Temperature-Dependent Infrared Engineering for Extreme Environments: All-Dielectric Thermal Photonic Metamaterials Stable at 1873 K in Air
Corresponding Author: Xiangang Luo
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 214
Abstract
The development of infrared engineering technologies for extreme environments remains a formidable challenge due to the inherent trade-offs among optical performance, thermal stability, and mechanical integrity in thermal photonic metamaterials (TPMs). This work introduces a novel multi-objective design framework and demonstrates the design, fabrication, and validation of a TPM operating under extreme temperatures up to 1873 K. We have established a holistic design framework integrating temperature-dependent neural network and Pareto multi-objective optimization to co-optimize spectral response, component light-weighting, and structural efficiency. The framework achieves 100 times faster computation than genetic algorithms. The performance of the designed TPM was evaluated under various atmospheric models and detection distances. The TPM achieved a peak radiance suppression efficiency of 82% and a maximum attenuation of − 7.4 dB at 1200–1500 K. Experimentally, we fabricated an all-dielectric TPM using a refractory TiO2/BeO multilayer stack with only 5 layers and 2 μm total thickness. The optimized structure shows high reflectivity (0.62 at 3–5 μm; 0.48 at 8–14 μm) for radiative suppression and high emissivity (0.87 at 5–8 μm) for radiative cooling. The TPM withstands 1873 K for 12 h in air with less than 3% spectral drift, retaining excellent mechanical properties. On high-temperature components, it achieves 40–50% radiative suppression and 40–60 K (~ 10.1 kW m−2) radiative cooling at 1100 K, endures over 20 times thermal shock cycles (> 150 K s−1, 700–1500 K), and maintains stable performance over 5 cycles, with 78% visible and 98% microwave transmittance. This work establishes a new paradigm in the design and application of photonic materials for extreme environments.
Highlights:
1 Temperature-dependent infrared engineering integrated with Pareto multi-objective optimization to simultaneously co-optimize spectral response, component, and structural efficiency.
2 All-dielectric thermal photonic metamaterials (TPMs, 5-layer & 2-μm) achieve 0.62/0.48 reflectivity (3–5/8–14 μm) for 82% radiative suppression (− 7.4 dB, 3–5 μm in atmosphere) and 0.87 emissivity (5–8 μm) for 10.1 kW m−2 radiative cooling.
3 The integrated all-dielectric TPM delivers 40%–50% radiative suppression and 40–60 K cooling at 1100 K, withstands > 20 thermal shocks (> 150 K s−1), and maintains 78% visible & 98% microwave transmittance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Xiao, M. Liu, K. Yao, Y. Zhang, M. Zhang et al., Ultrabroadband and band-selective thermal meta-emitters by machine learning. Nature 643(8070), 80–88 (2025). https://doi.org/10.1038/s41586-025-09102-y
- A. LaPotin, K.L. Schulte, M.A. Steiner, K. Buznitsky, C.C. Kelsall et al., Thermophotovoltaic efficiency of 40%. Nature 604(7905), 287–291 (2022). https://doi.org/10.1038/s41586-022-04473-y
- S. McSherry, M. Webb, J. Kaufman, Z. Deng, A. Davoodabadi et al., Nanophotonic control of thermal emission under extreme temperatures in air. Nat. Nanotechnol. 17(10), 1104–1110 (2022). https://doi.org/10.1038/s41565-022-01205-1
