Improved Electrochemical Performance Based on Nanostructured SnS2@CoS2–rGO Composite Anode for Sodium-Ion Batteries
Corresponding Author: Shandong Li
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 46
Abstract
A promising anode material composed of SnS2@CoS2 flower-like spheres assembled from SnS2 nanosheets and CoS2 nanoparticles accompanied by reduced graphene oxide (rGO) was fabricated by a facile hydrothermal pathway. The presence of rGO and the combined merits of SnS2 and CoS2 endow the SnS2@CoS2–rGO composite with high conductivity pathways and channels for electrons and with excellent properties as an anode material for sodium-ion batteries (SIBs). A high capacity of 514.0 mAh g−1 at a current density of 200 mA g−1 after 100 cycles and a good rate capability can be delivered. The defined structure and good sodium-storage performance of the SnS2@CoS2–rGO composite demonstrate its promising application in high-performance SIBs.
Highlights:
1 A flower-like nanostructured composition of SnS2@CoS2 spheres associated with reduced graphene oxide (rGO) was prepared by a facile method.
2 The anode based on SnS2@CoS2–rGO composite exhibited excellent cycling stability and rate capability for sodium-ion batteries (SIBs).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
- W. Luo, F. Shen, C. Bommier, H.L. Zhu, X.L. Ji, L.B. Hu, Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49(2), 231–240 (2016). https://doi.org/10.1021/acs.accounts.5b00482
- H.G. Wang, S. Yuan, D.L. Ma, X.B. Zhang, J.M. Yan, Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ. Sci. 8(6), 1660–1681 (2015). https://doi.org/10.1039/C4EE03912B
- H.G. Wang, S. Yuan, Z.J. Si, X.B. Zhang, Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries. Energy Environ. Sci. 8(11), 3160–3165 (2015). https://doi.org/10.1039/C5EE02589C
- M.M. Lao, Y. Zhang, W.B. Luo, Q.Y. Yan, W.P. Sun, S.X. Dou, Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29(48), 1700622 (2017). https://doi.org/10.1002/adma.201700622
- S. Yuan, Y.B. Liu, D. Xu, D.L. Ma, S. Wang, X.H. Yang, Z.Y. Cao, X.B. Zhang, Pure single-crystalline Na1.1V3O7.9 nanobelts as superior cathode materials for rechargeable sodium-ion batteries. Adv. Sci. 2(3), 1400018–1400023 (2015). https://doi.org/10.1002/advs.201400018
- S. Wang, T. Sun, S. Yuan, Y.H. Zhu, X.B. Zhang, J.M. Yan, Q. Jiang, P3-type K0.33Co0.53Mn0.47O2·0.39H2O: a novel bifunctional electrode for Na-ion batteries. Mater. Horiz. 4(6), 1122–1127 (2017). https://doi.org/10.1039/C7MH00512A
- H. Gao, T.F. Zhou, Y. Zheng, Q. Zhang, Y.Q. Liu, J. Chen, H.K. Liu, Z.P. Guo, CoS quantum dot nanoclusters for high energy potassium ion batteries. Adv. Funct. Mater. 27(43), 1702634 (2017). https://doi.org/10.1002/adfm.201702634
- B. Luo, T.F. Qiu, D.L. Ye, L.Z. Wang, L.J. Zhi, Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy 22, 232–240 (2016). https://doi.org/10.1016/j.nanoen.2016.02.024
- M.L. Mao, F.L. Yan, C.Y. Cui, J.M. Ma, M. Zhang, T.H. Wang, C.S. Wang, Pipe-wire TiO2–Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
- S.H. Dong, C.X. Li, X.L. Ge, Z.Q. Li, X.G. Miao, L.W. Yin, ZnS–Sb2S3@C core-double shell polyhedron structure derived from metal–organic framework as anodes for high performance sodium ion batteries. ACS Nano 11(6), 6474–6482 (2017). https://doi.org/10.1021/acsnano.7b03321
