MoS2-Decorated/Integrated Carbon Fiber: Phase Engineering Well-Regulated Microwave Absorber
Corresponding Author: Ying Huang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 114
Abstract
Phase engineering is an important strategy to modulate the electronic structure of molybdenum disulfide (MoS2). MoS2-based composites are usually used for the electromagnetic wave (EMW) absorber, but the effect of different phases on the EMW absorbing performance, such as 1T and 2H phase, is still not studied. In this work, micro-1T/2H MoS2 is achieved via a facile one-step hydrothermal route, in which the 1T phase is induced by the intercalation of guest molecules and ions. The EMW absorption mechanism of single MoS2 is revealed by presenting a comparative study between 1T/2H MoS2 and 2H MoS2. As a result, 1T/2H MoS2 with the matrix loading of 15% exhibits excellent microwave absorption property than 2H MoS2. Furthermore, taking the advantage of 1T/2H MoS2, a flexible EMW absorbers that ultrathin 1T/2H MoS2 grown on the carbon fiber also performs outstanding performance only with the matrix loading of 5%. This work offers necessary reference to improve microwave absorption performance by phase engineering and design a new type of flexible electromagnetic wave absorption material to apply for the portable microwave absorption electronic devices.
Highlights:
1 A facile one‐step hydrothermal method for producing gram‐scale 1T@2H-MoS2 by imbedding the guest molecules and ions was developed.
2 The influence of different MoS2 phase for electromagnetic absorbing properties was explored by analyzing electromagnetic parameters of 1T/2H MoS2 and 2H MoS2 with 50%, 40%, 30%, 20%, 15%, and 10% filler loading.
3 Taking the advantage of 1T/2H MoS2, the flexible CF@1T/2H MoS2 was also synthesized to mind the request of flexible portable microwave absorption electronic devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@ Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018). https://doi.org/10.1002/smll.201800987
- P. Liu, C. Zhu, S. Gao, C. Guan, Y. Huang et al., N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 163, 348–359 (2020). https://doi.org/10.1016/j.carbon.2020.03.041
- M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), 1907156 (2020). https://doi.org/10.1002/adma.201907156
- J. Yan, Y. Huang, C. Wei, N. Zhang, P. Liu, Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials. Compos. Pt. A-Appl. Sci. Manuf. 99, 121–128 (2017). https://doi.org/10.1016/j.compositesa.2017.04.016
- R. Shu, G. Zhang, C. Zhang, Y. Wu, J. Zhang, Nitrogen-doping-regulated electromagnetic wave absorption properties of ultralight three-dimensional porous reduced graphene oxide aerogels. Adv. Electron. Mater. 7, 2001001 (2020). https://doi.org/10.1002/aelm.202001001
- D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
- B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- T. Zhu, W. Shen, X. Wang, Y.F. Song, W. Wang, Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chem. Eng. J. 378, 122159 (2019). https://doi.org/10.1016/j.cej.2019.122159
- L. Gai, Y. Zhao, G. Song, Q. An, Z. Xiao et al., Construction of core-shell PPy@ MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: assembly and enhanced mechanism. Compos. Pt. A-Appl. Sci. Manuf. 136, 105965 (2020). https://doi.org/10.1016/j.compositesa.2020.105965
- M. Ning, Q. Man, G. Tan, Z. Lei, J. Li et al., Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: a case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 12(18), 20785–20796 (2020). https://doi.org/10.1021/acsami.9b20433
- Z. Zhao, S. Xu, Z. Du, C. Jiang, X. Huang et al., Metal-organic framework-based PB@MoS2 core–shell microcubes with high efficiency and broad bandwidth for microwave absorption performance. ACS Sustain. Chem. Eng. 7(7), 7183–7192 (2019). https://doi.org/10.1021/acssuschemeng.9b00191
