Key Advancements and Emerging Trends of Perovskite Solar Cells in 2024–2025
Corresponding Author: Liyuan Han
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 209
Abstract
The past two years have witnessed remarkable progress in perovskite solar cells (PSCs), marked by breakthroughs in power conversion efficiency and strides in addressing long-term operational stability. At present, the certified power conversion efficiencies of single-junction PSCs and silicon/perovskite tandem cells have surpassed 27% and 34%, respectively. Regarding stability, researchers begun to focus their attention on the challenges faced by PSCs when operated in outdoor environments. Furthermore, breakthroughs in the utilization of green solvents, fabrication in ambient air conditions, aqueous-phase synthesis of perovskite raw materials at kilogram scale, vacuum flash evaporation, and machine learning-assisted design are accelerating the commercialization of PSCs. The review summarizes the key advancements of PSCs during 2024–2025. It identifies a critical performance discrepancy between small-area devices and perovskite solar modules and delves into strategies aimed at bridging this gap. Finally, perspectives on the future directions of PSCs are presented, with a particular emphasis on improving photocurrent and environmental sustainability.
Highlights:
1 The key advancements in perovskite solar cells during the years 2024–2025 are summarized, along with an in-depth exploration of the underlying enhancement mechanisms.
2 The performance gap between small-area devices and perovskite solar modules is highlighted.
3 The future directions aimed at accelerating the commercialization and enhancing the sustainability of perovskite solar cells are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Han, K. Park, S. Tan, Y. Vaynzof, J. Xue et al., Perovskite solar cells. Nat. Rev. Methods Primers 5, 3 (2025). https://doi.org/10.1038/s43586-024-00373-9
- T. Kirchartz, G. Yan, Y. Yuan, B.K. Patel, D. Cahen et al., The state of the art in photovoltaic materials and device research. Nat. Rev. Mater. 10(5), 335–354 (2025). https://doi.org/10.1038/s41578-025-00784-4
- X. Liu, J. Zhang, B. Wang, G. Tong, J. Yang et al., Perovskite solar modules with high efficiency exceeding 20%: from laboratory to industrial community. Joule 9(9), 102056 (2025). https://doi.org/10.1016/j.joule.2025.102056
- X. Lin, H. Su, X. Shen, Z. Qin, M. Chen et al., Degradable additive couple enable pure and stable alpha-phase FAPbI3 for perovskite solar cells. Adv. Mater. 37(20), 2418008 (2025). https://doi.org/10.1002/adma.202418008
- X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
- H.C. Weerasinghe, N. MacAdam, J.-E. Kim, L.J. Sutherland, D. Angmo et al., The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nat. Commun. 15, 1656 (2024). https://doi.org/10.1038/s41467-024-46016-1
- Best research-cell efficiencies. (2025).
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 66). Prog. Photovolt. Res. Appl. 33(7), 795–810 (2025). https://doi.org/10.1002/pip.3919
- F. Song, D. Zheng, J. Feng, J. Liu, T. Ye et al., Mechanical durability and flexibility in perovskite photovoltaics: advancements and applications. Adv. Mater. 36(18), e2312041 (2024). https://doi.org/10.1002/adma.202312041
- G. Yan, Y. Yuan, M. Kaba, T. Kirchartz, Visualizing performances losses of perovskite solar cells and modules: from laboratory to industrial scales. Adv. Energy Mater. 15(3), 2403706 (2025). https://doi.org/10.1002/aenm.202403706
- S. Baumann, G.E. Eperon, A. Virtuani, Q. Jeangros, D.B. Kern et al., Stability and reliability of perovskite containing solar cells and modules: degradation mechanisms and mitigation strategies. Energy Environ. Sci. 17(20), 7566–7599 (2024). https://doi.org/10.1039/d4ee01898b
- T.J. Silverman, M.G. Deceglie, I. Repins, M. Owen-Bellini, J.J. Berry et al., Durability research is pivotal for perovskite photovoltaics. Nat. Energy 10(8), 934–940 (2025). https://doi.org/10.1038/s41560-025-01786-w
- N.A.N. Ouedraogo, Y. Ouyang, B. Guo, Z. Xiao, C. Zuo et al., Printing perovskite solar cells in ambient air: a review. Adv. Energy Mater. 14(29), 2401463 (2024). https://doi.org/10.1002/aenm.202401463
- J. Liu, D. Zheng, K. Wang, Z. Li, S. Liu et al., Evolutionary manufacturing approaches for advancing flexible perovskite solar cells. Joule 8(4), 944–969 (2024). https://doi.org/10.1016/j.joule.2024.02.025
- G. Yang, C. Deng, C. Li, T. Zhu, D. Liu et al., Towards efficient, scalable and stable perovskite/silicon tandem solar cells. Nat. Photon. 19(9), 913–924 (2025). https://doi.org/10.1038/s41566-025-01732-y
- K.J. Prince, H.M. Mirletz, E.A. Gaulding, L.M. Wheeler, R.A. Kerner et al., Sustainability pathways for perovskite photovoltaics. Nat. Mater. 24(1), 22–33 (2025). https://doi.org/10.1038/s41563-024-01945-6
- Y. Gou, S. Tang, C. Yuan, P. Zhao, J. Chen et al., Research progress of green antisolvent for perovskite solar cells. Mater. Horiz. 11(15), 3465–3481 (2024). https://doi.org/10.1039/d4mh00290c
- Z. Zheng, Y. Zhou, Y. Wang, Z. Cao, R. Yang et al., High-value organic solvent recovery and reuse in perovskite solar cell manufacturing. Sci. Adv. 11(34), eadt6008 (2025). https://doi.org/10.1126/sciadv.adt6008
- X. Yuan, Q. Song, Y. Liu, M. Huang, Y. Wang et al., Role of anthropogenic mineral circularity in addressing dual challenges of resource supply and waste management in global photovoltaic development. Nat. Commun. 16(1), 9068 (2025). https://doi.org/10.1038/s41467-025-64145-z
- X. Yu, X. Sun, Z. Zhu, Z.-A. Li, Stabilization strategies of buried interface for efficient SAM-based inverted perovskite solar cells. Angew. Chem. Int. Ed. 64(4), e202419608 (2025). https://doi.org/10.1002/anie.202419608
- C. Li, Y. Chen, Z. Zhang, C. Liu, F. Guo et al., Pros and cons of hole-selective self-assembled monolayers in inverted PSCs and TSCs: extensive case studies and data analysis. Energy Environ. Sci. 17(17), 6157–6203 (2024). https://doi.org/10.1039/d4ee02492c
- J. Yang, G. Qu, Y. Qiao, S. Cai, J. Hu et al., Flexibility meets rigidity: a self-assembled monolayer materials strategy for perovskite solar cells. Nat. Commun. 16(1), 6968 (2025). https://doi.org/10.1038/s41467-025-62388-4
- W. Zhang, X. Guo, Z. Cui, H. Yuan, Y. Li et al., Strategies for improving efficiency and stability of inverted perovskite solar cells. Adv. Mater. 36(37), 2311025 (2024). https://doi.org/10.1002/adma.202311025
- Q. Jiang, K. Zhu, Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 9(6), 399–419 (2024). https://doi.org/10.1038/s41578-024-00678-x
- X. Zhang, S. Wu, H. Zhang, A.K.Y. Jen, Y. Zhan et al., Advances in inverted perovskite solar cells. Nat. Photon. 18(12), 1243–1253 (2024). https://doi.org/10.1038/s41566-024-01541-9
- D. Gao, B. Li, X. Sun, Q. Liu, C. Zhang et al., High-efficiency perovskite solar cells enabled by suppressing intermolecular aggregation in hole-selective contacts. Nat. Photonics 19(10), 1070–1077 (2025). https://doi.org/10.1038/s41566-025-01725-x
- C. Luo, Q. Zhou, K. Wang, X. Wang, J. He et al., Engineering bonding sites enables uniform and robust self-assembled monolayer for stable perovskite solar cells. Nat. Mater. 24(8), 1265–1272 (2025). https://doi.org/10.1038/s41563-025-02275-x
- H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou et al., Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384(6692), 189–193 (2024). https://doi.org/10.1126/science.adm9474
- J. Liu, Y. He, L. Ding, H. Zhang, Q. Li et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
- X. Zhu, D. Yu, X. Zhou, N. Wang, H. Liu et al., Interfacial molecular anchor for ambient all-bladed perovskite solar modules. Joule 9(5), 101919 (2025). https://doi.org/10.1016/j.joule.2025.101919
- P. Zhu, C. Chen, J. Dai, Y. Zhang, R. Mao et al., Toward the commercialization of perovskite solar modules. Adv. Mater. 36(15), 2307357 (2024). https://doi.org/10.1002/adma.202307357
- H. Wang, S. Su, Y. Chen, M. Ren, S. Wang et al., Impurity-healing interface engineering for efficient perovskite submodules. Nature 634(8036), 1091–1095 (2024). https://doi.org/10.1038/s41586-024-08073-w
- O. Er-raji, C. Messmer, R.R. Pradhan, O. Fischer, V. Hnapovskyi et al., Electron accumulation across the perovskite layer enhances tandem solar cells with textured silicon. Science 390(6772), eadx1745 (2025). https://doi.org/10.1126/science.adx1745
- R. Nie, P. Zhang, J. Gao, C. Wang, W. Chu et al., Enhanced coordination interaction with multi-site binding ligands for efficient and stable perovskite solar cells. Nat. Commun. 16(1), 6438 (2025). https://doi.org/10.1038/s41467-025-61563-x
- W.-T. Wang, P. Holzhey, N. Zhou, Q. Zhang, S. Zhou et al., Water- and heat-activated dynamic passivation for perovskite photovoltaics. Nature 632(8024), 294–300 (2024). https://doi.org/10.1038/s41586-024-07705-5
