https://doi.org/10.1016/j.jconrel.2024.10.065
A. Xu, G. Wang, Y. Li, H. Dong, S. Yang et al., Carbon-based quantum dots with solid-state photoluminescent: mechanism, implementation, and application. Small 16, e2004621 (2020). https://doi.org/10.1002/smll.202004621
P. Singh, S. Pandit, S.R. Balusamy, M. Madhusudanan, H. Singh et al., Advanced nanomaterials for cancer therapy: gold, silver, and iron oxide nanops in oncological applications. Adv. Healthc. Mater. 14, e2403059 (2025). https://doi.org/10.1002/adhm.202403059
Y. Song, X. Xu, Z. Wang, Y. Zhao, Metal-organic framework-based nanomedicines for ferroptotic cancer therapy. Adv. Healthc. Mater. 13, e2303533 (2024). https://doi.org/10.1002/adhm.202303533
P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie et al., Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010). https://doi.org/10.1038/nmat2608
P. Gravan, J. Pena-Martin, J.L. de Andres, M. Pedrosa, M. Villegas-Montoya et al., Exploring the impact of nanop stealth coatings in cancer models: from pegylation to cell membrane-coating nanotechnology. ACS Appl. Mater. Interfaces 16, 2058–2074 (2024). https://doi.org/10.1021/acsami.3c13948
R.H. Fang, A.V. Kroll, W. Gao, L. Zhang, Cell membrane coating nanotechnology. Adv. Mater. 30, e1706759 (2018). https://doi.org/10.1002/adma.201706759
F. Danhier, O. Feron, V. Preat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 148, 135–146 (2010). https://doi.org/10.1016/j.jconrel.2010.08.027
D.E. Lee, H. Koo, I.C. Sun, J.H. Ryu, K. Kim et al., Multifunctional nanops for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656–2672 (2012). https://doi.org/10.1039/c2cs15261d
M.J. Ko, S. Min, H. Hong, W. Yoo, J. Joo et al., Magnetic nanops for ferroptosis cancer therapy with diagnostic imaging. Bioact. Mater. 32, 66–97 (2024). https://doi.org/10.1016/j.bioactmat.2023.09.015
W. Wang, M. Green, J.E. Choi, M. Gijon, P.D. Kennedy et al., CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019). https://doi.org/10.1038/s41586-019-1170-y
K. Li, Z. Zhang, Y. Mei, M. Li, Q. Yang et al., Targeting the innate immune system with nanops for cancer immunotherapy. J. Mater. Chem. B 10, 1709–1733 (2022). https://doi.org/10.1039/d1tb02818a
K. Li, K. Xu, Y. He, Y. Yang, M. Tan et al., Oxygen self-generating nanoreactor mediated ferroptosis activation and immunotherapy in triple-negative breast cancer. ACS Nano 17, 4667–4687 (2023). https://doi.org/10.1021/acsnano.2c10893
D.E. Large, R.G. Abdelmessih, E.A. Fink, D.T. Auguste, Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 176, 113851 (2021). https://doi.org/10.1016/j.addr.2021.113851
M.Z. Wang, T.W. Gu, Y. Xu, L. Yang, Z.H. Jiang et al., Mechanical stretching of cells and lipid nanops for nucleic acid delivery. J. Control. Release 339, 208–219 (2021). https://doi.org/10.1016/j.jconrel.2021.09.021
S.G. Antimisiaris, A. Marazioti, M. Kannavou, E. Natsaridis, F. Gkartziou et al., Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 174, 53–86 (2021). https://doi.org/10.1016/j.addr.2021.01.019
W. Wang, Y. Gao, J. Xu, T. Zou, B. Yang et al., A NRF2 regulated and the immunosuppressive microenvironment reversed nanoplatform for cholangiocarcinoma photodynamic-gas therapy. Adv. Sci. 11, e2307143 (2024). https://doi.org/10.1002/advs.202307143
Z. Gao, J. Zhang, Y. Hou, J. Lu, J. Liang et al., Boosting the synergism between cancer ferroptosis and immunotherapy via targeted stimuli-responsive liposomes. Biomaterials 305, 122442 (2024). https://doi.org/10.1016/j.biomaterials.2023.122442
X. Kong, Z. He, Y. Zhang, Y. Fang, D. Liu et al., Intelligent self-amplifying ferroptosis-inducible nanoplatform for enhanced tumor microenvironment reconstruction and combination therapy. Chem. Eng. J. 468, 143729 (2023). https://doi.org/10.1016/j.cej.2023.143729
M. Ghezzi, S. Pescina, C. Padula, P. Santi, E. Del Favero et al., Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 332, 312–336 (2021). https://doi.org/10.1016/j.jconrel.2021.02.031
D. Hwang, J.D. Ramsey, A.V. Kabanov, Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 156, 80–118 (2020). https://doi.org/10.1016/j.addr.2020.09.009
R. Song, T. Li, J. Ye, F. Sun, B. Hou et al., Acidity-activatable dynamic nanops boosting ferroptotic cell death for immunotherapy of cancer. Adv. Mater. 33, e2101155 (2021). https://doi.org/10.1002/adma.202101155
S. He, J. Yu, M. Xu, C. Zhang, C. Xu et al., A semiconducting iron-chelating nano-immunomodulator for specific and sensitized sono-metallo-immunotherapy of cancer. Angew. Chem. Int. Ed. Engl. 62, e202310178 (2023). https://doi.org/10.1002/anie.202310178
C. Jiang, X. Li, F. Pan, L. Zhang, H. Yu et al., Ferroptosis and pyroptosis co-activated nanomodulator for “cold” tumor immunotherapy and lung metastasis inhibition. Adv. Funct. Mater. 33, 2211698 (2023). https://doi.org/10.1002/adfm.202211698
M.A. Beach, U. Nayanathara, Y. Gao, C. Zhang, Y. Xiong et al., Polymeric nanops for drug delivery. Chem. Rev. 124, 5505–5616 (2024). https://doi.org/10.1021/acs.chemrev.3c00705
Z. Hong, X. Zan, T. Yu, Y. Hu, H. Gou et al., Local delivery of superagonist gene based on polymer nanops for cancer immunotherapy. Chin. Chem. Lett. 34, 107603 (2023). https://doi.org/10.1016/j.cclet.2022.06.026
S.D. Jeong, B.K. Jung, D. Lee, J. Ha, H.G. Chang et al., Enhanced immunogenic cell death by apoptosis/ferroptosis hybrid pathway potentiates PD-L1 blockade cancer immunotherapy. ACS Biomater. Sci. Eng. 8, 5188–5198 (2022). https://doi.org/10.1021/acsbiomaterials.2c00950