- S. Yuan, S. Wang, L. Li, Y.H. Zhu, X.B. Zhang, J.M. Yan, Integrating 3D flower-like hierarchical Cu2NiSnS4 with reduced graphene oxide as advanced anode materials for Na-ion batteries. ACS Appl. Mater. Interfaces 8(14), 9178–9184 (2016). https://doi.org/10.1021/acsami.6b01725
- S. Yuan, Y.H. Zhu, W. Li, S. Wang, D. Xu, L. Li, Y. Zhang, X.B. Zhang, Surfactant-free aqueous synthesis of pure single-crystalline SnSe nanosheet clusters as anode for high energy- and power-density sodium-ion batteries. Adv. Mater. 29(4), 1602469 (2017). https://doi.org/10.1002/adma.201602469
- X.Q. Xie, T. Makaryan, M.Q. Zhao, K.L.V. Aken, Y. Gogotsi, G.X. Wang, MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 6(5), 1502161 (2016). https://doi.org/10.1002/aenm.201502161
- S.J. Peng, X.P. Han, L.L. Li, Z.Q. Zhu, F.Y. Cheng, M. Srinivansan, S. Adams, S. Ramakrishna, Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12(10), 1359–1368 (2016). https://doi.org/10.1002/smll.201502788
- Y. Xiao, J.Y. Hwang, I. Belharouak, Y.K. Sun, Na storage capability investigation of a carbon nanotube-encapsulated Fe1−xS composite. ACS Energy Lett. 2(2), 364–372 (2017). https://doi.org/10.1021/acsenergylett.6b00660
- Q. Zhou, L. Liu, Z.F. Huang, L.G. Yi, X.Y. Wang, G.Z. Cao, Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 4(15), 5505–5516 (2016). https://doi.org/10.1039/C6TA01497F
- X. Wang, J.Y. Hwang, S.T. Myung, J. Hassoun, Y.K. Sun, Graphene decorated by indium sulfide nanoparticles as high-performance anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 9(28), 23723–23730 (2017). https://doi.org/10.1021/acsami.7b05057
- X.H. Xiong, C.H. Yang, G.H. Wang, Y.W. Lin, X. Ou et al., SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10(8), 1757–1763 (2017). https://doi.org/10.1039/C7EE01628J
- T.F. Zhou, W.K. Pang, C.F. Zhang, J.P. Yang, Z.X. Chen, H.K. Liu, Z.P. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8(8), 8323–8333 (2014). https://doi.org/10.1021/nn503582c
- S. Wang, S. Yuan, Y.B. Yin, Y.H. Zhu, X.B. Zhang, J.M. Yan, Green and facile fabrication of MWNTs@Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries. Part. Part. Syst. Charact. 33(8), 493–499 (2016). https://doi.org/10.1002/ppsc.201500227
- J.J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y.O. Yang, S. Nie, X.Y. Wang, Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries. Nano-Micro Lett. 10(1), 12 (2018). https://doi.org/10.1007/s40820-017-0165-1
- J.J. Wang, C. Luo, J.F. Mao, Y.J. Zhu, X.L. Fan, T. Gao, A.C. Mignerey, C.S. Wang, Solid-state fabrication of SnS2/C nanospheres for high-performance sodium ion battery anode. ACS Appl. Mater. Interfaces 7(21), 11476–11481 (2015). https://doi.org/10.1021/acsami.5b02413
- R.J. Wei, J.C. Hu, T.F. Zhou, X.L. Zhou, J.X. Liu, J.L. Li, Ultrathin SnS2 nanosheets with exposed 001 facets and enhanced photocatalytic properties. Acta Mater. 66(3), 163–171 (2014). https://doi.org/10.1016/j.actamat.2013.11.076
- Y. Jiang, Y.Z. Feng, B.J. Xi, S.S. Kai, K. Mi, J.K. Feng, J.H. Zhang, S.L. Xiong, Ultrasmall SnS2 nanoparticles anchored on well distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries. J. Mater. Chem. A 4(27), 10719–10726 (2016). https://doi.org/10.1039/C6TA03580A
- D.L. Chao, P. Liang, Z. Chen, L.Y. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- Y. Liu, Y.Z. Yang, X.Z. Wang, Y.F. Dong, Y.C. Tang, Z.F. Yu, Z.B. Zhao, J.S. Qiu, Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(18), 15484–15491 (2017). https://doi.org/10.1021/acsami.7b02394