- J. Suo, B. Yang, E. Mosconi, D. Bogachuk, T.A.S. Doherty et al., Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4, 500-h operational stability tests. Nat. Energy 9(2), 172–183 (2024). https://doi.org/10.1038/s41560-023-01421-6
- C. Liu, Y. Yang, H. Chen, I. Spanopoulos, A.S.R. Bati et al., Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature 633(8029), 359–364 (2024). https://doi.org/10.1038/s41586-024-07764-8
- D.W. de Quilettes, J.J. Yoo, R. Brenes, F.U. Kosasih, M. Laitz et al., Reduced recombination via tunable surface fields in perovskite thin films. Nat. Energy 9(4), 457–466 (2024). https://doi.org/10.1038/s41560-024-01470-5
- S. Tan, M.-C. Shih, Y. Lu, S.-G. Choi, Y. Dong et al., Spontaneous formation of robust two-dimensional perovskite phases. Science 388(6747), 639–645 (2025). https://doi.org/10.1126/science.adr1334
- J. Chen, X. Wang, T. Wang, J. Li, H.Y. Chia et al., Determining the bonding–degradation trade-off at heterointerfaces for increased efficiency and stability of perovskite solar cells. Nat. Energy 10(2), 181–190 (2025). https://doi.org/10.1038/s41560-024-01680-x
- Y. Ding, B. Ding, P. Shi, J. Romano-deGea, Y. Li et al., Cation reactivity inhibits perovskite degradation in efficient and stable solar modules. Science 386(6721), 531–538 (2024). https://doi.org/10.1126/science.ado6619
- J. Zhao, J. Cao, J. Dong, Z. Li, Y. Chu et al., Impact of lithium dopants in hole-transporting layers on perovskite solar cell stability under day–night cycling. Nat. Energy 10(10), 1226–1236 (2025). https://doi.org/10.1038/s41560-025-01856-z
- C. Fei, A. Kuvayskaya, X. Shi, M. Wang, Z. Shi et al., Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Science 384(6700), 1126–1134 (2024). https://doi.org/10.1126/science.adi4531
- B. Yan, W. Dai, Z. Wang, Z. Zhong, L. Zhang et al., 3D laminar flow-assisted crystallization of perovskites for square meter-sized solar modules. Science 388(6749), eadt5001 (2025). https://doi.org/10.1126/science.adt5001
- M. Lu, J. Ding, Q. Ma, Z. Zhang, M. Li et al., Dual-site passivation by heterocycle functionalized amidinium cations toward high-performance inverted perovskite solar cells and modules. Energy Environ. Sci. 18(12), 5973–5984 (2025). https://doi.org/10.1039/d5ee00524h
- Y. Gao, Y. Wang, P. Yang, B. Shi, Z. Liu et al., Shear flow strategy for coating homogeneity of organic materials in perovskite solar cells and modules. Joule 9(9), 102098 (2025). https://doi.org/10.1016/j.joule.2025.102098
- H. Gao, K. Xiao, R. Lin, S. Zhao, W. Wang et al., Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383(6685), 855–859 (2024). https://doi.org/10.1126/science.adj6088
- X. Zhao, P. Zhang, T. Liu, B. Tian, Y. Jiang et al., Operationally stable perovskite solar modules enabled by vapor-phase fluoride treatment. Science 385(6707), 433–438 (2024). https://doi.org/10.1126/science.adn9453
- J. Li, C. Jin, R. Jiang, J. Su, T. Tian et al., Homogeneous coverage of the low-dimensional perovskite passivation layer for formamidinium–caesium perovskite solar modules. Nat. Energy 9(12), 1540–1550 (2024). https://doi.org/10.1038/s41560-024-01667-8
- C. Duan, H. Gao, K. Xiao, V. Yeddu, B. Wang et al., Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells. Nat. Energy 10(3), 318–328 (2025). https://doi.org/10.1038/s41560-024-01672-x
- P. Zhu, D. Wang, Y. Zhang, Z. Liang, J. Li et al., Aqueous synthesis of perovskite precursors for highly efficient perovskite solar cells. Science 383(6682), 524–531 (2024). https://doi.org/10.1126/science.adj7081
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 65). Prog. Photovoltaics Res. Appl. 33(1), 3–15 (2025). https://doi.org/10.1002/pip.3867
- N. Ren, L. Tan, M. Li, J. Zhou, Y. Ye et al., 25% - efficiency flexible perovskite solar cells via controllable growth of SnO2. iEnergy 3(1), 39–45 (2024). https://doi.org/10.23919/IEN.2024.0001
- B. Hailegnaw, S. Demchyshyn, C. Putz, L.E. Lehner, F. Mayr et al., Flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy-autonomous drones. Nat. Energy 9(6), 677–690 (2024). https://doi.org/10.1038/s41560-024-01500-2
- S. Li, Y. Jiang, J. Xu, D. Wang, Z. Ding et al., High-efficiency and thermally stable FACsPbI(3) perovskite photovoltaics. Nature 635(8037), 82–88 (2024). https://doi.org/10.1038/s41586-024-08103-7
- Y. Yang, H. Chen, C. Liu, J. Xu, C. Huang et al., Amidination of ligands for chemical and field-effect passivation stabilizes perovskite solar cells. Science 386(6724), 898–902 (2024). https://doi.org/10.1126/science.adr2091
- X. Tang, C. Yang, Y. Xu, J. Xia, B. Li et al., Enhancing the efficiency and stability of perovskite solar cells via a polymer heterointerface bridge. Nat. Photon. 19(7), 701–708 (2025). https://doi.org/10.1038/s41566-025-01676-3
- Q. Zhou, G. Huang, J. Wang, T. Miao, R. Chen et al., Aromatic interaction-driven out-of-plane orientation for inverted perovskite solar cells with improved efficiency. Nat. Energy (2025). https://doi.org/10.1038/s41560-025-01882-x
- Y. Li, Z. Zhang, Y. Cai, S. Pu, M. Cheng et al., Synergistic isothiourea-guanidine additive for achieving stable perovskite solar cells with a high certified quasi-steady-state output. Adv. Mater. (2025). https://doi.org/10.1002/adma.202514903
- D. He, D. Ma, J. Zhang, Y. Yang, J. Ding et al., Universal ion migration suppression strategy based on supramolecular host–guest interaction for high-performance perovskite solar cells. Adv. Mater. 37(33), 2505115 (2025). https://doi.org/10.1002/adma.202505115
- S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
- Y. Shen, T. Zhang, G. Xu, J.A. Steele, X. Chen et al., Strain regulation retards natural operation decay of perovskite solar cells. Nature 635(8040), 882–889 (2024). https://doi.org/10.1038/s41586-024-08161-x
- Q. Li, H. Liu, C.-H. Hou, H. Yan, S. Li et al., Harmonizing the bilateral bond strength of the interfacial molecule in perovskite solar cells. Nat. Energy 9(12), 1506–1516 (2024). https://doi.org/10.1038/s41560-024-01642-3
- K. Zhao, Q. Liu, L. Yao, C. Değer, J. Shen et al., Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature 632(8024), 301–306 (2024). https://doi.org/10.1038/s41586-024-07712-6
- Y. Tian, X. Zhang, K. Zhao, X. Miao, T. Deng et al., High-entropy hybrid perovskites with disordered organic moieties for perovskite solar cells. Nat. Photon. 18(9), 960–966 (2024). https://doi.org/10.1038/s41566-024-01468-1
- J. Wu, L. Torresi, M. Hu, P. Reiser, J. Zhang et al., Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells. Science 386(6727), 1256–1264 (2024). https://doi.org/10.1126/science.ads0901
- X. Wang, J. Li, R. Guo, X. Yin, R. Luo et al., Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photonics 18(12), 1269–1275 (2024). https://doi.org/10.1038/s41566-024-01531-x
- D. Wang, Z. Liu, Y. Qiao, Z. Jiang, P. Zhu et al., Rigid molecules anchoring on niox enable >26% efficiency perovskite solar cells. Joule. 9(3), 101815 (2025). https://doi.org/10.1016/j.joule.2024.101815
- B. Ding, Y. Ding, J. Peng, J. Romano-deGea, L.E.K. Frederiksen et al., Dopant-additive synergism enhances perovskite solar modules. Nature 628(8007), 299–305 (2024). https://doi.org/10.1038/s41586-024-07228-z
- Y. Wang, Y. Meng, C. Liu, R. Cao, B. Han et al., Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. Joule 8(4), 1120–1141 (2024). https://doi.org/10.1016/j.joule.2024.01.021
- W. Xu, B. Chen, Z. Zhang, Y. Liu, Y. Xian et al., Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nat. Photonics 18(4), 379–387 (2024). https://doi.org/10.1038/s41566-023-01373-z
- D.S. Lee, K.W. Kim, Y.-H. Seo, M.H. Ann, W. Lee et al., Overcoming stability limitations of efficient, flexible perovskite solar modules. Joule 8(5), 1380–1393 (2024). https://doi.org/10.1016/j.joule.2024.02.008
- B. Dong, M. Wei, Y. Li, Y. Yang, W. Ma et al., Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses. Nat. Energy 10(3), 342–353 (2025). https://doi.org/10.1038/s41560-024-01689-2
- R. Deschermeier, S. Rehfeldt, H. Klein, Method for characterization of solvents for physical absorption processes. Chem. Eng. Technol. 40(1), 28–38 (2017). https://doi.org/10.1002/ceat.201500745
- H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383(6688), 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
- C.C. Boyd, R.C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi et al., Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4(8), 1759–1775 (2020). https://doi.org/10.1016/j.joule.2020.06.004
- J. Li, H. Liang, C. Xiao, X. Jia, R. Guo et al., Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nat. Energy 9(3), 308–315 (2024). https://doi.org/10.1038/s41560-023-01442-1
- A. Al-Ashouri, M. Marčinskas, E. Kasparavičius, T. Malinauskas, A. Palmstrom et al., Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells. ACS Energy Lett. 8(2), 898–900 (2023). https://doi.org/10.1021/acsenergylett.2c02629
- S.M. Park, M. Wei, J. Xu, H.R. Atapattu, F.T. Eickemeyer et al., Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381(6654), 209–215 (2023). https://doi.org/10.1126/science.adi4107