B. Yu, B. Choi, W. Li, D.H. Kim, Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat. Commun. 11, 3637 (2020). https://doi.org/10.1038/s41467-020-17380-5
Q. Zhang, X. Wang, Y. Zhao, Z. Cheng, D. Fang et al., Nanointegrative in situ reprogramming of tumor-intrinsic lipid droplet biogenesis for low-dose radiation-activated ferroptosis immunotherapy. ACS Nano 17, 25419–25438 (2023). https://doi.org/10.1021/acsnano.3c08907
P. Sun, L. Huang, Z. Li, Y. Yang, S. Lu et al., Charge-reversal biodegradable nanoplatform with ferroptosis and ICD induction for tumor synergistic treatment. Chem. Eng. J. 483, 149234 (2024). https://doi.org/10.1016/j.cej.2024.149234
R. Fan, C. Chen, M. Mu, D. Chuan, H. Liu et al., Engineering MMP-2 activated nanops carrying B7–H3 bispecific antibodies for ferroptosis-enhanced glioblastoma immunotherapy. ACS Nano 17, 9126–9139 (2023). https://doi.org/10.1021/acsnano.2c12217
L. Zhang, A. Song, Q.C. Yang, S.J. Li, S. Wang et al., Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy. Nat. Commun. 14, 5355 (2023). https://doi.org/10.1038/s41467-023-41121-z
W. Mu, Q. Chu, Y. Liu, N. Zhang, A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nanomicro Lett. 12, 142 (2020). https://doi.org/10.1007/s40820-020-00482-6
M. Sharifi, F. Attar, A.A. Saboury, K. Akhtari, N. Hooshmand et al., Plasmonic gold nanops: optical manipulation, imaging, drug delivery and therapy. J. Control. Release 311–312, 170–189 (2019). https://doi.org/10.1016/j.jconrel.2019.08.032
Y. Du, M. Han, K. Cao, Q. Li, J. Pang et al., Gold nanorods exhibit intrinsic therapeutic activity via controlling N6-methyladenosine-based epitranscriptomics in acute myeloid leukemia. ACS Nano 15, 17689–17704 (2021). https://doi.org/10.1021/acsnano.1c05547
X. Zhang, H. Ge, Y. Ma, L. Song, Y. Ma et al., Engineered anti-cancer nanomedicine for synergistic ferroptosis-immunotherapy. Chem. Eng. J. 455, 140688 (2023). https://doi.org/10.1016/j.cej.2022.140688
J. Liu, J. Zhan, Y. Zhang, L. Huang, J. Yang et al., Ultrathin clay nanops-mediated mutual reinforcement of ferroptosis and cancer immunotherapy. Adv. Mater. 36, e2309562 (2024). https://doi.org/10.1002/adma.202309562
Y.C. Chin, L.X. Yang, F.T. Hsu, C.W. Hsu, T.W. Chang et al., Iron oxide@chlorophyll clustered nanops eliminate bladder cancer by photodynamic immunotherapy-initiated ferroptosis and immunostimulation. J. Nanobiotechnol. 20, 373 (2022). https://doi.org/10.1186/s12951-022-01575-7
Y. Ruan, H. Zhuang, X. Zeng, L. Lin, X. Wang et al., Engineered microbial nanohybrids for tumor-mediated NIR II photothermal enhanced ferroptosis/cuproptosis and immunotherapy. Adv. Healthc. Mater. 13, e2302537 (2024). https://doi.org/10.1002/adhm.202302537
L. Shi, Y. Yu, J. Li, B. Ma, X. Zhang et al., NIR-responsive Cu2–xSe@Fc nanops for photothermal- ferroptosis combination therapy in esophageal cancer. J. Nanobiotechnol. 23, 356 (2025). https://doi.org/10.1186/s12951-025-03434-7
C. Huang, X. Lin, T. Lin, W. Lin, Z. Gong et al., Multifunctional nanocomposites induce mitochondrial dysfunction and glucose deprivation to boost immunogenic ferroptosis for cancer therapy. Chem. Eng. J. 466, 143012 (2023). https://doi.org/10.1016/j.cej.2023.143012
H. Lei, Q. Li, G. Li, T. Wang, X. Lv et al., Manganese molybdate nanodots with dual amplification of STING activation for “cycle” treatment of metalloimmunotherapy. Bioact. Mater. 31, 53–62 (2024). https://doi.org/10.1016/j.bioactmat.2023.07.026
H. Lei, Q. Li, Z. Pei, L. Liu, N. Yang et al., Nonferrous ferroptosis inducer manganese molybdate nanops to enhance tumor immunotherapy. Small 19, e2303438 (2023). https://doi.org/10.1002/smll.202303438
S. Fu, Y. Li, L. Shen, Y. Chen, J. Lu et al., Cu2WS4-PEG nanozyme as multifunctional sensitizers for enhancing immuno-radiotherapy by inducing ferroptosis. Small 20, e2309537 (2024). https://doi.org/10.1002/smll.202309537
Y. Bao, G. Li, S. Li, H. Zhang, X. Wu et al., Multifunctional tumor-targeting carbon dots for tumor microenvironment activated ferroptosis and immunotherapy in cancer treatment. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c13867
L. Yao, M.M. Zhao, Q.W. Luo, Y.C. Zhang, T.T. Liu et al., Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity. ACS Nano 16, 9228–9239 (2022). https://doi.org/10.1021/acsnano.2c01619
Y. Feng, N. Panwar, D.J.H. Tng, S.C. Tjin, K. Wang et al., The application of mesoporous silica nanop family in cancer theranostics. Coord. Chem. Rev. 319, 86–109 (2016). https://doi.org/10.1016/j.ccr.2016.04.019
H. Chen, J. Song, Y. Wang, T. Wang, F. Zhang et al., “Triple-Hop” nano-bomb combining CDT, PDT and immunetherapy for NIR-triggered cancer therapy. Chem. Eng. J. 481, 148268 (2024). https://doi.org/10.1016/j.cej.2023.148268
X. Deng, T. Liu, Y. Zhu, J. Chen, Z. Song et al., Ca & Mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening. Bioact. Mater. 33, 483–496 (2024). https://doi.org/10.1016/j.bioactmat.2023.11.017
W. Liang, P. Wied, F. Carraro, C.J. Sumby, B. Nidetzky et al., Metal-organic framework-based enzyme biocomposites. Chem. Rev. 121, 1077–1129 (2021). https://doi.org/10.1021/acs.chemrev.0c01029
R. Liu, J. Yang, Y. Du, X. Yu, Y. Liao et al., A “one arrow three eagle” strategy to improve CM-272 primed bladder cancer immunotherapy. Adv. Mater. 36, e2310522 (2024). https://doi.org/10.1002/adma.202310522
Y. Xu, Y. Guo, C. Zhang, M. Zhan, L. Jia et al., Fibronectin-coated metal-phenolic networks for cooperative tumor chemo-/chemodynamic/immune therapy via enhanced ferroptosis-mediated immunogenic cell death. ACS Nano 16, 984–996 (2022). https://doi.org/10.1021/acsnano.1c08585