- J. Zhang, Z. Ma, Y. Zhang, X. Liu, R. Li et al., Highly efficient narrow bandgap Cu(In, Ga)Se2 solar cells with enhanced open circuit voltage for tandem application. Nat. Commun. 15(1), 10365 (2024). https://doi.org/10.1038/s41467-024-54818-6
- J. Li, Y. Jiang, J. Liu, L. Wu, N. Xu et al., A photosynthetically active radiative cooling film. Nat. Sustain. 7(6), 786–795 (2024). https://doi.org/10.1038/s41893-024-01350-6
- J. Jiang, M. Chen, J.A. Fan, Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 6(8), 679–700 (2021). https://doi.org/10.1038/s41578-020-00260-1
- W. Ma, Z. Liu, Z.A. Kudyshev, A. Boltasseva, W. Cai et al., Deep learning for the design of photonic structures. Nat. Photonics 15(2), 77–90 (2021). https://doi.org/10.1038/s41566-020-0685-y
- W. Ma, F. Cheng, Y. Xu, Q. Wen, Y. Liu, Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 31(35), 1901111 (2019). https://doi.org/10.1002/adma.201901111
- S. Fang, N. Xu, L. Zhou, T. Wei, Y. Yang et al., Self-assembled skin-like metamaterials for dual-band camouflage. Sci. Adv. 10(25), eadl1896 (2024). https://doi.org/10.1126/sciadv.adl1896
- H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12(1), 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
- H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu et al., High-temperature infrared camouflage with efficient thermal management. Light. Sci. Appl. 9, 60 (2020). https://doi.org/10.1038/s41377-020-0300-5
- B. Qin, Y. Zhu, Y. Zhou, M. Qiu, Q. Li, Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci. Appl. 12(1), 246 (2023). https://doi.org/10.1038/s41377-023-01287-z
- L. Peng, D. Liu, H. Cheng, S. Zhou, M. Zu, A multilayer film based selective thermal emitter for infrared stealth technology. Adv. Opt. Mater. 6(23), 1801006 (2018). https://doi.org/10.1002/adom.201801006
- J.-X. Wang, M. Zhong, J.-X. Li, S. Wang, J. Bian et al., Mitigating hypersonic heat barrier via direct cooling enhanced by leidenfrost inhibition. Nat. Commun. 16(1), 6931 (2025). https://doi.org/10.1038/s41467-025-62120-2
- C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility. Nano-Micro Lett. 17(1), 40 (2024). https://doi.org/10.1007/s40820-024-01549-4
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14(1), 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- L. Qu, C. Yang, S. Tan, Y. Xiao, Y. Wu et al., A microwave absorption/infrared dual-band dynamic stealth regulator based on the carbon nanotube film and metamaterial. Mater. Today Nano 29, 100556 (2025). https://doi.org/10.1016/j.mtnano.2024.100556
- C. Liu, T. He, C. Hu, Q. Qian, Y. Hao et al., The optimized design of sandwich structured SiO2/C@SiC/SiO2 composites through numerical simulation for temperature-resistant radar and infrared compatible stealth. Adv. Funct. Mater. 35(9), 2416108 (2025). https://doi.org/10.1002/adfm.202416108
- Z. An, Y. Li, X. Luo, Y. Huang, R. Zhang et al., Multilaminate metastructure for high-temperature radar-infrared bi-stealth: topological optimization and near-room-temperature synthesis. Matter 5(6), 1937–1952 (2022). https://doi.org/10.1016/j.matt.2022.04.011
- T. Xu, Z. An, R. Zhang, Novel ceramic matrix metastructure for high-temperature radar-infrared compatible stealth: structure-function design and manufacture. Compos. Part A Appl. Sci. Manuf. 179, 108030 (2024). https://doi.org/10.1016/j.compositesa.2024.108030