- Y.-H. Lin, Vikram, F. Yang, X.-L. Cao, A. Dasgupta et al., Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss. Science 384(6697), 767–775 (2024). https://doi.org/10.1126/science.ado2302
- L. Luo, H. Zeng, Z. Wang, M. Li, S. You et al., Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy (2023). https://doi.org/10.1038/s41560-023-01205-y
- R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628(8006), 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
- A. Borissov, Y.K. Maurya, L. Moshniaha, W.-S. Wong, M. Żyła-Karwowska et al., Recent advances in heterocyclic nanographenes and other polycyclic heteroaromatic compounds. Chem. Rev. 122(1), 565–788 (2022). https://doi.org/10.1021/acs.chemrev.1c00449
- S. Zhang, R. Wu, C. Mu, Y. Wang, L. Han et al., Conjugated self-assembled monolayer as stable hole-selective contact for inverted perovskite solar cells. ACS Mater. Lett. 4(10), 1976–1983 (2022). https://doi.org/10.1021/acsmaterialslett.2c00799
- P. Zhu, Z. Liu, X. Lei, S. He, D. Wang et al., Symmetry-driven engineering of long-range-ordered π–π stacking molecules for high-efficiency perovskite photovoltaics. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00896-3
- J. Zhou, Y. Luo, R. Li, L. Tian, K. Zhao et al., Molecular contacts with an orthogonal π-skeleton induce amorphization to enhance perovskite solar cell performance. Nat. Chem. 17(4), 564–570 (2025). https://doi.org/10.1038/s41557-025-01732-z
- D. Bogachuk, B. Yang, J. Suo, D. Martineau, A. Verma et al., Perovskite solar cells with carbon-based electrodes–quantification of losses and strategies to overcome them. Adv. Energy Mater. 12(10), 2103128 (2022). https://doi.org/10.1002/aenm.202103128
- J. Liu, X. Chen, K. Chen, W. Tian, Y. Sheng et al., Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells. Science 383(6688), 1198–1204 (2024). https://doi.org/10.1126/science.adk9089
- Y. Li, J.K. Cooper, W. Liu, C.M. Sutter-Fella, M. Amani et al., Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nat. Commun. 7, 12446 (2016). https://doi.org/10.1038/ncomms12446
- D. Koo, Y. Choi, U. Kim, J. Kim, J. Seo et al., Mesoporous structured MoS2 as an electron transport layer for efficient and stable perovskite solar cells. Nat. Nanotechnol. 20(1), 75–82 (2025). https://doi.org/10.1038/s41565-024-01799-8
- M.J. Paik, Y.Y. Kim, J. Kim, J. Park, S.I. Seok, Ultrafine SnO2 colloids with enhanced interface quality for high-efficiency perovskite solar cells. Joule 8(7), 2073–2086 (2024). https://doi.org/10.1016/j.joule.2024.04.010
- D. Gao, B. Li, Q. Liu, C. Zhang, Z. Yu et al., Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386(6718), 187–192 (2024). https://doi.org/10.1126/science.adq8385
- Y. Wang, C. Lu, M. Liu, C. Zhu, J. Zhang et al., Solvent-assisted reaction for spontaneous defect passivation in perovskite solar cells. Nat. Photon. 19(9), 985–991 (2025). https://doi.org/10.1038/s41566-025-01704-2
- S. Fu, N. Sun, H. Chen, C. Liu, X. Wang et al., On-demand formation of Lewis bases for efficient and stable perovskite solar cells. Nat. Nanotechnol. 20(6), 772–778 (2025). https://doi.org/10.1038/s41565-025-01900-9
- G. Kieslich, S. Sun, A.K. Cheetham, An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6(6), 3430–3433 (2015). https://doi.org/10.1039/c5sc00961h
- Z.-W. Gao, D. Wang, J. Fang, G. Zheng, J. Sun et al., Eutectic molecule ligand stabilizes photoactive black phase perovskite. Nat. Photon. 19(3), 258–263 (2025). https://doi.org/10.1038/s41566-024-01596-8
- Y. Zhang, Y. Chen, G. Liu, Y. Wu, Z. Guo et al., Nonalloyed α-phase formamidinium lead triiodide solar cells through iodine intercalation. Science 387(6731), 284–290 (2025). https://doi.org/10.1126/science.ads8968
- S. Sidhik, I. Metcalf, W. Li, T. Kodalle, C.J. Dolan et al., Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells. Science 384(6701), 1227–1235 (2024). https://doi.org/10.1126/science.abq6993
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- D. Barrit, P. Cheng, K. Darabi, M.-C. Tang, D.-M. Smilgies et al., Room-temperature partial conversion of α-FAPbI3 perovskite phase via PbI2 solvation enables high-performance solar cells. Adv. Funct. Mater. 30(11), 1907442 (2020). https://doi.org/10.1002/adfm.201907442
- Y. Zou, W. Yu, H. Guo, Q. Li, X. Li et al., A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air. Science 385(6705), 161–167 (2024). https://doi.org/10.1126/science.adn9646
- Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu et al., Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624(7992), 557–563 (2023). https://doi.org/10.1038/s41586-023-06784-0
- Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Photon. 9(2), 106–112 (2015). https://doi.org/10.1038/nphoton.2014.284
- S. Li, Y. Xiao, R. Su, W. Xu, D. Luo et al., Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635(8040), 874–881 (2024). https://doi.org/10.1038/s41586-024-08159-5
- T. Li, X. Luo, P. Wang, Z. Li, Y. Li et al., Tin-based perovskite solar cells with a homogeneous buried interface. Nature (2025). https://doi.org/10.1038/s41586-025-09724-2
- J. Chen, J. Luo, E. Hou, P. Song, Y. Li et al., Efficient tin-based perovskite solar cells with trans-isomeric fulleropyrrolidine additives. Nat. Photon. 18(5), 464–470 (2024). https://doi.org/10.1038/s41566-024-01381-7
- D. He, P. Chen, J.A. Steele, Z. Wang, H. Xu et al., Homogeneous 2D/3D heterostructured tin halide perovskite photovoltaics. Nat. Nanotechnol. 20(6), 779–786 (2025). https://doi.org/10.1038/s41565-025-01905-4
- Z. Wang, Z. Lv, G. Liu, H. Li, S. Li et al., Bilateral chemical bridging enables efficient ultra-flexible perovskite solar cells with improved extreme mechanical durability. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202509960
- W. Zhang, J. Liu, W. Song, J. Shan, H. Guan et al., Chemical passivation and grain-boundary manipulation via in situ cross-linking strategy for scalable flexible perovskite solar cells. Sci. Adv. 11(5), eadr2290 (2025). https://doi.org/10.1126/sciadv.adr2290
- X. Zhu, Y. Li, Q.-Z. Li, N. Wang, S. Yang et al., Restrictive heterointerfacial delamination in flexible perovskite photovoltaics using a bifacial linker. Adv. Mater. 37(13), e2419329 (2025). https://doi.org/10.1002/adma.202419329
- Y. Xu, Z. Lin, J. Zhang, Y. Hao, J. Ouyang et al., Flexible perovskite solar cells: material selection and structure design. Appl. Phys. Rev. 9(2), 021307 (2022). https://doi.org/10.1063/5.0084596
- Q. Zhang, J. Duan, Q. Guo, J. Zhang, D. Zheng et al., Thermal-triggered dynamic disulfide bond self-heals inorganic perovskite solar cells. Angew. Chem. Int. Ed. 61(8), e202116632 (2022). https://doi.org/10.1002/anie.202116632
- T. Xue, B. Fan, K.-J. Jiang, Q. Guo, X. Hu et al., Self-healing ion-conducting elastomer towards record efficient flexible perovskite solar cells with excellent recoverable mechanical stability. Energy Environ. Sci. 17(7), 2621–2630 (2024). https://doi.org/10.1039/d4ee00462k
- M. Li, H. Gao, L. Li, E. Wang, Z. Liu et al., In situ coating strategy for flexible all-perovskite tandem modules. Nat. Photon. 19(11), 1255–1263 (2025). https://doi.org/10.1038/s41566-025-01746-6
- Y. Wang, R. Lin, C. Liu, X. Wang, C. Chosy et al., Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635(8040), 867–873 (2024). https://doi.org/10.1038/s41586-024-08158-6
- X. Jiang, S. Qin, L. Meng, G. He, J. Zhang et al., Isomeric diammonium passivation for perovskite-organic tandem solar cells. Nature 635(8040), 860–866 (2024). https://doi.org/10.1038/s41586-024-08160-y
- S. Fu, S. Zhou, W. Meng, G. Li, K. Dong et al., Piracetam shapes wide-bandgap perovskite crystals for scalable perovskite tandems. Nat. Nanotechnol. 20(6), 764–771 (2025). https://doi.org/10.1038/s41565-025-01899-z
- C. Kan, P. Hang, S. Wang, B. Li, X. Yu et al., Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon. Nat. Photon. 19(1), 63–70 (2025). https://doi.org/10.1038/s41566-024-01561-5
- D. Zhang, B. Yan, R. Xia, B. Li, R. Li et al., Perovskite crystallization control via an engineered self-assembled monolayer in perovskite–silicon tandem solar cells. Nat. Photon. (2025). https://doi.org/10.1038/s41566-025-01778-y
- W. Wu, H. Gao, L. Jia, Y. Li, D. Zhang et al., Stable and uniform self-assembled organic diradical molecules for perovskite photovoltaics. Science 389(6756), 195–199 (2025). https://doi.org/10.1126/science.adv4551
- Y. Chen, N. Yang, G. Zheng, F. Pei, W. Zhou et al., Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science 385(6708), 554–560 (2024). https://doi.org/10.1126/science.ado9104
- L. Jia, S. Xia, J. Li, Y. Qin, B. Pei et al., Efficient perovskite/silicon tandem with asymmetric self-assembly molecule. Nature 644(8078), 912–919 (2025). https://doi.org/10.1038/s41586-025-09333-z
- E. Ugur, A. Ali Said, P. Dally, S. Zhang, C.E. Petoukhoff et al., Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science 385(6708), 533–538 (2024). https://doi.org/10.1126/science.adp1621