Y. Li, Y. Duan, Y. Li, Y. Gu, L. Zhou et al., Cascade loop of ferroptosis induction and immunotherapy based on metal-phenolic networks for combined therapy of colorectal cancer. Exploration 5, 20230117 (2025). https://doi.org/10.1002/EXP.20230117
X. Zhao, X. Wang, W. Zhang, T. Tian, J. Zhang et al., A ferroptosis-inducing arsenene-iridium nanoplatform for synergistic immunotherapy in pancreatic cancer. Angew. Chem. Int. Ed. Engl. 63, e202400829 (2024). https://doi.org/10.1002/anie.202400829
Y. Liu, R. Niu, R. Deng, S. Song, Y. Wang et al., Multi-enzyme co-expressed dual-atom nanozymes induce cascade immunogenic ferroptosis via activating interferon-gamma and targeting arachidonic acid metabolism. J. Am. Chem. Soc. 145, 8965–8978 (2023). https://doi.org/10.1021/jacs.2c13689
D. Mendanha, J. Vieira de Castro, H. Ferreira, N.M. Neves, Biomimetic and cell-based nanocarriers: new strategies for brain tumor targeting. J. Control. Release 337, 482–493 (2021). https://doi.org/10.1016/j.jconrel.2021.07.047
R.H. Fang, W. Gao, L. Zhang, Targeting drugs to tumours using cell membrane-coated nanops. Nat. Rev. Clin. Oncol. 20, 33–48 (2023). https://doi.org/10.1038/s41571-022-00699-x
P.L. Rodriguez, T. Harada, D.A. Christian, D.A. Pantano, R.K. Tsai et al., Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanops. Science 339, 971–975 (2013). https://doi.org/10.1126/science.1229568
Y. Wang, H. Xu, D. Wang, Y. Lu, Y. Zhang et al., Synergistic reinforcement of immunogenic cell death and transformation of tumor-associated macrophages via an M1-type macrophage membrane-camouflaged ferrous-supply-regeneration nanoplatform. Acta Biomater. 174, 358–371 (2024). https://doi.org/10.1016/j.actbio.2023.11.041
M. Chen, Y. Shen, Y. Pu, B. Zhou, J. Bing et al., Biomimetic inducer enabled dual ferroptosis of tumor and M2-type macrophages for enhanced tumor immunotherapy. Biomaterials 303, 122386 (2023). https://doi.org/10.1016/j.biomaterials.2023.122386
Y. Ma, X. Zhao, P. Tian, K. Xu, J. Luo et al., Laser-ignited lipid peroxidation nanoamplifiers for strengthening tumor photodynamic therapy through aggravating ferroptotic propagation and sustainable high immunogenicity. Small 20, e2306402 (2024). https://doi.org/10.1002/smll.202306402
Q. Jiang, K. Wang, X. Zhang, B. Ouyang, H. Liu et al., Platelet membrane-camouflaged magnetic nanops for ferroptosis-enhanced cancer immunotherapy. Small 16, e2001704 (2020). https://doi.org/10.1002/smll.202001704
T. Xu, Y. Ma, Q. Yuan, H. Hu, X. Hu et al., Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano 14, 3414–3425 (2020). https://doi.org/10.1021/acsnano.9b09426
X. Yu, X. Li, Q. Chen, S. Wang, R. Xu et al., High intensity focused ultrasound-driven nanomotor for effective ferroptosis-immunotherapy of TNBC. Adv. Sci. 11, e2305546 (2024). https://doi.org/10.1002/advs.202305546
Y. Yu, X. Shen, X. Xiao, L. Li, Y. Huang, Butyrate modification promotes intestinal absorption and hepatic cancer cells targeting of ferroptosis inducer loaded nanop for enhanced hepatocellular carcinoma therapy. Small 19, e2301149 (2023). https://doi.org/10.1002/smll.202301149
G. Song, M. Li, S. Fan, M. Qin, B. Shao et al., Boosting synergism of chemo- and immuno-therapies via switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis by bisphosphonate coordination lipid nanogranules. Acta. Pharm. Sin. B 14, 836–853 (2024). https://doi.org/10.1016/j.apsb.2023.08.029
W. Guo, Z. Wu, J. Chen, S. Guo, W. You et al., Nanop delivery of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by promoting ferroptosis. J. Immunother. Cancer (2022). https://doi.org/10.1136/jitc-2021-004381
Y. Zou, B. Jin, H. Li, X. Wu, Y. Liu et al., Cold nanozyme for precise enzymatic antitumor immunity. ACS Nano 16, 21491–21504 (2022). https://doi.org/10.1021/acsnano.2c10057
D. Li, J. Ren, J. Li, Y. Zhang, Y. Lou et al., Ferroptosis-apoptosis combined anti-melanoma immunotherapy with a NIR-responsive upconverting mSiO2 photodynamic platform. Chem. Eng. J. 419, 129557 (2021). https://doi.org/10.1016/j.cej.2021.129557
K. Zhang, Z. Ma, S. Li, Y. Wu, J. Zhang et al., Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor. Biomaterials 284, 121502 (2022). https://doi.org/10.1016/j.biomaterials.2022.121502
P. Liu, X. Shi, Y. Peng, J. Hu, J. Ding et al., Anti-PD-L1 dnazyme loaded photothermal Mn2+/Fe3+ hybrid metal-phenolic networks for cyclically amplified tumor ferroptosis-immunotherapy. Adv. Healthc. Mater. 11, e2102315 (2022). https://doi.org/10.1002/adhm.202102315
Y. Cai, Y. Jiang, Y. Chen, E. Cheng, Y. Gu et al., Amplifying STING activation and immunogenic cell death by metal-polyphenol coordinated nanomedicines for enhanced cancer immunotherapy. Chin. Chem. Lett. 36, 110437 (2025). https://doi.org/10.1016/j.cclet.2024.110437
K. Sun, J. Yu, J. Hu, W. Yang, X. Chu et al., Photothermal enhanced polyphenol-based nanofibers ameliorate catalytic efficiency of ferroptosis for synergistic tumor therapy. Chem. Eng. J. 470, 144360 (2023). https://doi.org/10.1016/j.cej.2023.144360
T. Nie, H. Liu, Z. Fang, Y. Zheng, R. Zhang et al., Tumor microenvironment mediated spermidine-metal-immunopeptide nanocomplex for boosting ferroptotic immunotherapy of lymphoma. ACS Nano 17, 10925–10937 (2023). https://doi.org/10.1021/acsnano.3c02803
C.-M. Lai, J. Xu, B.-C. Zhang, S.-H. He, J.-W. Shao, A natural product-derived nanozyme regulator induced chemo-ferroptosis dual therapy in remodeling of the tumor immune microenvironment of hepatocellular carcinoma. Chem. Eng. J. 482, 148976 (2024). https://doi.org/10.1016/j.cej.2024.148976