- R. Wang, E. Yang, X. Qi, R. Xie, S. Qin et al., Constructing and optimizing core@ shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers. Appl. Surface Sci. 516, 146159 (2020). https://doi.org/10.1016/j.apsusc.2020.146159
- M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 391, 123512 (2020). https://doi.org/10.1016/j.cej.2019.123512
- J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv, Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- X. Gao, B. Wang, K. Wang, S. Xu, S. Liu et al., Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 583, 510–521 (2021). https://doi.org/10.1016/j.jcis.2020.09.094
- W. Wu, L. Wang, R. Yu, Y. Liu, S.H. Wei et al., Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 28(38), 8463–8468 (2016). https://doi.org/10.1002/adma.201602854
- Q.H. Wang, K. Kalantar Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang et al., MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 29(21), 1606817 (2017). https://doi.org/10.1002/adma.201606817
- J. Ru, T. He, B. Chen, Y. Feng, L. Zu et al., Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries. Angew. Chem. Int. Ed. 59(34), 14621–14627 (2017). https://doi.org/10.1002/anie.202005840
- D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Fei et al., Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 5(6), 2681–2688 (2017). https://doi.org/10.1039/C6TA09409K
- Q. Jin, N. Liu, C. Dai, R. Xu, B. Wu et al., H2-directing strategy on in situ synthesis of Co-MoS2 with highly expanded interlayer for elegant HER activity and its mechanism. Adv. Energy Mater. 10(20), 2000291 (2020). https://doi.org/10.1002/aenm.202000291
- M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi et al., 3D nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12(9), 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489
- X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang et al., A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance. J. Mater. Chem. C 4(28), 6816–6821 (2016). https://doi.org/10.1039/C6TC02006B
- M.Q. Ning, M.M. Lu, J.B. Li, Z. Chen, Y.K. Dou et al., Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7(38), 15734–15740 (2015). https://doi.org/10.1039/C5NR04670J
- L. Lyu, F. Wang, B. Li, X. Zhang, J. Qiao et al., Constructing 1T/2H MoS2 nanosheets/3D carbon foam for high-performance electromagnetic wave absorption. J. Colloid Interface Sci. 586, 613–620 (2020). https://doi.org/10.1016/j.jcis.2020.10.129
- H. Guo, L. Wang, W. You, L. Yang, X. Li et al., Engineering phase transformation of MoS2/RGO by N-doping as an excellent microwave absorber. ACS Appl. Mater. Interfaces 12(14), 16831–16840 (2020). https://doi.org/10.1021/acsami.0c01998
- L. Ye, S. Chen, W. Li, M. Pi, T. Wu et al., Tuning the electrical transport properties of multilayered molybdenum disulfide nanosheets by intercalating phosphorus. J. Phys. Chem. C 119(17), 9560–9567 (2015). https://doi.org/10.1021/jp5128018
- C.K. Chua, A.H. Loo, M. Pumera, Top-down and bottom-up approaches in engineering 1T phase molybdenum disulfide (MoS2): towards highly catalytically active materials. Chem. A-Eur. J. 22(40), 14336–14341 (2016). https://doi.org/10.1002/chem.201602764
- M. Zhang, C. Han, W.Q. Cao, M.S. Cao, H.J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13(1), 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
- D. Zhang, J. Chai, J. Cheng, Y. Jia, X. Yang et al., Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with Hetero-structures. Appl. Surface Sci. 462, 872–882 (2018). https://doi.org/10.1016/j.apsusc.2018.08.152
- J. Chai, J. Cheng, D. Zhang, Y. Xiong, X. Yang et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets. J. Alloy. Compd. 829, 154531 (2020). https://doi.org/10.1016/j.jallcom.2020.154531
- D. Wang, B. Su, Y. Jiang, L. Li, B.K. Ng et al., Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution. Chem. Eng. J. 330, 102–108 (2017). https://doi.org/10.1016/j.cej.2017.07.126
- M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10(4), 313–318 (2015). https://doi.org/10.1038/nnano.2015.40