- Y. Li, S. Ding, Z. An, T. Xu, R. Zhang, Ultra-thin compatible stealth metacoating: graded control of radar and infrared waves under long-term high temperatures. Compos. Part B Eng. 297, 112295 (2025). https://doi.org/10.1016/j.compositesb.2025.112295
- M. Zhu, G. Li, W. Gong, L. Yan, X. Zhang, Calcium-doped boron nitride aerogel enables infrared stealth at high temperature up to 1300 ℃. Nano-Micro Lett. 14(1), 18 (2021). https://doi.org/10.1007/s40820-021-00754-9
- X.-F. Liu, J.-F. He, Y.-G. Li, H. Li, W. Lei et al., Foam-gelcasting preparation of porous SiC ceramic for high-temperature thermal insulation and infrared stealth. Rare Met. 42(11), 3829–3838 (2023). https://doi.org/10.1007/s12598-023-02348-3
- E. Li, Y. Bai, H. Dong, R. Jia, X. Zhao et al., Infrared radiation and thermal properties of Al-doped SrZrO3 perovskites for potential infrared stealth coating materials in the high-temperature environment. Ceram. Int. 47(16), 23124–23133 (2021). https://doi.org/10.1016/j.ceramint.2021.05.026
- J. Zhao, J. Yang, Z. Wang, Y. Wang, X. Jin et al., Thermal shock resistance and failure mechanisms of high temperature resistant radar and infrared compatible stealth coatings. Surf. Coat. Technol. 465, 129613 (2023). https://doi.org/10.1016/j.surfcoat.2023.129613
- M. Kang, X. Wang, Y. Wei, Z. Yu, Z. Liu, Latest research progress of infrared stealth textiles. Infrared Phys. Technol. 139, 105313 (2024). https://doi.org/10.1016/j.infrared.2024.105313
- M. He, J.R. Nolen, J. Nordlander, A. Cleri, N.S. McIlwaine et al., Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control. Nat. Mater. 20(12), 1663–1669 (2021). https://doi.org/10.1038/s41563-021-01094-0
- S. Yu, P. Zhou, W. Xi, Z. Chen, Y. Deng et al., General deep learning framework for emissivity engineering. Light. Sci. Appl. 12, 291 (2023). https://doi.org/10.1038/s41377-023-01341-w
- W. Xi, Y.-J. Lee, S. Yu, Z. Chen, J. Shiomi et al., Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nat. Commun. 14(1), 4694 (2023). https://doi.org/10.1038/s41467-023-40350-6
- J. Jiang, J.A. Fan, Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks. Nanophotonics 10(1), 361–369 (2020). https://doi.org/10.1515/nanoph-2020-0407
- X. Jiang, H. Yuan, X. He, T. Du, H. Ma et al., Implementing of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics 12(10), 1891–1902 (2023). https://doi.org/10.1515/nanoph-2023-0067
- Y. Ha, Y. Luo, M. Pu, F. Zhang, Q. He et al., Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron. Adv. 6(11), 230133 (2023). https://doi.org/10.29026/oea.2023.230133
- T. Ma, H. Wang, L.J. Guo, OptoGPT: a foundation model for inverse design in optical multilayer thin film structures. Opto-Electron. Adv. 7(7), 240062 (2024). https://doi.org/10.29026/oea.2024.240062
- X. Hao, G. Wei, H. Zhang, S. Tan, G. Ji, Defect chemistry-regulated design of doping CeO2 with the enhanced high-temperature low infrared emissivity property. Mater. Today Nano 30, 100614 (2025). https://doi.org/10.1016/j.mtnano.2025.100614
- C. Quan, J. Zou, C. Guo, W. Xu, Z. Zhu et al., High-temperature resistant broadband infrared stealth metamaterial absorber. Opt. Laser Technol. 156, 108579 (2022). https://doi.org/10.1016/j.optlastec.2022.108579
- Y. Zhu, L. Zhang, J. Wang, B. Feng, M. Feng et al., Microwave-infrared compatible stealth via high-temperature frequency selective surface upon Al2O3-TiC coating. J. Alloys Compd. 920, 165977 (2022). https://doi.org/10.1016/j.jallcom.2022.165977
