Single-Atom Ru in CoFe-LDH Drives Efficient Charge Separation on BiVO4 for Solar Water Splitting
Corresponding Author: Wenzhang Li
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 212
Abstract
Bismuth vanadate (BiVO4) is regarded as a promising photoanode for photoelectrochemical (PEC) water splitting. Despite its advantage in band gap and visible-light response, the BiVO4 exhibits an unsatisfactory achieving water splitting due to severe charge recombination. Herein, we elucidate an innovative approach involving the incorporation of single Ru atom with a CoFe-LDH cocatalyst (Ru0.51-CoFe-LDH) and integrating it onto the BiVO4 semiconductor substrate. The resulting Ru0.51-CoFe-LDH/BiVO4 photoanode film demonstrates commendable charge injection efficiency (76%) and charge collection efficiency (100%). Interestingly, the yield of hydrogen and oxygen increases linearly at a stoichiometric ratio of about 2:1, reaching 158.6 and 67.4 μmol after 140 min of irradiation, respectively. According to experimental characterization and density functional theory calculation, this remarkable performance results from single Ru atoms triggering the electron rearrangement of Ru0.51-CoFe-LDH to engineer active sites and optimize interfacial energetics. Additionally, the negative shift of Ru0.51-CoFe-LDH band edge gives rise to more conspicuous band bending of the n–n junction formed with BiVO4, expediting the separation and transfer of photogenerated electron–hole pairs at the interface. This work furnishes a new preparation perspective for PEC water splitting systems to construct single atoms in the semiconductor substrate.
Highlights:
1 The single Ru atoms trigger the electron rearrangement of Ru0.51-CoFe-LDH to engineer active sites and optimize interfacial energetics.
2 The negative shift of Ru0.51-CoFe-LDH band edge gives rise to more conspicuous band bending of the n-n junction formed with BiVO4.
3 The Ru0.51-CoFe-LDH/BiVO4 photoanode film displays a 3.1 times higher photocurrent density than bare BiVO4 and commendable charge collection efficiency (100%).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Tan, A. Sivanantham, B. Jansi Rani, Y.J. Jeong, I.S. Cho, Recent advances in surface regulation and engineering strategies of photoelectrodes toward enhanced photoelectrochemical water splitting. Coord. Chem. Rev. 494, 215362 (2023). https://doi.org/10.1016/j.ccr.2023.215362
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1038/238037a0
- H. Zhang, P. Song, X. Mei, D. Zhang, C. Liu et al., Amorphous–crystalline interface coupling of IrNiOx/WO3 for efficient and stable acidic water splitting. ACS Catal. 15(14), 12395–12406 (2025). https://doi.org/10.1021/acscatal.5c02782
- J. Wang, N. Muhammad, Z. Chuai, W. Xu, X. Tan et al., Photothermal CuS as a hole transfer layer on BiVO4 photoanode for efficient solar water oxidation. Angew. Chem. Int. Ed. 64(33), e202507259 (2025). https://doi.org/10.1002/anie.202507259
- H. Wu, S. Qu, Y.H. Ng, Bismuth vanadate capable of driving one-step-excitation photocatalytic overall water splitting. J. Am. Chem. Soc. 147(13), 10829–10833 (2025). https://doi.org/10.1021/jacs.4c18733
- T. Higashi, S. Nishimae, Y. Inoue, Y. Kageshima, K. Domen, Electrochemical properties of BaTaO2N photocatalyst with visible-light-driven water splitting capability. ChemPhotoChem 7(11), e202300279 (2023). https://doi.org/10.1002/cptc.202300279
- D. Seo, D.H. Wi, K.-S. Choi, Enabling solar water oxidation by BiVO4 in strongly acidic solutions. J. Am. Chem. Soc. 147(38), 35002–35010 (2025). https://doi.org/10.1021/jacs.5c11785
- G. Fang, D. Zhang, X. Zhang, M. Xu, D. Meng et al., Balanced spin-state energy level splitting boosts photoelectrochemical water oxidation on amorphous NiFeAl-LDH engineered BiVO4. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202518870