- G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen et al., Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). https://doi.org/10.1021/nl201874w
- P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos. PT. B-Eng. 202, 108406 (2020). https://doi.org/10.1016/j.compositesb.2020.108406
- P. Liu, S. Gao, Y. Wang, Y. Huang, F. Zhou et al., Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers. Carbon 173, 655–666 (2021). https://doi.org/10.1016/j.carbon.2020.11.043
- J. Cheng, H. Zhang, Y. Xiong, L. Gao, B. Wen et al., Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a review. J. Materiomics (2021). https://doi.org/10.1016/j.jmat.2021.02.017
- Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
- P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 170, 503–516 (2020). https://doi.org/10.1016/j.carbon.2020.08.043
- L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Pt. A-Appl. Sci. Manuf. 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
- L. Wang, X. Bai, T. Zhao, Y. Lin, Facile synthesis of N, S-codoped honeycomb-like C/Ni3S2 composites for broadband microwave absorption with low filler mass loading. J. Colloid Interface Sci. 580, 126–134 (2020). https://doi.org/10.1016/j.jcis.2020.07.025
- M. Ma, W. Li, Z. Tong, Y. Ma, Y. Bi et al., NiCo2O4 nanosheets decorated on one-dimensional ZnFe2O4@SiO2@C nanochains with high-performance microwave absorption. J. Colloid Interface Sci. 578, 58–68 (2020). https://doi.org/10.1016/j.jcis.2020.05.044
- X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12(1), 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- M. Ma, W. Li, Z. Tong, Y. Yang, Y. Ma et al., 1D flower-like Fe3O4@SiO2@MnO2 nanochains inducing RGO self-assembly into aerogels for high-efficient microwave absorption. Mater. Design 188, 108462 (2020). https://doi.org/10.1016/j.matdes.2019.108462
- J. Yan, Y. Huang, X. Liu, X. Zhao, T. Li et al., Polypyrrole-based composite materials for electromagnetic wave absorption. Polym. Rev. 1–42 (2020). https://doi.org/10.1080/15583724.2020.1870490
- J. Yan, Y. Huang, Y. Yan, X. Zhao, P. Liu, The composition design of MOF-derived Co-Fe bimetallic autocatalysis carbon nanotubes with controllable electromagnetic properties. Compos. Pt. A-Appl. Sci. Manuf. 139, 106107 (2020). https://doi.org/10.1016/j.compositesa.2020.106107
- X.Y. Wang, Y.K. Lu, T. Zhu, S.C. Chang, W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 388, 16 (2020). https://doi.org/10.1016/j.cej.2020.124317
- J. Qiao, X. Zhang, C. Liu, L.F. Luy, Y.F. Yang, Z. Wang et al., (2021) Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13, 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
- S. Gao, S.H. Yang, H.Y. Wang, G.S. Wang, P.G. Yin, Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C. Carbon 162, 438–444 (2020). https://doi.org/10.1016/j.carbon.2020.02.031
- T. Zhu, S.C. Chang, Y.F. Song, M. Lahoubi, W. Wang, PVP-encapsulated CoFe2O4/rGO composites with controllable electromagnetic wave absorption performance. Chem. Eng. J. 373, 755–766 (2019). https://doi.org/10.1016/j.cej.2019.05.079
- Y.L. Wang, S.H. Yang, H.Y. Wang, G.S. Wang, X.B. Sun et al., Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 167, 485–494 (2020). https://doi.org/10.1016/j.carbon.2020.06.014
- G.H. He, Y.P. Duan, H.F. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
- X. Wang, J. Liao, R. Du, G. Wang, N. Tsidaeva et al., Achieving super-broad effective absorption bandwidth with low filler loading for graphene aerogels/raspberry-like CoFe2O4 clusters by N doping. J. Colloid Interface Sci. 590, 186–198 (2021). https://doi.org/10.1016/j.jcis.2021.01.069
- D. Zhang, Y. Xiong, J. Cheng, J. Chai, T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci. Bull. 65(2), 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
- Y. Wang, X. Di, Z. Lu, X. Wu, Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption. J. Colloid Interface Sci. 589, 462–471 (2021). https://doi.org/10.1016/j.jcis.2021.01.013