W. Guo, Z. Chen, Z. Li, H. Huang, Y. Ren et al., Cancer cell membrane biomimetic mesoporous silica nanotheranostics for enhanced ferroptosis-mediated immuogenic cell death on gastric cancer. Chem. Eng. J. 455, 140868 (2023). https://doi.org/10.1016/j.cej.2022.140868
H. Yang, X. Yao, Y. Liu, X. Shen, M. Li et al., Ferroptosis nanomedicine: clinical challenges and opportunities for modulating tumor metabolic and immunological landscape. ACS Nano 17, 15328–15353 (2023). https://doi.org/10.1021/acsnano.3c04632
H. Wang, C. Qiao, Q. Guan, M. Wei, Z. Li, Nanop-mediated synergistic anticancer effect of ferroptosis and photodynamic therapy: novel insights and perspectives. Asian J. Pharm. Sci. 18, 100829 (2023). https://doi.org/10.1016/j.ajps.2023.100829
H. Lee, A.K. Lytton-Jean, Y. Chen, K.T. Love, A.I. Park et al., Molecularly self-assembled nucleic acid nanops for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012). https://doi.org/10.1038/nnano.2012.73
P. Decuzzi, B. Godin, T. Tanaka, S.Y. Lee, C. Chiappini et al., Size and shape effects in the biodistribution of intravascularly injected ps. J. Control. Release 141, 320–327 (2010). https://doi.org/10.1016/j.jconrel.2009.10.014
C. Kinnear, T.L. Moore, L. Rodriguez-Lorenzo, B. Rothen-Rutishauser, A. Petri-Fink, Form follows function: nanop shape and its implications for nanomedicine. Chem. Rev. 117, 11476–11521 (2017). https://doi.org/10.1021/acs.chemrev.7b00194
N. Doshi, S. Mitragotri, Needle-shaped polymeric ps induce transient disruption of cell membranes. J. R. Soc. Interface. 7, S403-410 (2010). https://doi.org/10.1098/rsif.2010.0134.focus
H. Wang, D. Jiao, D. Feng, Q. Liu, Y. Huang et al., Transformable supramolecular self-assembled peptides for cascade self-enhanced ferroptosis primed cancer immunotherapy. Adv. Mater. 36, e2311733 (2024). https://doi.org/10.1002/adma.202311733
T. Sun, Y.S. Zhang, B. Pang, D.C. Hyun, M. Yang et al., Engineered nanops for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 53, 12320–12364 (2014). https://doi.org/10.1002/anie.201403036
X. Duan, Y. Li, Physicochemical characteristics of nanops affect circulation, biodistribution, cellular internalization, and trafficking. Small 9, 1521–1532 (2013). https://doi.org/10.1002/smll.201201390
K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Therapeutic nanops for drug delivery in cancer. Clin. Cancer Res. 14, 1310–1316 (2008). https://doi.org/10.1158/1078-0432.CCR-07-1441
N.X. Zhu, Z.W. Wei, C.X. Chen, D. Wang, C.C. Cao et al., Self-generation of surface roughness by low-surface-energy alkyl chains for highly stable superhydrophobic/superoleophilic MOFs with multiple functionalities. Angew. Chem. Int. Ed. Engl. 58, 17033–17040 (2019). https://doi.org/10.1002/anie.201909912
N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Degradable controlled-release polymers and polymeric nanops: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016). https://doi.org/10.1021/acs.chemrev.5b00346
H.B. Na, I.C. Song, T. Hyeon, Inorganic nanops for MRI contrast agents. Adv. Mater. 21, 2133–2148 (2009). https://doi.org/10.1002/adma.200802366
Q. Fu, R. Zhu, J. Song, H. Yang, X. Chen, Photoacoustic imaging: contrast agents and their biomedical applications. Adv. Mater. 31, 1805875 (2019). https://doi.org/10.1002/adma.201805875
Y. Qiu, Z. Wu, Y. Chen, J. Liao, Q. Zhang et al., Nano ultrasound contrast agent for synergistic chemo-photothermal therapy and enhanced immunotherapy against liver cancer and metastasis. Adv. Sci. 10, e2300878 (2023). https://doi.org/10.1002/advs.202300878
J. Ren, J. Zhou, H. Liu, X. Jiao, Y. Cao et al., Ultrasound (US)-activated redox dyshomeostasis therapy reinforced by immunogenic cell death (ICD) through a mitochondrial targeting liposomal nanosystem. Theranostics 11, 9470–9491 (2021). https://doi.org/10.7150/thno.62984
T. Zuo, T. Fang, J. Zhang, J. Yang, R. Xu et al., pH-Sensitive molecular-switch-containing polymer nanop for breast cancer therapy with ferritinophagy-cascade ferroptosis and tumor immune activation. Adv. Healthc. Mater. 10, e2100683 (2021). https://doi.org/10.1002/adhm.202100683
L. Cheng, Y. Qiu, L. He, H. Wang, M. Zheng et al., Advancing immunotherapy in triple negative breast Cancer: a novel multimodal theranostic nanoplatform integrating synergetic ferroptosis and photothermal therapy. Chem. Eng. J. 485, 150057 (2024). https://doi.org/10.1016/j.cej.2024.150057
Y. Wang, F. Chen, H. Zhou, L. Huang, J. Ye et al., Redox dyshomeostasis with dual stimuli-activatable dihydroartemisinin nanops to potentiate ferroptotic therapy of pancreatic cancer. Small Methods 7, e2200888 (2023). https://doi.org/10.1002/smtd.202200888
Y. Cao, S. Liu, Y. Ma, L. Ma, M. Zu et al., Oral nanomotor-enabled mucus traverse and tumor penetration for targeted chemo-sono-immunotherapy against colon cancer. Small 18, e2203466 (2022). https://doi.org/10.1002/smll.202203466
H. Liang, X. Wu, G. Zhao, K. Feng, K. Ni et al., Renal clearable ultrasmall single-crystal Fe nanops for highly selective and effective ferroptosis therapy and immunotherapy. J. Am. Chem. Soc. 143, 15812–15823 (2021). https://doi.org/10.1021/jacs.1c07471
Y. Li, Y. Cao, K. Ma, R. Ma, M. Zhang et al., A triple-responsive polymeric prodrug nanoplatform with extracellular ROS consumption and intracellular H2O2 self-generation for imaging-guided tumor chemo-ferroptosis-immunotherapy. Adv. Healthc. Mater. 13, e2303568 (2024). https://doi.org/10.1002/adhm.202303568
