Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption
Corresponding Author: Xiaoxiao Huang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 66
Abstract
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RLmin) of Fe/RGO-2 composite reaches − 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
Highlights:
1 A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play to the dielectric dispersion properties of graphene.
2 The electromagnetic wave absorption mechanisms mainly include enhanced conductance loss, dipole polarization and interfacial polarization.
3 Outstanding reflection loss value (− 53.38 dB, 2.45 mm) and broadband wave absorption (7.52 GHz with only 2 wt% filling) of Fe/RGO composite were acquired, which is superior to single-component graphene.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14(1), 28 (2021). https://doi.org/10.1007/s40820-021-00776-3
- Y. Liu, X. Huang, X. Yan, L. Xia, T. Zhang et al., Pushing the limits of microwave absorption capability of carbon fiber in fabric design based on genetic algorithm. J. Adv. Ceram. 12(2), 329–340 (2023). https://doi.org/10.26599/jac.2023.9220686
- P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14(1), 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
- J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32(24), 2201129 (2022). https://doi.org/10.1002/adfm.202201129
- C. Hou, J. Cheng, H. Zhang, Z. Lu, X. Yang et al., Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band. Appl. Surf. Sci. 577, 151939 (2022). https://doi.org/10.1016/j.apsusc.2021.151939
- D. Zhang, T. Liu, M. Zhang, H. Zhang, X. Yang et al., Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology 31(32), 325703 (2020). https://doi.org/10.1088/1361-6528/ab8b8d
- Z. Huang, J. Cheng, H. Zhang, Y. Xiong, Z. Zhou et al., High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J. Mater. Sci. Technol. 107, 155–164 (2022). https://doi.org/10.1016/j.jmst.2021.08.005
- H. Zhang, T. Liu, Z. Huang, J. Cheng, H. Wang et al., Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics 8(2), 327–334 (2022). https://doi.org/10.1016/j.jmat.2021.09.003
- G. Bellis, A. Tamburrano, A. Dinescu, M.L. Santarelli, M.S. Sarto, Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency. Carbon 49(13), 4291–4300 (2011). https://doi.org/10.1016/j.carbon.2011.06.008
- F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018). https://doi.org/10.1002/adfm.201707205
- Y. Dai, M. Sun, C. Liu, Z. Li, Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cem. Concr. Compos. 32(7), 508–513 (2010). https://doi.org/10.1016/j.cemconcomp.2010.03.009
- T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She et al., Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 4, 5619 (2014). https://doi.org/10.1038/srep05619
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
- C.G. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
- A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
- R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl, Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94, 243114 (2009). https://doi.org/10.1063/1.3147183
- Q. Li, Y. Zhao, X. Li, L. Wang, X. Li et al., MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance. Small 16(42), e2003905 (2020). https://doi.org/10.1002/smll.202003905
- X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu et al., Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 72, 93–103 (2021). https://doi.org/10.1016/j.jmst.2020.09.012
- Y. Ge, H. Wang, T. Wu, B. Hu, Y. Shao et al., Accordion-like reduced graphene oxide embedded with Fe nanops between layers for tunable and broadband electromagnetic wave absorption. J. Colloid Interface Sci. 628, 1019–1030 (2022). https://doi.org/10.1016/j.jcis.2022.08.020