- H. Yang, D. Zhou, K. Tian, L. Kong, P. An et al., Dual-hole extraction strategy promotes photoelectrochemical water splitting of bismuth vanadate photoanode. Chin. J. Catal. 77, 236–249 (2025). https://doi.org/10.1016/S1872-2067(25)64778-4
- C. Wang, M. Humayun, D.P. Debecker, Y. Wu, Electrocatalytic water oxidation with layered double hydroxides confining single atoms. Coord. Chem. Rev. 478, 214973 (2023). https://doi.org/10.1016/j.ccr.2022.214973
- Z.-Z. Yang, C. Zhang, G.-M. Zeng, X.-F. Tan, D.-L. Huang et al., State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coord. Chem. Rev. 446, 214103 (2021). https://doi.org/10.1016/j.ccr.2021.214103
- B. Li, Z. Tian, L. Li, Y.-H. Wang, Y. Si et al., Directional charge transfer channels in a monolithically integrated electrode for photoassisted overall water splitting. ACS Nano 17(4), 3465–3482 (2023). https://doi.org/10.1021/acsnano.2c09659
- H. You, D. Wu, D. Si, M. Cao, F. Sun et al., Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 144(21), 9254–9263 (2022). https://doi.org/10.1021/jacs.2c00242
- J. Chi, Z. Wei, W. Guo, W. Fang, J. Yan et al., Enhanced photoelectrochemical water splitting on BiVO4 photoanode via efficient hole transport layers of NiFe-LDH. ACS Catal. 15(13), 11293–11306 (2025). https://doi.org/10.1021/acscatal.5c02714
- Y. Miao, Z. Li, Y. Song, K. Fan, J. Guo et al., Surface active oxygen engineering of photoanodes to boost photoelectrochemical water and alcohol oxidation coupled with hydrogen production. Appl. Catal. B Environ. 323, 122147 (2023). https://doi.org/10.1016/j.apcatb.2022.122147
- S. Feng, S. Fan, L. Li, Z. Sun, H. Tang et al., Using hollow dodecahedral NiCo-LDH with multi-active sites to modify BiVO4 photoanode facilitates the photoelectrochemical water splitting performance. Nano Res Energy 3(3), e9120117 (2024). https://doi.org/10.26599/nre.2024.9120117
- J. He, P. Liu, R. Ran, W. Wang, W. Zhou et al., Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. J. Mater. Chem. A 10(13), 6835–6871 (2022). https://doi.org/10.1039/D2TA00835A
- S.-M. Wu, L. Wu, N. Denisov, Z. Badura, G. Zoppellaro et al., Pt single atoms on TiO2 can catalyze water oxidation in photoelectrochemical experiments. J. Am. Chem. Soc. 146(24), 16363–16368 (2024). https://doi.org/10.1021/jacs.4c03319
- X.-S. Xing, Q. Gao, C. Feng, Z. Zhou, X. Liu et al., Interfacial engineering induced charge accumulation for enhanced solar water splitting. Adv. Funct. Mater. e19825. (2025). https://doi.org/10.1002/adfm.202519825
- Z. Yang, F. Lai, Q. Mao, C. Liu, S. Peng et al., Breaking the mutual-constraint of bifunctional oxygen electrocatalysis via direct O─O coupling on high-valence Ir single-atom on MnOx. Adv. Mater. 37(3), 2412950 (2025). https://doi.org/10.1002/adma.202412950
- M. Qi, X. Du, X. Shi, S. Wang, B. Lu et al., Single-atom Ru-triggered lattice oxygen redox mechanism for enhanced acidic water oxidation. J. Am. Chem. Soc. 147(21), 18295–18306 (2025). https://doi.org/10.1021/jacs.5c05752
- M. Gao, N.T. Nguyen, R.-T. Gao, X. Liu, X. Zhang et al., Engineering single Pt atoms on hybrid amorphous/crystalline CoFe layered double hydroxide accelerates the charge transfer for solar water splitting. Appl. Catal. B Environ. 336, 122920 (2023). https://doi.org/10.1016/j.apcatb.2023.122920
- P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10(1), 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
- X. Duan, T. Li, X. Jiang, X. Liu, L. Xin et al., Catalytic applications of single-atom metal-anchored hydroxides: recent advances and perspective. Mater Reports: Energy 2(3), 100146 (2022). https://doi.org/10.1016/j.matre.2022.100146