F. Wang, G. Dong, M. Ding, N. Yu, C. Sheng et al., Dual-programmable semiconducting polymer nanoPROTACs for deep-tissue sonodynamic-ferroptosis activatable immunotherapy. Small 20, e2306378 (2024). https://doi.org/10.1002/smll.202306378
L. Lei, Z. Dong, L. Xu, F. Yang, B. Yin et al., Metal-fluorouracil networks with disruption of mitochondrion enhanced ferroptosis for synergistic immune activation. Theranostics 12, 6207–6222 (2022). https://doi.org/10.7150/thno.75323
Z. He, H. Zhou, Q. Feng, Y. Zhang, S. Gao et al., A bimetallic dual-targeting nanoplatform for combinational ferroptosis activation/epigenetic regulation/photothermal therapy against breast cancer and tumor microenvironment remodeling. Chem. Eng. J. 479, 147466 (2024). https://doi.org/10.1016/j.cej.2023.147466
S. Wang, Q. Guo, R. Xu, P. Lin, G. Deng et al., Correction: Combination of ferroptosis and pyroptosis dual induction by triptolide nano-MOFs for immunotherapy of Melanoma. J. Nanobiotechnol. 22, 415 (2024). https://doi.org/10.1186/s12951-024-02624-z
F. Zhang, F. Li, G.H. Lu, W. Nie, L. Zhang et al., Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS Nano 13, 5662–5673 (2019). https://doi.org/10.1021/acsnano.9b00892
B. Xie, H. Zhao, Y.F. Ding, Z. Wang, C. Gao et al., Supramolecularly engineered conjugate of bacteria and cell membrane-coated magnetic nanops for enhanced ferroptosis and immunotherapy of tumors. Adv. Sci. 10, e2304407 (2023). https://doi.org/10.1002/advs.202304407
I. Costa, D.J. Barbosa, S. Benfeito, V. Silva, D. Chavarria et al., Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol. Ther. 244, 108373 (2023). https://doi.org/10.1016/j.pharmthera.2023.108373
Y. Xie, W. Hou, X. Song, Y. Yu, J. Huang et al., Ferroptosis: process and function. Cell Death Differ. 23, 369–379 (2016). https://doi.org/10.1038/cdd.2015.158
Y. Zhou, K. Chen, W.K. Lin, J. Liu, W. Kang et al., Photo-enhanced synergistic induction of ferroptosis for anti-cancer immunotherapy. Adv. Healthc. Mater. 12, e2300994 (2023). https://doi.org/10.1002/adhm.202300994
P. Manivasagan, A. Joe, H.W. Han, T. Thambi, M. Selvaraj et al., Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Mater. Today Bio. 13, 100197 (2022). https://doi.org/10.1016/j.mtbio.2021.100197
Q. Zhang, Y. Li, C. Jiang, W. Sun, J. Tao et al., Near-infrared light-enhanced generation of hydroxyl radical for cancer immunotherapy. Adv. Healthc. Mater. 12, e2301502 (2023). https://doi.org/10.1002/adhm.202301502
Z. Zhou, H. Liang, R. Yang, Y. Yang, J. Dong et al., Glutathione depletion-induced activation of dimersomes for potentiating the ferroptosis and immunotherapy of “cold” tumor. Angew. Chem. Int. Ed. Engl. 61, e202202843 (2022). https://doi.org/10.1002/anie.202202843
Y. Liu, X. Quan, J. Li, J. Huo, X. Li et al., Liposomes embedded with PEGylated iron oxide nanops enable ferroptosis and combination therapy in cancer. Natl. Sci. Rev. 10, nwac167 (2023). https://doi.org/10.1093/nsr/nwac167
P. Li, D. Wang, J. Hu, X. Yang, The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv. Drug Deliv. Rev. 189, 114447 (2022). https://doi.org/10.1016/j.addr.2022.114447
B. Park, S. Park, J. Kim, C. Kim, Listening to drug delivery and responses via photoacoustic imaging. Adv. Drug Deliv. Rev. 184, 114235 (2022). https://doi.org/10.1016/j.addr.2022.114235
R. Qiao, C. Yang, M. Gao, Superparamagnetic iron oxide nanops: from preparations to in vivo MRI applications. J. Mater. Chem. 19, 6274–6293 (2009). https://doi.org/10.1039/B902394A
C.L. Degen, M. Poggio, H.J. Mamin, C.T. Rettner, D. Rugar, Nanoscale magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A. 106, 1313–1317 (2009). https://doi.org/10.1073/pnas.0812068106
Z. Gao, T. Ma, E. Zhao, D. Docter, W. Yang et al., Small is smarter: nano MRI contrast agents—advantages and recent achievements. Small 12, 556–576 (2016). https://doi.org/10.1002/smll.201502309
L. Zhang, M. Qiu, R. Wang, S. Li, X. Liu et al., Monitoring ROS responsive Fe3O4-based nanop mediated ferroptosis and immunotherapy via 129Xe MRI. Angew. Chem. Int. Ed. Engl. 63, e202403771 (2024). https://doi.org/10.1002/anie.202403771
C. Li, G. Chen, Y. Zhang, F. Wu, Q. Wang, advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 142, 14789–14804 (2020). https://doi.org/10.1021/jacs.0c07022
S. Zhu, R. Tian, A.L. Antaris, X. Chen, H. Dai, Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 31, e1900321 (2019). https://doi.org/10.1002/adma.201900321
M. Cronin, M. Seher, S. Arsang-Jang, A. Lowery, M. Kerin et al., Multimodal imaging of cancer therapy-related cardiac dysfunction in breast cancer-a state-of-the-art review. J. Clin. Med. (2023). https://doi.org/10.3390/jcm12196295
L. Xie, J. Li, G. Wang, W. Sang, M. Xu et al., Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J. Am. Chem. Soc. 144, 787–797 (2022). https://doi.org/10.1021/jacs.1c09753
V.R. Shinde, N. Revi, S. Murugappan, S.P. Singh, A.K. Rengan, Enhanced permeability and retention effect: a key facilitator for solid tumor targeting by nanops. Photodiagn. Photodyn. Ther. 39, 102915 (2022). https://doi.org/10.1016/j.pdpdt.2022.102915
Z. Zhang, Y. Ji, N. Hu, Q. Yu, X. Zhang et al., Ferroptosis-induced anticancer effect of resveratrol with a biomimetic nano-delivery system in colorectal cancer treatment. Asian J. Pharm. Sci. 17, 751–766 (2022). https://doi.org/10.1016/j.ajps.2022.07.006
G. Wang, L. Xie, B. Li, W. Sang, J. Yan et al., A nanounit strategy reverses immune suppression of exosomal PD-L1 and is associated with enhanced ferroptosis. Nat. Commun. 12, 5733 (2021). https://doi.org/10.1038/s41467-021-25990-w