- D. Xu, S. Yang, P. Chen, Q. Yu, X. Xiong et al., Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis. Carbon 146, 301–312 (2019). https://doi.org/10.1016/j.carbon.2019.02.005
- G. Pan, J. Zhu, S. Ma, G. Sun, X. Yang, Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and Cubic Co nanocrystals grown on graphene. ACS Appl. Mater. Interfaces 5(23), 12716–12724 (2013). https://doi.org/10.1021/am404117v
- I. Arief, S. Biswas, S. Bose, FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces 9(22), 19202–19214 (2017). https://doi.org/10.1021/acsami.7b04053
- B. Wen, M. Cao, M. Lu, W. Cao, H. Sh et al., Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- B. Wen, M. Cao, Z. Hou, W. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
- M. Cao, W. Song, Z. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
- X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao et al., Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci. Rep. 3, 3421 (2013). https://doi.org/10.1038/srep03421
- G. Ni, Y. Zheng, S. Bae, C. Tan, O. Kahya et al., Graphene-ferroelectric hybrid structure for flexible transparent electrodes. ACS Nano 6(5), 3935–3942 (2012). https://doi.org/10.1021/nn3010137
- H. Kim, H.H. Kim, J.I. Jang, S.K. Lee, G.W. Lee et al., Doping graphene with an atomically thin two dimensional molecular layer. Adv. Mater. 26, 8141–8146 (2014). https://doi.org/10.1002/adma.201403196
- M. Kim, K.J. Kim, S.J. Lee, H.M. Kim, S.Y. Cho et al., Highly stable and effective doping of graphene by selective atomic layer deposition of ruthenium. ACS Appl. Mater. Interfaces 9(1), 701–709 (2017). https://doi.org/10.1021/acsami.6b12622
- Y. Ren, S. Chen, W. Cai, Y. Zhu, C. Zhu et al., Controlling the electrical transport properties of graphene by in situ metal deposition. App. Phys. Lett. (2010). https://doi.org/10.1063/1.3471396
- Q. Li, J. Tan, Z. Wu, L. Wang, W. You et al., Hierarchical magnetic-dielectric synergistic Co/CoO/RGO microspheres with excellent microwave absorption performance covering the whole X band. Carbon 201, 150–160 (2023). https://doi.org/10.1016/j.carbon.2022.08.090
- Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8(6), 2123–2134 (2020). https://doi.org/10.1039/c9tc06526a
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31, 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- L. Wang, X. Yu, M. Huang, W. You, Q. Zeng et al., Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. Carbon 172, 516–528 (2021). https://doi.org/10.1016/j.carbon.2020.09.050
- R. Che, L. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
- W. Li, H. Qi, F. Guo, Y. Du, N. Song et al., Co nanops supported on cotton-based carbon fibers: a novel broadband microwave absorbent. J. Alloys Compd. 772, 760–769 (2019). https://doi.org/10.1016/j.jallcom.2018.09.075
- S. Qiu, H. Lyu, J. Liu, Y. Liu, N. Wu et al., Facile synthesis of porous Nickel/Carbon composite microspheres with enhanced electromagnetic wave absorption by magnetic and dielectric losses. ACS Appl. Mater. Interfaces 8(31), 20258–20266 (2016). https://doi.org/10.1021/acsami.6b03159
- F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanops encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
- H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang et al., Coin-like α-Fe2O3@CoFe2O4 core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 7(8), 4744–4750 (2015). https://doi.org/10.1021/am508438s
- K. Pi, K.M. McCreary, W. Bao, W. Han, Y.F. Chiang et al., Electronic doping and scattering by transition metals on graphene. Phys. Rev. B 80, 075406 (2009). https://doi.org/10.1103/PhysRevB.80.075406
- K. Zhang, W. Lv, J. Chen, H. Ge, C. Chu et al., Synthesis of RGO/AC/Fe3O4 composite having 3D hierarchically porous morphology for high effective electromagnetic wave absorption. Compos. Part B-Eng. 169, 1–8 (2019). https://doi.org/10.1016/j.compositesb.2019.03.081