- X. Wang, L. Peng, Z. Meng, D. Liu, H. Cheng, Spectrally selective thermal emitter based on HfO2/Mo multilayer film for high-temperature infrared stealth. Infrared Phys. Technol. 145, 105670 (2025). https://doi.org/10.1016/j.infrared.2024.105670
- W. Zhang, W. Shan, M. Qian, Y. Liu, K. Yu, A Mo/Si multilayer film based selective thermal emitter for high-temperature infrared stealth application. Infrared Phys. Technol. 131, 104643 (2023). https://doi.org/10.1016/j.infrared.2023.104643
- K. Yu, Y. Wang, W. Zhang, P. Shen, M. Qian et al., A planarized Mo/ZnS multilayer film for infrared stealth at high temperature. Case Stud. Therm. Eng. 49, 103193 (2023). https://doi.org/10.1016/j.csite.2023.103193
- S. Gu, C. Quan, P. Liu, Z. Zhu, J. Zhang, Laser-compatible infrared stealth metamaterial based on high-temperature resistant metal. Infrared Phys. Technol. 136, 105072 (2024). https://doi.org/10.1016/j.infrared.2023.105072
- M. Zhao, H. Zhu, B. Qin, R. Zhu, J. Zhang et al., High-temperature stealth across multi-infrared and microwave bands with efficient radiative thermal management. Nano-Micro Lett. 17(1), 199 (2025). https://doi.org/10.1007/s40820-025-01712-5
- A. Moridi, M. Azadi, G.H. Farrahi, Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects. Surf. Coat. Technol. 243, 91–99 (2014). https://doi.org/10.1016/j.surfcoat.2012.02.019
- R. Kitazawa, M. Tanaka, Y. Kagawa, Y.F. Liu, Damage evolution of TBC system under in-phase thermo-mechanical tests. Mater. Sci. Eng. B 173(1–3), 130–134 (2010). https://doi.org/10.1016/j.mseb.2009.12.022
- Y. Liu, H. Jiang, X. Zhao, X. Deng, W. Zhang, High temperature electrical insulation and adhesion of nanocrystalline YSZ/Al2O3 composite film for thin-film thermocouples on Ni-based superalloy substrates. Appl. Surf. Sci. 579, 152169 (2022). https://doi.org/10.1016/j.apsusc.2021.152169
- Y. Liu, H. Jiang, X. Zhao, X. Deng, W. Zhang, Flexible miniaturized thin film thermocouples arrays for high temperature applications. J. Phys. Conf. Ser. 2334(1), 012003 (2022). https://doi.org/10.1088/1742-6596/2334/1/012003
- Y. Liu, D. Liu, H. Lin, J. Huang, J. Liao et al., Temperature-adaptive thermal-photonic metamaterials: generalized infrared engineering via anharmonic phonon self-energy datasets and dimensionality-augmented neural networks. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202516303
- Z. Han, C. Lee, J. Song, H. Wang, P. Bermel et al., Temperature-dependent full spectrum dielectric function of semiconductors from first principles. Phys. Rev. B 107(20), L201202 (2023). https://doi.org/10.1103/physrevb.107.l201202
- J. Tiwari, T. Feng, Intrinsic thermal conductivity of ZrC from low to ultrahigh temperatures: a critical revisit. Phys. Rev. Mater. 7(6), 065001 (2023). https://doi.org/10.1103/physrevmaterials.7.065001
- O. Hellman, I.A. Abrikosov, Temperature-dependent effective third-order interatomic force constants from first principles. Phys. Rev. B 88(14), 144301 (2013). https://doi.org/10.1103/physrevb.88.144301
- A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes et al., MODTRAN® 6: a major upgrade of the MODTRAN® radiative transfer code, 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 2014, pp. 1–4. https://doi.org/10.1109/WHISPERS.2014.8077573