- D. Yu, M. Pan, G. Liu, X. Jiang, X. Wen et al., Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells. Nat. Energy 9(3), 298–307 (2024). https://doi.org/10.1038/s41560-023-01441-2
- C. Li, L. Chen, F. Jiang, Z. Song, X. Wang et al., Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells. Nat. Energy 9(11), 1388–1396 (2024). https://doi.org/10.1038/s41560-024-01613-8
- X. Yang, T. Ma, H. Hu, W. Ye, X. Li et al., Understanding and manipulating the crystallization of Sn–Pb perovskites for efficient all-perovskite tandem solar cells. Nat. Photon. 19(4), 426–433 (2025). https://doi.org/10.1038/s41566-025-01616-1
- Z. Zhang, W. Chen, X. Jiang, J. Cao, H. Yang et al., Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat. Energy 9(5), 592–601 (2024). https://doi.org/10.1038/s41560-024-01491-0
- S. Wu, Y. Yan, J. Yin, K. Jiang, F. Li et al., Redox mediator-stabilized wide-bandgap perovskites for monolithic perovskite-organic tandem solar cells. Nat. Energy 9(4), 411–421 (2024). https://doi.org/10.1038/s41560-024-01451-8
- Z. Jia, X. Guo, X. Yin, M. Sun, J. Qiao et al., Efficient near-infrared harvesting in perovskite-organic tandem solar cells. Nature 643(8070), 104–110 (2025). https://doi.org/10.1038/s41586-025-09181-x
- Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong et al., Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9(5), 1752–1759 (2016). https://doi.org/10.1039/c6ee00413j
- C.-H. Kuan, G.-S. Luo, S. Narra, S. Maity, H. Hiramatsu et al., How can a hydrophobic polymer PTAA serve as a hole- transport layer for an inverted tin perovskite solar cell? Chem. Eng. J. 450, 138037 (2022). https://doi.org/10.1016/j.cej.2022.138037
- R. He, W. Wang, Z. Yi, F. Lang, C. Chen et al., Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618(7963), 80–86 (2023). https://doi.org/10.1038/s41586-023-05992-y
- Z. Liu, R. Lin, M. Wei, M. Yin, P. Wu et al., All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites. Nat. Mater. 24(2), 252–259 (2025). https://doi.org/10.1038/s41563-024-02073-x
- S. Hu, J. Wang, P. Zhao, J. Pascual, J. Wang et al., Steering perovskite precursor solutions for multijunction photovoltaics. Nature 639(8053), 93–101 (2025). https://doi.org/10.1038/s41586-024-08546-y
- T. Kim, S. Park, V. Iyer, B. Shaheen, U. Choudhry et al., Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nat. Commun. 14, 1846 (2023). https://doi.org/10.1038/s41467-023-37486-w
- T.D. Raju, V. Murugadoss, K.A. Nirmal, T.D. Dongale, A.V. Kesavan et al., Advancements in perovskites for solar cell commercialization: a review. Adv. Powder Mater. 4(2), 100275 (2025). https://doi.org/10.1016/j.apmate.2025.100275
- C. Liu, Y. Yang, J.D. Fletcher, A. Liu, I.W. Gilley et al., Cation interdiffusion control for 2D/3D heterostructure formation and stabilization in inorganic perovskite solar modules. Nat. Energy 10(8), 981–990 (2025). https://doi.org/10.1038/s41560-025-01817-6
- Q. Li, Y. Zheng, H. Wang, X. Liu, M. Lin et al., Graphene-polymer reinforcement of perovskite lattices for durable solar cells. Science 387(6738), 1069–1077 (2025). https://doi.org/10.1126/science.adu5563
- Z. Shen, Q. Han, X. Luo, Y. Shen, Y. Wang et al., Efficient and stable perovskite solar cells with regulated depletion region. Nat. Photon. 18(5), 450–457 (2024). https://doi.org/10.1038/s41566-024-01383-5
- L. Bi, J. Wang, Z. Zeng, X. Ji, X. Huang et al., Temperature-controlled vacuum quenching for perovskite solar modules towards scalable production. Nat. Photon. 19(9), 968–976 (2025). https://doi.org/10.1038/s41566-025-01703-3
- Y. Yun, Q. Chang, J. Yan, Y. Tian, S. Jiang et al., Dimensional engineering of interlayer for efficient large-area perovskite solar cells with high stability under ISOS-L-3 aging test. Sci. Adv. 11(3), eadp3112 (2025). https://doi.org/10.1126/sciadv.adp3112
- P. Holzhey, M. Prettl, S. Collavini, N.L. Chang, M. Saliba, Toward commercialization with lightweight, flexible perovskite solar cells for residential photovoltaics. Joule 7(2), 257–271 (2023). https://doi.org/10.1016/j.joule.2022.12.012
- G.Y. Kim, A. Senocrate, T.-Y. Yang, G. Gregori, M. Grätzel et al., Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17(5), 445–449 (2018). https://doi.org/10.1038/s41563-018-0038-0
- J. Thiesbrummel, S. Shah, E. Gutierrez-Partida, F. Zu, F. Peña-Camargo et al., Ion-induced field screening as a dominant factor in perovskite solar cell operational stability. Nat. Energy 9(6), 664–676 (2024). https://doi.org/10.1038/s41560-024-01487-w
- Y. Zhou, L.M. Herz, A.K. Jen, M. Saliba, Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7(9), 794–807 (2022). https://doi.org/10.1038/s41560-022-01096-5
- T. Duan, S. You, M. Chen, W. Yu, Y. Li et al., Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384(6698), 878–884 (2024). https://doi.org/10.1126/science.ado5172
- G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee et al., One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684
- X. Zheng, Z. Li, Y. Zhang, M. Chen, T. Liu et al., Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8(5), 462–472 (2023). https://doi.org/10.1038/s41560-023-01227-6
- X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie et al., Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23(6), 810–817 (2024). https://doi.org/10.1038/s41563-024-01876-2
- Y. Yang, C. Liu, Y. Ding, B. Ding, J. Xu et al., A thermotropic liquid crystal enables efficient and stable perovskite solar modules. Nat. Energy 9(3), 316–323 (2024). https://doi.org/10.1038/s41560-023-01444-z
- Y. Song, M. Yao, C. Dong, S. Dayneko, G. Wang et al., Marker pen writing of perovskite solar modules. Nat. Commun. 16, 6283 (2025). https://doi.org/10.1038/s41467-025-61459-w
- P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4(4), 269–285 (2019). https://doi.org/10.1038/s41578-019-0097-0
- Q.-Q. Chu, Z. Sun, D. Wang, B. Cheng, H. Wang et al., Encapsulation: the path to commercialization of stable perovskite solar cells. Matter 6(11), 3838–3863 (2023). https://doi.org/10.1016/j.matt.2023.08.016
- W. Yang, Y. Zhang, C. Xiao, J. Yang, T. Shi, A review of encapsulation methods and geometric improvements of perovskite solar cells and modules for mass production and commercialization. Nano Materials Science (2025). https://doi.org/10.1016/j.nanoms.2025.02.005
- W. Li, X. Bao, A. Zhu, H. Gu, Y. Mao et al., Internal encapsulation enables efficient and stable perovskite solar cells. Adv. Funct. Mater. 35(4), 2414004 (2025). https://doi.org/10.1002/adfm.202414004
- X. Tang, T. Zhang, W. Chen, H. Chen, Z. Zhang et al., Macromers for encapsulating perovskite photovoltaics and achieving high stability. Adv. Mater. 36(25), e2400218 (2024). https://doi.org/10.1002/adma.202400218
- V. Larini, M. Degani, S. Cavalli, G. Grancini, Sustainable decommissioning of perovskite solar cells: from waste to resources. Chem. Soc. Rev. 54(15), 7252–7270 (2025). https://doi.org/10.1039/d5cs00359h
- X. Xiao, N. Xu, X. Tian, T. Zhang, B. Wang et al., Aqueous-based recycling of perovskite photovoltaics. Nature 638(8051), 670–675 (2025). https://doi.org/10.1038/s41586-024-08408-7
- Z. Wu, M. Sytnyk, J. Zhang, G. Babayeva, C. Kupfer et al., Closing the loop: recycling of MAPbI3perovskite solar cells. Energy Environ. Sci. 17(12), 4248–4262 (2024). https://doi.org/10.1039/d4ee01071j
- Y. Liu, Z. Zhang, T. Wu, W. Xiang, Z. Qin et al., Cost effectivities analysis of perovskite solar cells: will it outperform crystalline silicon ones? Nano-Micro Lett. 17(1), 219 (2025). https://doi.org/10.1007/s40820-025-01744-x
- Z. Bao, Y. Luo, L. Wang, J. Dou, L. Wang et al., A shortcut for commercialization of perovskites solar cells by a recycling and remanufacturing strategy. ACS Energy Lett. 10(3), 1474–1482 (2025). https://doi.org/10.1021/acsenergylett.5c00140
References
J. Han, K. Park, S. Tan, Y. Vaynzof, J. Xue et al., Perovskite solar cells. Nat. Rev. Methods Primers 5, 3 (2025). https://doi.org/10.1038/s43586-024-00373-9
T. Kirchartz, G. Yan, Y. Yuan, B.K. Patel, D. Cahen et al., The state of the art in photovoltaic materials and device research. Nat. Rev. Mater. 10(5), 335–354 (2025). https://doi.org/10.1038/s41578-025-00784-4
X. Liu, J. Zhang, B. Wang, G. Tong, J. Yang et al., Perovskite solar modules with high efficiency exceeding 20%: from laboratory to industrial community. Joule 9(9), 102056 (2025). https://doi.org/10.1016/j.joule.2025.102056
X. Lin, H. Su, X. Shen, Z. Qin, M. Chen et al., Degradable additive couple enable pure and stable alpha-phase FAPbI3 for perovskite solar cells. Adv. Mater. 37(20), 2418008 (2025). https://doi.org/10.1002/adma.202418008
X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
H.C. Weerasinghe, N. MacAdam, J.-E. Kim, L.J. Sutherland, D. Angmo et al., The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nat. Commun. 15, 1656 (2024). https://doi.org/10.1038/s41467-024-46016-1
Best research-cell efficiencies. (2025).