- C. Wang, W. Chen, C. Han, G. Wang, B. Tang et al., Growth of millimeter-size single crystal graphene on cu foils by circumfluence chemical vapor deposition. Sci. Rep. 4, 4537 (2014). https://doi.org/10.1038/srep04537
- J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed et al., Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9), 6916–6924 (2011). https://doi.org/10.1021/nn201207c
- C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15(1), 13 (2022). https://doi.org/10.1007/s40820-022-00986-3
- G. Qin, X. Huang, X. Yan, Y. He, Y. Liu et al., Carbonized wood with ordered channels decorated by NiCo2O4 for lightweight and high-performance microwave absorber. J. Adv. Ceram 11(1), 105–119 (2021). https://doi.org/10.1007/s40145-021-0520-z
- T. Gao, R. Zhao, Y. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 22043 (2022). https://doi.org/10.1002/adfm.202204370
- Z. Yan, Z. Xu, Z. Yang, L. Yue, L. Huang, Graphene oxide/Fe2O3 nanoplates supported Pt for enhanced room-temperature oxidation of formaldehyde. Appl. Surf. Sci. 467–468, 277–285 (2019). https://doi.org/10.1016/j.apsusc.2018.10.123
- W. Xue, H. He, J. Zhu, P. Yuan, FTIR investigation of CTAB-Al-montmorillonite complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 1030–1036 (2007). https://doi.org/10.1016/j.saa.2006.09.024
- H. Quan, B. Cheng, Y. Xiao, S. Lei, One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem. Eng. J. 286, 165–173 (2016). https://doi.org/10.1016/j.cej.2015.10.068
- L. Lei, Z. Yao, J. Zhou, W. Zheng, B. We et al., Hydrangea-like Ni/Nio/C composites derived from metal–organic frameworks with superior microwave absorption. Carbon 173, 69–79 (2021). https://doi.org/10.1016/j.carbon.2020.10.093
- B. Du, M. Cai, X. Wang, J. Qian, C. He, A. Shui, Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. J. Adv. Ceram. 10(4), 832–842 (2021). https://doi.org/10.1007/s40145-021-0476-z
- H. Xu, G. Zhang, Y. Wang, M. Ning, B. Ouyang et al., Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 14(1), 102 (2022). https://doi.org/10.1007/s40820-022-00841-5
- J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 1–31 (2022). https://doi.org/10.1007/s40820-022-00823-7
- D. Zhang, T. Liu, J. Cheng, J. Chai, X. Yang et al., Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides. Nanotechnology 30(44), 445708 (2019). https://doi.org/10.1088/1361-6528/ab35fa
- D. Zhang, H. Wang, J. Cheng, C. Han, X. Yang et al., Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Appl. Surf. Sci. 528, 147052 (2020). https://doi.org/10.1016/j.apsusc.2020.147052
- J.S. Galsin, Free-electron theory of metals, in Solid State Physics. ed. by J.S. Galsin (Elsevier, Amsterdam, 2019), pp.177–198. https://doi.org/10.1016/B978-0-12-817103-5.00009-8
- H. Lv, Z. Yang, S.J.H. Ong, C. Wei, H. Liao et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29, 1900163 (2019). https://doi.org/10.1002/adfm.201900163
- J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater. 32(23), 2200123 (2022). https://doi.org/10.1002/adfm.202200123
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro Cus@rGO lightweight aerogels. Nano-Micro Lett. 14(1), 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- T. Xu, J. Li, D. Zhao, X. Chen, G. Sun et al., Structural engineering enabled bimetallic (Ti1-γNbγ)2AlC solid solution structure for efficient electromagnetic wave absorption in gigahertz. Small 19, e2300119 (2023). https://doi.org/10.1002/smll.202300119
- X. Yan, X. Huang, Y. Chen, Y. Liu, L. Xia et al., A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance. Carbon 174, 662–672 (2021). https://doi.org/10.1016/j.carbon.2020.11.044