- A. Berk, L.S. Bernstein, G.P. Anderson, P.K. Acharya, D.C. Robertson et al., MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 65(3), 367–375 (1998). https://doi.org/10.1016/S0034-4257(98)00045-5
- Y. Liu, H. Jiang, X. Zhao, B. Liu, Z. Jia et al., Microstructure evolution of thermally grown Al2O3 on NiCrAlY bonding coating for high-temperature thin-film sensors. J. Alloys Compd. 929, 167321 (2022). https://doi.org/10.1016/j.jallcom.2022.167321
- C.F. Mallinson, J.E. Castle, J.F. Watts, The electron spectra of beryllium and beryllium oxide: an XPS, X-AES and AES study. Surf. Interface Anal. 46(10–11), 989–992 (2014). https://doi.org/10.1002/sia.5377
- U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0
- L. Zhang, J. Wang, J. Lou, Y. Zhu, B. Gui et al., A thermally robust and optically transparent infrared selective emitter for compatible camouflage. J. Mater. Chem. C 9(42), 15018–15025 (2021). https://doi.org/10.1039/D1TC02953C
- D. Casellas, J. Caro, S. Molas, J.M. Prado, I. Valls, Fracture toughness of carbides in tool steels evaluated by nanoindentation. Acta Mater. 55(13), 4277–4286 (2007). https://doi.org/10.1016/j.actamat.2007.03.028
- M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test. Thin Solid Films 117(4), 243–249 (1984). https://doi.org/10.1016/0040-6090(84)90354-7
- M.J. Kupczyk, Evaluation of theoretical models describing the scratch adhesion test based on experimental results. J. Adhes. 101(1), 2–17 (2025). https://doi.org/10.1080/00218464.2023.2285466
References
C. Xiao, M. Liu, K. Yao, Y. Zhang, M. Zhang et al., Ultrabroadband and band-selective thermal meta-emitters by machine learning. Nature 643(8070), 80–88 (2025). https://doi.org/10.1038/s41586-025-09102-y
A. LaPotin, K.L. Schulte, M.A. Steiner, K. Buznitsky, C.C. Kelsall et al., Thermophotovoltaic efficiency of 40%. Nature 604(7905), 287–291 (2022). https://doi.org/10.1038/s41586-022-04473-y
S. McSherry, M. Webb, J. Kaufman, Z. Deng, A. Davoodabadi et al., Nanophotonic control of thermal emission under extreme temperatures in air. Nat. Nanotechnol. 17(10), 1104–1110 (2022). https://doi.org/10.1038/s41565-022-01205-1
J. Zhang, Z. Ma, Y. Zhang, X. Liu, R. Li et al., Highly efficient narrow bandgap Cu(In, Ga)Se2 solar cells with enhanced open circuit voltage for tandem application. Nat. Commun. 15(1), 10365 (2024). https://doi.org/10.1038/s41467-024-54818-6
J. Li, Y. Jiang, J. Liu, L. Wu, N. Xu et al., A photosynthetically active radiative cooling film. Nat. Sustain. 7(6), 786–795 (2024). https://doi.org/10.1038/s41893-024-01350-6
J. Jiang, M. Chen, J.A. Fan, Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 6(8), 679–700 (2021). https://doi.org/10.1038/s41578-020-00260-1
W. Ma, Z. Liu, Z.A. Kudyshev, A. Boltasseva, W. Cai et al., Deep learning for the design of photonic structures. Nat. Photonics 15(2), 77–90 (2021). https://doi.org/10.1038/s41566-020-0685-y
W. Ma, F. Cheng, Y. Xu, Q. Wen, Y. Liu, Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 31(35), 1901111 (2019). https://doi.org/10.1002/adma.201901111
S. Fang, N. Xu, L. Zhou, T. Wei, Y. Yang et al., Self-assembled skin-like metamaterials for dual-band camouflage. Sci. Adv. 10(25), eadl1896 (2024). https://doi.org/10.1126/sciadv.adl1896
H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12(1), 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu et al., High-temperature infrared camouflage with efficient thermal management. Light. Sci. Appl. 9, 60 (2020). https://doi.org/10.1038/s41377-020-0300-5