M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 66). Prog. Photovolt. Res. Appl. 33(7), 795–810 (2025). https://doi.org/10.1002/pip.3919
F. Song, D. Zheng, J. Feng, J. Liu, T. Ye et al., Mechanical durability and flexibility in perovskite photovoltaics: advancements and applications. Adv. Mater. 36(18), e2312041 (2024). https://doi.org/10.1002/adma.202312041
G. Yan, Y. Yuan, M. Kaba, T. Kirchartz, Visualizing performances losses of perovskite solar cells and modules: from laboratory to industrial scales. Adv. Energy Mater. 15(3), 2403706 (2025). https://doi.org/10.1002/aenm.202403706
S. Baumann, G.E. Eperon, A. Virtuani, Q. Jeangros, D.B. Kern et al., Stability and reliability of perovskite containing solar cells and modules: degradation mechanisms and mitigation strategies. Energy Environ. Sci. 17(20), 7566–7599 (2024). https://doi.org/10.1039/d4ee01898b
T.J. Silverman, M.G. Deceglie, I. Repins, M. Owen-Bellini, J.J. Berry et al., Durability research is pivotal for perovskite photovoltaics. Nat. Energy 10(8), 934–940 (2025). https://doi.org/10.1038/s41560-025-01786-w
N.A.N. Ouedraogo, Y. Ouyang, B. Guo, Z. Xiao, C. Zuo et al., Printing perovskite solar cells in ambient air: a review. Adv. Energy Mater. 14(29), 2401463 (2024). https://doi.org/10.1002/aenm.202401463
J. Liu, D. Zheng, K. Wang, Z. Li, S. Liu et al., Evolutionary manufacturing approaches for advancing flexible perovskite solar cells. Joule 8(4), 944–969 (2024). https://doi.org/10.1016/j.joule.2024.02.025
G. Yang, C. Deng, C. Li, T. Zhu, D. Liu et al., Towards efficient, scalable and stable perovskite/silicon tandem solar cells. Nat. Photon. 19(9), 913–924 (2025). https://doi.org/10.1038/s41566-025-01732-y
K.J. Prince, H.M. Mirletz, E.A. Gaulding, L.M. Wheeler, R.A. Kerner et al., Sustainability pathways for perovskite photovoltaics. Nat. Mater. 24(1), 22–33 (2025). https://doi.org/10.1038/s41563-024-01945-6
Y. Gou, S. Tang, C. Yuan, P. Zhao, J. Chen et al., Research progress of green antisolvent for perovskite solar cells. Mater. Horiz. 11(15), 3465–3481 (2024). https://doi.org/10.1039/d4mh00290c
Z. Zheng, Y. Zhou, Y. Wang, Z. Cao, R. Yang et al., High-value organic solvent recovery and reuse in perovskite solar cell manufacturing. Sci. Adv. 11(34), eadt6008 (2025). https://doi.org/10.1126/sciadv.adt6008
X. Yuan, Q. Song, Y. Liu, M. Huang, Y. Wang et al., Role of anthropogenic mineral circularity in addressing dual challenges of resource supply and waste management in global photovoltaic development. Nat. Commun. 16(1), 9068 (2025). https://doi.org/10.1038/s41467-025-64145-z
X. Yu, X. Sun, Z. Zhu, Z.-A. Li, Stabilization strategies of buried interface for efficient SAM-based inverted perovskite solar cells. Angew. Chem. Int. Ed. 64(4), e202419608 (2025). https://doi.org/10.1002/anie.202419608
C. Li, Y. Chen, Z. Zhang, C. Liu, F. Guo et al., Pros and cons of hole-selective self-assembled monolayers in inverted PSCs and TSCs: extensive case studies and data analysis. Energy Environ. Sci. 17(17), 6157–6203 (2024). https://doi.org/10.1039/d4ee02492c
J. Yang, G. Qu, Y. Qiao, S. Cai, J. Hu et al., Flexibility meets rigidity: a self-assembled monolayer materials strategy for perovskite solar cells. Nat. Commun. 16(1), 6968 (2025). https://doi.org/10.1038/s41467-025-62388-4
W. Zhang, X. Guo, Z. Cui, H. Yuan, Y. Li et al., Strategies for improving efficiency and stability of inverted perovskite solar cells. Adv. Mater. 36(37), 2311025 (2024). https://doi.org/10.1002/adma.202311025
Q. Jiang, K. Zhu, Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 9(6), 399–419 (2024). https://doi.org/10.1038/s41578-024-00678-x
X. Zhang, S. Wu, H. Zhang, A.K.Y. Jen, Y. Zhan et al., Advances in inverted perovskite solar cells. Nat. Photon. 18(12), 1243–1253 (2024). https://doi.org/10.1038/s41566-024-01541-9
D. Gao, B. Li, X. Sun, Q. Liu, C. Zhang et al., High-efficiency perovskite solar cells enabled by suppressing intermolecular aggregation in hole-selective contacts. Nat. Photonics 19(10), 1070–1077 (2025). https://doi.org/10.1038/s41566-025-01725-x
C. Luo, Q. Zhou, K. Wang, X. Wang, J. He et al., Engineering bonding sites enables uniform and robust self-assembled monolayer for stable perovskite solar cells. Nat. Mater. 24(8), 1265–1272 (2025). https://doi.org/10.1038/s41563-025-02275-x
H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou et al., Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384(6692), 189–193 (2024). https://doi.org/10.1126/science.adm9474
J. Liu, Y. He, L. Ding, H. Zhang, Q. Li et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
X. Zhu, D. Yu, X. Zhou, N. Wang, H. Liu et al., Interfacial molecular anchor for ambient all-bladed perovskite solar modules. Joule 9(5), 101919 (2025). https://doi.org/10.1016/j.joule.2025.101919
P. Zhu, C. Chen, J. Dai, Y. Zhang, R. Mao et al., Toward the commercialization of perovskite solar modules. Adv. Mater. 36(15), 2307357 (2024). https://doi.org/10.1002/adma.202307357
H. Wang, S. Su, Y. Chen, M. Ren, S. Wang et al., Impurity-healing interface engineering for efficient perovskite submodules. Nature 634(8036), 1091–1095 (2024). https://doi.org/10.1038/s41586-024-08073-w
O. Er-raji, C. Messmer, R.R. Pradhan, O. Fischer, V. Hnapovskyi et al., Electron accumulation across the perovskite layer enhances tandem solar cells with textured silicon. Science 390(6772), eadx1745 (2025). https://doi.org/10.1126/science.adx1745
R. Nie, P. Zhang, J. Gao, C. Wang, W. Chu et al., Enhanced coordination interaction with multi-site binding ligands for efficient and stable perovskite solar cells. Nat. Commun. 16(1), 6438 (2025). https://doi.org/10.1038/s41467-025-61563-x
W.-T. Wang, P. Holzhey, N. Zhou, Q. Zhang, S. Zhou et al., Water- and heat-activated dynamic passivation for perovskite photovoltaics. Nature 632(8024), 294–300 (2024). https://doi.org/10.1038/s41586-024-07705-5
J. Suo, B. Yang, E. Mosconi, D. Bogachuk, T.A.S. Doherty et al., Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4, 500-h operational stability tests. Nat. Energy 9(2), 172–183 (2024). https://doi.org/10.1038/s41560-023-01421-6
C. Liu, Y. Yang, H. Chen, I. Spanopoulos, A.S.R. Bati et al., Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature 633(8029), 359–364 (2024). https://doi.org/10.1038/s41586-024-07764-8
D.W. de Quilettes, J.J. Yoo, R. Brenes, F.U. Kosasih, M. Laitz et al., Reduced recombination via tunable surface fields in perovskite thin films. Nat. Energy 9(4), 457–466 (2024). https://doi.org/10.1038/s41560-024-01470-5
S. Tan, M.-C. Shih, Y. Lu, S.-G. Choi, Y. Dong et al., Spontaneous formation of robust two-dimensional perovskite phases. Science 388(6747), 639–645 (2025). https://doi.org/10.1126/science.adr1334
J. Chen, X. Wang, T. Wang, J. Li, H.Y. Chia et al., Determining the bonding–degradation trade-off at heterointerfaces for increased efficiency and stability of perovskite solar cells. Nat. Energy 10(2), 181–190 (2025). https://doi.org/10.1038/s41560-024-01680-x
Y. Ding, B. Ding, P. Shi, J. Romano-deGea, Y. Li et al., Cation reactivity inhibits perovskite degradation in efficient and stable solar modules. Science 386(6721), 531–538 (2024). https://doi.org/10.1126/science.ado6619
J. Zhao, J. Cao, J. Dong, Z. Li, Y. Chu et al., Impact of lithium dopants in hole-transporting layers on perovskite solar cell stability under day–night cycling. Nat. Energy 10(10), 1226–1236 (2025). https://doi.org/10.1038/s41560-025-01856-z
C. Fei, A. Kuvayskaya, X. Shi, M. Wang, Z. Shi et al., Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Science 384(6700), 1126–1134 (2024). https://doi.org/10.1126/science.adi4531
B. Yan, W. Dai, Z. Wang, Z. Zhong, L. Zhang et al., 3D laminar flow-assisted crystallization of perovskites for square meter-sized solar modules. Science 388(6749), eadt5001 (2025). https://doi.org/10.1126/science.adt5001