- X. Qiu, G. Qi, Y. Yang, C. Wang, Electrostatic characteristics of nanostructures investigated using electric force microscopy. J. Solid State Chem. 181(7), 1670–1677 (2008). https://doi.org/10.1016/j.jssc.2008.06.036
- S.N. Magonov, V. Elings, M.H. Whangbo, Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf. Sci. 375, L385–L391 (1997). https://doi.org/10.1016/S0039-6028(96)01591-9
- S. Peng, Q. Zeng, X. Yang, J. Hu, X. Qiu et al., Local dielectric property detection of the interface between nanop and polymer in nanocomposite dielectrics. Sci. Rep. 6, 38978 (2016). https://doi.org/10.1038/srep38978
References
X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14(1), 28 (2021). https://doi.org/10.1007/s40820-021-00776-3
Y. Liu, X. Huang, X. Yan, L. Xia, T. Zhang et al., Pushing the limits of microwave absorption capability of carbon fiber in fabric design based on genetic algorithm. J. Adv. Ceram. 12(2), 329–340 (2023). https://doi.org/10.26599/jac.2023.9220686
P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14(1), 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32(24), 2201129 (2022). https://doi.org/10.1002/adfm.202201129
C. Hou, J. Cheng, H. Zhang, Z. Lu, X. Yang et al., Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band. Appl. Surf. Sci. 577, 151939 (2022). https://doi.org/10.1016/j.apsusc.2021.151939
D. Zhang, T. Liu, M. Zhang, H. Zhang, X. Yang et al., Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology 31(32), 325703 (2020). https://doi.org/10.1088/1361-6528/ab8b8d
Z. Huang, J. Cheng, H. Zhang, Y. Xiong, Z. Zhou et al., High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J. Mater. Sci. Technol. 107, 155–164 (2022). https://doi.org/10.1016/j.jmst.2021.08.005
H. Zhang, T. Liu, Z. Huang, J. Cheng, H. Wang et al., Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics 8(2), 327–334 (2022). https://doi.org/10.1016/j.jmat.2021.09.003
G. Bellis, A. Tamburrano, A. Dinescu, M.L. Santarelli, M.S. Sarto, Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency. Carbon 49(13), 4291–4300 (2011). https://doi.org/10.1016/j.carbon.2011.06.008
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018). https://doi.org/10.1002/adfm.201707205
Y. Dai, M. Sun, C. Liu, Z. Li, Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cem. Concr. Compos. 32(7), 508–513 (2010). https://doi.org/10.1016/j.cemconcomp.2010.03.009
T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She et al., Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 4, 5619 (2014). https://doi.org/10.1038/srep05619
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
C.G. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl, Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94, 243114 (2009). https://doi.org/10.1063/1.3147183
Q. Li, Y. Zhao, X. Li, L. Wang, X. Li et al., MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance. Small 16(42), e2003905 (2020). https://doi.org/10.1002/smll.202003905
X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu et al., Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 72, 93–103 (2021). https://doi.org/10.1016/j.jmst.2020.09.012
Y. Ge, H. Wang, T. Wu, B. Hu, Y. Shao et al., Accordion-like reduced graphene oxide embedded with Fe nanops between layers for tunable and broadband electromagnetic wave absorption. J. Colloid Interface Sci. 628, 1019–1030 (2022). https://doi.org/10.1016/j.jcis.2022.08.020
D. Xu, S. Yang, P. Chen, Q. Yu, X. Xiong et al., Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis. Carbon 146, 301–312 (2019). https://doi.org/10.1016/j.carbon.2019.02.005
G. Pan, J. Zhu, S. Ma, G. Sun, X. Yang, Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and Cubic Co nanocrystals grown on graphene. ACS Appl. Mater. Interfaces 5(23), 12716–12724 (2013). https://doi.org/10.1021/am404117v