B. Qin, Y. Zhu, Y. Zhou, M. Qiu, Q. Li, Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci. Appl. 12(1), 246 (2023). https://doi.org/10.1038/s41377-023-01287-z
L. Peng, D. Liu, H. Cheng, S. Zhou, M. Zu, A multilayer film based selective thermal emitter for infrared stealth technology. Adv. Opt. Mater. 6(23), 1801006 (2018). https://doi.org/10.1002/adom.201801006
J.-X. Wang, M. Zhong, J.-X. Li, S. Wang, J. Bian et al., Mitigating hypersonic heat barrier via direct cooling enhanced by leidenfrost inhibition. Nat. Commun. 16(1), 6931 (2025). https://doi.org/10.1038/s41467-025-62120-2
C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility. Nano-Micro Lett. 17(1), 40 (2024). https://doi.org/10.1007/s40820-024-01549-4
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14(1), 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
L. Qu, C. Yang, S. Tan, Y. Xiao, Y. Wu et al., A microwave absorption/infrared dual-band dynamic stealth regulator based on the carbon nanotube film and metamaterial. Mater. Today Nano 29, 100556 (2025). https://doi.org/10.1016/j.mtnano.2024.100556
C. Liu, T. He, C. Hu, Q. Qian, Y. Hao et al., The optimized design of sandwich structured SiO2/C@SiC/SiO2 composites through numerical simulation for temperature-resistant radar and infrared compatible stealth. Adv. Funct. Mater. 35(9), 2416108 (2025). https://doi.org/10.1002/adfm.202416108
Z. An, Y. Li, X. Luo, Y. Huang, R. Zhang et al., Multilaminate metastructure for high-temperature radar-infrared bi-stealth: topological optimization and near-room-temperature synthesis. Matter 5(6), 1937–1952 (2022). https://doi.org/10.1016/j.matt.2022.04.011
T. Xu, Z. An, R. Zhang, Novel ceramic matrix metastructure for high-temperature radar-infrared compatible stealth: structure-function design and manufacture. Compos. Part A Appl. Sci. Manuf. 179, 108030 (2024). https://doi.org/10.1016/j.compositesa.2024.108030
Y. Li, S. Ding, Z. An, T. Xu, R. Zhang, Ultra-thin compatible stealth metacoating: graded control of radar and infrared waves under long-term high temperatures. Compos. Part B Eng. 297, 112295 (2025). https://doi.org/10.1016/j.compositesb.2025.112295
M. Zhu, G. Li, W. Gong, L. Yan, X. Zhang, Calcium-doped boron nitride aerogel enables infrared stealth at high temperature up to 1300 ℃. Nano-Micro Lett. 14(1), 18 (2021). https://doi.org/10.1007/s40820-021-00754-9
X.-F. Liu, J.-F. He, Y.-G. Li, H. Li, W. Lei et al., Foam-gelcasting preparation of porous SiC ceramic for high-temperature thermal insulation and infrared stealth. Rare Met. 42(11), 3829–3838 (2023). https://doi.org/10.1007/s12598-023-02348-3
E. Li, Y. Bai, H. Dong, R. Jia, X. Zhao et al., Infrared radiation and thermal properties of Al-doped SrZrO3 perovskites for potential infrared stealth coating materials in the high-temperature environment. Ceram. Int. 47(16), 23124–23133 (2021). https://doi.org/10.1016/j.ceramint.2021.05.026
J. Zhao, J. Yang, Z. Wang, Y. Wang, X. Jin et al., Thermal shock resistance and failure mechanisms of high temperature resistant radar and infrared compatible stealth coatings. Surf. Coat. Technol. 465, 129613 (2023). https://doi.org/10.1016/j.surfcoat.2023.129613
M. Kang, X. Wang, Y. Wei, Z. Yu, Z. Liu, Latest research progress of infrared stealth textiles. Infrared Phys. Technol. 139, 105313 (2024). https://doi.org/10.1016/j.infrared.2024.105313