- G. Liu, T. Nie, H. Wang, T. Shen, X. Sun et al., Size sensitivity of supported palladium species on layered double hydroxides for the electro-oxidation dehydrogenation of hydrazine: from nanops to nanoclusters and single atoms. ACS Catal. 12(17), 10711–10717 (2022). https://doi.org/10.1021/acscatal.2c02628
- K. Woo, K.-S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Sci 343(6174), 990–994 (2014). https://doi.org/10.1126/science.1246913
- Y. Hu, G. Luo, L. Wang, X. Liu, Y. Qu et al., Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 11(1), 2002816 (2021). https://doi.org/10.1002/aenm.202002816
- X. Wang, H. Jang, S. Liu, Z. Li, X. Zhao et al., Enhancing the catalytic kinetics and stability of Ru sites for acidic water oxidation by forming Brønsted acid sites in tungsten oxide matrix. Adv. Energy Mater. 13(36), 2301673 (2023). https://doi.org/10.1002/aenm.202301673
- H. Wang, R.-T. Gao, L. Wang, Boosting charge separation and transfer at the boron-triggered BiVO4 interface for efficient and stable solar water splitting. Chem. Eng. J. 465, 142571 (2023). https://doi.org/10.1016/j.cej.2023.142571
- Y. Song, X. Zhang, Y. Zhang, P. Zhai, Z. Li et al., Engineering MoOx/MXene hole transfer layers for unexpected boosting of photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 61(16), e202200946 (2022). https://doi.org/10.1002/anie.202200946
- J.T. Kloprogge, L. Hickey, R.L. Frost, FT-Raman and FT-IR spectroscopic study of synthetic Mg/Zn/Al-hydrotalcites. J. Raman Spectrosc. 35(11), 967–974 (2004). https://doi.org/10.1002/jrs.1244
- B. Liu, X. Wang, Y. Zhang, L. Xu, T. Wang et al., A BiVO4 photoanode with a VOx layer bearing oxygen vacancies offers improved charge transfer and oxygen evolution kinetics in photoelectrochemical water splitting. Angew. Chem. Int. Ed. 62(10), e202217346 (2023). https://doi.org/10.1002/anie.202217346
- K. Kang, C. Tang, J.H. Kim, W.J. Byun, J.H. Lee et al., In situ construction of ta: Fe2O3@CaFe2O4 core–shell nanorod p–t–n heterojunction photoanodes for efficient and robust solar water oxidation. ACS Catal. 13(10), 7002–7012 (2023). https://doi.org/10.1021/acscatal.3c00932
- F. Zhao, N. Li, Y. Wu, X. Wen, Q. Zhao et al., BiVO4 photoanode decorated with cobalt-manganese layered double hydroxides for enhanced photoelectrochemical water oxidation. Int. J. Hydrogen Energy 45(56), 31902–31912 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.224
- D. He, R.-T. Gao, S. Liu, M. Sun, X. Liu et al., Yttrium-induced regulation of electron density in NiFe layered double hydroxides yields stable solar water splitting. ACS Catal. 10(18), 10570–10576 (2020). https://doi.org/10.1021/acscatal.0c03272
- W. Li, L. Du, Q. Liu, Y. Liu, D. Li et al., Trimetallic oxyhydroxide modified 3D coral-like BiVO4 photoanode for efficient solar water splitting. Chem. Eng. J. 384, 123323 (2020). https://doi.org/10.1016/j.cej.2019.123323
- Y. Sun, H. Li, Y. Hu, J. Wang, A. Li et al., Single-atomic ruthenium coupling with NiFe layered double hydroxide in situ growth on BiVO4 photoanode for boosting photoelectrochemical water splitting. Appl. Catal. B Environ. 340, 123269 (2024). https://doi.org/10.1016/j.apcatb.2023.123269
- Y. Zhong, C. Wu, X. Jia, S. Sun, D. Chen et al., Coupling of self-healing atomic layer CoAl-LDH onto Mo: BiVO4 photoanode for fast surface charge transfer toward stable and high-performance water splitting. Chem. Eng. J. 465, 142893 (2023). https://doi.org/10.1016/j.cej.2023.142893
- Q. Sun, T. Cheng, Z. Liu, L. Qi, A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation. Appl. Catal. B Environ. 277, 119189 (2020). https://doi.org/10.1016/j.apcatb.2020.119189