- Y.C. Liu, H.Y. Kang, L.F. Jiao, C.C. Chen, K.Z. Cao, Y.J. Wang, H.T. Yuan, Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 7(4), 1325–1332 (2015). https://doi.org/10.1039/C4NR05106H
- Q.F. Wang, R.Q. Zou, W. Xia, J. Ma, B. Qiu et al., Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 11(21), 2511–2517 (2015). https://doi.org/10.1002/smll.201403579
- H.B. Geng, J. Yang, Z.F. Dai, Y. Zhang, Y. Zheng et al., Co9S8/MoS2 yolk–shell spheres for advanced Li/Na Storage. Small 13(14), 1603490 (2017). https://doi.org/10.1002/smll.201603490
- W.-S. Kim, Y. Hwa, H.-C. Kim, J.-H. Choi, H.-J. Sohn, S.-H. Hong, SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 7(8), 1128–1136 (2014). https://doi.org/10.1007/s12274-014-0475-2
- H. Yu, H.S. Fan, X.L. Wu, H.W. Wang, Z.Z. Luo, H.T. Tan, B.L. Yadian, Y.Z. Huang, Q.Y. Yan, Diffusion induced concave Co3O4@CoFe2O4 hollow heterostructures for high performance lithium ion battery anode. Energy Storage Mater. 4, 145–153 (2016). https://doi.org/10.1016/j.ensm.2016.05.005
- Q.C. Pan, F.H. Zheng, X. Ou, C.H. Yang, X.H. Xiong, Z.H. Tang, L.Z. Zhao, M.L. Liu, MoS2 decorated Fe3O4/Fe1−xS@C nanosheets as high-performance anode materials for lithium ion and sodium ion batteries. ACS Sustain. Chem. Eng. 5(6), 4739–4745 (2017). https://doi.org/10.1021/acssuschemeng.7b00119
- Y.M. Lin, Z.Z. Qiu, D.Z. Li, S. Ullah, Y. Hai et al., NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 11, 67–74 (2018). https://doi.org/10.1016/j.ensm.2017.06.001
- X. Ou, C.H. Yang, X.H. Xiong, F.H. Zheng, Q.C. Pan, C. Jin, M.L. Liu, K. Huang, A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in situ X-ray diffraction study on a live sodiation/desodiation process. Adv. Funct. Mater. 27(13), 1606242 (2017). https://doi.org/10.1002/adfm.201606242
- X. Wang, Y. Xiao, J.Q. Wang, L.N. Sun, M.H. Cao, Facile fabrication of molybdenum dioxide/nitrogen-doped graphene hybrid as high performance anode material for lithium ion batteries. J. Power Sources 274, 142–148 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.031
- F.E. Niu, J. Yang, N.N. Wang, D.P. Zhang, W.L. Fan, J. Yang, Y.T. Qian, MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27(23), 1700522 (2017). https://doi.org/10.1002/adfm.201700522
- Y.L. Xiao, X.M. Li, J.T. Zai, K.X. Wang, Y. Gong, B. Li, Q.Y. Han, X.F. Qian, CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries. Nano-Micro Lett. 6(4), 307–315 (2014). https://doi.org/10.1007/s40820-014-0003-7
- Y.L. Xiao, J.T. Zai, B.B. Tian, X.F. Qian, Formation of NiFe2O4/expanded graphite nanocomposites with superior lithium storage properties. Nano-Micro Lett. 9(3), 34 (2017). https://doi.org/10.1007/s40820-017-0127-7
- Y. Jiang, M. Wei, J.K. Feng, Y.C. Ma, S.L. Xiong, Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 9(4), 1430–1438 (2016). https://doi.org/10.1039/C5EE03262H
- Y. Zheng, T.F. Zhou, C.F. Zhang, J.F. Mao, H.K. Liu, Z.P. Guo, Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Edit. 55(10), 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
- Y.X. Guo, L.F. Gan, C.S. Shang, E.K. Wang, J. Wang, A cake-style CoS2@MoS2/RGO hybrid catalyst for efficient hydrogen evolution. Adv. Funct. Mater. 27(5), 1602699 (2017). https://doi.org/10.1002/adfm.201602699
- Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. 56(5), 1324–1328 (2017). https://doi.org/10.1002/anie.201610413
- X. Wang, H. Wang, Q. Li, H.S. Li, G.X. Zhao, H.L. Li, P.Z. Guo, S.D. Li, Y.K. Sun, Antimony selenide nanorods decorated on reduced graphene oxide with excellent electrochemical properties for Li-ion batteries. J. Electrochem. Soc. 164(13), A2922–A2929 (2017). https://doi.org/10.1149/2.0201713jes
- D.C. Higgins, F.M. Hassan, M.H. Seo, J.Y. Choi, M.A. Hoque, D.U. Lee, Z. Chen, Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte. J. Mater. Chem. A 3(12), 6340–6350 (2015). https://doi.org/10.1039/C4TA06667G
- W.N. Deng, X.H. Chen, Z. Liu, A.P. Hu, Q.L. Tang, Z. Li, Y.N. Xiong, Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries. J. Power Sources 277, 131–138 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.006
- Y.D. Ren, W.M. Lv, F.S. Wen, J.Y. Xiang, Z.Y. Liu, Microwave synthesis of SnS2 nanoflakes anchored graphene foam for flexible lithium-ion battery anodes with long cycling life. Mater. Lett. 174, 24–27 (2016). https://doi.org/10.1016/j.matlet.2016.03.075
- C.Z. Ma, J. Xu, J. Alvarado, B.H. Qu, J. Somerville, J.Y. Lee, Y.S. Meng, Investigating the energy storage mechanism of SnS2–rGO composite anode for advanced Na-ion batteries. Chem. Mater. 27(16), 5633–5640 (2015). https://doi.org/10.1021/acs.chemmater.5b01984
- H.Y. Sun, M. Ahmad, J. Luo, Y.Y. Shi, W.C. Shen, J. Zhu, SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries. Mater. Res. Bull. 49, 319–324 (2014). https://doi.org/10.1016/j.materresbull.2013.09.005
- Y.M. Wang, J.J. Wu, Y.F. Tang, X.J. Lu, C.Y. Yang, M.S. Qin, F.Q. Huang, X. Li, X. Zhang, Phase-controlled synthesis of cobalt sulfides for lithium ion batteries. ACS Appl. Mater. Interfaces 4(48), 4246–4250 (2012). https://doi.org/10.1021/am300951f
- X. Zhao, J.H. Sui, F. Li, H.T. Fang, H.E. Wang, J.Y. Li, W. Cai, G.Z. Cao, Lamellar MoSe2 nanosheets embedded with MoO2 nanoparticles: novel hybrid nanostructures promoted excellent performances for lithium ion batteries. Nanoscale 8(41), 17902–17910 (2016). https://doi.org/10.1039/C6NR05584B
- K. Zhang, M. Park, L.M. Zhou, G.H. Lee, W.J. Li, Y.M. Kang, J. Chen, Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26(37), 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
- L.W. Ji, Z. Lin, M. Alcoutlabi, X.W. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011). https://doi.org/10.1039/c0ee00699h
- K.Y. Xie, L. Li, X. Deng, W. Zhou, Z.P. Shao, A strongly coupled CoS2/reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries. J. Alloys Compd. 726, 394–402 (2017). https://doi.org/10.1016/j.jallcom.2017.07.339
- Y.H. Zhang, N.N. Wang, C.H. Sun, Z.X. Lu, P. Xue, B. Tang, Z.C. Bai, S.X. Dou, 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. Chem. Eng. J. 332, 370–376 (2018). https://doi.org/10.1016/j.cej.2017.09.092
- Y.Z. Qin, Q. Li, J. Xu, X. Wang, G.X. Zhao et al., CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta 224, 90–95 (2017). https://doi.org/10.1016/j.electacta.2016.12.040
- X.J. Liu, J.T. Zai, B. Li, J. Zou, Z.F. Ma, X.F. Qian, Na2Ge4O9 nanoparticles encapsulated in 3D carbon networks with long-term stability and superior rate capability in lithium ion batteries. J. Mater. Chem. A 4(27), 10552–10557 (2016). https://doi.org/10.1039/C6TA03085H