M. He, J.R. Nolen, J. Nordlander, A. Cleri, N.S. McIlwaine et al., Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control. Nat. Mater. 20(12), 1663–1669 (2021). https://doi.org/10.1038/s41563-021-01094-0
S. Yu, P. Zhou, W. Xi, Z. Chen, Y. Deng et al., General deep learning framework for emissivity engineering. Light. Sci. Appl. 12, 291 (2023). https://doi.org/10.1038/s41377-023-01341-w
W. Xi, Y.-J. Lee, S. Yu, Z. Chen, J. Shiomi et al., Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nat. Commun. 14(1), 4694 (2023). https://doi.org/10.1038/s41467-023-40350-6
J. Jiang, J.A. Fan, Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks. Nanophotonics 10(1), 361–369 (2020). https://doi.org/10.1515/nanoph-2020-0407
X. Jiang, H. Yuan, X. He, T. Du, H. Ma et al., Implementing of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics 12(10), 1891–1902 (2023). https://doi.org/10.1515/nanoph-2023-0067
Y. Ha, Y. Luo, M. Pu, F. Zhang, Q. He et al., Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron. Adv. 6(11), 230133 (2023). https://doi.org/10.29026/oea.2023.230133
T. Ma, H. Wang, L.J. Guo, OptoGPT: a foundation model for inverse design in optical multilayer thin film structures. Opto-Electron. Adv. 7(7), 240062 (2024). https://doi.org/10.29026/oea.2024.240062
X. Hao, G. Wei, H. Zhang, S. Tan, G. Ji, Defect chemistry-regulated design of doping CeO2 with the enhanced high-temperature low infrared emissivity property. Mater. Today Nano 30, 100614 (2025). https://doi.org/10.1016/j.mtnano.2025.100614
C. Quan, J. Zou, C. Guo, W. Xu, Z. Zhu et al., High-temperature resistant broadband infrared stealth metamaterial absorber. Opt. Laser Technol. 156, 108579 (2022). https://doi.org/10.1016/j.optlastec.2022.108579
Y. Zhu, L. Zhang, J. Wang, B. Feng, M. Feng et al., Microwave-infrared compatible stealth via high-temperature frequency selective surface upon Al2O3-TiC coating. J. Alloys Compd. 920, 165977 (2022). https://doi.org/10.1016/j.jallcom.2022.165977
X. Wang, L. Peng, Z. Meng, D. Liu, H. Cheng, Spectrally selective thermal emitter based on HfO2/Mo multilayer film for high-temperature infrared stealth. Infrared Phys. Technol. 145, 105670 (2025). https://doi.org/10.1016/j.infrared.2024.105670
W. Zhang, W. Shan, M. Qian, Y. Liu, K. Yu, A Mo/Si multilayer film based selective thermal emitter for high-temperature infrared stealth application. Infrared Phys. Technol. 131, 104643 (2023). https://doi.org/10.1016/j.infrared.2023.104643
K. Yu, Y. Wang, W. Zhang, P. Shen, M. Qian et al., A planarized Mo/ZnS multilayer film for infrared stealth at high temperature. Case Stud. Therm. Eng. 49, 103193 (2023). https://doi.org/10.1016/j.csite.2023.103193
S. Gu, C. Quan, P. Liu, Z. Zhu, J. Zhang, Laser-compatible infrared stealth metamaterial based on high-temperature resistant metal. Infrared Phys. Technol. 136, 105072 (2024). https://doi.org/10.1016/j.infrared.2023.105072
M. Zhao, H. Zhu, B. Qin, R. Zhu, J. Zhang et al., High-temperature stealth across multi-infrared and microwave bands with efficient radiative thermal management. Nano-Micro Lett. 17(1), 199 (2025). https://doi.org/10.1007/s40820-025-01712-5
A. Moridi, M. Azadi, G.H. Farrahi, Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects. Surf. Coat. Technol. 243, 91–99 (2014). https://doi.org/10.1016/j.surfcoat.2012.02.019