- J.-B. Pan, B.-H. Wang, J.-B. Wang, H.-Z. Ding, W. Zhou et al., Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem. Int. Ed. 60(3), 1433–1440 (2021). https://doi.org/10.1002/anie.202012550
- R.-T. Gao, L. Liu, Y. Li, Y. Yang, J. He et al., Ru-P pair sites boost charge transport in hematite photoanodes for exceeding 1% efficient solar water splitting. Proc. Natl. Acad. Sci. U.S.A. 120(27), e2300493120 (2023). https://doi.org/10.1073/pnas.2300493120
- Y. Zhao, X.F. Lu, G. Fan, D. Luan, X. Gu et al., Surface-exposed single-Ni atoms with potential-driven dynamic behaviors for highly efficient electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 61(45), e202212542 (2022). https://doi.org/10.1002/anie.202212542
- F. Niu, Q. Zhou, Y. Han, R. Liu, Z. Zhao et al., Rapid hole extraction based on cascade band alignment boosts photoelectrochemical water oxidation efficiency. ACS Catal. 12(16), 10028–10038 (2022). https://doi.org/10.1021/acscatal.2c02773
- T. Zhou, J. Wang, S. Chen, J. Bai, J. Li et al., Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Appl. Catal. B Environ. 267, 118599 (2020). https://doi.org/10.1016/j.apcatb.2020.118599
References
R. Tan, A. Sivanantham, B. Jansi Rani, Y.J. Jeong, I.S. Cho, Recent advances in surface regulation and engineering strategies of photoelectrodes toward enhanced photoelectrochemical water splitting. Coord. Chem. Rev. 494, 215362 (2023). https://doi.org/10.1016/j.ccr.2023.215362
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1038/238037a0
H. Zhang, P. Song, X. Mei, D. Zhang, C. Liu et al., Amorphous–crystalline interface coupling of IrNiOx/WO3 for efficient and stable acidic water splitting. ACS Catal. 15(14), 12395–12406 (2025). https://doi.org/10.1021/acscatal.5c02782
J. Wang, N. Muhammad, Z. Chuai, W. Xu, X. Tan et al., Photothermal CuS as a hole transfer layer on BiVO4 photoanode for efficient solar water oxidation. Angew. Chem. Int. Ed. 64(33), e202507259 (2025). https://doi.org/10.1002/anie.202507259
H. Wu, S. Qu, Y.H. Ng, Bismuth vanadate capable of driving one-step-excitation photocatalytic overall water splitting. J. Am. Chem. Soc. 147(13), 10829–10833 (2025). https://doi.org/10.1021/jacs.4c18733
T. Higashi, S. Nishimae, Y. Inoue, Y. Kageshima, K. Domen, Electrochemical properties of BaTaO2N photocatalyst with visible-light-driven water splitting capability. ChemPhotoChem 7(11), e202300279 (2023). https://doi.org/10.1002/cptc.202300279
D. Seo, D.H. Wi, K.-S. Choi, Enabling solar water oxidation by BiVO4 in strongly acidic solutions. J. Am. Chem. Soc. 147(38), 35002–35010 (2025). https://doi.org/10.1021/jacs.5c11785
G. Fang, D. Zhang, X. Zhang, M. Xu, D. Meng et al., Balanced spin-state energy level splitting boosts photoelectrochemical water oxidation on amorphous NiFeAl-LDH engineered BiVO4. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202518870
H. Yang, D. Zhou, K. Tian, L. Kong, P. An et al., Dual-hole extraction strategy promotes photoelectrochemical water splitting of bismuth vanadate photoanode. Chin. J. Catal. 77, 236–249 (2025). https://doi.org/10.1016/S1872-2067(25)64778-4
C. Wang, M. Humayun, D.P. Debecker, Y. Wu, Electrocatalytic water oxidation with layered double hydroxides confining single atoms. Coord. Chem. Rev. 478, 214973 (2023). https://doi.org/10.1016/j.ccr.2022.214973
Z.-Z. Yang, C. Zhang, G.-M. Zeng, X.-F. Tan, D.-L. Huang et al., State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coord. Chem. Rev. 446, 214103 (2021). https://doi.org/10.1016/j.ccr.2021.214103
B. Li, Z. Tian, L. Li, Y.-H. Wang, Y. Si et al., Directional charge transfer channels in a monolithically integrated electrode for photoassisted overall water splitting. ACS Nano 17(4), 3465–3482 (2023). https://doi.org/10.1021/acsnano.2c09659