M. Lu, J. Ding, Q. Ma, Z. Zhang, M. Li et al., Dual-site passivation by heterocycle functionalized amidinium cations toward high-performance inverted perovskite solar cells and modules. Energy Environ. Sci. 18(12), 5973–5984 (2025). https://doi.org/10.1039/d5ee00524h
Y. Gao, Y. Wang, P. Yang, B. Shi, Z. Liu et al., Shear flow strategy for coating homogeneity of organic materials in perovskite solar cells and modules. Joule 9(9), 102098 (2025). https://doi.org/10.1016/j.joule.2025.102098
H. Gao, K. Xiao, R. Lin, S. Zhao, W. Wang et al., Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383(6685), 855–859 (2024). https://doi.org/10.1126/science.adj6088
X. Zhao, P. Zhang, T. Liu, B. Tian, Y. Jiang et al., Operationally stable perovskite solar modules enabled by vapor-phase fluoride treatment. Science 385(6707), 433–438 (2024). https://doi.org/10.1126/science.adn9453
J. Li, C. Jin, R. Jiang, J. Su, T. Tian et al., Homogeneous coverage of the low-dimensional perovskite passivation layer for formamidinium–caesium perovskite solar modules. Nat. Energy 9(12), 1540–1550 (2024). https://doi.org/10.1038/s41560-024-01667-8
C. Duan, H. Gao, K. Xiao, V. Yeddu, B. Wang et al., Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells. Nat. Energy 10(3), 318–328 (2025). https://doi.org/10.1038/s41560-024-01672-x
P. Zhu, D. Wang, Y. Zhang, Z. Liang, J. Li et al., Aqueous synthesis of perovskite precursors for highly efficient perovskite solar cells. Science 383(6682), 524–531 (2024). https://doi.org/10.1126/science.adj7081
M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 65). Prog. Photovoltaics Res. Appl. 33(1), 3–15 (2025). https://doi.org/10.1002/pip.3867
N. Ren, L. Tan, M. Li, J. Zhou, Y. Ye et al., 25% - efficiency flexible perovskite solar cells via controllable growth of SnO2. iEnergy 3(1), 39–45 (2024). https://doi.org/10.23919/IEN.2024.0001
B. Hailegnaw, S. Demchyshyn, C. Putz, L.E. Lehner, F. Mayr et al., Flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy-autonomous drones. Nat. Energy 9(6), 677–690 (2024). https://doi.org/10.1038/s41560-024-01500-2
S. Li, Y. Jiang, J. Xu, D. Wang, Z. Ding et al., High-efficiency and thermally stable FACsPbI(3) perovskite photovoltaics. Nature 635(8037), 82–88 (2024). https://doi.org/10.1038/s41586-024-08103-7
Y. Yang, H. Chen, C. Liu, J. Xu, C. Huang et al., Amidination of ligands for chemical and field-effect passivation stabilizes perovskite solar cells. Science 386(6724), 898–902 (2024). https://doi.org/10.1126/science.adr2091
X. Tang, C. Yang, Y. Xu, J. Xia, B. Li et al., Enhancing the efficiency and stability of perovskite solar cells via a polymer heterointerface bridge. Nat. Photon. 19(7), 701–708 (2025). https://doi.org/10.1038/s41566-025-01676-3
Q. Zhou, G. Huang, J. Wang, T. Miao, R. Chen et al., Aromatic interaction-driven out-of-plane orientation for inverted perovskite solar cells with improved efficiency. Nat. Energy (2025). https://doi.org/10.1038/s41560-025-01882-x
Y. Li, Z. Zhang, Y. Cai, S. Pu, M. Cheng et al., Synergistic isothiourea-guanidine additive for achieving stable perovskite solar cells with a high certified quasi-steady-state output. Adv. Mater. (2025). https://doi.org/10.1002/adma.202514903
D. He, D. Ma, J. Zhang, Y. Yang, J. Ding et al., Universal ion migration suppression strategy based on supramolecular host–guest interaction for high-performance perovskite solar cells. Adv. Mater. 37(33), 2505115 (2025). https://doi.org/10.1002/adma.202505115
S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
Y. Shen, T. Zhang, G. Xu, J.A. Steele, X. Chen et al., Strain regulation retards natural operation decay of perovskite solar cells. Nature 635(8040), 882–889 (2024). https://doi.org/10.1038/s41586-024-08161-x
Q. Li, H. Liu, C.-H. Hou, H. Yan, S. Li et al., Harmonizing the bilateral bond strength of the interfacial molecule in perovskite solar cells. Nat. Energy 9(12), 1506–1516 (2024). https://doi.org/10.1038/s41560-024-01642-3
K. Zhao, Q. Liu, L. Yao, C. Değer, J. Shen et al., Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature 632(8024), 301–306 (2024). https://doi.org/10.1038/s41586-024-07712-6
Y. Tian, X. Zhang, K. Zhao, X. Miao, T. Deng et al., High-entropy hybrid perovskites with disordered organic moieties for perovskite solar cells. Nat. Photon. 18(9), 960–966 (2024). https://doi.org/10.1038/s41566-024-01468-1
J. Wu, L. Torresi, M. Hu, P. Reiser, J. Zhang et al., Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells. Science 386(6727), 1256–1264 (2024). https://doi.org/10.1126/science.ads0901
X. Wang, J. Li, R. Guo, X. Yin, R. Luo et al., Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photonics 18(12), 1269–1275 (2024). https://doi.org/10.1038/s41566-024-01531-x
D. Wang, Z. Liu, Y. Qiao, Z. Jiang, P. Zhu et al., Rigid molecules anchoring on niox enable >26% efficiency perovskite solar cells. Joule. 9(3), 101815 (2025). https://doi.org/10.1016/j.joule.2024.101815
B. Ding, Y. Ding, J. Peng, J. Romano-deGea, L.E.K. Frederiksen et al., Dopant-additive synergism enhances perovskite solar modules. Nature 628(8007), 299–305 (2024). https://doi.org/10.1038/s41586-024-07228-z
Y. Wang, Y. Meng, C. Liu, R. Cao, B. Han et al., Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. Joule 8(4), 1120–1141 (2024). https://doi.org/10.1016/j.joule.2024.01.021
W. Xu, B. Chen, Z. Zhang, Y. Liu, Y. Xian et al., Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nat. Photonics 18(4), 379–387 (2024). https://doi.org/10.1038/s41566-023-01373-z
D.S. Lee, K.W. Kim, Y.-H. Seo, M.H. Ann, W. Lee et al., Overcoming stability limitations of efficient, flexible perovskite solar modules. Joule 8(5), 1380–1393 (2024). https://doi.org/10.1016/j.joule.2024.02.008
B. Dong, M. Wei, Y. Li, Y. Yang, W. Ma et al., Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses. Nat. Energy 10(3), 342–353 (2025). https://doi.org/10.1038/s41560-024-01689-2
R. Deschermeier, S. Rehfeldt, H. Klein, Method for characterization of solvents for physical absorption processes. Chem. Eng. Technol. 40(1), 28–38 (2017). https://doi.org/10.1002/ceat.201500745
H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383(6688), 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
C.C. Boyd, R.C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi et al., Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4(8), 1759–1775 (2020). https://doi.org/10.1016/j.joule.2020.06.004
J. Li, H. Liang, C. Xiao, X. Jia, R. Guo et al., Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nat. Energy 9(3), 308–315 (2024). https://doi.org/10.1038/s41560-023-01442-1
A. Al-Ashouri, M. Marčinskas, E. Kasparavičius, T. Malinauskas, A. Palmstrom et al., Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells. ACS Energy Lett. 8(2), 898–900 (2023). https://doi.org/10.1021/acsenergylett.2c02629
S.M. Park, M. Wei, J. Xu, H.R. Atapattu, F.T. Eickemeyer et al., Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381(6654), 209–215 (2023). https://doi.org/10.1126/science.adi4107
Y.-H. Lin, Vikram, F. Yang, X.-L. Cao, A. Dasgupta et al., Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss. Science 384(6697), 767–775 (2024). https://doi.org/10.1126/science.ado2302
L. Luo, H. Zeng, Z. Wang, M. Li, S. You et al., Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy (2023). https://doi.org/10.1038/s41560-023-01205-y
R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628(8006), 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
A. Borissov, Y.K. Maurya, L. Moshniaha, W.-S. Wong, M. Żyła-Karwowska et al., Recent advances in heterocyclic nanographenes and other polycyclic heteroaromatic compounds. Chem. Rev. 122(1), 565–788 (2022). https://doi.org/10.1021/acs.chemrev.1c00449
S. Zhang, R. Wu, C. Mu, Y. Wang, L. Han et al., Conjugated self-assembled monolayer as stable hole-selective contact for inverted perovskite solar cells. ACS Mater. Lett. 4(10), 1976–1983 (2022). https://doi.org/10.1021/acsmaterialslett.2c00799