- X.M. Li, T.Y. Qian, J.T. Zai, K. He, Z.X. Feng, X.F. Qian, Co stabilized metallic 1Td MoS2 monolayers: bottom-up synthesis and enhanced capacitance with ultra-long cycling stability. Mater. Today Energy 7, 10–17 (2018). https://doi.org/10.1016/j.mtener.2017.11.004
- X.M. Li, Z.X. Feng, J.T. Zai, Z.F. Ma, X.F. Qian, Incorporation of Co into MoS2/graphene nanocomposites: one effective way to enhance the cycling stability of Li/Na storage. J. Power Sources 373, 103–109 (2018). https://doi.org/10.1016/j.jpowsour.2017.10.094
- X.M. Li, J.T. Zai, S.J. Xiang, Y.Y. Liu, X.B. He, Z.Y. Xu, K.X. Wang, Z.F. Ma, X.F. Qian, Regeneration of metal sulfides in the delithiation process: the key to cyclic stability. Adv. Energy Mater. 6(19), 1601056 (2016). https://doi.org/10.1002/aenm.201601056
References
D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
W. Luo, F. Shen, C. Bommier, H.L. Zhu, X.L. Ji, L.B. Hu, Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49(2), 231–240 (2016). https://doi.org/10.1021/acs.accounts.5b00482
H.G. Wang, S. Yuan, D.L. Ma, X.B. Zhang, J.M. Yan, Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ. Sci. 8(6), 1660–1681 (2015). https://doi.org/10.1039/C4EE03912B
H.G. Wang, S. Yuan, Z.J. Si, X.B. Zhang, Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries. Energy Environ. Sci. 8(11), 3160–3165 (2015). https://doi.org/10.1039/C5EE02589C
M.M. Lao, Y. Zhang, W.B. Luo, Q.Y. Yan, W.P. Sun, S.X. Dou, Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29(48), 1700622 (2017). https://doi.org/10.1002/adma.201700622
S. Yuan, Y.B. Liu, D. Xu, D.L. Ma, S. Wang, X.H. Yang, Z.Y. Cao, X.B. Zhang, Pure single-crystalline Na1.1V3O7.9 nanobelts as superior cathode materials for rechargeable sodium-ion batteries. Adv. Sci. 2(3), 1400018–1400023 (2015). https://doi.org/10.1002/advs.201400018
S. Wang, T. Sun, S. Yuan, Y.H. Zhu, X.B. Zhang, J.M. Yan, Q. Jiang, P3-type K0.33Co0.53Mn0.47O2·0.39H2O: a novel bifunctional electrode for Na-ion batteries. Mater. Horiz. 4(6), 1122–1127 (2017). https://doi.org/10.1039/C7MH00512A
H. Gao, T.F. Zhou, Y. Zheng, Q. Zhang, Y.Q. Liu, J. Chen, H.K. Liu, Z.P. Guo, CoS quantum dot nanoclusters for high energy potassium ion batteries. Adv. Funct. Mater. 27(43), 1702634 (2017). https://doi.org/10.1002/adfm.201702634
B. Luo, T.F. Qiu, D.L. Ye, L.Z. Wang, L.J. Zhi, Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy 22, 232–240 (2016). https://doi.org/10.1016/j.nanoen.2016.02.024
M.L. Mao, F.L. Yan, C.Y. Cui, J.M. Ma, M. Zhang, T.H. Wang, C.S. Wang, Pipe-wire TiO2–Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
S.H. Dong, C.X. Li, X.L. Ge, Z.Q. Li, X.G. Miao, L.W. Yin, ZnS–Sb2S3@C core-double shell polyhedron structure derived from metal–organic framework as anodes for high performance sodium ion batteries. ACS Nano 11(6), 6474–6482 (2017). https://doi.org/10.1021/acsnano.7b03321
S. Yuan, S. Wang, L. Li, Y.H. Zhu, X.B. Zhang, J.M. Yan, Integrating 3D flower-like hierarchical Cu2NiSnS4 with reduced graphene oxide as advanced anode materials for Na-ion batteries. ACS Appl. Mater. Interfaces 8(14), 9178–9184 (2016). https://doi.org/10.1021/acsami.6b01725
S. Yuan, Y.H. Zhu, W. Li, S. Wang, D. Xu, L. Li, Y. Zhang, X.B. Zhang, Surfactant-free aqueous synthesis of pure single-crystalline SnSe nanosheet clusters as anode for high energy- and power-density sodium-ion batteries. Adv. Mater. 29(4), 1602469 (2017). https://doi.org/10.1002/adma.201602469