J. Li, Y.C. Jia, Y.X. Ding, J. Bai, F. Cao et al., The crosstalk between ferroptosis and mitochondrial dynamic regulatory networks. Int. J. Biol. Sci. 19, 2756–2771 (2023). https://doi.org/10.7150/ijbs.83348
L. Bejarano, M.J.C. Jordao, J.A. Joyce, Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021). https://doi.org/10.1158/2159-8290.CD-20-1808
E. Sahai, I. Astsaturov, E. Cukierman, D.G. DeNardo, M. Egeblad et al., A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020). https://doi.org/10.1038/s41568-019-0238-1
B. Tang, J. Zhu, Y. Wang, W. Chen, S. Fang et al., Targeted xCT-mediated ferroptosis and protumoral polarization of macrophages is effective against hcc and enhances the efficacy of the anti-PD-1/L1 response. Adv. Sci. 10, 2203973 (2023). https://doi.org/10.1002/advs.202203973
Q. Li, R. Su, X. Bao, K. Cao, Y. Du et al., Glycyrrhetinic acid nanops combined with ferrotherapy for improved cancer immunotherapy. Acta Biomater. 144, 109–120 (2022). https://doi.org/10.1016/j.actbio.2022.03.030
Z. He, H. Zhou, Y. Zhang, X. Du, S. Liu et al., Oxygen-boosted biomimetic nanoplatform for synergetic phototherapy/ferroptosis activation and reversal of immune-suppressed tumor microenvironment. Biomaterials 290, 121832 (2022). https://doi.org/10.1016/j.biomaterials.2022.121832
Z. Yan, Y. Liu, L. Zhao, J. Hu, Y. Du et al., In situ stimulus-responsive self-assembled nanomaterials for drug delivery and disease treatment. Mater. Horiz. 10, 3197–3217 (2023). https://doi.org/10.1039/d3mh00592e
X. Wu, Z. Zhou, K. Li, S. Liu, Nanomaterials-induced redox imbalance: challenged and opportunities for nanomaterials in cancer therapy. Adv. Sci. 11, e2308632 (2024). https://doi.org/10.1002/advs.202308632
Y. Wei, F. Shen, H. Song, R. Zhao, W. Feng et al., The challenge and opportunity of gut microbiota-targeted nanomedicine for colorectal cancer therapy. Imeta 3, e213 (2024). https://doi.org/10.1002/imt2.213
W.C. Chou, Q. Chen, L. Yuan, Y.H. Cheng, C. He et al., An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanop delivery to tumors in mice. J. Control. Release 361, 53–63 (2023). https://doi.org/10.1016/j.jconrel.2023.07.040
L. Sun, H. Liu, Y. Ye, Y. Lei, R. Islam et al., Smart nanops for cancer therapy. Signal Transduct. Target. Ther. 8, 418 (2023). https://doi.org/10.1038/s41392-023-01642-x
O. Adir, M. Poley, G. Chen, S. Froim, N. Krinsky et al., Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 32, e1901989 (2020). https://doi.org/10.1002/adma.201901989
L. Nuhn, Artificial intelligence assists nanops to enter solid tumours. Nat. Nanotechnol. 18, 550–551 (2023). https://doi.org/10.1038/s41565-023-01382-7
L. Rao, Y. Yuan, X. Shen, G. Yu, X. Chen, Designing nanotheranostics with machine learning. Nat. Nanotechnol. 19, 1769–1781 (2024). https://doi.org/10.1038/s41565-024-01753-8
J. Yang, S. Ma, R. Xu, Y. Wei, J. Zhang et al., Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J. Control. Release 334, 21–33 (2021). https://doi.org/10.1016/j.jconrel.2021.04.013
Y. Wang, C. Wu, C. Feng, Q. Chen, Z. He et al., Spatiotemporally-controlled supramolecular hybrid nanoassembly enabling ferroptosis-augmented photodynamic immunotherapy of cancer. Chin. Chem. Lett. 36, 109902 (2025). https://doi.org/10.1016/j.cclet.2024.109902
J. Li, Y. Zhou, J. Liu, X. Yang, K. Zhang et al., Metal-phenolic networks with ferroptosis to deliver NIR-responsive CO for synergistic therapy. J. Control. Release 352, 313–327 (2022). https://doi.org/10.1016/j.jconrel.2022.10.025
M. Chang, M. Wang, B. Liu, W. Zhong, D. Jana et al., A cancer nanovaccine based on an feal-layered double hydroxide framework for reactive oxygen species-augmented metalloimmunotherapy. ACS Nano 18, 8143–8156 (2024). https://doi.org/10.1021/acsnano.3c11960
Z. Wang, P. Zhou, Y. Li, D. Zhang, F. Chu et al., A bimetallic polymerization network for effective increase in labile iron pool and robust activation of cGAS/STING induces ferroptosis-based tumor immunotherapy. Small 20, e2308397 (2024). https://doi.org/10.1002/smll.202308397
J.L. Liang, X.K. Jin, S.M. Zhang, Q.X. Huang, P. Ji et al., Specific activation of cGAS-STING pathway by nanotherapeutics-mediated ferroptosis evoked endogenous signaling for boosting systemic tumor immunotherapy. Sci. Bull. 68, 622–636 (2023). https://doi.org/10.1016/j.scib.2023.02.027
S. Guo, W. Xiong, J. Zhu, J. Feng, R. Zhou et al., A STING pathway-activatable contrast agent for MRI-guided tumor immunoferroptosis synergistic therapy. Biomaterials 302, 122300 (2023). https://doi.org/10.1016/j.biomaterials.2023.122300
P. Huang, Y. Yang, W. Wang, Z. Li, N. Gao et al., Self-driven nanoprodrug platform with enhanced ferroptosis for synergistic photothermal-IDO immunotherapy. Biomaterials 299, 122157 (2023). https://doi.org/10.1016/j.biomaterials.2023.122157
X. Zhu, W. Zheng, X. Wang, Z. Li, X. Shen et al., Enhanced photodynamic therapy synergizing with inhibition of tumor neutrophil ferroptosis boosts anti-PD-1 therapy of gastric cancer. Adv. Sci. 11, e2307870 (2024). https://doi.org/10.1002/advs.202307870
U. Harjes, Tumour immunology: tumours copy to escape. Nat. Rev. Cancer 17, 453 (2017). https://doi.org/10.1038/nrc.2017.66
L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, G. Kroemer, Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015). https://doi.org/10.1016/j.ccell.2015.10.012
J. Li, S. Zhou, J. Yu, W. Cai, Y. Yang et al., Low dose shikonin and anthracyclines coloaded liposomes induce robust immunogenetic cell death for synergistic chemo-immunotherapy. J. Control. Release 335, 306–319 (2021). https://doi.org/10.1016/j.jconrel.2021.05.040