P. Zhu, Z. Liu, X. Lei, S. He, D. Wang et al., Symmetry-driven engineering of long-range-ordered π–π stacking molecules for high-efficiency perovskite photovoltaics. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00896-3
J. Zhou, Y. Luo, R. Li, L. Tian, K. Zhao et al., Molecular contacts with an orthogonal π-skeleton induce amorphization to enhance perovskite solar cell performance. Nat. Chem. 17(4), 564–570 (2025). https://doi.org/10.1038/s41557-025-01732-z
D. Bogachuk, B. Yang, J. Suo, D. Martineau, A. Verma et al., Perovskite solar cells with carbon-based electrodes–quantification of losses and strategies to overcome them. Adv. Energy Mater. 12(10), 2103128 (2022). https://doi.org/10.1002/aenm.202103128
J. Liu, X. Chen, K. Chen, W. Tian, Y. Sheng et al., Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells. Science 383(6688), 1198–1204 (2024). https://doi.org/10.1126/science.adk9089
Y. Li, J.K. Cooper, W. Liu, C.M. Sutter-Fella, M. Amani et al., Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nat. Commun. 7, 12446 (2016). https://doi.org/10.1038/ncomms12446
D. Koo, Y. Choi, U. Kim, J. Kim, J. Seo et al., Mesoporous structured MoS2 as an electron transport layer for efficient and stable perovskite solar cells. Nat. Nanotechnol. 20(1), 75–82 (2025). https://doi.org/10.1038/s41565-024-01799-8
M.J. Paik, Y.Y. Kim, J. Kim, J. Park, S.I. Seok, Ultrafine SnO2 colloids with enhanced interface quality for high-efficiency perovskite solar cells. Joule 8(7), 2073–2086 (2024). https://doi.org/10.1016/j.joule.2024.04.010
D. Gao, B. Li, Q. Liu, C. Zhang, Z. Yu et al., Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386(6718), 187–192 (2024). https://doi.org/10.1126/science.adq8385
Y. Wang, C. Lu, M. Liu, C. Zhu, J. Zhang et al., Solvent-assisted reaction for spontaneous defect passivation in perovskite solar cells. Nat. Photon. 19(9), 985–991 (2025). https://doi.org/10.1038/s41566-025-01704-2
S. Fu, N. Sun, H. Chen, C. Liu, X. Wang et al., On-demand formation of Lewis bases for efficient and stable perovskite solar cells. Nat. Nanotechnol. 20(6), 772–778 (2025). https://doi.org/10.1038/s41565-025-01900-9
G. Kieslich, S. Sun, A.K. Cheetham, An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6(6), 3430–3433 (2015). https://doi.org/10.1039/c5sc00961h
Z.-W. Gao, D. Wang, J. Fang, G. Zheng, J. Sun et al., Eutectic molecule ligand stabilizes photoactive black phase perovskite. Nat. Photon. 19(3), 258–263 (2025). https://doi.org/10.1038/s41566-024-01596-8
Y. Zhang, Y. Chen, G. Liu, Y. Wu, Z. Guo et al., Nonalloyed α-phase formamidinium lead triiodide solar cells through iodine intercalation. Science 387(6731), 284–290 (2025). https://doi.org/10.1126/science.ads8968
S. Sidhik, I. Metcalf, W. Li, T. Kodalle, C.J. Dolan et al., Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells. Science 384(6701), 1227–1235 (2024). https://doi.org/10.1126/science.abq6993
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
D. Barrit, P. Cheng, K. Darabi, M.-C. Tang, D.-M. Smilgies et al., Room-temperature partial conversion of α-FAPbI3 perovskite phase via PbI2 solvation enables high-performance solar cells. Adv. Funct. Mater. 30(11), 1907442 (2020). https://doi.org/10.1002/adfm.201907442
Y. Zou, W. Yu, H. Guo, Q. Li, X. Li et al., A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air. Science 385(6705), 161–167 (2024). https://doi.org/10.1126/science.adn9646
Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu et al., Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624(7992), 557–563 (2023). https://doi.org/10.1038/s41586-023-06784-0
Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Photon. 9(2), 106–112 (2015). https://doi.org/10.1038/nphoton.2014.284
S. Li, Y. Xiao, R. Su, W. Xu, D. Luo et al., Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635(8040), 874–881 (2024). https://doi.org/10.1038/s41586-024-08159-5
T. Li, X. Luo, P. Wang, Z. Li, Y. Li et al., Tin-based perovskite solar cells with a homogeneous buried interface. Nature (2025). https://doi.org/10.1038/s41586-025-09724-2
J. Chen, J. Luo, E. Hou, P. Song, Y. Li et al., Efficient tin-based perovskite solar cells with trans-isomeric fulleropyrrolidine additives. Nat. Photon. 18(5), 464–470 (2024). https://doi.org/10.1038/s41566-024-01381-7
D. He, P. Chen, J.A. Steele, Z. Wang, H. Xu et al., Homogeneous 2D/3D heterostructured tin halide perovskite photovoltaics. Nat. Nanotechnol. 20(6), 779–786 (2025). https://doi.org/10.1038/s41565-025-01905-4
Z. Wang, Z. Lv, G. Liu, H. Li, S. Li et al., Bilateral chemical bridging enables efficient ultra-flexible perovskite solar cells with improved extreme mechanical durability. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202509960
W. Zhang, J. Liu, W. Song, J. Shan, H. Guan et al., Chemical passivation and grain-boundary manipulation via in situ cross-linking strategy for scalable flexible perovskite solar cells. Sci. Adv. 11(5), eadr2290 (2025). https://doi.org/10.1126/sciadv.adr2290
X. Zhu, Y. Li, Q.-Z. Li, N. Wang, S. Yang et al., Restrictive heterointerfacial delamination in flexible perovskite photovoltaics using a bifacial linker. Adv. Mater. 37(13), e2419329 (2025). https://doi.org/10.1002/adma.202419329
Y. Xu, Z. Lin, J. Zhang, Y. Hao, J. Ouyang et al., Flexible perovskite solar cells: material selection and structure design. Appl. Phys. Rev. 9(2), 021307 (2022). https://doi.org/10.1063/5.0084596
Q. Zhang, J. Duan, Q. Guo, J. Zhang, D. Zheng et al., Thermal-triggered dynamic disulfide bond self-heals inorganic perovskite solar cells. Angew. Chem. Int. Ed. 61(8), e202116632 (2022). https://doi.org/10.1002/anie.202116632
T. Xue, B. Fan, K.-J. Jiang, Q. Guo, X. Hu et al., Self-healing ion-conducting elastomer towards record efficient flexible perovskite solar cells with excellent recoverable mechanical stability. Energy Environ. Sci. 17(7), 2621–2630 (2024). https://doi.org/10.1039/d4ee00462k
M. Li, H. Gao, L. Li, E. Wang, Z. Liu et al., In situ coating strategy for flexible all-perovskite tandem modules. Nat. Photon. 19(11), 1255–1263 (2025). https://doi.org/10.1038/s41566-025-01746-6
Y. Wang, R. Lin, C. Liu, X. Wang, C. Chosy et al., Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635(8040), 867–873 (2024). https://doi.org/10.1038/s41586-024-08158-6
X. Jiang, S. Qin, L. Meng, G. He, J. Zhang et al., Isomeric diammonium passivation for perovskite-organic tandem solar cells. Nature 635(8040), 860–866 (2024). https://doi.org/10.1038/s41586-024-08160-y
S. Fu, S. Zhou, W. Meng, G. Li, K. Dong et al., Piracetam shapes wide-bandgap perovskite crystals for scalable perovskite tandems. Nat. Nanotechnol. 20(6), 764–771 (2025). https://doi.org/10.1038/s41565-025-01899-z
C. Kan, P. Hang, S. Wang, B. Li, X. Yu et al., Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon. Nat. Photon. 19(1), 63–70 (2025). https://doi.org/10.1038/s41566-024-01561-5
D. Zhang, B. Yan, R. Xia, B. Li, R. Li et al., Perovskite crystallization control via an engineered self-assembled monolayer in perovskite–silicon tandem solar cells. Nat. Photon. (2025). https://doi.org/10.1038/s41566-025-01778-y
W. Wu, H. Gao, L. Jia, Y. Li, D. Zhang et al., Stable and uniform self-assembled organic diradical molecules for perovskite photovoltaics. Science 389(6756), 195–199 (2025). https://doi.org/10.1126/science.adv4551
Y. Chen, N. Yang, G. Zheng, F. Pei, W. Zhou et al., Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science 385(6708), 554–560 (2024). https://doi.org/10.1126/science.ado9104
L. Jia, S. Xia, J. Li, Y. Qin, B. Pei et al., Efficient perovskite/silicon tandem with asymmetric self-assembly molecule. Nature 644(8078), 912–919 (2025). https://doi.org/10.1038/s41586-025-09333-z