X.Q. Xie, T. Makaryan, M.Q. Zhao, K.L.V. Aken, Y. Gogotsi, G.X. Wang, MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 6(5), 1502161 (2016). https://doi.org/10.1002/aenm.201502161
S.J. Peng, X.P. Han, L.L. Li, Z.Q. Zhu, F.Y. Cheng, M. Srinivansan, S. Adams, S. Ramakrishna, Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12(10), 1359–1368 (2016). https://doi.org/10.1002/smll.201502788
Y. Xiao, J.Y. Hwang, I. Belharouak, Y.K. Sun, Na storage capability investigation of a carbon nanotube-encapsulated Fe1−xS composite. ACS Energy Lett. 2(2), 364–372 (2017). https://doi.org/10.1021/acsenergylett.6b00660
Q. Zhou, L. Liu, Z.F. Huang, L.G. Yi, X.Y. Wang, G.Z. Cao, Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 4(15), 5505–5516 (2016). https://doi.org/10.1039/C6TA01497F
X. Wang, J.Y. Hwang, S.T. Myung, J. Hassoun, Y.K. Sun, Graphene decorated by indium sulfide nanoparticles as high-performance anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 9(28), 23723–23730 (2017). https://doi.org/10.1021/acsami.7b05057
X.H. Xiong, C.H. Yang, G.H. Wang, Y.W. Lin, X. Ou et al., SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10(8), 1757–1763 (2017). https://doi.org/10.1039/C7EE01628J
T.F. Zhou, W.K. Pang, C.F. Zhang, J.P. Yang, Z.X. Chen, H.K. Liu, Z.P. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8(8), 8323–8333 (2014). https://doi.org/10.1021/nn503582c
S. Wang, S. Yuan, Y.B. Yin, Y.H. Zhu, X.B. Zhang, J.M. Yan, Green and facile fabrication of MWNTs@Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries. Part. Part. Syst. Charact. 33(8), 493–499 (2016). https://doi.org/10.1002/ppsc.201500227
J.J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y.O. Yang, S. Nie, X.Y. Wang, Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries. Nano-Micro Lett. 10(1), 12 (2018). https://doi.org/10.1007/s40820-017-0165-1
J.J. Wang, C. Luo, J.F. Mao, Y.J. Zhu, X.L. Fan, T. Gao, A.C. Mignerey, C.S. Wang, Solid-state fabrication of SnS2/C nanospheres for high-performance sodium ion battery anode. ACS Appl. Mater. Interfaces 7(21), 11476–11481 (2015). https://doi.org/10.1021/acsami.5b02413
R.J. Wei, J.C. Hu, T.F. Zhou, X.L. Zhou, J.X. Liu, J.L. Li, Ultrathin SnS2 nanosheets with exposed 001 facets and enhanced photocatalytic properties. Acta Mater. 66(3), 163–171 (2014). https://doi.org/10.1016/j.actamat.2013.11.076
Y. Jiang, Y.Z. Feng, B.J. Xi, S.S. Kai, K. Mi, J.K. Feng, J.H. Zhang, S.L. Xiong, Ultrasmall SnS2 nanoparticles anchored on well distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries. J. Mater. Chem. A 4(27), 10719–10726 (2016). https://doi.org/10.1039/C6TA03580A
D.L. Chao, P. Liang, Z. Chen, L.Y. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
Y. Liu, Y.Z. Yang, X.Z. Wang, Y.F. Dong, Y.C. Tang, Z.F. Yu, Z.B. Zhao, J.S. Qiu, Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(18), 15484–15491 (2017). https://doi.org/10.1021/acsami.7b02394
Y.C. Liu, H.Y. Kang, L.F. Jiao, C.C. Chen, K.Z. Cao, Y.J. Wang, H.T. Yuan, Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 7(4), 1325–1332 (2015). https://doi.org/10.1039/C4NR05106H
Q.F. Wang, R.Q. Zou, W. Xia, J. Ma, B. Qiu et al., Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 11(21), 2511–2517 (2015). https://doi.org/10.1002/smll.201403579
H.B. Geng, J. Yang, Z.F. Dai, Y. Zhang, Y. Zheng et al., Co9S8/MoS2 yolk–shell spheres for advanced Li/Na Storage. Small 13(14), 1603490 (2017). https://doi.org/10.1002/smll.201603490