I. Arief, S. Biswas, S. Bose, FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces 9(22), 19202–19214 (2017). https://doi.org/10.1021/acsami.7b04053
B. Wen, M. Cao, M. Lu, W. Cao, H. Sh et al., Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
B. Wen, M. Cao, Z. Hou, W. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
M. Cao, W. Song, Z. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao et al., Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci. Rep. 3, 3421 (2013). https://doi.org/10.1038/srep03421
G. Ni, Y. Zheng, S. Bae, C. Tan, O. Kahya et al., Graphene-ferroelectric hybrid structure for flexible transparent electrodes. ACS Nano 6(5), 3935–3942 (2012). https://doi.org/10.1021/nn3010137
H. Kim, H.H. Kim, J.I. Jang, S.K. Lee, G.W. Lee et al., Doping graphene with an atomically thin two dimensional molecular layer. Adv. Mater. 26, 8141–8146 (2014). https://doi.org/10.1002/adma.201403196
M. Kim, K.J. Kim, S.J. Lee, H.M. Kim, S.Y. Cho et al., Highly stable and effective doping of graphene by selective atomic layer deposition of ruthenium. ACS Appl. Mater. Interfaces 9(1), 701–709 (2017). https://doi.org/10.1021/acsami.6b12622
Y. Ren, S. Chen, W. Cai, Y. Zhu, C. Zhu et al., Controlling the electrical transport properties of graphene by in situ metal deposition. App. Phys. Lett. (2010). https://doi.org/10.1063/1.3471396
Q. Li, J. Tan, Z. Wu, L. Wang, W. You et al., Hierarchical magnetic-dielectric synergistic Co/CoO/RGO microspheres with excellent microwave absorption performance covering the whole X band. Carbon 201, 150–160 (2023). https://doi.org/10.1016/j.carbon.2022.08.090
Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8(6), 2123–2134 (2020). https://doi.org/10.1039/c9tc06526a
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31, 2102812 (2021). https://doi.org/10.1002/adfm.202102812
L. Wang, X. Yu, M. Huang, W. You, Q. Zeng et al., Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. Carbon 172, 516–528 (2021). https://doi.org/10.1016/j.carbon.2020.09.050
R. Che, L. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
W. Li, H. Qi, F. Guo, Y. Du, N. Song et al., Co nanops supported on cotton-based carbon fibers: a novel broadband microwave absorbent. J. Alloys Compd. 772, 760–769 (2019). https://doi.org/10.1016/j.jallcom.2018.09.075
S. Qiu, H. Lyu, J. Liu, Y. Liu, N. Wu et al., Facile synthesis of porous Nickel/Carbon composite microspheres with enhanced electromagnetic wave absorption by magnetic and dielectric losses. ACS Appl. Mater. Interfaces 8(31), 20258–20266 (2016). https://doi.org/10.1021/acsami.6b03159
F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanops encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang et al., Coin-like α-Fe2O3@CoFe2O4 core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 7(8), 4744–4750 (2015). https://doi.org/10.1021/am508438s
K. Pi, K.M. McCreary, W. Bao, W. Han, Y.F. Chiang et al., Electronic doping and scattering by transition metals on graphene. Phys. Rev. B 80, 075406 (2009). https://doi.org/10.1103/PhysRevB.80.075406
K. Zhang, W. Lv, J. Chen, H. Ge, C. Chu et al., Synthesis of RGO/AC/Fe3O4 composite having 3D hierarchically porous morphology for high effective electromagnetic wave absorption. Compos. Part B-Eng. 169, 1–8 (2019). https://doi.org/10.1016/j.compositesb.2019.03.081
C. Wang, W. Chen, C. Han, G. Wang, B. Tang et al., Growth of millimeter-size single crystal graphene on cu foils by circumfluence chemical vapor deposition. Sci. Rep. 4, 4537 (2014). https://doi.org/10.1038/srep04537
J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed et al., Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9), 6916–6924 (2011). https://doi.org/10.1021/nn201207c