- Y. Wang, X. Di, X. Wu, X. Li, MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchical structure as a high-efficiency electromagnetic wave absorber. J. Alloy. Compd. 846, 156215 (2020). https://doi.org/10.1016/j.jallcom.2020.156215
- X. Di, Y. Wang, Y. Fu, X. Wu, P. Wang, Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber. Carbon 173, 174–184 (2021). https://doi.org/10.1016/j.carbon.2020.11.006
- X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu et al., Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 72, 93–103 (2021). https://doi.org/10.1016/j.jmst.2020.09.012
- Y. Song, F.X. Yin, C.W. Zhang, W.B. Guo, L.Y. Han et al., Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 13, 76 (2021). https://doi.org/10.1007/s40820-021-00601-x
- C. Zhang, Y. Peng, Y. Song, J. Li, F. Yin et al., Periodic three-dimensional nitrogen-doped mesoporous carbon spheres embedded with Co/Co3O4 nanoparticles toward microwave absorption. ACS Appl. Mater. Interfaces 12(21), 24102–24111 (2020). https://doi.org/10.1021/acsami.0c03105
References
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@ Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018). https://doi.org/10.1002/smll.201800987
P. Liu, C. Zhu, S. Gao, C. Guan, Y. Huang et al., N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 163, 348–359 (2020). https://doi.org/10.1016/j.carbon.2020.03.041
M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), 1907156 (2020). https://doi.org/10.1002/adma.201907156
J. Yan, Y. Huang, C. Wei, N. Zhang, P. Liu, Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials. Compos. Pt. A-Appl. Sci. Manuf. 99, 121–128 (2017). https://doi.org/10.1016/j.compositesa.2017.04.016
R. Shu, G. Zhang, C. Zhang, Y. Wu, J. Zhang, Nitrogen-doping-regulated electromagnetic wave absorption properties of ultralight three-dimensional porous reduced graphene oxide aerogels. Adv. Electron. Mater. 7, 2001001 (2020). https://doi.org/10.1002/aelm.202001001
D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
T. Zhu, W. Shen, X. Wang, Y.F. Song, W. Wang, Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chem. Eng. J. 378, 122159 (2019). https://doi.org/10.1016/j.cej.2019.122159
L. Gai, Y. Zhao, G. Song, Q. An, Z. Xiao et al., Construction of core-shell PPy@ MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: assembly and enhanced mechanism. Compos. Pt. A-Appl. Sci. Manuf. 136, 105965 (2020). https://doi.org/10.1016/j.compositesa.2020.105965
M. Ning, Q. Man, G. Tan, Z. Lei, J. Li et al., Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: a case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 12(18), 20785–20796 (2020). https://doi.org/10.1021/acsami.9b20433
Z. Zhao, S. Xu, Z. Du, C. Jiang, X. Huang et al., Metal-organic framework-based PB@MoS2 core–shell microcubes with high efficiency and broad bandwidth for microwave absorption performance. ACS Sustain. Chem. Eng. 7(7), 7183–7192 (2019). https://doi.org/10.1021/acssuschemeng.9b00191
R. Wang, E. Yang, X. Qi, R. Xie, S. Qin et al., Constructing and optimizing core@ shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers. Appl. Surface Sci. 516, 146159 (2020). https://doi.org/10.1016/j.apsusc.2020.146159
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 391, 123512 (2020). https://doi.org/10.1016/j.cej.2019.123512
J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv, Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
X. Gao, B. Wang, K. Wang, S. Xu, S. Liu et al., Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 583, 510–521 (2021). https://doi.org/10.1016/j.jcis.2020.09.094
W. Wu, L. Wang, R. Yu, Y. Liu, S.H. Wei et al., Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 28(38), 8463–8468 (2016). https://doi.org/10.1002/adma.201602854
Q.H. Wang, K. Kalantar Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang et al., MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 29(21), 1606817 (2017). https://doi.org/10.1002/adma.201606817