H. You, D. Wu, D. Si, M. Cao, F. Sun et al., Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 144(21), 9254–9263 (2022). https://doi.org/10.1021/jacs.2c00242
J. Chi, Z. Wei, W. Guo, W. Fang, J. Yan et al., Enhanced photoelectrochemical water splitting on BiVO4 photoanode via efficient hole transport layers of NiFe-LDH. ACS Catal. 15(13), 11293–11306 (2025). https://doi.org/10.1021/acscatal.5c02714
Y. Miao, Z. Li, Y. Song, K. Fan, J. Guo et al., Surface active oxygen engineering of photoanodes to boost photoelectrochemical water and alcohol oxidation coupled with hydrogen production. Appl. Catal. B Environ. 323, 122147 (2023). https://doi.org/10.1016/j.apcatb.2022.122147
S. Feng, S. Fan, L. Li, Z. Sun, H. Tang et al., Using hollow dodecahedral NiCo-LDH with multi-active sites to modify BiVO4 photoanode facilitates the photoelectrochemical water splitting performance. Nano Res Energy 3(3), e9120117 (2024). https://doi.org/10.26599/nre.2024.9120117
J. He, P. Liu, R. Ran, W. Wang, W. Zhou et al., Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. J. Mater. Chem. A 10(13), 6835–6871 (2022). https://doi.org/10.1039/D2TA00835A
S.-M. Wu, L. Wu, N. Denisov, Z. Badura, G. Zoppellaro et al., Pt single atoms on TiO2 can catalyze water oxidation in photoelectrochemical experiments. J. Am. Chem. Soc. 146(24), 16363–16368 (2024). https://doi.org/10.1021/jacs.4c03319
X.-S. Xing, Q. Gao, C. Feng, Z. Zhou, X. Liu et al., Interfacial engineering induced charge accumulation for enhanced solar water splitting. Adv. Funct. Mater. e19825. (2025). https://doi.org/10.1002/adfm.202519825
Z. Yang, F. Lai, Q. Mao, C. Liu, S. Peng et al., Breaking the mutual-constraint of bifunctional oxygen electrocatalysis via direct O─O coupling on high-valence Ir single-atom on MnOx. Adv. Mater. 37(3), 2412950 (2025). https://doi.org/10.1002/adma.202412950
M. Qi, X. Du, X. Shi, S. Wang, B. Lu et al., Single-atom Ru-triggered lattice oxygen redox mechanism for enhanced acidic water oxidation. J. Am. Chem. Soc. 147(21), 18295–18306 (2025). https://doi.org/10.1021/jacs.5c05752
M. Gao, N.T. Nguyen, R.-T. Gao, X. Liu, X. Zhang et al., Engineering single Pt atoms on hybrid amorphous/crystalline CoFe layered double hydroxide accelerates the charge transfer for solar water splitting. Appl. Catal. B Environ. 336, 122920 (2023). https://doi.org/10.1016/j.apcatb.2023.122920
P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10(1), 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
X. Duan, T. Li, X. Jiang, X. Liu, L. Xin et al., Catalytic applications of single-atom metal-anchored hydroxides: recent advances and perspective. Mater Reports: Energy 2(3), 100146 (2022). https://doi.org/10.1016/j.matre.2022.100146
G. Liu, T. Nie, H. Wang, T. Shen, X. Sun et al., Size sensitivity of supported palladium species on layered double hydroxides for the electro-oxidation dehydrogenation of hydrazine: from nanops to nanoclusters and single atoms. ACS Catal. 12(17), 10711–10717 (2022). https://doi.org/10.1021/acscatal.2c02628
K. Woo, K.-S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Sci 343(6174), 990–994 (2014). https://doi.org/10.1126/science.1246913
Y. Hu, G. Luo, L. Wang, X. Liu, Y. Qu et al., Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 11(1), 2002816 (2021). https://doi.org/10.1002/aenm.202002816
X. Wang, H. Jang, S. Liu, Z. Li, X. Zhao et al., Enhancing the catalytic kinetics and stability of Ru sites for acidic water oxidation by forming Brønsted acid sites in tungsten oxide matrix. Adv. Energy Mater. 13(36), 2301673 (2023). https://doi.org/10.1002/aenm.202301673
H. Wang, R.-T. Gao, L. Wang, Boosting charge separation and transfer at the boron-triggered BiVO4 interface for efficient and stable solar water splitting. Chem. Eng. J. 465, 142571 (2023). https://doi.org/10.1016/j.cej.2023.142571