E. Ugur, A. Ali Said, P. Dally, S. Zhang, C.E. Petoukhoff et al., Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science 385(6708), 533–538 (2024). https://doi.org/10.1126/science.adp1621
D. Yu, M. Pan, G. Liu, X. Jiang, X. Wen et al., Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells. Nat. Energy 9(3), 298–307 (2024). https://doi.org/10.1038/s41560-023-01441-2
C. Li, L. Chen, F. Jiang, Z. Song, X. Wang et al., Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells. Nat. Energy 9(11), 1388–1396 (2024). https://doi.org/10.1038/s41560-024-01613-8
X. Yang, T. Ma, H. Hu, W. Ye, X. Li et al., Understanding and manipulating the crystallization of Sn–Pb perovskites for efficient all-perovskite tandem solar cells. Nat. Photon. 19(4), 426–433 (2025). https://doi.org/10.1038/s41566-025-01616-1
Z. Zhang, W. Chen, X. Jiang, J. Cao, H. Yang et al., Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat. Energy 9(5), 592–601 (2024). https://doi.org/10.1038/s41560-024-01491-0
S. Wu, Y. Yan, J. Yin, K. Jiang, F. Li et al., Redox mediator-stabilized wide-bandgap perovskites for monolithic perovskite-organic tandem solar cells. Nat. Energy 9(4), 411–421 (2024). https://doi.org/10.1038/s41560-024-01451-8
Z. Jia, X. Guo, X. Yin, M. Sun, J. Qiao et al., Efficient near-infrared harvesting in perovskite-organic tandem solar cells. Nature 643(8070), 104–110 (2025). https://doi.org/10.1038/s41586-025-09181-x
Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong et al., Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9(5), 1752–1759 (2016). https://doi.org/10.1039/c6ee00413j
C.-H. Kuan, G.-S. Luo, S. Narra, S. Maity, H. Hiramatsu et al., How can a hydrophobic polymer PTAA serve as a hole- transport layer for an inverted tin perovskite solar cell? Chem. Eng. J. 450, 138037 (2022). https://doi.org/10.1016/j.cej.2022.138037
R. He, W. Wang, Z. Yi, F. Lang, C. Chen et al., Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618(7963), 80–86 (2023). https://doi.org/10.1038/s41586-023-05992-y
Z. Liu, R. Lin, M. Wei, M. Yin, P. Wu et al., All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites. Nat. Mater. 24(2), 252–259 (2025). https://doi.org/10.1038/s41563-024-02073-x
S. Hu, J. Wang, P. Zhao, J. Pascual, J. Wang et al., Steering perovskite precursor solutions for multijunction photovoltaics. Nature 639(8053), 93–101 (2025). https://doi.org/10.1038/s41586-024-08546-y
T. Kim, S. Park, V. Iyer, B. Shaheen, U. Choudhry et al., Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nat. Commun. 14, 1846 (2023). https://doi.org/10.1038/s41467-023-37486-w
T.D. Raju, V. Murugadoss, K.A. Nirmal, T.D. Dongale, A.V. Kesavan et al., Advancements in perovskites for solar cell commercialization: a review. Adv. Powder Mater. 4(2), 100275 (2025). https://doi.org/10.1016/j.apmate.2025.100275
C. Liu, Y. Yang, J.D. Fletcher, A. Liu, I.W. Gilley et al., Cation interdiffusion control for 2D/3D heterostructure formation and stabilization in inorganic perovskite solar modules. Nat. Energy 10(8), 981–990 (2025). https://doi.org/10.1038/s41560-025-01817-6
Q. Li, Y. Zheng, H. Wang, X. Liu, M. Lin et al., Graphene-polymer reinforcement of perovskite lattices for durable solar cells. Science 387(6738), 1069–1077 (2025). https://doi.org/10.1126/science.adu5563
Z. Shen, Q. Han, X. Luo, Y. Shen, Y. Wang et al., Efficient and stable perovskite solar cells with regulated depletion region. Nat. Photon. 18(5), 450–457 (2024). https://doi.org/10.1038/s41566-024-01383-5
L. Bi, J. Wang, Z. Zeng, X. Ji, X. Huang et al., Temperature-controlled vacuum quenching for perovskite solar modules towards scalable production. Nat. Photon. 19(9), 968–976 (2025). https://doi.org/10.1038/s41566-025-01703-3
Y. Yun, Q. Chang, J. Yan, Y. Tian, S. Jiang et al., Dimensional engineering of interlayer for efficient large-area perovskite solar cells with high stability under ISOS-L-3 aging test. Sci. Adv. 11(3), eadp3112 (2025). https://doi.org/10.1126/sciadv.adp3112
P. Holzhey, M. Prettl, S. Collavini, N.L. Chang, M. Saliba, Toward commercialization with lightweight, flexible perovskite solar cells for residential photovoltaics. Joule 7(2), 257–271 (2023). https://doi.org/10.1016/j.joule.2022.12.012
G.Y. Kim, A. Senocrate, T.-Y. Yang, G. Gregori, M. Grätzel et al., Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17(5), 445–449 (2018). https://doi.org/10.1038/s41563-018-0038-0
J. Thiesbrummel, S. Shah, E. Gutierrez-Partida, F. Zu, F. Peña-Camargo et al., Ion-induced field screening as a dominant factor in perovskite solar cell operational stability. Nat. Energy 9(6), 664–676 (2024). https://doi.org/10.1038/s41560-024-01487-w
Y. Zhou, L.M. Herz, A.K. Jen, M. Saliba, Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7(9), 794–807 (2022). https://doi.org/10.1038/s41560-022-01096-5
T. Duan, S. You, M. Chen, W. Yu, Y. Li et al., Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384(6698), 878–884 (2024). https://doi.org/10.1126/science.ado5172
G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee et al., One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684
X. Zheng, Z. Li, Y. Zhang, M. Chen, T. Liu et al., Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8(5), 462–472 (2023). https://doi.org/10.1038/s41560-023-01227-6
X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie et al., Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23(6), 810–817 (2024). https://doi.org/10.1038/s41563-024-01876-2
Y. Yang, C. Liu, Y. Ding, B. Ding, J. Xu et al., A thermotropic liquid crystal enables efficient and stable perovskite solar modules. Nat. Energy 9(3), 316–323 (2024). https://doi.org/10.1038/s41560-023-01444-z
Y. Song, M. Yao, C. Dong, S. Dayneko, G. Wang et al., Marker pen writing of perovskite solar modules. Nat. Commun. 16, 6283 (2025). https://doi.org/10.1038/s41467-025-61459-w
P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4(4), 269–285 (2019). https://doi.org/10.1038/s41578-019-0097-0
Q.-Q. Chu, Z. Sun, D. Wang, B. Cheng, H. Wang et al., Encapsulation: the path to commercialization of stable perovskite solar cells. Matter 6(11), 3838–3863 (2023). https://doi.org/10.1016/j.matt.2023.08.016
W. Yang, Y. Zhang, C. Xiao, J. Yang, T. Shi, A review of encapsulation methods and geometric improvements of perovskite solar cells and modules for mass production and commercialization. Nano Materials Science (2025). https://doi.org/10.1016/j.nanoms.2025.02.005
W. Li, X. Bao, A. Zhu, H. Gu, Y. Mao et al., Internal encapsulation enables efficient and stable perovskite solar cells. Adv. Funct. Mater. 35(4), 2414004 (2025). https://doi.org/10.1002/adfm.202414004
X. Tang, T. Zhang, W. Chen, H. Chen, Z. Zhang et al., Macromers for encapsulating perovskite photovoltaics and achieving high stability. Adv. Mater. 36(25), e2400218 (2024). https://doi.org/10.1002/adma.202400218
V. Larini, M. Degani, S. Cavalli, G. Grancini, Sustainable decommissioning of perovskite solar cells: from waste to resources. Chem. Soc. Rev. 54(15), 7252–7270 (2025). https://doi.org/10.1039/d5cs00359h
X. Xiao, N. Xu, X. Tian, T. Zhang, B. Wang et al., Aqueous-based recycling of perovskite photovoltaics. Nature 638(8051), 670–675 (2025). https://doi.org/10.1038/s41586-024-08408-7
Z. Wu, M. Sytnyk, J. Zhang, G. Babayeva, C. Kupfer et al., Closing the loop: recycling of MAPbI3perovskite solar cells. Energy Environ. Sci. 17(12), 4248–4262 (2024). https://doi.org/10.1039/d4ee01071j
Y. Liu, Z. Zhang, T. Wu, W. Xiang, Z. Qin et al., Cost effectivities analysis of perovskite solar cells: will it outperform crystalline silicon ones? Nano-Micro Lett. 17(1), 219 (2025). https://doi.org/10.1007/s40820-025-01744-x
Z. Bao, Y. Luo, L. Wang, J. Dou, L. Wang et al., A shortcut for commercialization of perovskites solar cells by a recycling and remanufacturing strategy. ACS Energy Lett. 10(3), 1474–1482 (2025). https://doi.org/10.1021/acsenergylett.5c00140