C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15(1), 13 (2022). https://doi.org/10.1007/s40820-022-00986-3
G. Qin, X. Huang, X. Yan, Y. He, Y. Liu et al., Carbonized wood with ordered channels decorated by NiCo2O4 for lightweight and high-performance microwave absorber. J. Adv. Ceram 11(1), 105–119 (2021). https://doi.org/10.1007/s40145-021-0520-z
T. Gao, R. Zhao, Y. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 22043 (2022). https://doi.org/10.1002/adfm.202204370
Z. Yan, Z. Xu, Z. Yang, L. Yue, L. Huang, Graphene oxide/Fe2O3 nanoplates supported Pt for enhanced room-temperature oxidation of formaldehyde. Appl. Surf. Sci. 467–468, 277–285 (2019). https://doi.org/10.1016/j.apsusc.2018.10.123
W. Xue, H. He, J. Zhu, P. Yuan, FTIR investigation of CTAB-Al-montmorillonite complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 1030–1036 (2007). https://doi.org/10.1016/j.saa.2006.09.024
H. Quan, B. Cheng, Y. Xiao, S. Lei, One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem. Eng. J. 286, 165–173 (2016). https://doi.org/10.1016/j.cej.2015.10.068
L. Lei, Z. Yao, J. Zhou, W. Zheng, B. We et al., Hydrangea-like Ni/Nio/C composites derived from metal–organic frameworks with superior microwave absorption. Carbon 173, 69–79 (2021). https://doi.org/10.1016/j.carbon.2020.10.093
B. Du, M. Cai, X. Wang, J. Qian, C. He, A. Shui, Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. J. Adv. Ceram. 10(4), 832–842 (2021). https://doi.org/10.1007/s40145-021-0476-z
H. Xu, G. Zhang, Y. Wang, M. Ning, B. Ouyang et al., Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 14(1), 102 (2022). https://doi.org/10.1007/s40820-022-00841-5
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 1–31 (2022). https://doi.org/10.1007/s40820-022-00823-7
D. Zhang, T. Liu, J. Cheng, J. Chai, X. Yang et al., Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides. Nanotechnology 30(44), 445708 (2019). https://doi.org/10.1088/1361-6528/ab35fa
D. Zhang, H. Wang, J. Cheng, C. Han, X. Yang et al., Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Appl. Surf. Sci. 528, 147052 (2020). https://doi.org/10.1016/j.apsusc.2020.147052
J.S. Galsin, Free-electron theory of metals, in Solid State Physics. ed. by J.S. Galsin (Elsevier, Amsterdam, 2019), pp.177–198. https://doi.org/10.1016/B978-0-12-817103-5.00009-8
H. Lv, Z. Yang, S.J.H. Ong, C. Wei, H. Liao et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29, 1900163 (2019). https://doi.org/10.1002/adfm.201900163
J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater. 32(23), 2200123 (2022). https://doi.org/10.1002/adfm.202200123
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro Cus@rGO lightweight aerogels. Nano-Micro Lett. 14(1), 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
T. Xu, J. Li, D. Zhao, X. Chen, G. Sun et al., Structural engineering enabled bimetallic (Ti1-γNbγ)2AlC solid solution structure for efficient electromagnetic wave absorption in gigahertz. Small 19, e2300119 (2023). https://doi.org/10.1002/smll.202300119
X. Yan, X. Huang, Y. Chen, Y. Liu, L. Xia et al., A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance. Carbon 174, 662–672 (2021). https://doi.org/10.1016/j.carbon.2020.11.044
X. Qiu, G. Qi, Y. Yang, C. Wang, Electrostatic characteristics of nanostructures investigated using electric force microscopy. J. Solid State Chem. 181(7), 1670–1677 (2008). https://doi.org/10.1016/j.jssc.2008.06.036
S.N. Magonov, V. Elings, M.H. Whangbo, Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf. Sci. 375, L385–L391 (1997). https://doi.org/10.1016/S0039-6028(96)01591-9
S. Peng, Q. Zeng, X. Yang, J. Hu, X. Qiu et al., Local dielectric property detection of the interface between nanop and polymer in nanocomposite dielectrics. Sci. Rep. 6, 38978 (2016). https://doi.org/10.1038/srep38978