Y. Song, X. Zhang, Y. Zhang, P. Zhai, Z. Li et al., Engineering MoOx/MXene hole transfer layers for unexpected boosting of photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 61(16), e202200946 (2022). https://doi.org/10.1002/anie.202200946
J.T. Kloprogge, L. Hickey, R.L. Frost, FT-Raman and FT-IR spectroscopic study of synthetic Mg/Zn/Al-hydrotalcites. J. Raman Spectrosc. 35(11), 967–974 (2004). https://doi.org/10.1002/jrs.1244
B. Liu, X. Wang, Y. Zhang, L. Xu, T. Wang et al., A BiVO4 photoanode with a VOx layer bearing oxygen vacancies offers improved charge transfer and oxygen evolution kinetics in photoelectrochemical water splitting. Angew. Chem. Int. Ed. 62(10), e202217346 (2023). https://doi.org/10.1002/anie.202217346
K. Kang, C. Tang, J.H. Kim, W.J. Byun, J.H. Lee et al., In situ construction of ta: Fe2O3@CaFe2O4 core–shell nanorod p–t–n heterojunction photoanodes for efficient and robust solar water oxidation. ACS Catal. 13(10), 7002–7012 (2023). https://doi.org/10.1021/acscatal.3c00932
F. Zhao, N. Li, Y. Wu, X. Wen, Q. Zhao et al., BiVO4 photoanode decorated with cobalt-manganese layered double hydroxides for enhanced photoelectrochemical water oxidation. Int. J. Hydrogen Energy 45(56), 31902–31912 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.224
D. He, R.-T. Gao, S. Liu, M. Sun, X. Liu et al., Yttrium-induced regulation of electron density in NiFe layered double hydroxides yields stable solar water splitting. ACS Catal. 10(18), 10570–10576 (2020). https://doi.org/10.1021/acscatal.0c03272
W. Li, L. Du, Q. Liu, Y. Liu, D. Li et al., Trimetallic oxyhydroxide modified 3D coral-like BiVO4 photoanode for efficient solar water splitting. Chem. Eng. J. 384, 123323 (2020). https://doi.org/10.1016/j.cej.2019.123323
Y. Sun, H. Li, Y. Hu, J. Wang, A. Li et al., Single-atomic ruthenium coupling with NiFe layered double hydroxide in situ growth on BiVO4 photoanode for boosting photoelectrochemical water splitting. Appl. Catal. B Environ. 340, 123269 (2024). https://doi.org/10.1016/j.apcatb.2023.123269
Y. Zhong, C. Wu, X. Jia, S. Sun, D. Chen et al., Coupling of self-healing atomic layer CoAl-LDH onto Mo: BiVO4 photoanode for fast surface charge transfer toward stable and high-performance water splitting. Chem. Eng. J. 465, 142893 (2023). https://doi.org/10.1016/j.cej.2023.142893
Q. Sun, T. Cheng, Z. Liu, L. Qi, A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation. Appl. Catal. B Environ. 277, 119189 (2020). https://doi.org/10.1016/j.apcatb.2020.119189
J.-B. Pan, B.-H. Wang, J.-B. Wang, H.-Z. Ding, W. Zhou et al., Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem. Int. Ed. 60(3), 1433–1440 (2021). https://doi.org/10.1002/anie.202012550
R.-T. Gao, L. Liu, Y. Li, Y. Yang, J. He et al., Ru-P pair sites boost charge transport in hematite photoanodes for exceeding 1% efficient solar water splitting. Proc. Natl. Acad. Sci. U.S.A. 120(27), e2300493120 (2023). https://doi.org/10.1073/pnas.2300493120
Y. Zhao, X.F. Lu, G. Fan, D. Luan, X. Gu et al., Surface-exposed single-Ni atoms with potential-driven dynamic behaviors for highly efficient electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 61(45), e202212542 (2022). https://doi.org/10.1002/anie.202212542
F. Niu, Q. Zhou, Y. Han, R. Liu, Z. Zhao et al., Rapid hole extraction based on cascade band alignment boosts photoelectrochemical water oxidation efficiency. ACS Catal. 12(16), 10028–10038 (2022). https://doi.org/10.1021/acscatal.2c02773
T. Zhou, J. Wang, S. Chen, J. Bai, J. Li et al., Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Appl. Catal. B Environ. 267, 118599 (2020). https://doi.org/10.1016/j.apcatb.2020.118599