D.A. Jaffray, Image-guided radiotherapy: from current concept to future perspectives. Nat. Rev. Clin. Oncol. 9, 688–699 (2012). https://doi.org/10.1038/nrclinonc.2012.194
S. Guo, Y. Yao, Y. Tang, Z. Xin, D. Wu et al., Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct. Target. Ther. 8, 205 (2023). https://doi.org/10.1038/s41392-023-01462-z
J. Huang, F. Liu, X. Han, L. Zhang, Z. Hu et al., Nanosonosensitizers for highly efficient sonodynamic cancer theranostics. Theranostics 8, 6178–6194 (2018). https://doi.org/10.7150/thno.29569
Q. Xu, G. Zhan, Z. Zhang, T. Yong, X. Yang et al., Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors. Theranostics 11, 1937–1952 (2021). https://doi.org/10.7150/thno.45511
Q. Chen, Q. Hu, E. Dukhovlinova, G. Chen, S. Ahn et al., Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 31, e1900192 (2019). https://doi.org/10.1002/adma.201900192
P. Tsvetkov, S. Coy, B. Petrova, M. Dreishpoon, A. Verma et al., Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022). https://doi.org/10.1126/science.abf0529
M. Ji, H. Liu, X. Liang, M. Wei, D. Shi et al., Tumor cells are under siege from all sides: tumor cell-mimic metal−organic framework nanops triggering cuproptosis/ferroptosis/apoptosis for chemo-chemodynamic-photothermal-immunological synergistic antitumor therapy. Chem. Eng. J. 485, 149640 (2024). https://doi.org/10.1016/j.cej.2024.149640
S. Li, M. Luo, Z. Wang, Q. Feng, J. Wilhelm et al., Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat. Biomed. Eng. 5, 455–466 (2021). https://doi.org/10.1038/s41551-020-00675-9
C. Wang, Y. Guan, M. Lv, R. Zhang, Z. Guo et al., Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 48, 675–687 (2018). https://doi.org/10.1016/j.immuni.2018.03.017
M. Du, Z.J. Chen, DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018). https://doi.org/10.1126/science.aat1022
J. Tan, B. Ding, B. Teng, P. Ma, J. Lin, Understanding structure–function relationships of nanoadjuvants for enhanced cancer vaccine efficacy. Adv. Funct. Mater. 32, 2111670 (2022). https://doi.org/10.1002/adfm.202111670
J. Tan, B. Ding, P. Zheng, H. Chen, P. Ma et al., Hollow aluminum hydroxide modified silica nanoadjuvants with amplified immunotherapy effects through immunogenic cell death induction and antigen release. Small 18, e2202462 (2022). https://doi.org/10.1002/smll.202202462
W. Shi, W. Feng, S. Li, Y. Cui, S. Liu et al., Ferroptosis and necroptosis produced autologous tumor cell lysates co-delivering with combined immnoadjuvants as personalized in situ nanovaccines for antitumor immunity. ACS Nano 17, 14475–14493 (2023). https://doi.org/10.1021/acsnano.3c00901
M.S. Carlino, J. Larkin, G.V. Long, Immune checkpoint inhibitors in melanoma. Lancet 398, 1002–1014 (2021). https://doi.org/10.1016/S0140-6736(21)01206-X
S.P. Kubli, T. Berger, D.V. Araujo, L.L. Siu, T.W. Mak, Beyond immune checkpoint blockade: emerging immunological strategies. Nat. Rev. Drug Discov. 20, 899–919 (2021). https://doi.org/10.1038/s41573-021-00155-y
D.B. Doroshow, S. Bhalla, M.B. Beasley, L.M. Sholl, K.M. Kerr et al., PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021). https://doi.org/10.1038/s41571-021-00473-5
H. Yamaguchi, J.M. Hsu, W.H. Yang, M.C. Hung, Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol. 19, 287–305 (2022). https://doi.org/10.1038/s41571-022-00601-9
S. Liu, H. Wang, X. Shao, H. Chen, S. Chao et al., Advances in PD-1 signaling inhibition-based nano-delivery systems for tumor therapy. J. Nanobiotechnology 21, 207 (2023). https://doi.org/10.1186/s12951-023-01966-4
M.K. Islam, J. Stanslas, Peptide-based and small molecule PD-1 and PD-L1 pharmacological modulators in the treatment of cancer. Pharmacol. Ther. 227, 107870 (2021). https://doi.org/10.1016/j.pharmthera.2021.107870
H. Acar, J.M. Ting, S. Srivastava, J.L. LaBelle, M.V. Tirrell, Molecular engineering solutions for therapeutic peptide delivery. Chem. Soc. Rev. 46, 6553–6569 (2017). https://doi.org/10.1039/c7cs00536a
Sristi, G. Gupta, M.A.S. Abourehab, A. Sahebkar, P. Kesharwani, Recent advances in PD-L1 siRNA nanocarriers for cancer therapy. Int. J. Biol. Macromol. 311, 143994 (2025). https://doi.org/10.1016/j.ijbiomac.2025.143994
B. Rowshanravan, N. Halliday, D.M. Sansom, CTLA-4: a moving target in immunotherapy. Blood 131, 58–67 (2018). https://doi.org/10.1182/blood-2017-06-741033
Y. Guo, Y. Liu, W. Wu, D. Ling, Q. Zhang et al., Indoleamine 2,3-dioxygenase (Ido) inhibitors and their nanomedicines for cancer immunotherapy. Biomaterials 276, 121018 (2021). https://doi.org/10.1016/j.biomaterials.2021.121018
M.E.W. Logtenberg, F.A. Scheeren, T.N. Schumacher, The CD47-SIRPα immune checkpoint. Immunity 52, 742–752 (2020). https://doi.org/10.1016/j.immuni.2020.04.011
Y. Tie, F. Tang, Y.Q. Wei, X.W. Wei, Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J. Hematol. Oncol. 15, 61 (2022). https://doi.org/10.1186/s13045-022-01282-8
A. Mantovani, P. Allavena, F. Marchesi, C. Garlanda, Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022). https://doi.org/10.1038/s41573-022-00520-5
Z. Gu, T. Liu, J. Tang, Y. Yang, H. Song et al., Mechanism of iron oxide-induced macrophage activation: the impact of composition and the underlying signaling pathway. J. Am. Chem. Soc. 141, 6122–6126 (2019). https://doi.org/10.1021/jacs.8b10904
R. Kim, A. Hashimoto, N. Markosyan, V.A. Tyurin, Y.Y. Tyurina et al., Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022). https://doi.org/10.1038/s41586-022-05443-0