J. Ru, T. He, B. Chen, Y. Feng, L. Zu et al., Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries. Angew. Chem. Int. Ed. 59(34), 14621–14627 (2017). https://doi.org/10.1002/anie.202005840
D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Fei et al., Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 5(6), 2681–2688 (2017). https://doi.org/10.1039/C6TA09409K
Q. Jin, N. Liu, C. Dai, R. Xu, B. Wu et al., H2-directing strategy on in situ synthesis of Co-MoS2 with highly expanded interlayer for elegant HER activity and its mechanism. Adv. Energy Mater. 10(20), 2000291 (2020). https://doi.org/10.1002/aenm.202000291
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi et al., 3D nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12(9), 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489
X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang et al., A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance. J. Mater. Chem. C 4(28), 6816–6821 (2016). https://doi.org/10.1039/C6TC02006B
M.Q. Ning, M.M. Lu, J.B. Li, Z. Chen, Y.K. Dou et al., Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7(38), 15734–15740 (2015). https://doi.org/10.1039/C5NR04670J
L. Lyu, F. Wang, B. Li, X. Zhang, J. Qiao et al., Constructing 1T/2H MoS2 nanosheets/3D carbon foam for high-performance electromagnetic wave absorption. J. Colloid Interface Sci. 586, 613–620 (2020). https://doi.org/10.1016/j.jcis.2020.10.129
H. Guo, L. Wang, W. You, L. Yang, X. Li et al., Engineering phase transformation of MoS2/RGO by N-doping as an excellent microwave absorber. ACS Appl. Mater. Interfaces 12(14), 16831–16840 (2020). https://doi.org/10.1021/acsami.0c01998
L. Ye, S. Chen, W. Li, M. Pi, T. Wu et al., Tuning the electrical transport properties of multilayered molybdenum disulfide nanosheets by intercalating phosphorus. J. Phys. Chem. C 119(17), 9560–9567 (2015). https://doi.org/10.1021/jp5128018
C.K. Chua, A.H. Loo, M. Pumera, Top-down and bottom-up approaches in engineering 1T phase molybdenum disulfide (MoS2): towards highly catalytically active materials. Chem. A-Eur. J. 22(40), 14336–14341 (2016). https://doi.org/10.1002/chem.201602764
M. Zhang, C. Han, W.Q. Cao, M.S. Cao, H.J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13(1), 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
D. Zhang, J. Chai, J. Cheng, Y. Jia, X. Yang et al., Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with Hetero-structures. Appl. Surface Sci. 462, 872–882 (2018). https://doi.org/10.1016/j.apsusc.2018.08.152
J. Chai, J. Cheng, D. Zhang, Y. Xiong, X. Yang et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets. J. Alloy. Compd. 829, 154531 (2020). https://doi.org/10.1016/j.jallcom.2020.154531
D. Wang, B. Su, Y. Jiang, L. Li, B.K. Ng et al., Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution. Chem. Eng. J. 330, 102–108 (2017). https://doi.org/10.1016/j.cej.2017.07.126
M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10(4), 313–318 (2015). https://doi.org/10.1038/nnano.2015.40
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen et al., Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). https://doi.org/10.1021/nl201874w
P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos. PT. B-Eng. 202, 108406 (2020). https://doi.org/10.1016/j.compositesb.2020.108406
P. Liu, S. Gao, Y. Wang, Y. Huang, F. Zhou et al., Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers. Carbon 173, 655–666 (2021). https://doi.org/10.1016/j.carbon.2020.11.043
J. Cheng, H. Zhang, Y. Xiong, L. Gao, B. Wen et al., Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a review. J. Materiomics (2021). https://doi.org/10.1016/j.jmat.2021.02.017
Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 170, 503–516 (2020). https://doi.org/10.1016/j.carbon.2020.08.043
L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Pt. A-Appl. Sci. Manuf. 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