W.-S. Kim, Y. Hwa, H.-C. Kim, J.-H. Choi, H.-J. Sohn, S.-H. Hong, SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 7(8), 1128–1136 (2014). https://doi.org/10.1007/s12274-014-0475-2
H. Yu, H.S. Fan, X.L. Wu, H.W. Wang, Z.Z. Luo, H.T. Tan, B.L. Yadian, Y.Z. Huang, Q.Y. Yan, Diffusion induced concave Co3O4@CoFe2O4 hollow heterostructures for high performance lithium ion battery anode. Energy Storage Mater. 4, 145–153 (2016). https://doi.org/10.1016/j.ensm.2016.05.005
Q.C. Pan, F.H. Zheng, X. Ou, C.H. Yang, X.H. Xiong, Z.H. Tang, L.Z. Zhao, M.L. Liu, MoS2 decorated Fe3O4/Fe1−xS@C nanosheets as high-performance anode materials for lithium ion and sodium ion batteries. ACS Sustain. Chem. Eng. 5(6), 4739–4745 (2017). https://doi.org/10.1021/acssuschemeng.7b00119
Y.M. Lin, Z.Z. Qiu, D.Z. Li, S. Ullah, Y. Hai et al., NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 11, 67–74 (2018). https://doi.org/10.1016/j.ensm.2017.06.001
X. Ou, C.H. Yang, X.H. Xiong, F.H. Zheng, Q.C. Pan, C. Jin, M.L. Liu, K. Huang, A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in situ X-ray diffraction study on a live sodiation/desodiation process. Adv. Funct. Mater. 27(13), 1606242 (2017). https://doi.org/10.1002/adfm.201606242
X. Wang, Y. Xiao, J.Q. Wang, L.N. Sun, M.H. Cao, Facile fabrication of molybdenum dioxide/nitrogen-doped graphene hybrid as high performance anode material for lithium ion batteries. J. Power Sources 274, 142–148 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.031
F.E. Niu, J. Yang, N.N. Wang, D.P. Zhang, W.L. Fan, J. Yang, Y.T. Qian, MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27(23), 1700522 (2017). https://doi.org/10.1002/adfm.201700522
Y.L. Xiao, X.M. Li, J.T. Zai, K.X. Wang, Y. Gong, B. Li, Q.Y. Han, X.F. Qian, CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries. Nano-Micro Lett. 6(4), 307–315 (2014). https://doi.org/10.1007/s40820-014-0003-7
Y.L. Xiao, J.T. Zai, B.B. Tian, X.F. Qian, Formation of NiFe2O4/expanded graphite nanocomposites with superior lithium storage properties. Nano-Micro Lett. 9(3), 34 (2017). https://doi.org/10.1007/s40820-017-0127-7
Y. Jiang, M. Wei, J.K. Feng, Y.C. Ma, S.L. Xiong, Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 9(4), 1430–1438 (2016). https://doi.org/10.1039/C5EE03262H
Y. Zheng, T.F. Zhou, C.F. Zhang, J.F. Mao, H.K. Liu, Z.P. Guo, Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Edit. 55(10), 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
Y.X. Guo, L.F. Gan, C.S. Shang, E.K. Wang, J. Wang, A cake-style CoS2@MoS2/RGO hybrid catalyst for efficient hydrogen evolution. Adv. Funct. Mater. 27(5), 1602699 (2017). https://doi.org/10.1002/adfm.201602699
Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. 56(5), 1324–1328 (2017). https://doi.org/10.1002/anie.201610413
X. Wang, H. Wang, Q. Li, H.S. Li, G.X. Zhao, H.L. Li, P.Z. Guo, S.D. Li, Y.K. Sun, Antimony selenide nanorods decorated on reduced graphene oxide with excellent electrochemical properties for Li-ion batteries. J. Electrochem. Soc. 164(13), A2922–A2929 (2017). https://doi.org/10.1149/2.0201713jes
D.C. Higgins, F.M. Hassan, M.H. Seo, J.Y. Choi, M.A. Hoque, D.U. Lee, Z. Chen, Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte. J. Mater. Chem. A 3(12), 6340–6350 (2015). https://doi.org/10.1039/C4TA06667G