Q. Wu, L. You, E. Nepovimova, Z. Heger, W. Wu et al., Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J. Hematol. Oncol. 15, 77 (2022). https://doi.org/10.1186/s13045-022-01292-6
D.C. Fuhrmann, A. Mondorf, J. Beifuss, M. Jung, B. Brune, Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 36, 101670 (2020). https://doi.org/10.1016/j.redox.2020.101670
J. Lu, J. Wang, D. Ling, Surface engineering of nanops for targeted delivery to hepatocellular carcinoma. Small (2018). https://doi.org/10.1002/smll.201702037
J. Prakash, Y. Shaked, The Interplay between extracellular matrix remodeling and cancer therapeutics. Cancer Discov. 14, 1375–1388 (2024). https://doi.org/10.1158/2159-8290.CD-24-0002
G. Lei, L. Zhuang, B. Gan, The roles of ferroptosis in cancer: tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell 42, 513–534 (2024). https://doi.org/10.1016/j.ccell.2024.03.011
Z. Lin, S. Zou, K. Wen, The crosstalk of CD8+ T cells and ferroptosis in cancer. Front. Immunol. 14, 1255443 (2023). https://doi.org/10.3389/fimmu.2023.1255443
H. Xu, D. Ye, M. Ren, H. Zhang, F. Bi, Ferroptosis in the tumor microenvironment: perspectives for immunotherapy. Trends Mol. Med. 27, 856–867 (2021). https://doi.org/10.1016/j.molmed.2021.06.014
R. Kim, D. Taylor, R.H. Vonderheide, D.I. Gabrilovich, Ferroptosis of immune cells in the tumor microenvironment. Trends Pharmacol. Sci. 44, 542–552 (2023). https://doi.org/10.1016/j.tips.2023.06.005
C. Bruedigam, A.H. Porter, A. Song, G. Vroeg in de Wei, T. Stoll et al., Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia. Nat. Cancer 5, 47–65 (2024). https://doi.org/10.1038/s43018-023-00653-5
C.H. Hsieh, H.C. Hsieh, F.S. Shih, P.W. Wang, L.X. Yang et al., An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics 11, 7072–7091 (2021). https://doi.org/10.7150/thno.57803
S.J. Dixon, D.N. Patel, M. Welsch, R. Skouta, E.D. Lee et al., Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3, e02523 (2014). https://doi.org/10.7554/eLife.02523
S. Ma, E.S. Henson, Y. Chen, S.B. Gibson, Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7, e2307–e2307 (2016). https://doi.org/10.1038/cddis.2016.208
J.H. Woo, Y. Shimoni, W.S. Yang, P. Subramaniam, A. Iyer et al., Elucidating compound mechanism of action by network perturbation analysis. Cell 162, 441–451 (2015). https://doi.org/10.1016/j.cell.2015.05.056
S. Pisanti, P. Picardi, E. Ciaglia, A. D’Alessandro, M. Bifulco, Novel prospects of statins as therapeutic agents in cancer. Pharmacol. Res. 88, 84–98 (2014). https://doi.org/10.1016/j.phrs.2014.06.013
J.L. Roh, E.H. Kim, H. Jang, D. Shin, Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11, 254–262 (2017). https://doi.org/10.1016/j.redox.2016.12.010
P. Qian, Y.W. Zhang, Z.H. Zhou, J.Q. Liu, S.Y. Yue et al., Artesunate enhances gammadelta T-cell-mediated antitumor activity through augmenting gammadelta T-cell function and reversing immune escape of HepG2 cells. Immunopharmacol. Immunotoxicol. 40, 107–116 (2018). https://doi.org/10.1080/08923973.2017.1386212
J.S. Weber, M.S. Carlino, A. Khattak, T. Meniawy, G. Ansstas et al., Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024). https://doi.org/10.1016/S0140-6736(23)02268-7
L.A. Rojas, Z. Sethna, K.C. Soares, C. Olcese, N. Pang et al., Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023). https://doi.org/10.1038/s41586-023-06063-y
A. Ribas, T. Medina, J.M. Kirkwood, Y. Zakharia, R. Gonzalez et al., Overcoming PD-1 blockade resistance with CpG-A toll-like receptor 9 agonist vidutolimod in patients with metastatic melanoma. Cancer Discov. 11, 2998–3007 (2021). https://doi.org/10.1158/2159-8290.CD-21-0425
B. Bahmani, H. Gong, B.T. Luk, K.J. Haushalter, E. DeTeresa et al., Intratumoral immunotherapy using platelet-cloaked nanops enhances antitumor immunity in solid tumors. Nat. Commun. 12, 1999 (2021). https://doi.org/10.1038/s41467-021-22311-z
T. Lammers, Nanomedicine tumor targeting. Adv. Mater. 36, e2312169 (2024). https://doi.org/10.1002/adma.202312169
J. Szebeni, F. Muggia, A. Gabizon, Y. Barenholz, Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv. Drug Deliv. Rev. 63, 1020–1030 (2011). https://doi.org/10.1016/j.addr.2011.06.017
I. de Lazaro, D.J. Mooney, Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 20, 1469–1479 (2021). https://doi.org/10.1038/s41563-021-01047-7
W. Qin, J. Huang, C. Yang, Q. Yue, S. Chen et al., Protease-activatable nanozyme with photoacoustic and tumor-enhanced magnetic resonance imaging for photothermal ferroptosis cancer therapy. Adv. Funct. Mater. 33, 2209748 (2023). https://doi.org/10.1002/adfm.202209748
C. Xu, K. Pu, Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50, 1111–1137 (2021). https://doi.org/10.1039/d0cs00664e
Y. Mou, J. Wang, J. Wu, D. He, C. Zhang et al., Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol. 12, 34 (2019). https://doi.org/10.1186/s13045-019-0720-y
D. Basuli, L. Tesfay, Z. Deng, B. Paul, Y. Yamamoto et al., Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 36, 4089–4099 (2017). https://doi.org/10.1038/onc.2017.11
C.M. Bebber, E.S. Thomas, J. Stroh, Z. Chen, A. Androulidaki et al., Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes. Nat. Commun. 12, 2048 (2021). https://doi.org/10.1038/s41467-021-22336-4
N. Verma, Y. Vinik, A. Saroha, N.U. Nair, E. Ruppin et al., Synthetic lethal combination targeting BET uncovered intrinsic susceptibility of TNBC to ferroptosis. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba8968