R. Kitazawa, M. Tanaka, Y. Kagawa, Y.F. Liu, Damage evolution of TBC system under in-phase thermo-mechanical tests. Mater. Sci. Eng. B 173(1–3), 130–134 (2010). https://doi.org/10.1016/j.mseb.2009.12.022
Y. Liu, H. Jiang, X. Zhao, X. Deng, W. Zhang, High temperature electrical insulation and adhesion of nanocrystalline YSZ/Al2O3 composite film for thin-film thermocouples on Ni-based superalloy substrates. Appl. Surf. Sci. 579, 152169 (2022). https://doi.org/10.1016/j.apsusc.2021.152169
Y. Liu, H. Jiang, X. Zhao, X. Deng, W. Zhang, Flexible miniaturized thin film thermocouples arrays for high temperature applications. J. Phys. Conf. Ser. 2334(1), 012003 (2022). https://doi.org/10.1088/1742-6596/2334/1/012003
Y. Liu, D. Liu, H. Lin, J. Huang, J. Liao et al., Temperature-adaptive thermal-photonic metamaterials: generalized infrared engineering via anharmonic phonon self-energy datasets and dimensionality-augmented neural networks. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202516303
Z. Han, C. Lee, J. Song, H. Wang, P. Bermel et al., Temperature-dependent full spectrum dielectric function of semiconductors from first principles. Phys. Rev. B 107(20), L201202 (2023). https://doi.org/10.1103/physrevb.107.l201202
J. Tiwari, T. Feng, Intrinsic thermal conductivity of ZrC from low to ultrahigh temperatures: a critical revisit. Phys. Rev. Mater. 7(6), 065001 (2023). https://doi.org/10.1103/physrevmaterials.7.065001
O. Hellman, I.A. Abrikosov, Temperature-dependent effective third-order interatomic force constants from first principles. Phys. Rev. B 88(14), 144301 (2013). https://doi.org/10.1103/physrevb.88.144301
A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes et al., MODTRAN® 6: a major upgrade of the MODTRAN® radiative transfer code, 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 2014, pp. 1–4. https://doi.org/10.1109/WHISPERS.2014.8077573
A. Berk, L.S. Bernstein, G.P. Anderson, P.K. Acharya, D.C. Robertson et al., MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 65(3), 367–375 (1998). https://doi.org/10.1016/S0034-4257(98)00045-5
Y. Liu, H. Jiang, X. Zhao, B. Liu, Z. Jia et al., Microstructure evolution of thermally grown Al2O3 on NiCrAlY bonding coating for high-temperature thin-film sensors. J. Alloys Compd. 929, 167321 (2022). https://doi.org/10.1016/j.jallcom.2022.167321
C.F. Mallinson, J.E. Castle, J.F. Watts, The electron spectra of beryllium and beryllium oxide: an XPS, X-AES and AES study. Surf. Interface Anal. 46(10–11), 989–992 (2014). https://doi.org/10.1002/sia.5377
U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0
L. Zhang, J. Wang, J. Lou, Y. Zhu, B. Gui et al., A thermally robust and optically transparent infrared selective emitter for compatible camouflage. J. Mater. Chem. C 9(42), 15018–15025 (2021). https://doi.org/10.1039/D1TC02953C
D. Casellas, J. Caro, S. Molas, J.M. Prado, I. Valls, Fracture toughness of carbides in tool steels evaluated by nanoindentation. Acta Mater. 55(13), 4277–4286 (2007). https://doi.org/10.1016/j.actamat.2007.03.028
M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test. Thin Solid Films 117(4), 243–249 (1984). https://doi.org/10.1016/0040-6090(84)90354-7
M.J. Kupczyk, Evaluation of theoretical models describing the scratch adhesion test based on experimental results. J. Adhes. 101(1), 2–17 (2025). https://doi.org/10.1080/00218464.2023.2285466