W.N. Deng, X.H. Chen, Z. Liu, A.P. Hu, Q.L. Tang, Z. Li, Y.N. Xiong, Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries. J. Power Sources 277, 131–138 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.006
Y.D. Ren, W.M. Lv, F.S. Wen, J.Y. Xiang, Z.Y. Liu, Microwave synthesis of SnS2 nanoflakes anchored graphene foam for flexible lithium-ion battery anodes with long cycling life. Mater. Lett. 174, 24–27 (2016). https://doi.org/10.1016/j.matlet.2016.03.075
C.Z. Ma, J. Xu, J. Alvarado, B.H. Qu, J. Somerville, J.Y. Lee, Y.S. Meng, Investigating the energy storage mechanism of SnS2–rGO composite anode for advanced Na-ion batteries. Chem. Mater. 27(16), 5633–5640 (2015). https://doi.org/10.1021/acs.chemmater.5b01984
H.Y. Sun, M. Ahmad, J. Luo, Y.Y. Shi, W.C. Shen, J. Zhu, SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries. Mater. Res. Bull. 49, 319–324 (2014). https://doi.org/10.1016/j.materresbull.2013.09.005
Y.M. Wang, J.J. Wu, Y.F. Tang, X.J. Lu, C.Y. Yang, M.S. Qin, F.Q. Huang, X. Li, X. Zhang, Phase-controlled synthesis of cobalt sulfides for lithium ion batteries. ACS Appl. Mater. Interfaces 4(48), 4246–4250 (2012). https://doi.org/10.1021/am300951f
X. Zhao, J.H. Sui, F. Li, H.T. Fang, H.E. Wang, J.Y. Li, W. Cai, G.Z. Cao, Lamellar MoSe2 nanosheets embedded with MoO2 nanoparticles: novel hybrid nanostructures promoted excellent performances for lithium ion batteries. Nanoscale 8(41), 17902–17910 (2016). https://doi.org/10.1039/C6NR05584B
K. Zhang, M. Park, L.M. Zhou, G.H. Lee, W.J. Li, Y.M. Kang, J. Chen, Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26(37), 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
L.W. Ji, Z. Lin, M. Alcoutlabi, X.W. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011). https://doi.org/10.1039/c0ee00699h
K.Y. Xie, L. Li, X. Deng, W. Zhou, Z.P. Shao, A strongly coupled CoS2/reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries. J. Alloys Compd. 726, 394–402 (2017). https://doi.org/10.1016/j.jallcom.2017.07.339
Y.H. Zhang, N.N. Wang, C.H. Sun, Z.X. Lu, P. Xue, B. Tang, Z.C. Bai, S.X. Dou, 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. Chem. Eng. J. 332, 370–376 (2018). https://doi.org/10.1016/j.cej.2017.09.092
Y.Z. Qin, Q. Li, J. Xu, X. Wang, G.X. Zhao et al., CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta 224, 90–95 (2017). https://doi.org/10.1016/j.electacta.2016.12.040
X.J. Liu, J.T. Zai, B. Li, J. Zou, Z.F. Ma, X.F. Qian, Na2Ge4O9 nanoparticles encapsulated in 3D carbon networks with long-term stability and superior rate capability in lithium ion batteries. J. Mater. Chem. A 4(27), 10552–10557 (2016). https://doi.org/10.1039/C6TA03085H
X.M. Li, T.Y. Qian, J.T. Zai, K. He, Z.X. Feng, X.F. Qian, Co stabilized metallic 1Td MoS2 monolayers: bottom-up synthesis and enhanced capacitance with ultra-long cycling stability. Mater. Today Energy 7, 10–17 (2018). https://doi.org/10.1016/j.mtener.2017.11.004
X.M. Li, Z.X. Feng, J.T. Zai, Z.F. Ma, X.F. Qian, Incorporation of Co into MoS2/graphene nanocomposites: one effective way to enhance the cycling stability of Li/Na storage. J. Power Sources 373, 103–109 (2018). https://doi.org/10.1016/j.jpowsour.2017.10.094
X.M. Li, J.T. Zai, S.J. Xiang, Y.Y. Liu, X.B. He, Z.Y. Xu, K.X. Wang, Z.F. Ma, X.F. Qian, Regeneration of metal sulfides in the delithiation process: the key to cyclic stability. Adv. Energy Mater. 6(19), 1601056 (2016). https://doi.org/10.1002/aenm.201601056