L. Wang, X. Bai, T. Zhao, Y. Lin, Facile synthesis of N, S-codoped honeycomb-like C/Ni3S2 composites for broadband microwave absorption with low filler mass loading. J. Colloid Interface Sci. 580, 126–134 (2020). https://doi.org/10.1016/j.jcis.2020.07.025
M. Ma, W. Li, Z. Tong, Y. Ma, Y. Bi et al., NiCo2O4 nanosheets decorated on one-dimensional ZnFe2O4@SiO2@C nanochains with high-performance microwave absorption. J. Colloid Interface Sci. 578, 58–68 (2020). https://doi.org/10.1016/j.jcis.2020.05.044
X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12(1), 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
M. Ma, W. Li, Z. Tong, Y. Yang, Y. Ma et al., 1D flower-like Fe3O4@SiO2@MnO2 nanochains inducing RGO self-assembly into aerogels for high-efficient microwave absorption. Mater. Design 188, 108462 (2020). https://doi.org/10.1016/j.matdes.2019.108462
J. Yan, Y. Huang, X. Liu, X. Zhao, T. Li et al., Polypyrrole-based composite materials for electromagnetic wave absorption. Polym. Rev. 1–42 (2020). https://doi.org/10.1080/15583724.2020.1870490
J. Yan, Y. Huang, Y. Yan, X. Zhao, P. Liu, The composition design of MOF-derived Co-Fe bimetallic autocatalysis carbon nanotubes with controllable electromagnetic properties. Compos. Pt. A-Appl. Sci. Manuf. 139, 106107 (2020). https://doi.org/10.1016/j.compositesa.2020.106107
X.Y. Wang, Y.K. Lu, T. Zhu, S.C. Chang, W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 388, 16 (2020). https://doi.org/10.1016/j.cej.2020.124317
J. Qiao, X. Zhang, C. Liu, L.F. Luy, Y.F. Yang, Z. Wang et al., (2021) Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13, 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
S. Gao, S.H. Yang, H.Y. Wang, G.S. Wang, P.G. Yin, Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C. Carbon 162, 438–444 (2020). https://doi.org/10.1016/j.carbon.2020.02.031
T. Zhu, S.C. Chang, Y.F. Song, M. Lahoubi, W. Wang, PVP-encapsulated CoFe2O4/rGO composites with controllable electromagnetic wave absorption performance. Chem. Eng. J. 373, 755–766 (2019). https://doi.org/10.1016/j.cej.2019.05.079
Y.L. Wang, S.H. Yang, H.Y. Wang, G.S. Wang, X.B. Sun et al., Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 167, 485–494 (2020). https://doi.org/10.1016/j.carbon.2020.06.014
G.H. He, Y.P. Duan, H.F. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
X. Wang, J. Liao, R. Du, G. Wang, N. Tsidaeva et al., Achieving super-broad effective absorption bandwidth with low filler loading for graphene aerogels/raspberry-like CoFe2O4 clusters by N doping. J. Colloid Interface Sci. 590, 186–198 (2021). https://doi.org/10.1016/j.jcis.2021.01.069
D. Zhang, Y. Xiong, J. Cheng, J. Chai, T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci. Bull. 65(2), 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
Y. Wang, X. Di, Z. Lu, X. Wu, Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption. J. Colloid Interface Sci. 589, 462–471 (2021). https://doi.org/10.1016/j.jcis.2021.01.013
Y. Wang, X. Di, X. Wu, X. Li, MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchical structure as a high-efficiency electromagnetic wave absorber. J. Alloy. Compd. 846, 156215 (2020). https://doi.org/10.1016/j.jallcom.2020.156215
X. Di, Y. Wang, Y. Fu, X. Wu, P. Wang, Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber. Carbon 173, 174–184 (2021). https://doi.org/10.1016/j.carbon.2020.11.006
X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu et al., Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 72, 93–103 (2021). https://doi.org/10.1016/j.jmst.2020.09.012
Y. Song, F.X. Yin, C.W. Zhang, W.B. Guo, L.Y. Han et al., Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 13, 76 (2021). https://doi.org/10.1007/s40820-021-00601-x
C. Zhang, Y. Peng, Y. Song, J. Li, F. Yin et al., Periodic three-dimensional nitrogen-doped mesoporous carbon spheres embedded with Co/Co3O4 nanoparticles toward microwave absorption. ACS Appl. Mater. Interfaces 12(21), 24102–24111 (2020). https://doi.org/10.1021/acsami.0c03105